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AdaSemSeg: An Adaptive Few-shot Semantic
Segmentation of Seismic Facies

Surojit Saha and Ross Whitaker

Abstract—Automated interpretation of seismic images using
deep learning methods is challenging because of the limited avail-
ability of training data. Few-shot learning is a suitable learning
paradigm in such scenarios due to its ability to adapt to a new
task with limited supervision (small training budget). Existing
few-shot semantic segmentation (FSSS) methods fix the number
of target classes. Therefore, they do not support joint training on
multiple datasets varying in the number of classes. In the context
of the interpretation of seismic facies, fixing the number of target
classes inhibits the generalization capability of a model trained on
one facies dataset to another, which is likely to have a different
number of facies. To address this shortcoming, we propose a
few-shot semantic segmentation method for interpreting seismic
facies that can adapt to the varying number of facies across
the dataset, dubbed the AdaSemSeg. In general, the backbone
network of FSSS methods is initialized with the statistics learned
from the ImageNet dataset for better performance. The lack of
such a huge annotated dataset for seismic images motivates using
a self-supervised algorithm on seismic datasets to initialize the
backbone network. We have trained the AdaSemSeg on three
public seismic facies datasets with different numbers of facies
and evaluated the proposed method on multiple metrics. The
performance of the AdaSemSeg on unseen datasets (not used in
training) is better than the prototype-based few-shot method and
baselines.

Index Terms—Few-shot semantic segmentation, Seismic facies
interpretation, Self-supervised learning.

I. INTRODUCTION

HE study of facies in seismic images has emerged as

an important topic of research in the recent past due to
the comprehensive characterization of the earth’s subsurface.
Seismic facies represent regions in the earth’s crust with
similar geological characteristics, as indicated by correlated re-
flection properties in seismic images. In addition to identifying
hydrocarbon reservoirs, delineating horizons in seismic images
into facies finds potential applications in carbon capture and
storage [I]l, [2]. Manual interpretation of seismic facies by
expert geologists is a painstacking process. Moreover, the
presence of complex morphological variations often leads to
subjective interpretation. Thus, automated detection is encour-
aged for consistent and efficient solutions.

Advancements in deep learning methods have accelerated
the automated interpretation of seismic images [3]], [4]. Super-
vised deep learning methods produce impressive results with a
sufficiently large training dataset. However, obtaining a large
annotated seismic dataset is costly and impractical in most
scenarios []5]]—[]3[] Therefore, a realistic way to handle this
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Fig. 1: In this figure, we illustrate the task of predicting the
seismic facies (a multi-class segmentation mask) in a query
image from an unseen seismic dataset [3] by a semantic
segmentation model using a few annotated examples from the
dataset. This presents a realistic scenario for the interpretation
of seismic facies. We address this problem using the few-shot
semantic segmentation method.
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situation is to interpret seismic images using a few labeled
examples from a novel/unseen seismic dataset. In this paper,
we study the problem of interpreting seismic facies using a
few annotated examples from the unseen seismic dataset. In
Fig. [T} we present the problem of interpreting seismic facies
in the F3 facies dataset using a few annotated examples
of the dataset. Predicting seismic facies in a query/test image
from the unseen dataset is a multi-class segmentation problem.
Transfer learning (TL) [9], is a naive approach to solving
the segmentation task with a few labeled examples. TL fine-
tunes the semantic segmentation model parameters with a few
examples from the new dataset. However, we always run the
risk of overfitting the model parameters to the limited training
data. Despite different regularization strategies, such as early-
stopping, learning rate decay, weight decay, and dropout , the
model fails to generalize to query/test examples. Therefore,
we should consider methods that avoid fine-tuning parameters
with the few annotated samples from the unseen target dataset.

