
EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer
(Guest Editors)

Volume 37 (2018), Number 2

Flexible Live-Wire: Image Segmentation with Floating Anchors

B. Summa1, N. Faraj1, C. Licorish1, and V. Pascucci2

1Tulane University, United States
2SCI Institute, University of Utah, United States

Figure 1: Our novel generalization via floating anchors enables the flexible design of input and interactions for Live-Wire image segmenta-
tion. (a) The flower can be segmented with region painting, line drawing using a pinch interaction, a probability field about a user’s click,
or by picking from a set of alternate segmentations. (b) Traditional Live-Wire allows for only pixel-level anchor nodes which may be too
precise for a user. A slight miss (left, top) in setting an anchor node causes an erroneous segmentation (red). Our approach allows for user
controlled precision through anchor sets. A paint anchor at the same location (right, bottom) produces the correct segmentation (blue). Both
anchors are valid inputs in our generalization.

Abstract

We introduce Flexible Live-Wire, a generalization of the Live-Wire interactive segmentation technique with floating anchors.
In our approach, the user input for Live-Wire is no longer limited to the setting of pixel-level anchor nodes, but can use more
general anchor sets. These sets can be of any dimension, size, or connectedness. The generality of the approach allows the
design of a number of user interactions while providing the same functionality as the traditional Live-Wire. In particular, we
experiment with this new flexibility by designing four novel Live-Wire interactions based on specific primitives: paint, pinch,
probable, and pick anchors. These interactions are only a subset of the possibilities enabled by our generalization. Moreover,
we discuss the computational aspects of this approach and provide practical solutions to alleviate any additional overhead.
Finally, we illustrate our approach and new interactions through several example segmentations.

CCS Concepts

•Computing methodologies → Image segmentation; •Human-centered computing → Interaction techniques;

1. Introduction

In this work, we introduce Flexible Live-Wire, a generalization
of the Live-Wire interactive segmentation technique with float-
ing anchors. This approach replaces the standard anchor node
with a more general anchor set, thereby allowing novel prim-
itives and interactions for Live-Wire input. Segmenting an im-
age to extract objects or features is a fundamental operation that
can be seen throughout the arts and sciences and found in many
applications and workflows. Given the variability in image data
and often the subjectiveness of what constitutes a good segmen-

tation, interactive segmentation algorithms are particularly use-
ful by allowing users to guide a (semi-)automatic segmentation.
Popular approaches [BVZ01, Gra06] produce fast, automatic seg-
mentations based on user input (painting, approximate boundaries,
etc.). This input is often the frontend to an automatic segmenta-
tion and is therefore somewhat disconnected from the final seg-
mentation produced. While this can be acceptable for many sit-
uations, users often want more direct control of the construction
and therefore use techniques like Snakes [KWT88,BM92] or Live-
Wire [MB95, MB98] to semi-automatically build a segmentation.
Live-Wire can be found in a wide variety of applications with ver-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13364



Summa et al. / Flexible Live-Wire: Image Segmentation with Floating Anchors

Figure 2: Coarse, imprecise user interactions can lead to erro-
neous segmentations with traditional anchor nodes and is often
only apparent at the finest levels of resolution. Our flexible ap-
proach alleviates the disconnect between a user’s input precision
and the input precision required by the technique.

sions of the algorithm included in many image processing software
including the magnetic lasso in Adobe’s Photoshop [Ado17] and
the intelligent scissor tool in GIMP [GIM17].

In Live-Wire, users semi-automatically guide a segmenta-
tion by the addition and manipulation of anchors (also called
seeds [MB95]). For disambiguation, we will refer to these inputs
as anchor nodes in this text. These anchor nodes, whether being
directly set by a user or automatically set by a system, are required
to be at pixel resolution for the optimization. This leads to the re-
strictive user interaction of precise single-point selections. There is
often a disconnect between the resolution a user can quickly and
reliably provide via interactions and the resolution required by an-
chor nodes, with the former being typically much coarser than the
latter. This is especially problematic for touch devices due to the
imprecision of touch input and occlusion of the anchor nodes by
a user’s finger. Sometimes a slight miss in anchor node placement
can generate a large deviation in the segmentation (Figure 1b). In
addition, some poor segmentations due to imprecise anchor node
placement are not apparent unless inspected at higher resolutions
(Figure 2). Often these problems are alleviated through a user seg-
menting an image at a high zoom level, where their input precision
is close to precision required by anchor nodes. This zoom comes
with tedious scrolling and loss of context of the full segmentation.
In other words, a user must adjust to their input strategy to conform
to the required precision of the technique.

A better approach would remove the restriction on anchor node
precision enforced by the optimization. A more flexible approach
would allow a user to dictate their desired input precision and the
optimization should conform to that precision. In this work we have
designed a more general version of Live-Wire called Flexible Live-
Wire. Through the use of our floating anchors, user input is no
longer limited to pixel-level anchor nodes, but will be a more gen-
eral set of nodes, which we call an anchor set. The generalization
provides the same functionality as the traditional approach but also
allows for a larger set of user interaction primitives with varying
precision. We experiment with this new flexibility to design new
Live-Wire primitives for different inputs and precision where an
anchor set defines lines or areas in an image (paint, pinch, and prob-
able anchors). See Figure 1a. Furthermore, our anchor sets are ide-
ally situated to complement previous work [STP17] on extracting
alternate segmentations. This extraction provides a novel pick an-

Figure 3: The imprecision of a user’s interaction should be main-
tained. (top) Imprecise anchors allow the segmentation optimiza-
tion to be flexible and adjust to new input. (bottom) Approaches that
take imprecise input but keep the underlying algorithm the same fix
locations and can lead to a poor segmentation.

chor where a user selects from several segmentation choices. These
proposed interactions are only a subset of the many possible novel
inputs enabled by our generalization.

