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Abstract

Neutron scattering and computer simulations are powerful tools for studying structural and dynamical properties of

condensed matter systems in general and of polymer melts in particular. When neutron scattering studies and quan-

titative atomistic molecular dynamics simulations of the same material are combined, synergy between the methods can

result in exciting new insights into polymer melts not obtainable from either method separately. We present here an

overview of our recent e�orts to combine neutron scattering and atomistic simulations in the study of melt dynamics of

polyethylene and polybutadiene. Looking at polymer segmental motion on a picosecond time scale, we show how

atomistic simulations can be used to identify molecular motions giving rise to relaxation processes observed in ex-

perimental dynamic susceptibility spectra. Examining larger length and longer time scale polymer dynamics involving

chain self-di�usion and overall conformational relaxation, we show how simulation results can motivate experiment

and how combined results of scattering and simulation can be used to critically test theories that attempt to describe

melt dynamics of short polymer chains. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The dynamics of polymer melts cover an amaz-
ing range of time and length scales. The largest
scales involve relaxation of entangled polymer
chains, which, while becoming accessible to simu-
lations using coarse-grained models, still cannot be
simulated using detailed, quantitative models.
However, modern workstations, parallel comput-

ers and e�cient algorithms have made all time and
length scales pertaining to the molecular dynamics
of unentangled polymer chains in the melt acces-
sible to atomistically detailed models [1±10]. With
a su�ciently accurate potential describing intra-
molecular and intermolecular interactions for the
polymer of interest, it is possible to investigate the
molecular dynamics of short polymer chains on
time scales from 1 fs up to 100 ns, or even, with
su�cient patience, several ls. Access to molecular
level information on polymer molecular dynamics
covering nine orders of magnitude of time poses a
serious challenge to experimentalists. Fortunately,
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neutron scattering techniques are capable of cov-
ering much of this range. Improvements in neu-
tron spin echo (NSE) spectroscopy have made
measurement of melt dynamics on length scales up
to 200 �A and time scales up to 200 ns possible. In
the past decade, NSE studies of chain dynamics
ranging from Rouse dynamics of short chains
[9,11,12] to the Rouse/repetation crossover regime
[13±15], to investigation of fully entangled chains
and their dynamics [16] have been conducted.
The much more local segmental dynamics in
polymer melts have been the focus of both NSE
and neutron time-of-¯ight (TOF) measurements
[7,12,17±27]. These studies have been motivated by
fundamental interest in the relationship between
segmental dynamics and relaxation processes in
polymers, as well as the desire to obtain experi-
mental data to test various theories for these pro-
cesses.

Below, we describe our e�orts to combine ato-
mistic molecular dynamics simulations and neu-
tron scattering to gain new insight into polymer
melt dynamics and to critically test the widely used
theoretical models for the dynamics of unentan-
gled polymer melts. The latter also forms the basis
for theoretical models of entangled polymers. In
Section 2, we consider segmental dynamics in
polyethylene (PE) as measured by incoherent TOF
neutron scattering, and discuss what these mea-
surements and concomitant atomistic simulations
can tell us about the mechanisms of relaxations
in polymer melts on the picosecond time scale.
In Section 3, we consider longer time and larger
length scales, relevant to chain self-di�usion and
overall conformational relaxation. Here, the single
chain dynamic structure factor as obtained from
NSE measurements and atomistic simulations are
compared for polybutadiene (PBD) melts. A crit-
ical examination of the Rouse model and related
theoretical treatments of polymer melt dynamics is
carried out, and the shortcomings of these models
are discussed.

2. Small-scale dynamics

In this section, we look at segmental motion in
a melt of the n-alkane C100H202, corresponding to

a PE chain below the entanglement molecular
weight, at 509 K. Neutron scattering experiments
[7] were performed on a hydrogenous PE sample
using the time focusing TOF spectrometer IN6 at
the Institut Laue-Langevin in Grenoble. The in-
coherent dynamic structure factor Sinc�q;x� was
obtained for six momentum transfers ranging from
q � 0:8 �Aÿ1 to q � 1:8 �Aÿ1. Molecular dynamics
simulations [6,7] were performed on a system of 40
C100H202 chains in a cubic simulation cell at ex-
perimental density (linear size � 50 �A). These NVT
simulations were conducted using the extended
ensemble constant temperature algorithm of Nos�e
[28] using a 1 fs time step. Periodic boundary
conditions were employed. Simulations were car-
ried out using both an explicit atom (EA) model
for PE as well as a united atom (UA) model, where
CH2 and CH3 groups were represented by a single
Lennard-Jones force center with the appropriate
group mass. For the UA simulations, 9 ns of sam-
pling followed approximately the same amount of
equilibration. For the EA simulations, ®nal UA
con®gurations were equilibrated for 200 ps after
placement of hydrogen atoms followed by 1.1 ns of
sampling.