A potential approach to deal with the realistic scenario of
limited training data would be the induction of a learning
paradigm that can quickly adapt to the target task while having
limited supervision. This learning technique is known as few-
shot learning [[13]|-{13]. Few-shot learning involves two stages:
the meta-training and meta-testing. In the meta-training stage,
large annotated data, known as the source data is used to train a
deep neural network. The meta-testing stage involves adapting
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Fig. 2: This figure illustrates the heterogeneity in the number
and types of facies across seismic datasets. In this example,
we show the classification of the horizons of the Parihaka [[11]]
and Penobscot [[12]] datasets, where we observe a difference

in the number of seismic facies and variation in the naming
convention of the facies.

the model to the new task without fine-tuning the meta-trained
parameters on the farget data. Instead, a few annotated samples
(e.g., 1 or 5 samples) from the target dataset are used to guide
the predictions on the remaining samples in the target dataset.
Broadly, the few-shot learning algorithms are categorized as
model-based (black-box) [16]], metric-based (non-parametric)
or optimization-based methods [[18]]. An overview of few-
shot learning in the context of identifying seismic facies is
presented in Section [[I]

Predicting facies in a seismic dataset is a multi-class seg-
mentation problem. In the context of few-shot learning, few-
shot semantic segmentation (FSSS) [19], methods do
multi-class classification at the pixel level, an extension to
the binary segmentation task [21]], [22]]. Generally, the FSSS
methods need to know a priori the number of classes present
in the dataset. For example, the number of seismic facies in
the Parihaka dataset is six, and the number of facies in
the Penobscot dataset is seven. Therefore, we must build
separate FSSS models for the Parihaka and Penobscot datasets.
This is a limitation of the existing FSSS methods that inhibits
the training on multiple datasets varying in the number of
target classes. We illustrate this problem in Fig. 2] where we
show the classification of the horizons of the Parihaka and
Penobscot datasets based on the seismic data characteristics,
such as reflection patterns and amplitude.

The community has recognized the limitation of the existing
FSSS methods to deal with multiple datasets varying in the
number of target classes, and new methods have been built in
the recent past to alleviate this issue [23]-[25]. The MSeg
and LMSEG build a unified taxonomy of classes present
in multiple semantic segmentation datasets by interpreting the
names of the class labels.The viability of constructing a unified
taxonomy for interpreting seismic facies is questionable due
to the variability in the geological features observed across
datasets. In addition to the difference in the number of seismic
facies between the Parihaka and Penobscot datasets in Fig.

[l we observe a variation in the naming convention of the
facies, possibly indicating variation in the facies composition.
All these limitations motivated us to devise a generalized few-
shot segmentation method that is independent of the facies’
names and can accommodate the variability in the number of
facies across multiple datasets.

We propose an FSSS method for identifying seismic facies
using Gaussian processes that can adapt to different numbers
of facies across datasets, named the AdaSemSeg. The proposed
technique is motivated and adapted from the method intro-
duced by Johnander et al. that empirically demonstrated
the strength of the Gaussian process regression in the few-
shot setup. In this work, we devised a technique that extends
the capability of the method in [22]] (designed for binary
segmentation) to do multi-class segmentation (aka semantic
segmentation). In the AdaSemSeg, the multi-class segmen-
tation problem is divided into multiple binary segmentation
tasks, where each task recognizes a particular type of facies in
a given dataset using a shared backbone network. The number
of binary tasks for a dataset depends on the number of facies
present. All binary tasks use the same backbone network, i.e.,
the number of trainable parameters is fixed and does not vary
with the number of binary tasks (representing facies). Using a
shared backbone network for all binary tasks offers flexibility
to the proposed AdaSemSeg to adapt to the varying number
of facies. The final multi-class prediction for a query image
is obtained by aggregating the outcomes of multiple binary
segmentation tasks.

In this work, we demonstrate the efficacy of the AdaSemSeg
on three benchmark 3D facies datasets: the F3 from the
Netherlands [3]], Penobscot from Canada and Parihaka
from New Zealand having six, seven and six different
facies, respectively. In our experiments, one of the datasets is
considered the target data, and we train the AdaSemSeg on
the remaining two datasets, which we call the source data.
For all experimental results in this paper, the AdaSemSeg is
evaluated on the target data using the statistics learned from
the source data, which is assumed to be related but different
from the target. To put things more clearly, the parameters
of the AdaSemSeg are trained only using samples in the
source data, and we do not fine-tune the AdaSemSeg on
any samples in the target data. This makes the AdaSemSeg
different from transfer learning that fine-tunes the model
parameters on samples from the target data. We compare the
performance of the AdaSemSeg with different baselines using
multiple evaluation metrics studied in the literature [3]], [4]. In
addition, the performance of the AdaSemSeg is compared with
a prototype-based few-shot segmentation method developed
for seismic facies and a regular semantic segmentation
network fine-tuned on a few samples from the target dataset
(aka transfer learning). A summary of the contributions is as
follows:

e We propose an adaptive FSSS method for identifying
seismic facies that is flexible to handle the variability in
the number of facies across datasets.

o The performance of the AdaSemSeg evaluated on unseen
target datasets is comparable to the baselines that are
trained only on samples in the target datasets.



o« The AdaSemSeg comprehensively outperforms the
prototype-based FSSS method and the segmentation
model trained using transfer learning.