In particular, the major contributions of this work are:

• A generalization of Live-Wire using novel floating anchors that
relaxes the traditional, pixel-precise anchor nodes and enables
anchor sets that can span arbitrary regions with no restrictions
on size or even connectedness;

• Examples of new Live-Wire interactions tailored to specific use
cases for our anchor sets including: paint, pinch, pick, and prob-
able anchors;

• A detailed analysis of the efficiency of the method including
practical solutions that maintain interactivity despite the added
capabilities; and

• Results illustrating interesting use cases for our example anchor
set primitives.

2. Related Work

In this section, we detail popular interactive image segmentation
approaches and their requirements for user input. First, region
growing approaches such as ones based on watersheds [BM92,
CBNC09], random walks of a graph [Gra06], or minimum geodesic
distances [BS09] require a set of initial seed locations as the ba-
sis for their optimizations. There are no constraints on the size,
shape, or connectedness of these seeds. To this, the most com-
mon interaction for a user is to paint or scribble the seed loca-
tions [Gra06, BS09, YCZL10]. This free-form input is both intu-
itive to users and allows manual or automatic [WAC07] variance
in precision based on their task by, for example, adjusting the
size of the brush in a painting interaction. Next, interactive tech-
niques based on a minimum cut of a graph constructed from an im-
age [BVZ01, BK04], graph cuts, also requires a similar set of seed
locations to initialize their optimization. Also, similarly to region-
based approaches there are no constraints on this input and user
can interact with the technique with free-form painting and scrib-
bles [BJ01, RKB04, LSS09]. In fact, there has been work to relax

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

322



Summa et al. / Flexible Live-Wire: Image Segmentation with Floating Anchors

the amount of painting required for these approaches and, for ex-
ample, have a user only supply a simple bounding box around an
object [RKB04]. Finally, snakes [KWT88] segmentations build a
solution from an approximate segmentation boundary provided by
a user which is then optimized to the final segmentation. Precise or
imprecise input is naturally handled with this approach. These tech-
niques, through their lack of restrictive input lead to the design of
flexible segmentation environments and easily transfer to use cases
where the precision of the input is potentially low.

Live-Wire [MB95, MB98] is a fast and intuitive segmenta-
tion algorithm that can be found in a wide variety of medi-
cal [FU97, HYML05], scientific [MJS∗04, HBG∗11, Ali14], and
artistic [MB95,MB98,STP12] applications. Compared to the com-
peting segmentation algorithms, Live-Wire’s required input is re-
strictive. As we will describe in Section 3, the core of the technique
requires pixel-level seed locations as the basis for its segmentation.
Techniques have tried to improve a user’s experience by decreasing
the complexity of the underlying optimizations [FUS∗98, FUM00]
or through automatic anchor node setting [MB95, MB98] when a
portion of a segmentation has stabilized. Despite this work, the core
input requirement for the technique has not changed. For example,
Adobe’s Photoshop [Ado17] constructs a Live-Wire-like segmenta-
tion by automatically setting anchor nodes in a fixed neighborhood
about a user’s cursor. While such an approach allows for a level of
flexibility in input, due to the core algorithm’s requirement, a user
must set at at least one precise anchor node to start and often many
additional anchor nodes in the cases where the automatic routine
does not provide the desired segmentation. In addition, these au-
tomatically set anchor nodes restrict a segmentation to be precise
even if the input wasn’t. As illustrated in Figure 3, this can cause a
segmentation to be pigeonholed in a sub-optimal configuration.

There has also been work on integrating both minimum
cut and Live-Wire approaches into a single segmentation rou-
tine [SdMF14] or in unifying minimum cut and Live-Wire segmen-
tations [SGSP15]. In this way, these works add a level of flexibil-
ity in input by adding a painting interaction, although both main-
tain the requirement for precise input when a user manipulates the
Live-Wire components. In addition, there has been work that has
combined a graph cuts segmentation with an approximate bound-
ary with anchors [LSTS04]. In this case, there is no Live-Wire op-
timization and the boundary is used to drive a graph cuts segmen-
tation. Finally, there has been work in uniting active contouring
and Live-Wire [LMT06], using Live-Wire anchors to provide hard
and soft constraints for a snakes optimization. Hard constraints,
again, require pixel-level precision, while soft constraints intro-
duce a level of imprecision. Soft constraints only suggest and do
not enforce locations for the segmentation in this approach. Our
work gives users more control in that a segmentation is required
to travel through the imprecise anchors. All assume and are lim-
ited to the standard interactions for region (painting for a cut) and
boundary (nodes for Live-Wire) delineation. In this work, we pro-
vide a new generalization of Live-Wire that enables unrestricted,
free-form, and flexible interactions through a generalization. Any
set of nodes (including, but not limited to, painting) can denote
a Live-Wire anchor. G-Wire [Kan05] is a generalization that adds
snake-like contouring to Live-Wire by adding a boundary energy

Figure 4: (Left) The pixel graph G, its dual G∗, and energy Es.
(Middle) On the dual, the min path (green) provides the minimal
segmentation (blue, pink) given two anchor nodes (yellow). (Right)
Our floating anchors independent of graph nodes but connected to
sets of nodes.

to the standard optimization on a multi-dimensional graph, but the
core Live-Wire formulation remains the same.