While the TOF measurements yield the mea-
sured incoherent dynamic structure factor Sm

inc�q;
x� in the frequency domain, molecular dynamics
simulations yield dynamical information in the
time domain. The intermediate incoherent dy-
namic structure Sinc�q; t� can be obtained directly
from simulation. Beginning with the relationship
[29]

Sinc�q; t� � 1

N

XN

m�1

hexp �iq � DRm�t��i; �1�

where DRm�t� � Rm�t� ÿ Rm�0�, the displacement
of scattering center m after time t, and the sum is
over all N (assumed identical) scattering centers.
When the sample is isotropic, as in the melt, Eq.
(1) can be simpli®ed to [29]

Sinc�q; t� �
XN

m�1

h sin �qDRm�t��=qDRm�t�i; �2�

where DRm�t� is the magnitude of DRm�t�. It is this
latter relationship that we employ in calculating

62 G.D. Smith et al. / Chemical Physics 261 (2000) 61±74



Sinc�q; t� from simulation. Because of the small
incoherent scattering length of carbon atoms, the
observed scattering is due almost entirely to the
hydrogen atoms. Therefore, the summation is
done over all hydrogen atoms in the system. For
the UA model, we reinsert the hydrogen atoms
into a stored time series of con®gurations (molec-
ular dynamics trajectory) at their mechanical equi-
librium positions in order to calculate Sinc�q; t�.
Experimentally, the measured incoherent dyna-
mic structure factor Sm

inc�q;x� is a convolution of
Sinc�q;x� and the resolution function R�x�, which
is measured separately. After Fourier transfor-
mation of Sm

inc�q;x� and R�x� to the time domain,
the deconvolution becomes

Sinc�q; t� � Sm
inc�q; t�=R�t�: �3�

Therefore, Sinc�q;x� is obtained in both TOF ex-
periment and simulation by Fourier transforming
Sinc�q; t� into the frequency domain.

2.1. Comparison of experiment and simulation

Fig. 1 shows the dynamic susceptibility v�q;
x� � xSinc�q;x� for a momentum transfer of q �
1:8 �Aÿ1 obtained for PE from both TOF neutron
scattering measurements and molecular dynamics

simulations. The main relaxation peak in the sus-
ceptibility is nicely reproduced by both the EA and
UA simulation models, both in position and in
width. Quantitatively, the EA simulation is in
better agreement with the experiment. The vertical
bar indicates the maximum frequency (energy
transfer) for the experiment at this momentum
transfer. The experimental curve at higher fre-
quencies is obtained from a power law extrapola-
tion of the high frequency wing of Sm

inc�q;x�. The
higher maximum value of v�q;x� obtained from
experiment as compared to simulation is due to the
fact that the experimental extrapolation procedure
underestimates the high frequency contribution to
the relaxation process.

The EA simulation clearly displays high fre-
quency peaks around 150 and 250 THz that are
due to C±C±H and H±C±H bond angle vibrations
(the C±H and C±C bond lengths are kept ®xed in
the simulation). These peaks are absent in the ex-
periment because they are outside the experimental
frequency window and are absent in the UA sim-
ulation because these degrees of freedom have
been eliminated in the UA representation. As a
consequence, both the experiment and UA simu-
lation are unable to resolve the motion of the hy-
drogen atoms on very short time scales (high
frequencies). This is further exempli®ed in Fig. 2
where we have used the Gaussian approximation
for the self part of the van Hove function to relate
the incoherent scattering function to the mean-
square displacement of the hydrogen atoms [30]

hDR2
m�t�i � ÿ6 ln �Sinc�q; t��=q2; �4�

where hDR2
m�t�i is the mean-square displacement of

the scattering centers (hydrogen atoms) after time
t. If the Gaussian approximation of the van Hove
function is correct, the predicted mean-square
displacements from Eq. (4) should coincide for all
employed scattering vectors. The mean-square
displacement curves obtained from Sinc�q; t� for the
EA simulation for all momentum transfers be-
tween q � 0:8 �Aÿ1 and q � 1:8 �Aÿ1 (upper solid
line(s) in Fig. 2) indeed superimpose on the sub-
picosecond time scale. The hydrogen atom dis-
placement shows an oscillatory contribution on
these time scales due to the bond angle vibrations,

Fig. 1. Dynamic susceptibility of a PE melt at 509 K as de-

termined from TOF neutron scattering (EXP), explicit atom

(EA) molecular dynamics simulations and united atom (UA)

molecular dynamics simulations for q � 1:8 �Aÿ1. The vertical

line shows approximately the upper frequency limit of the ex-

periment.
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which is neither seen in the carbon displacements
(dashed line) nor in the experimental predictions
for the hydrogen atom displacement (splayed set
of solid curves obtained from applying Eq. (4)
to the experimental Sinc�q; t�). The experimental
curves follow the hydrogen displacement curve
from simulation at times larger than a few pico-
seconds. For shorter times (lying outside the ex-
perimental time windows indicated by the vertical
bars), the extrapolated displacement from experi-
ment traces the backbone motion since the high
frequency bending motions are not seen experi-
mentally. Due to the error from extrapolation, the
experimental, curves do not superimpose as per-
fectly as the simulation data. The inset in Fig. 2
shows the crossover in the experimental data from
tracing the hydrogen displacement to tracing the
backbone displacement in more detail.