3. Live-Wire Generalization

Live-Wire. Live-Wire segmentations can be considered a binary la-
beling of a planar graph G = (V,E) formed from an image, where
the nodes, V , are image pixels and the edges, E , encode all pairs of
4-neighbor pixels, (p,q). This labeling, L, is computed by the min-
imization of an objective function, E(L) = ∑(p,q)∈E Es(p, lp,q, lq),
where Es is the cost incurred from neighbors p and q having la-
bels lp and lq respectively with l ∈ {0,1}. If lp == lq, Es is typ-
ically 0. Otherwise ensures (non-)smoothness of the boundary be-
tween labels. For example, a simple Es for object segmentation
maximizes the gradient across the boundary with Es(p, lp,q, lq) =
1/(‖Ip −Iq‖), where Ip and Ip are the pixel values at locations p
and q respectively when lp �= lq.

Rather than operate on G directly, Live-Wire segmentations are
computed on a dual graph G∗. Each edge of G∗ is weighted with
the Es cost of its corresponding orthogonal edge in G. See Figure 4
(left). On this dual graph, a minimum cost path between a pair
of nodes produces a minimal partial segmentation between each
node in terms of Es. Therefore Live-Wire requires a set of anchor
nodes as input, which are provided by user interaction. Given a set
of anchor nodes, {ai, i ≤ k}, Live-Wire segmentations are formed
from a set of k−1 minimum paths between pairs of consecutive an-
chor nodes, {Pi, i ≤ k−1} where Pi is the minimum path between
ai and ai+1. See Figure 4 (middle). The segmentation is finalized
when a1 == ak with ∪∀i≤k−1Pi producing the boundary of the
minimal segmentation of G in terms of Es under the condition that
the boundary must pass through the anchor nodes.

The most common interaction for Live-Wire is a user adding the
anchor nodes sequentially to build a segmentation. To this, a min-
imum path tree is computed for each anchor node, Ti for anchor
node ai. Each tree can be computed in linear time in the num-
ber of pixels [MB95, MB98] and encodes the minimum paths and
their costs between ai and all other nodes in our graph. This in-
cludes its sequential anchor node neighbors ai−1 and ai+1, Pi−1
and Pi respectively. Therefore the paths of a Live-Wire segmen-
tation can be extracted from these trees. In fact, given a tree Ti,
a user can add an additional anchor node ai+1 and query Pi as a
simple walk of the tree. After a user is satisfied with the location
of ai+1, Ti+1 is computed in anticipation of an additional anchor
node. This pre-computation and instant path lookup yields a highly

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

323



Summa et al. / Flexible Live-Wire: Image Segmentation with Floating Anchors

Figure 5: The order and dependencies in our new generalization.
(a) to compute the minimum segmentation (green) between A1 and
A2 we compute the minimum path tree for a′1, T ′

1 . (b) To correctly
compute the minimum segmentation to A3 the edges from a′2 to A2
are weighted with the path costs from T ′

1 . Note that this flexibility
allows the segmentation to avoid areas of high energy and not be
forced into a poor segmentation..

interactive technique. Finally, maintaining these trees can allow a
user to edit sequentially older anchor nodes [STP12] by noting that
the paths on either side of an anchor node, Pi−1 and Pi for ai, can
also be provided via the trees of an anchor node’s neighbors, ai−1
and ai+1 respectively. As you can see, the requirements of the al-
gorithm assume an input that is at the pixel-level, a precision that
is prohibitive and possibly undesirable for users. A better approach
is to relax this requirement and allow a varying level of precision.

Generalization. Let us begin our generalization by removing the
condition that roots of our tree computations and a user’s input are
equivalent nodes in G∗, which to this point has been an intrinsic as-
sumption of the technique. With this disconnection, our new float-
ing anchors {a′i , i ≤ k} that drive the segmentation computation are
now independent of the nodes in our graph. We attach each with
zero cost edges to a set of nodes in G∗, {Ai, i ≤ k}. Each set, Ai, is
called an anchor set. It is easy to see that the standard Live-Wire
anchor nodes are just a special case of this new formulation with
|Ai|== 1,∀i. In this new augmented graph, a minimum path com-
puted between pairs of floating anchors, P ′

i for a′i and a′i+1, will
produce a minimum cost partial segmentation under the condition
that the segmentation must pass through the corresponding anchor
sets, Ai and Ai+1. See Figure 4 (right). Note that in this formulation
Ai does not necessarily need to be equal to Ak, just that A1∩Ak �= ∅.
While the floating anchors provide the algorithmic backend, practi-
cally a user is only required to add and remove nodes from the an-
chor sets. Therefore, with this new formulation Live-Wire anchors
are relaxed to be sets of nodes, where user input is generalized to
the addition and manipulation of these anchor sets. As described in
Section 4, this enables the design of novel Live-Wire input.

This simple, yet powerful, concept requires some algorithmic
care to realize. With these new floating anchors, the computation of
the minimum path trees,T ′

i , needs to be adjusted to guarantee that
∪∀i≤k−1P ′

i is the contiguous minimum path that passes through
every anchor set. To achieve this guarantee, we can use the edges
of our floating anchors, which need not be zero. Consider the sim-
ple case of three anchor sets in Figure 5. The tree computed for A1,
T ′

1 , encodes the minimum paths and costs from A1 to all nodes in
our graph but, in particular, to the set of nodes that correspond to
our second anchor, A2. Now, in order to guarantee that the segmen-
tation is the minimum that passes through A2 as it continues on to

Figure 6: This work allows the design of novel Live-Wire primitives
with new interactions.

A3, the costs of those minimum paths need to be included in the
calculation of T ′

2 for anchor A2. Also, note that the addition of A3
has no effect on the minimum paths from A1 to A2. Therefore ac-
counting for the previous path costs can be simply accomplished by
weighting the edges from a′2 to the nodes of A2 with those costs. In-
tuitively, this can be considered collapsing the previous minimum
paths. Doing this for all anchor sets computes the minimal path
that must pass through each set. This approach mirrors sequential
anchor addition and therefore has the same complexity as the tra-
ditional approach. Note, that if relying on the traditional anchor
nodes of Live-Wire, we would have needed to pick a single anchor
node given, for instance, the imprecise input of A2. A logical choice
would have been n1 in Figure 5a, which is the minimal path at that
point in the computation. This restriction would have pigeonholed
the computation into an area of high energy when A3 was added.
With our approach, the optimization can adapt to new input to find
the optimal segmentation.

Some further adjustment is needed to allow for the editing of
older anchor sets. The tree calculation described above accounts
for the paths and costs in the sequentially increasing, Forward,
direction of anchor sets. If a user wishes to do more than add an-
chor sets to the end of the segmentation, the equivalent decreasing,
Backward, direction needs to be also computed. This leads to two
tree calculations per anchor set, T F

i and T B
i for anchor Ai. With

these trees, the minimum paths associated with anchor set Ai, Pi−1
and Pi, can be found via the trees T F

i−1 and T B
i+1 respectively. Note

that segmentation cost for nodes in Ai is the sum of the costs from
both trees. This property allows a user to edit any anchor set and
receive the segmentation instantaneously. Note the requirement of
directed trees causes a cascade of tree computation. For an edited
anchor set Ai, trees T F

j ,∀ j ≥ i and T B
k ,∀k ≤ i will need to be

recomputed. Finally, the ∪∀i≤k−1P ′
i computed above is the min-

imum path that must pass through each anchor set, but is not the
minimum closed path for a final segmentation when A1 ∩Ak �= ∅.
To properly compute the minimum segmentation, one would have
to run the entire process for every node in A1, finding the mini-
mum path to the equivalent node in Ak. The complexity added by
the directed trees and final closed path search are discussed in Sec-
tion 5 with practical solutions to reduce the overhead. Pseudocode
for both the fast minimum segmentation lookup and tree calcula-
tions after interaction are provided as supplemental.

4. Example Anchors

With our new approach, adding or editing Live-Wire anchors is now
simply the process of adding and removing nodes from anchor sets.
This generalization opens a new range of user interactions in addi-
tion to the standard anchor node. In Figure 6 and below, we will de-
scribe some novel anchors and the corresponding interactions now

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

324



Summa et al. / Flexible Live-Wire: Image Segmentation with Floating Anchors

possible. Note that given the generality of our approach there is
no such thing as sidedness or orientation of all of the interactions
below, a consideration that needed to be addressed in other inter-
active segmentation approaches [WAC07]. Additionally, all of the
interactions below are well-suited for touch devices, where a user’s
input precision is typically low.

Pinch. Anchor sets can be used to represent 1D geometry. This
anchor allows users to denote lines that are rasterized into an an-
chor set. Intuitively, these lines are (approximately) orthogonal to
the segmentation. For this work we chose a line with 1-pixel thick-
ness, but any thickness schemes are possible with the approach.
This anchor has also a direct analog to the pinch used in multitouch
interactions. Given two touches, we can form a line between each
finger. In this domain, the segmentation is constrained to pass be-
tween a user’s fingers. In other words, one finger is set to be inside
and the other outside the segmentation. Again, given the generality
of our anchor sets no specific finger orientation is required.

Paint. Each anchor set can also be one or more 2D areas. Similar
to other interactive segmentation algorithms, these nodes can be
denoted by a paint interaction with a user-defined brush size. Note
that these areas need not be a single connected component.

Pick. One can view the varying precision of our anchor sets as
adding an element of uncertainty to where a segmentation must go.
An interesting extension of our formulation is to extract and present
to a user sets of alternate segmentations from which they can pick.
Recent work has shown how to extract these alternatives from a
Live-Wire segmentation’s minimum path trees [STP17]. In this ap-
proach, all pairs of consecutive anchors, ai and ai+1, and their trees,
Ti and Ti+1, can define a field over all pixels, p, that is the minimum
of the cost for a path from ai to ai+1 through p. Taking the mini-
mum cost for p over all consecutive anchor pairs forms a min-path
stability field, which encodes both the minimum cost of perturbing
a segmentation through a node but also the path associated with
the perturbation. Therefore, iterating though the nodes of this field
from low to high cost, provides a space to search and extract alter-
native segmentations. In addition, these alternative segmentations
can be enforced to have uniqueness with a user parameter that de-
notes the percent of allowable overlap between potential alternate
segmentations, which is applied greedily during extraction. Given
their larger span anchor sets seem to be an ideal match for this ex-
traction compared to the standard Live-Wire anchor nodes. Given
an alternate segmentation between two anchor sets, the full alter-
nate segmentation can be extracted by walking the trees of the re-
maining of the anchors. With this extraction, a user can pick from
the set of alternate segmentations and this pick can be enforced by
the insertion of a anchor node between the corresponding anchor
sets that produced the alternate.