2.2. Relaxation mechanisms

Having clearly shown that atomistic molecular
dynamics simulations accurately reproduce mo-
lecular dynamics in the PE melt on the picosecond
time scale, we can now attempt to discern exactly

what molecular motions give rise to the main re-
laxation peak shown in Fig. 1. There are two prime
candidates for this: librational motion in the trans
and gauche minima of the backbone dihedral po-
tentials and transitions between these minima
(conformational transitions). From spectra at 509
K, it is not possible to resolve which motions make
the most important contribution to the observed
peak because the librations and transitions occur
on a similar time (frequency) scale. The processes
should, however, di�er signi®cantly in their tem-
perature dependence. The librational frequencies
should be independent of temperature as long as
the motion is approximately harmonic, whereas
the transition rate between the minima in the di-
hedral potential typically displays a strong Ar-
rhenius temperature dependence. Lowering the
temperature should therefore separate these two
contributions along the frequency axis in experi-
ment as well as simulation, moving transitional
contributions to lower frequency. In the simula-
tion, we can generate similar behavior by modi-
fying the dihedral potential function. Increasing
the barriers between the torsional minima by a
factor of two has an exponential e�ect on the

Fig. 2. Mean-square hydrogen displacements obtained directly or via Eq. (4) from TOF neutron scattering experiments and EA

molecular dynamics simulations for a PE melt at 509 K. The dashed line is for carbon atoms for simulations. The vertical lines show

the lower time limits for the experimental data for the lowest and highest momentum transfers as determined from Nyquist angular

frequencies (tmin � p=x). The inset shows longer time behavior from simulation (- - -) and experiment at q � 0:8 �Aÿ1 (Ð).
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transition rate but slightly increases the libration
frequencies due to the increased curvature of the
potential in the dihedral minima.

Fig. 3 shows a comparison of the susceptibility
spectra for q � 0:8 �Aÿ1 and q � 1:8 �Aÿ1 for the
original potential and the potential with increased
barriers. We can see that the type of motion that
makes the most important contribution to the
susceptibility peak depends on the length scale of
observation. For a momentum transfer of q � 1:8
�Aÿ1, where we probe motions on a length scale of
3±4 �A, the spectrum shows little change when the
barriers are increased. Hence, for motions on this
length scale, the main contribution comes from
librations. For q � 0:8 �Aÿ1, where we are probing
motions on the scale of 8 �A, librations and tran-
sitions contribute about equally and are clearly
separated when we increase the torsional barriers.
Speci®cally, the low frequency peak for the mod-
i®ed potential is generated by torsional transitions
and shifted by about a factor of 20 to lower fre-
quencies compared to the original potential.

When we look at the mean-square displacement
of hydrogen atoms and backbone carbons dis-
played in Fig. 4 in a comparison between the
original and the modi®ed potential, we can iden-

tify the time scale at which torsional transitions of
the backbone angles start to contribute to the
translational motion of the atoms. We know from
an analysis of the torsional transitions with the
original potential that the mean time between
transitions is approximately 7 ps. The fact that the
high and low barrier displacements di�er down
to sub-picosecond time scales tells us that the
distribution of conformational transition times
extends into this time regime for the original po-
tential. Around 1 ps, these transitions become
the dominant type of motion in generating parti-
cle displacement. In contrast, at around 1 ps, the
mean-square displacements in the high barrier
model develop a plateau region extending to about
10 ps indicating that vibrations and librations have
saturated and torsional transitions are not yet sig-
ni®cant. For the modi®ed potential, the mean time
between torsional transitions is of the order of 100
ps. Here, the distribution of transition times ex-
tends down to around 1 ps, with the upturn of the
mean-square displacement curve in the modi®ed
potential around 10 ps marking the crossover to
torsional transition-dominated displacement. We
also remark that the time scale on which the su-
perposition of the mean-square displacement pre-
dictions for di�erent momentum transfers starts to
fail coincides closely with the onset of torsional
transitions. These anharmonic motions do not

Fig. 3. Dynamic susceptibility for a PE melt at 509 K from

molecular dynamics simulation using the original UA potential

and a UA potential with an increased rotational energy barrier.

Fig. 4. Mean-square hydrogen displacements (lines, from Eq.

(4)) for a PE melt at 509 K obtained from UA simulations. The

symbols show carbon displacements from the original UA po-

tential ( ) and the high barrier model (�).
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ful®ll the dynamic Gaussian assumption for the
van Hove function which underlies this ®gure.

2.3. Conclusions

In this section, we give an example of the
synergy that is possible between experiment and
simulation in clarifying mechanisms underlying
features in the relaxation spectrum for a polymer
melt on the picosecond time scale. First, it was
found necessary to demonstrate that atomistic
simulations using accurate potential functions are
capable of reproducing the dynamics of polymer
melts on this time scale. The ¯exibility of the
simulations then allowed us to separate motions
in the time/frequency window of the relaxation
process we wanted to understand by judicially
modifying the potential function. Speci®cally, this
approach has allowed us to disentangle the con-
tributions from torsional librations and torsional
transitions to the broad susceptibility maximum
seen in incoherent scattering from PE melts. We
have shown that the relative contributions of
these two types of motion to the relaxation peak
depend on the length scale studied, i.e. the mo-
mentum transfer employed in the scattering. Lib-
rational motions are dominant on small length
scales, whereas the torsional transitions are more
important on length scale of several backbone
bonds.