Probable. Finally, if we again consider the anchor sets as un-
certain, we need not consider each point in the set to have uni-
form probability. Specifically, a probability density function can be
applied to the nodes in the set. These probabilities can then ap-
plied to the floating anchor edge costs as discussed in Section 3.
In this work, we’ve tested sets with normal (gaussian) distribu-
tion with a user-defined controlled standard deviation about a user’s
click/touch.

Figure 7: The difference between searching for alternate paths in
the full image, subsampling the search space every 4 nodes, and
only searching the anchor set nodes. Coarse subsampling still ex-
tracts the proper alternate paths, while only using the anchor sets
still finds the major paths. Image courtesy of Paul VanDerWerf.

5. Practical Computational Aspects

Generalizations often come at the cost of increased complexity, as
is the case for some aspects of our approach. The first complex-
ity consideration is in the search for the minimum closed path in
finalizing the segmentation. This involves the full recomputation
of all anchor trees for all nodes in anchor set A1, leading to a
O(k|A1|N) procedure using a linear tree calculation of Mortensen
et al. [MB95, MB98] where k is the number of anchor sets and N
is the number of pixels. An initial approach to minimize this over-
head is to reorder the anchors such that |A1| is minimized. Note
that if |A1|== 1, no search is necessary since it is guaranteed to be
closed. While this may reduce some complexity, the search can still
be a overly expensive for an interactive technique. To address this
overhead, we leverage the fact that for a vast majority of cases, a
user is satisfied with the current segmentation before the final clos-
ing anchor is set. In fact, searching for the final closed path at this
point may have the undesirable property that the minimal closed
path can change a portion or all of this segmentation. This final
"pop" of the segmentation may be undesirable and frustrating for
users. Rather than the expensive optimization that can result in a
disconcerting shift for users, we modify this final computation in
the following way. Keeping the currently computed segmentation
as fixed, we connect node at the end of our path in Ak with the min-
imum cost path to the node at the start of our path in A1. With this
new close routine, the complexity of our technique in a typical seg-
mentation scenario, where a user consecutively adds anchors, has
the similar complexity of the standard Live-wire algorithm O(kN).

The second complexity consideration is in the Forward and
Backward tree computation necessary to correctly edit older an-
chors [STP12] or to extract alternate segmentations for the pick in-
teraction. While each direction is inherently independent and paral-
lel, updating the trees properly would require a O(kN) complexity
update per anchor edit, a bottleneck to interactivity as k gets large.
To this, we will leverage the fact that a user is unlikely to want
to edit anchors that are very old in the interactive segmentation.
Therefore we limit the tree updates and alternate segmentation ex-
traction to be a fixed window (2) about the last set anchor. For both
considerations above, since our approach is just a modification of
the standard Live-Wire algorithm and tree calculations, techniques
like Live-Lane [FUS∗98] that limit the computation domain (N) as
a function of cursor location, speed, and acceleration, could still be
used as speedup strategies.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

325



Summa et al. / Flexible Live-Wire: Image Segmentation with Floating Anchors

1

2

3

4

Figure 8: The progression of a user segmentation of the statue with paint and pinch anchors. The second paint anchor has two connected
components. A pick anchor is used to ensure the segmentation follows the statue rather than the shadow.

The final complexity consideration is in the extraction of the al-
ternate segmentations. The previous work [STP17] has shown how
to extract these segmentations with O(|Pa|N) complexity where
Pa is the set of alternate segmentations. In the cases |Pa| is not
small, this extraction can become a bottleneck for interactivity.
Rather than limit the number of paths extracted and thereby limit a
user’s choices, we instead target schemes to limit the search space,
N. First, we have found that it is often unnecessarily to sample the
entire image in searching for the alternate segmentations. Consider
an alternate segmentation between a pair of anchors. If any of the
points on that path are sampled, then the path is found. Therefore
we have found practically, one can subsample (4 pixels) the search
and still find the proper alternate segmentations. Finally, a scheme
used in our examples is to limit the search space to only the nodes
of our anchors themselves (N = ∑∀i |Ai| ), achieving a very small N
with fast extraction. While not guaranteed to find all, as our exam-
ples show it still finds the significant alternate segmentations. See
Figure 7. Finally, for simplicity in picking and to keep the compu-
tation as parallel as possible, we only extract the alternate segmen-
tation geometry between the two corresponding anchor sets. This
independent calculation can cause a discontinuity in the alternates
in the interior of anchors, although as the example in Figure 10
shows this discontinuity has no significant effect on the usability.

6. Results

In this section and in the companion video, we provide some in-
teresting use cases of the new interactions enabled by our Flexible
Live-Wire formulation. Demoed segmentations were captured on a
2.8 GHz Intel Core i7 laptop. Segmentations were computed us-
ing the simple Es given in Section 3 to maximize the gradient and

Figure 9: A user segments the boat. Using a pick anchor the user
can choose to segment the interior or the entire boat.

alternate path segmentations are provided using the anchor node
constrained search.

In Figure 1a, we show an example of a user segmenting a flower
by mixing all of our new interactions. The user can add paint, pinch,
or probable anchors (blue) or pick from alternate segmentations
(yellow) to either include or exclude petals. Figures 1b and 2 are
two examples of a user’s precision not matching the pixel-level
precision of Live-Wire with varying results. In Figure 1b, a user
misses the boundary of the cake by only a few pixels. As you can
see, due to the large gradients on the interior of the cake, this has
a drastic effect on the segmentation. In contrast, a paint anchor at
the same location allows this imprecision and produces the cor-
rect segmentation. Figure 2 also has imprecise interactions that at a
coarse level seem to segment the orange properly. Upon inspection,
you can see that the imprecisely set anchors cause portions of the
orange to be missed. Again, a paint anchor at the same location re-
solves this issue. In Figure 3, we show why flexibility and precision
of user input are useful to maintain. This is an example of the case
that is illustrated in Figure 5. In the example, given two pinch con-
straints (red) on the window, systems using a variation of standard
Live-Wire algorithm [MB95,MB98] will cool (fix) a portion of the
segmentation to handle imprecise user input. In this example, the
segmentation is fixed to the location of highest gradient which is
the exterior of the window. Given an interaction for a new anchor,
the fixed segmentation does not have enough flexibility to produce
the right segmentation under the new constraint.

Figure 8 illustrates the flexibility of mixing the different anchors.

Before Pick interaction (8)

Simple\Parallel 
Alt Lookup

Full
Alt Lookup

Figure 10: A user mixes paint, node, and pick anchors to segment
the toy. Anchors are numbered in order of addition. Image courtesy
of Daniel Novta.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

326



Summa et al. / Flexible Live-Wire: Image Segmentation with Floating Anchors

Figure 11: Probable anchors combine the precision of anchor
nodes with the flexibility of paint anchors. Here anchor nodes alone
do not segment the interior of the feathers well. Probable anchors
allow the optimization to achieve a better configuration. Image
courtesy of Parasaran Raman.

In this example a user initializes a segmentation of the statue with
a coarse paint, followed by two pinch anchors. Under these con-
straints, the segmentation follows the statue’s shadow. A user can
correct this, if desired, by picking the alternate segmentation that
follows the statue. Similarly, in Figure 9 a user segments the boat
with paint anchors. The first two are placed at the stern with the
third at the bow. Given this configuration, the alternate paths allow
a user to quickly switch between either segmenting either the full
boat or just the interior (or possibly producing a segmentation for
both). Figure 10 illustrates a more sophisticated example. In this
figure, a user adds a mixture of quick paint anchors (1,5,6,7,9,10-
14,18), anchor nodes for areas that require more precision like
where the toy’s black shoulders are close to the the background
color (2-4,15-17), and pick anchors to correct a segmentation that,
while following the maximum gradient, is an undesirable segmen-
tation (8,11). In Figure 11 we illustrate the probable anchor. In our
testing, we found that this anchor is a nice intermediary between
a node and paint anchor. This anchor provides a level of precision
equivalent to a anchor node but allows the optimization some flexi-
bility to escape from a bad local minima in the optimization. In this
figure, two anchor nodes at the interior tips of the eagle’s feathers
give a poor segmentation. A probable anchor at the same location
allows the segmentation to "pop" into a better configuration.

Table 1 documents the running times for our schemes for all of
the examples in this paper. Included are the maximum time after

Max T Avg. Alt
Fig. N |A| Fwd Win. Sub. Anchor
Flower 1a 1200x1220 7 0.3 0.89 4.7 0.4
Cupcake 1b 1728x1296 5 0.5 1.4 2.6 0.1
Window 3 1500x1812 3 0.8 2.1 5.6 0.2
Angel 8 2304x1728 12 1.0 2.7 6.1 0.1
Boat 9 1024x764 4 0.2 0.5 0.4 0.03
Toy 10 1024x680 18 0.1 0.4 0.05 0.01

Table 1: Runtimes (seconds) for paper examples.

an anchor is set for both the forward only scenario (equivalent to
standard Live-Wire) and with a windowed scheme to allow for the
editing/picking of the last two anchors. While there is an overhead
in the windowed approach equivalent to the increased tree compu-
tation, as the companion video shows this is an acceptable delay
as a user moves between constraints. In addition, we provide the
average time for alternative segmentation extraction for searching
the full image (subsampled every 4 nodes) and the anchor set con-
strained search. While the subsampled search time is acceptable
for situations where a user can wait for a full search, the anchor
set provides an alternate path extraction that is well suited to pro-
viding results as constraints are added. Interactive feedback of the
segmentation is instantaneous under anchor addition or editing.

The software was evaluated via user feedback after a series of
segmentation tasks with the standard Live-Wire approach and with
our flexible anchors (16 users total: 7 on a touch device and 9 with
a keyboard and mouse). We collected the following statistics: 81%
of the users found the new anchors easier to use; 87% felt that they
reached their desired segmentation faster with the flexible anchors,
which is validated by recorded timings for the touch users with an
average of 40% faster segmentation; and 93% found the flexibility
of having different constraints useful. When asked to rank the dif-
ferent anchors, 93% of the users showed preference for one of our
flexible anchors (e.g., all the touch users chose the paint anchor).
93% would use the new anchors if present in image processing soft-
ware. The methods and results are provided as supplemental mate-
rial.