3. Large-scale polymer chain dynamics

Neutrons can also be used to probe larger
length scale dynamics of polymer chains. NSE
techniques allow measurement of the single chain
dynamic structure factor on length scales much
larger than the radius of gyration (Rg) of unen-
tangled chains down to length scales of the order
of Rg for these chains on a time scale ranging from
50 ps up to 200 ns. The technique yields the
structure factor directly in the time domain, sim-
plifying comparison with simulations. The single
chain intermediate coherent dynamic structure
factor measured in NSE experiments corresponds
to [29]

S0�q; t� �
X
�m;n�
hexp �iq � �Rm�t� ÿ Rn�0���i

,
X
�m;n�
hexp �iq � �Rm�0� ÿ Rn�0���i; �5�

where Rm�t� ÿ Rn�0� is the displacement vector
between scattering centers m and n at time t with m
and n belonging to the same chain. For an iso-
tropic (melt) sample, this reduces to

S0�q; t� �
X
�m;n�
h sin �qRmn�t��=qRmn�t�i

,
X
�m;n�
h sin �qRmn�0��=qRmn�0�i; �6�

where Rmn�t� is the magnitude of Rm�t� ÿ Rn�0�.
When q� 2p=Rg, one can observe only the overall
motion of the chain molecules, and assuming the
center of mass motion is di�usive:

S0�q; t� � exp�ÿq2hRcm�t�2i=6�
� exp�ÿq2Dcmt�; �7�

where hRcm�t�2i is the mean-square center of mass
displacement of the chains and Dcm is their center
of mass self-di�usion coe�cient. From molecular
dynamics simulations, both S0�q; t� and Dcm can be
determined directly from the trajectories and
compared with experiment.

3.1. Comparison of experiment and simulation

Recently, NSE measurements were performed
on an unentangled PBD melt [12]. The micro-
structure of the chains was 40% 1,4-cis, 50% 1,4-
trans and 10% 1,2-vinyl units. The z-average chain
microstructure is represented by a chain of 30 re-
peat units, three of which are 1,2-vinyl units, with
a molecular weight of 1622 Da. This average chain
has 114 backbone carbon atoms. The NSE mea-
surements were performed on the NSE spectrom-
eter at the FRJ-2 reactor in J�ulich. A deuterated
matrix containing 12% protonated material was
used. Using a neutron wavelength of k � 8:0 �A, a
dynamic range from 100 ps to 22 ns was covered.
The experiments were performed at 353 K study-
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ing spectra at seven di�erent momentum transfers
(q � 0:05, 0.08, 0.10, 0.14, 0.20, 0.24 and 0.30 �Aÿ1).
The experimental background and the background
from a deuterated matrix were obtained from
separate spin echo measurements on a fully deu-
terated material and subtracted with the proper
transmission factors.

We also performed molecular dynamics simu-
lations of the PBD melt [12,31]. Intramolecular
and intermolecular interactions were described us-
ing a UA potential function parametrized to ac-
curately reproduce the conformational energetics
of model compounds as determined from high-
level quantum chemistry calculations. We gener-
ated a random copolymer system of 40 chains each
comprised of 30 units with a microstructure of
40%/50%/10% cis/trans/vinyl units. Hence, each
chain contains three vinyl units and 114 backbone
carbons. These chains have a molecular weight of
1622 Da, in agreement with the Mz � 1600 Da of
the synthesized chains. Periodic boundary condi-
tions were employed and the SHAKESHAKE algorithm
was used to constrain bond lengths. A revers-
ible multiple-time-step algorithm was employed
[32] with an inner time step of 1 fs for bonded
interactions and an outer time step of 5 fs for non-
bonded interactions. Following 10 ns of equili-
bration, a 40 ns constant volume trajectory was
generated. The single chain dynamic structure
factor S0�q; t� was subsequently determined from
the stored trajectory using Eq. (6).

S0�q; t� from NSE measurements and simula-
tion for PBD at 353 K are shown in Fig. 5. Ap-
plication of Eq. (7) to the q � 0:05, 0.08 and 0.010
�Aÿ1 data yields Dcm � 2:7� 10ÿ7 cm2/s for ex-
periment and Dcm � 3:6� 10ÿ7 cm2/s for simula-
tion. We can compensate for the small di�erence
(a di�erence of 25% in the self-di�usion coe�cient
between experiment and simulation re¯ects excel-
lent agreement) in the center of mass di�usion rate
between simulation and experiment through scal-
ing of the experimental times by a factor of 0.75.
This is shown in Fig. 5. Excellent agreement is
seen between experiment and simulation. It is
possible to calculate an apparent mean-square
center of mass displacement of the chains from
the dynamic structure factor. Rearrangement of
Eq. (7) yields

hRcm�t�2iapp �
ÿ6 ln �S0�q; t��

q2
; �8�

where hRcm�t�2iapp indicates an apparent mean-
square center of mass displacement, since Eq. (8)
yields the true center of mass displacement only in
the limit q� 2p=Rg: hRcm�t�2iapp obtained from
application of Eq. (8) to experimental S0�q; t� data
for q � 0:05, 0.08 and 0.10 �Aÿ1 is shown in Fig. 6
along with hRcm�t�2i obtained directly from simu-
lation. Also shown is hRcm�t�2i obtained from Eq.
(7) using the polymer self-di�usion coe�cient ob-
tained from simulation. For times longer than the

Fig. 5. Dynamic structure factor for PBD chains obtained from

simulation (lines) and neutron spin echo measurements (sym-

bols).