7. Discussion

Given that this work only adjusts the graph with floating an-
chors and the order/dependency of computations, the core Live-
Wire computation remains unchanged and therefore this approach
can potentially leverage the large amount of work on improv-
ing Live-Wire segmentation computation [FUS∗98,FUM00], ener-
gies [MB95,MB98,Kan05], or extending Live-Wire to 3D [Gra10].

This work opens new avenues of research for Live-Wire seg-
mentations. For instance, the primitives and interactions provided
in this work are only a small subset of the types input now pos-
sible with this approach given its generality. An interesting area
of research is if this approach allows novel integration of node-
based, data energy, Ed , common in other graph segmentation ap-
proaches [BVZ01,BK04]. For instance, an area anchors that are bi-
sected by a partial Live-Wire segmentation could be used to build
a color-profile for the object and background and used to drive
further segmentations. In addition, hierarchical, coarse-to-fine seg-
mentations used for performance and/or scalability are common
in other interactive segmentation approaches [LSGX05, XAB07].
With traditional Live-Wire, it was unclear how best to resample a
coarse anchor node to finer resolutions where the represent 2D ar-
eas. Our approach naturally fits into this type of scheme. Finally,
and most interestingly, this work with its anchor sets and alternate
path extraction opens interesting applications in segmentation-like,
but non-traditional segmentation applications. For example, in Fig-
ure 12 (left) 4 pinch anchors are used to extract the rings of the tree.
Figure 12 (right) uses 2 paint anchors: one in the center and one as
four disconnected components at the exits. In this configuration,

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

327



Summa et al. / Flexible Live-Wire: Image Segmentation with Floating Anchors

Figure 12: Examples of non-traditional segmentations enabled by
our approach. (left) Four 1D anchors along with alternate seg-
mentations are used to segment the rings of the tree. (right) Two
2D anchors, one at the center of the labyrinth and one as a four-
disconnected anchor at multiple exits, are used to find the minimum
path to all exits. Labyrinth courtesy of amazeaweek.net.

our approach can extract both the fastest path out of the labyrinth,
but also all paths to all exits.

Acknowledgements

This work was supported in part by NSF:CRII 1657020, NSF:QuBBD
1664848, NSF:CGV 1314896, NSF:IIP 1602127, NSF:ACI 1649923,
DOE/SciDAC DESC0007446, CCMSC DE-NA0002375, and DE-
SC0010498. This work was also supported by the DOE Office of Science,
ASCR under the guidance of Dr. Lucy Nowell and Richard Carlson.

References

[Ado17] ADOBE: Adobe Photoshop, 2017. 2, 3

[Ali14] ALI A.: Live-wire segmentation in agriculture. In Comput-
ing, Management and Telecommunications (ComManTel), 2014 Inter-
national Conference on (2014), IEEE, pp. 107–110. 3

[BJ01] BOYKOV Y. Y., JOLLY M.-P.: Interactive graph cuts for optimal
boundary & region segmentation of objects in nd images. In Computer
Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Con-
ference on (2001), vol. 1, IEEE, pp. 105–112. 2

[BK04] BOYKOV Y., KOLMOGOROV V.: An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. IEEE
TPAMI 26, 9 (2004), 1124–1137. 2, 7

[BM92] BEUCHER S., MEYER F.: The morphological approach to seg-
mentation: the watershed transformation. Optical Engineering-New
York-Marcel Dekker Incorporated- 34 (1992), 433–433. 1, 2

[BS09] BAI X., SAPIRO G.: Geodesic matting: A framework for fast
interactive image and video segmentation and matting. International
journal of computer vision 82, 2 (2009), 113–132. 2

[BVZ01] BOYKOV Y., VEKSLER O., ZABIH R.: Fast approximate en-
ergy minimization via graph cuts. IEEE TPAMI 23, 11 (2001), 1222–
1239. 1, 2, 7

[CBNC09] COUSTY J., BERTRAND G., NAJMAN L., COUPRIE M.: Wa-
tershed cuts: Minimum spanning forests and the drop of water principle.
IEEE TPAMI 31, 8 (2009), 1362–1374. 2

[FU97] FALCAO A. X., UDUPA J. K.: Segmentation of 3d objects using
live wire. In Medical Imaging (1997), International Society for Optics
and Photonics, pp. 228–235. 3

[FUM00] FALCÃO A. X., UDUPA J. K., MIYAZAWA F. K.: An ultra-fast
user-steered image segmentation paradigm: live wire on the fly. IEEE
transactions on medical imaging 19, 1 (2000), 55–62. 3, 7

[FUS∗98] FALCÃO A. X., UDUPA J. K., SAMARASEKERA S.,
SHARMA S., HIRSCH B. E., LOTUFO R. D. A.: User-steered image
segmentation paradigms: Live wire and live lane. Graphical models and
image processing 60, 4 (1998), 233–260. 3, 5, 7

[GIM17] GIMP: GNU Image Manipulation Program, 2017. 2

[Gra06] GRADY L.: Random walks for image segmentation. IEEE
TPAMI 28, 11 (2006), 1768–1783. 1, 2