Fig. 6. Mean-square center of mass displacement of PBD

chains.
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chain Rouse time sR � 15 ns (see later), the center
of mass motion is clearly di�usive and is well de-
scribed by Eq. (7). However, for times less than sR,
the motion is sub-di�usive. In this time regime, the
mean-square center of mass motion is well de-
scribed by a power law relationship hRcm�t�2i � ta

where a � 0:8. Similar sub-di�usive behavior has
been observed in other atomistic [9] and coarse-
grained polymer simulations [33,34] for t < sR. A
recent theoretical study also found that interac-
tions of a chain in the melt with

����
N
p

other chains
leads to sub-di�usive behavior for times less than
sR [35]. The sub-di�usive behavior seen in the
molecular dynamics simulations of the PBD melt
motivated additional NSE experiments on the melt
at short times. The hRcm�t�2iapp data obtained from
these NSE measurements of PBD (Fig. 6) are the
®rst experimental con®rmation of sub-di�usive
behavior in polymer melts for t < sR.

3.2. Theoretical models

3.2.1. The Rouse model
The excellent agreement observed between

simulation and experiment for S0�q; t� (Fig. 5) al-
lows us to investigate in detail the validity of
various theoretical models for polymer melt dy-
namics by comparing predictions of these models
with simulation. The best known and most widely
employed model for polymer melt dynamics is the
Rouse model [29,36]. In the Rouse model, the
polymer chain is treated as a set of beads, each
connected to its immediately preceding and fol-
lowing neighbor by harmonic springs. Excluded
volume and hydrodynamic interactions are disre-
garded. The spring force constant is k � 3kBT=b2,
where b2 is the mean-square length of a segment.
The segments are subjected to Gaussian random
(Brownian) forces and frictional drag forces
characterized by a segmental friction coe�cient f.
Solution of the resulting equation of motion yields
[29]

hR2i � Nb2; �9�

where hR2i is the mean-square end-to-end distance
of the chain and N is the number of bonds, which,

for a Rouse chain, is equal to the number of Kuhn
segments, and [29]

Dcm � kBT
Nf

: �10�

Hence, the force constant and segmental friction
coe�cient are established by the chain dimensions
and center-of-mass motion of the chains, respec-
tively. The latter is predicted to be di�usive in the
Rouse model. The Rouse model has no other ad-
justable parameters. The solution of the Rouse
equation of motion is determined analytically
by transformation to its eigenmodes, the Rouse
modes, which are de®ned as [6]

Xp�t� � 1

N

XN

n�1

cos pp
nÿ 1=2

N

� �
Rn�t�; �11�

where p is the mode index �16 p6N� and Rn�t� is
the Cartesian coordinates of segment n. For the
Rouse modes, the model yields the self-correlation
function [29]

hXp�t� � Xp�0�i � hR
2i

2p2p2
exp �ÿp2t=sR�; �12�

where for PBD at 353 K, the Rouse time sR �
hR2i=�3p2Dcm� � 15:0 ns using hR2i and Dcm from
simulation. The Rouse model yields a Gaussian
distribution of all intersegmental displacements
Rm�t� ÿ Rn�0�. This, and the fact that hX r�t� �
X s�t�i � 0 for r 6� s, allows calculation of the dy-
namic structure factor for Rouse chains using the
expression [29]

S0�q; t� � 1

N
exp

�ÿ q2Dcmt
	

�
XN

�m;n�1�
exp

�
ÿ q2hR2i

6N
jnÿ mj ÿ 2q2hR2i

3p2

�
XN

p�1

1

p2
cos

ppn
N

� �
cos

ppm
N

� �
� 1
� ÿ exp� ÿ tp2=sR�

��
: �13�

A comparison of S0�q; t� from simulation and the
Rouse predictions (Eq. (13)) is shown in Fig. 7.
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Consistent with comparisons of the Rouse model
with simulations of coarse-grained lattice models
[37±40], of bead-spring polymer models [41], and
of recent simulations of atomistic models [9], the
Rouse model does a poor job in reproducing the
dynamic structure factor, particularly for larger q
values and longer times.

A detailed analysis of the simulation trajecto-
ries allows us to investigate in detail the funda-
mental predictions of the Rouse model. We start
by calculating the Rouse modes from the simu-
lation by employing Eq. (11), where the sum is
now performed over all hydrogen atoms of the
chain and the average is performed over the 40 ns
simulation trajectory. From Eq. (12), the ampli-
tude of the pth mode is expected to scale as pÿ2,
speci®cally, hXp�0� � Xp�0�i � hR2i=�2p2p2�. The
amplitudes for the Rouse modes as predicted by
the Rouse model and as determined from simu-
lation are compared in Fig. 8. Modes p > 10 do
not contribute to S0�q; t� for the range of q values
investigated. Due to chain sti�ness, the amplitudes
for modes p > 3 begin to show deviation from
Rouse predictions as the distances are no longer
Gaussian distributed. The relaxation time for the
self-correlation function (Eq. (12)) of a mode
is also expected to scale as pÿ2, speci®cally,
sp � sR=p2. The relaxation times, as predicted by
the Rouse model and as determined from simu-
lation, are also shown in Fig. 8. The mode self-
correlation functions from simulation do not

show single exponential decay as predicted by
Eq. (12), but are well represented by a stretched
exponential

hXp�t� � Xp�0�i � hXp�0� � Xp�0�iexp �ÿ�t=sp�b�;
�14�

where b ranges from 1.0 for p � 1 to 0.75 for
p � 10. Values of sp determined from ®tting Eq.
(14) to the mode self-correlation functions and the
corresponding correlation times, given as the time
integral of exp �ÿ�t=sp�b�, are shown in Fig. 8. The
larger p modes begin to show some slowing, rel-
ative to Rouse predictions, but the di�erence is
small for modes contributing to S0�q; t� for the q
range investigated. In the Rouse model, the re-
laxation times are proportional to the mode am-
plitudes. This scaling is clearly not followed
for the real chains, as the relaxation times are
actually somewhat longer than the Rouse predic-
tions, while the mode amplitudes are smaller.
In the internal viscosity model, local friction ef-
fects can allow for relaxation times longer than
Rouse predictions despite reduced mode ampli-
tudes.

In order to investigate the in¯uence of reduced
mode amplitudes, increased relaxation times, and
sub-di�usive center of mass motion on the pre-
dicted S0�q; t�, we modi®ed Eq. (13) to include
these e�ects, yielding

Fig. 7. Dynamic structure factor for PBD chains obtained from

simulation ( ), the Rouse model (Ð), the modi®ed Rouse

model (� � �), and the SFCM (± ± ±).

Fig. 8. Normal mode amplitude and relaxation time for PBD

chains from simulation (symbols, with ®lled circles being cor-

relation times), the Rouse model (Ð), the SFCM (� � �) and the

internal viscosity model (± ± ±).
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S0�q; t� � 1

N
exp

(
ÿ q2 hRcm�t�2i

6

)

�
XN

�n;m�1�
exp

�
ÿ q2hR2i

6N
jnÿ mj

ÿ
XN

p�1

4hXp�0� � Xp�0�i
3

� cos
ppn
N

� �
cos

ppm
N

� �
� 1
h
ÿ exp� ÿ �t=sp�b�

i�
; �15�

where the mean-square center of mass displace-
ment hRcm�t�2i, mode amplitudes hXp�0� � Xp�0�i
as well as relaxation times sp and stretching ex-
ponents b are taken from simulation. The resulting
dynamic structure factor is shown in Fig. 7. S0�q; t�
decays faster than predicted by the Rouse model
and is actually in somewhat poorer agreement with
S0�q; t� from simulation than the Rouse predic-
tions. The faster decay is due to the fact that
hRcm�t�2i is greater in the sub-di�usive regime than
predicted by the Rouse model (see Fig. 6). The
predictions of Eq. (15) and those of the Rouse
model (Eq. (13)) merge at the Rouse time, where
the center of mass displacement is well described
by the Rouse model. Neglecting sub-di�usive
behavior (results not shown), Eq. (15) yields a
slightly slower decay in S0�q; t� compared to the
Rouse model for larger q values, but does not
signi®cantly improve agreement with simulation.
Clearly, incorporating di�erences in mode ampli-
tudes and relaxation into the Rouse predicted
scattering function is not su�cient to account for
the large discrepancies observed in S0�q; t�. We will
return to these issues after a brief discussion of
related models intended to improve on the Rouse
model.

3.2.2. Semi-¯exible chain and internal viscosity
models

Several models for polymer dynamics have been
proposed that take into account local sti�ness ef-
fects (non-Gaussian distance distributions on
small length scales) on polymer dynamics not ac-

counted for in the Rouse model. It has been
claimed that a semi-¯exible chain model (SFCM)
[42,43] that accounts for the e�ects of chain sti�-
ness on scales comparable to the persistence length
does a much better job in reproducing experi-
mental S0�q; t� than the Rouse model. In addition
to the center of mass di�usion coe�cient, this
model has two additional adjustable parameters;
the contour length Lc and the persistence length
Lp. Using the relationships for a Kratky±Porod
worm-like chain, it is possible, from the charac-
teristic ratio of PBD as determined from simula-
tion, to establish values of Lp � 5:0 �A and
Lc � 147 �A. These parameters yield hR2i=hR2

gi �
1420 �A2 / 221 �A2� 6.4. From simulations, hR2i=
hR2

gi � 1414 �A2=224 �A2� 6.3. Use of signi®cantly
sti�er semi-¯exible chains as was done for PE in
order to achieve the claimed good agreement of
the model with experiment and simulation [43]
does not reproduce the static structure of the chain
on larger length scales.