[Gra10] GRADY L.: Minimal surfaces extend shortest path segmentation
methods to 3d. IEEE TPAMI 32, 2 (2010), 321–334. 7

[HBG∗11] HÖLLT T., BEYER J., GSCHWANTNER F., MUIGG P.,
DOLEISCH H., HEINEMANN G., HADWIGER M.: Interactive seismic
interpretation with piecewise global energy minimization. In Pacific Vi-
sualization Symposium, 2011 IEEE (2011), IEEE, pp. 59–66. 3

[HYML05] HAMARNEH G., YANG J., MCINTOSH C., LANGILLE M.:
3d live-wire-based semi-automatic segmentation of medical images. In
Medical imaging (2005), ISOP, pp. 1597–1603. 3

[Kan05] KANG H. W.: G-wire: A livewire segmentation algorithm based
on a generalized graph formulation. Pattern Recognition Letters 26, 13
(2005), 2042–2051. 3, 7

[KWT88] KASS M., WITKIN A., TERZOPOULOS D.: Snakes: Active
contour models. IJCV 1, 4 (1988), 321–331. 1, 3

[LMT06] LIANG J., MCINERNEY T., TERZOPOULOS D.: United
snakes. Medical image analysis 10, 2 (2006), 215–233. 3

[LSGX05] LOMBAERT H., SUN Y., GRADY L., XU C.: A multilevel
banded graph cuts method for fast image segmentation. In ICCV 2005
(2005), vol. 1, IEEE, pp. 259–265. 7

[LSS09] LIU J., SUN J., SHUM H.-Y.: Paint selection. 69. 2

[LSTS04] LI Y., SUN J., TANG C.-K., SHUM H.-Y.: Lazy snapping.
TOG 23, 3 (2004), 303–308. 3

[MB95] MORTENSEN E. N., BARRETT W. A.: Intelligent scissors for
image composition. In Proceedings of SIGGRAPH ’95 (1995), ACM,
pp. 191–198. 1, 2, 3, 5, 6, 7

[MB98] MORTENSEN E. N., BARRETT W. A.: Interactive segmentation
with intelligent scissors. Graphical models and image processing 60, 5
(1998), 349–384. 1, 3, 5, 6, 7

[MJS∗04] MEIJERING E., JACOB M., SARRIA J.-C., STEINER P.,
HIRLING H., UNSER M.: Design and validation of a tool for neurite
tracing and analysis in fluorescence microscopy images. Cytometry Part
A 58, 2 (2004), 167–176. 3

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: Grabcut: Interac-
tive foreground extraction using iterated graph cuts. TOG 23, 3 (2004),
309–314. 2, 3

[SdMF14] SPINA T. V., DE MIRANDA P. A., FALCÃO A. X.: Hybrid
approaches for interactive image segmentation using the live markers
paradigm. IEEE ToIP 23, 12 (2014), 5756–5769. 3

[SGSP15] SUMMA B., GOOCH A. A., SCORZELLI G., PASCUCCI V.:
Paint and Click: Unified Interactions for Image Boundaries. Computer
Graphics Forum 34, 2 (Apr. 2015), 385–393. 3

[STP12] SUMMA B., TIERNY J., PASCUCCI V.: Panorama weaving: fast
and flexible seam processing. TOG 31, 4 (2012), 83:1–83:11. 3, 4, 5

[STP17] SUMMA B., TIERNY J., PASCUCCI V.: Visualizing the uncer-
tainty of graph-based 2d segmentation with min-path stability. Computer
Graphics Forum 36, 3 (2017), 133–143. 2, 5, 6

[WAC07] WANG J., AGRAWALA M., COHEN M. F.: Soft scissors: an
interactive tool for realtime high quality matting. 9. 2, 5

[XAB07] XU N., AHUJA N., BANSAL R.: Object segmentation using
graph cuts based active contours. Computer Vision and Image Under-
standing 107, 3 (2007), 210–224. 7

[YCZL10] YANG W., CAI J., ZHENG J., LUO J.: User-friendly interac-
tive image segmentation through unified combinatorial user inputs. IEEE
Transactions on Image Processing 19, 9 (2010), 2470–2479. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

328



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CurlzMT
    /DfW5Printer
    /DfW5PrinterBold
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrenchScriptMT
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /ImprintMT-Shadow
    /Kartika
    /Latha
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /MaiandraGD-Regular
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /Oc_020
    /Oc_021
    /Oc_030
    /Oc_200
    /Oc_210
    /Oc_211
    /Oc_220
    /Oc_221
    /Oc_251
    /Oc_260
    /Oc_270
    /OCRAbyBT-Regular
    /OCRAExtended
    /OCRB10PitchBT-Regular
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /Shruti
    /SureThingDVDSymbolsII
    /SureThingSymbols
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Ucs_020
    /Ucs_021
    /Ucs_030
    /Ucs_200
    /Ucs_210
    /Ucs_211
    /Ucs_220
    /Ucs_221
    /Ucs_251
    /Ucs_260
    /Ucs_270
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WP-MultinationalAHelve
    /WP-MultinationalARoman
    /WP-MultinationalBCourier
    /WP-MultinationalBHelve
    /WP-MultinationalBRoman
    /WP-MultinationalCourier
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