Predictions of S0�q; t� for the semi-¯exible model
with Lp � 5:0 �A, Lc � 147 �A and Dcm � 3:2� 10ÿ7

cm2/s are shown in Fig. 7. The corresponding
mode amplitudes and relaxation times are given in
Fig. 8. Mode amplitudes for p6 10 are in good
agreement with those from simulation, and are
reduced from the Rouse amplitudes, indicating the
in¯uence of local chain sti�ness. The correspond-
ing relaxation times, as with the Rouse model, are
proportional to the mode amplitude, and hence
are shorter than those predicted by the Rouse
model, and are in poor agreement with simulation
for larger p. The dynamic structure factor obtained
from the SFCM shows little, if any, improvement
in agreement with simulation over the Rouse
model. At long times, predictions are indistin-
guishable from the Rouse predictions. At short
times and large q values, the decay of S0�q; t� from
the semi-¯exible model is signi®cantly slower than
that seen in the simulations. This may come par-
tially from the reduced amplitudes of the larger p
modes compared to the Rouse model. However, as
the mode amplitudes from the semi-¯exible model
are similar to those from simulation, and the re-
laxation times are actually shorter than from
simulation, the e�ect of amplitude reduction on
S0�q; t� cannot account for the majority of the re-
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duced decay in S0�q; t� at short time and large q
seen with the semi-¯exible model. This reduction,
which becomes greater with increasing chain sti�-
ness, must therefore be due to the non-Gaussian
distribution of distances within the semi-¯exible
chain, and is discussed in detail below.

Another approach to including chain sti�ness
e�ects on dynamics has been proposed by Allegra
and Ganazzoli [44,45] referred to as the internal
viscosity model. In this approach, Rouse mode
amplitudes are determined through application of
the generalized characteristic ratio C(q), which
contains full information on the geometrical av-
erages of the unperturbed chain. The resulting
mode amplitudes for PBD are shown in Fig. 8 and
are in good agreement with simulation and pre-
dictions of the SFCM. In addition to the inclusion
of chain sti�ness e�ects, the model includes in-
ternal viscosity e�ects, which can dramatically
increase the relaxation times for the short wave-
length normal modes compared to the corre-
sponding times obtained from Rouse analysis.
When the model was ®t to experimental data for a
polyisobutylene melt, a good description of S0�q; t�
was obtained [27]. Unlike polyisobutylene, a ®t of
the internal viscosity model to the PBD melt data
does not yield a signi®cant slowing down of short
wavelength modes compared to that obtained
from Rouse analysis. The internal viscosity model
yields relaxation times somewhat slower than the
SFCM and in good agreement with simulation.
However, S0�q; t� are found to be similar to those
for the SFCM, indicating that the poor agreement
between the Rouse (and the related models) and
experiment for S0�q; t� is not due to a slowing down
of the normal modes.

3.3. Gaussian displacements and mode orthogonality

Summarizing what we have learned about chain
dynamics in a PBD melt from comparison of ex-
periment, simulation and theory, we conclude that
(1) atomistic molecular dynamics simulations of
unentangled polymer melts using quantum chem-
istry based potentials yield S0�q; t� in excellent
agreement with NSE measurements; (2) the Rouse
model does a poor job in reproducing S0�q; t� from
simulation and experiment; (3) the failure of the

Rouse model does not lie primarily in the pre-
dicted mode amplitudes or relaxation times; (4)
e�orts to improve upon the Rouse model by in-
cluding local sti�ness e�ects using the correct static
structure of the chain do not lead to a signi®cantly
improved description of S0�q; t�; (5) phenomeno-
logically inserting the sub-di�usive behavior of the
center of mass displacement into the Rouse pre-
diction for the scattering function does not ac-
count for the di�erences between theory and
experiment/simulation. The question therefore re-
mains as to why the models discussed here fail to
accurately reproduce S0�q; t�.

Calculation of S0�q; t� for these models is based
on the assumptions that all segmental displace-
ments Rm�t� ÿ Rn�0� are Gaussian distributed
and that the eigenmodes remain orthogonal, i.e.,
hX r�t�� X s�0�i � 0 for r 6� s. Examination of cross-
correlation for the p6 4 from simulation con®rms
that the modes remain orthogonal. Let us then
consider the assumption of Gaussian distributed
displacements. S0�q; t� for isotropic systems is
given by Eq. (6). Only when Rm�t� ÿ Rn�0� are
Gaussian distributed, can the Gaussian approxi-
mation be invoked, allowing Eq. (6) to be recast
as

S0�q; t� �
X
�m;n�

exp � ÿ q2hRmn�t�2i=6�
,

X
�m;n�

exp �ÿq2hRmn�0�2i=6�: �16�

Since solution of the dynamic equation for each of
the analytical model discussed above yields
hRmn�t�2i, Eq. (16) is conveniently employed in
determining S0�q; t�. However, assumption of
Gaussian distributed displacements is valid only
for the Rouse model. Indeed, a primary goal of the
SFCM and internal viscosity model is to account
for the e�ects of chain sti�ness on dynamics. Use
of Eq. (16) is therefore only an approximation for
all models considered here except the Rouse
model.

We can get a picture of the in¯uence of non-
Gaussian distributed displacements on S0�q; t� by
using both Eqs. (6) and (16) for simulation chains,
as shown in Fig. 9. S0�q; t� yielded by Eq. (16) for

G.D. Smith et al. / Chemical Physics 261 (2000) 61±74 71



the simulation chains are similar to the Rouse
predictions. This indicates that the mean-square
displacements on all time and length scales inves-
tigated are reasonably well described by the Rouse
model, consistent with the reasonable agreement
obtained between the Rouse model and simula-
tions for normal mode amplitudes and relaxation
times. In contrast, the variance in S0�q; t� between
the SFCM and simulation using Eq. (16) as well as
the Rouse model at short times and larger q values
indicates that the SFCM chain is too sti� on the
corresponding length scales. However, we see in
Fig. 7 that S0�q; t� for the SFCM converges to the
Rouse predictions after su�cient time. For the
SFCM, all particle self-displacements Rm�t�ÿ
Rm�0� are Gaussian distributed, so eventually
Rm�t� ÿ Rn�0� and S0�q; t� for the model converge
with those for the Gaussian chain, i.e. the Rouse
model. In contrast, S0�q; t� from simulations using
Eq. (6) do not converge with those from Eq. (16),
even for t � sR, clearly demonstrating that the
displacements are not Gaussian distributed even
on this time scale.

From the molecular dynamics trajectories, we
can examine the displacement distributions as a
function of jnÿ mj and time. We ®nd that even
after sR, Rm�t� ÿ Rn�0� distributions show devia-
tion from Gaussian behavior for all jnÿ mj. The
in¯uence of these non-Gaussian displacements on
S0�q; t� depends on q, t and jnÿ mj. However, non-
Gaussian e�ects will in all cases slow the decay of

S0�q; t� relative to that obtained for a Gaussian
distribution with the same mean-square displace-
ments (e.g. see Fig. 9), consistent with the observed
relationship between simulation and Rouse pre-
dictions. For example, the contribution of center
of mass displacement to S0�q; t� with the ®rst non-
Gaussian correction is given by [46]

S0cm�q; t� � exp �ÿq2hRcm�t�2i=6�
� �1� 1=2�q2hRcm�t�2i=6�2a2�t��; �17�

where

a2�t� � 3hRmn�t�4i
5hRmn�t�2i2

ÿ 1: �18�

For t � 15 ns and q � 0:30 �Aÿ1, simulations yield
a2�t� � 0:15 and 1=2�q2hRcm�t�2i=6�2a2�t� � 1:37,
clearly demonstrating the importance of non-
Gaussian displacements. Non-Gaussian displace-
ments for the center of mass and large jnÿ mj after
times comparable to sR can only result from non-
di�usive behavior of the center of mass displace-
ment and long wavelength modes such as the
rotational di�usion of the molecule. Non-di�usive
behavior for these modes results from intermo-
lecular correlations, which are not included in any
of the models considered except simulations.

3.4. Conclusions

We have demonstrated that molecular dynam-
ics simulations using an accurate potential func-
tion can reproduce polymer melt dynamics on
much longer time and larger length scales than
those determined directly by conformational mo-
tions. Here, detailed analysis of the molecular
dynamics of the melt from simulations motivated
additional NSE measurements that provided the
®rst experimental con®rmation of sub-di�usive
behavior in polymer melts. Comparison of the
dynamic structure factor obtained from simulation
and experiment with prediction of simple analyti-
cal theories shows signi®cant deviations. Detailed
analysis of the simulations and comparison with

Fig. 9. Comparison of the dynamic structure factor for PBD

chains obtained from simulation using Eq. (6) (Ð) and Eq. (16)

(� � �).

72 G.D. Smith et al. / Chemical Physics 261 (2000) 61±74



model predictions reveals that it is primarily the
non-Gaussian self-displacements Rm�t� ÿ Rm�0�
resulting from intermolecular correlations that
account for the deviation of Rouse predictions
from simulation. Inclusion of chain sti�ness does
not signi®cantly improve agreement with experi-
ment.

We have given two examples of the synergism
that is possible between neutron scattering and
molecular simulations in the investigation of
polymer melt dynamics. In the case of conforma-
tional dynamics, TOF measurements provided
data whose mechanistic interpretation was greatly
assisted by molecular simulations. In the case of
chain dynamics, behavior that deviates from that
predicted by widely used theoretical models was
seen in the molecular simulations, motivating ad-
ditional experiments that con®rmed this behavior.
We foresee that this type of interaction between
neutron scattering experiments and atomistic
simulations will be of increasing importance in the
future aiding identi®cation of mechanisms of mo-
lecular motion in dense polymer systems. This will
be particularly true for systems with much more
complex morphologies and dynamics such as en-
tangled polymers, copolymers, blends, con®ned
melts, and nanocomposites.
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