II. RELATED WORK

Deep learning methods have been used to recognize geolog-
ical features, such as faults and channels, in seismic images
[27], [28]]. With the release of multiple seismic facies datasets
in the recent past [3]], [11]], [12]], deep learning algorithms have
been proposed for the identification of seismic facies [E]], ,
[30]. Among the public datasets, the data released as a part of
a SEG challenge on the Parihaka 3D volume has gained
much attention due to its complexity. Different segmentation
networks, such as the DeconvNet [3]], U-Net [4], [29], and
DeepLabv3 have been used for the interpretation of facies.

All the segmentation methods developed for the identifica-
tion of seismic facies [3]|, [4], [29]-[31] rely on a large set
of annotated data, which does not present a realistic scenario
as the production and annotation of seismic images are costly
enterprise. In reality, we would use a pretrained model (trained
on benchmark datasets) to make predictions on a new dataset
with a handful of annotations. Few-shot segmentation (FSS) is
an effective technique used to address these scenario , ,
which has been extended to multi-class classification [19]],
[20]. Among the different FSS methods, we find the DGPNet
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[22]] using Gaussian processes (GP) in the latent space to be
an effective method for segmenting seismic facies. The GP is
a probabilistic regression technique that can quickly adapt to
the observed data.

FSSS methods have been developed for the segmentation
of salt bodies [6], [7] and seismic facies [3], [26], [32]. The
methods for the segmentation of salt bodies in [6], use
Segment Anything model trained with over 1 billion
segmentation masks. The method in [5]] adapts the few-shot
segmentation method proposed in [34] to segment facies in
the F3 [3]] and Parihaka datasets. Prototype-based few-
shot segmentation method is proposed in to identify
seismic facies in the F3 [3]] and Penobscot datasets. The
FSSS method proposed in [26] for segmenting facies is the
closest to our approach as it has the flexibility to deal with
multiple datasets varying in the number of classes. Therefore,
we compare the proposed AdaSemSeg with the method in [26].

III. OVERVIEW OF FEW-SHOT SEMANTIC SEGMENTATION

Few-shot learning is a meta-learning algorithm [17]], [18]
whose objective is to learn a shared representation from several
related tasks, such as the segmentation of images. Few-shot
learning used for the segmentation of images is known as
the Few-Shot Semantic Segmentation. There are two stages in
few-shot learning: the meta-training and meta-testing. In the
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Fig. 3: Tasks were generated using samples in the seismic datasets for the meta-training and meta-testing stages in the FSSS
methods. 7 and M*® represent the support images and corresponding masks used in both the meta-training and meta-testing
stages. Similarly, images in the query set () are represented as /¢ and the associated masks as M. In this illustration, we
use K = 5 support images and 1 query images from the F3 and Parihaka facies datasets in the meta-training stage.
A similar setting is used for the Penobscot dataset in the meta-testing stage. Tasks in the meta-training stage are used to
train the parameters of the FSSS model, and the trained model is evaluated on tasks in the meta-testing stage.



meta-training stage, large annotated data, known as the source
data, are used to train the parameters of a deep neural network
to learn generalizable features from different segmentation
tasks. The meta-testing stage involves adapting the meta-
trained model parameters to new tasks on the farget data using
a handful of annotated samples. However, the trainable model
parameters are not fine-tuned with a few annotated examples
from the target data. In the context of semantic segmentation
of seismic facies studied in this work, we consider one class
as the target data and the remaining classes as the source data.
For example, the F3 [3]] and Parihaka facies datasets are
considered as the source data, where the Penobscot [12]] facies
dataset is the chosen as the target data. Therefore, the source
and target data contain examples from completely different
classes without overlap.

Each task in the meta-training and meta-testing stages is
defined using support and query examples. The support and
query examples are selected following the N-way K-shot
structure, where N and K represent the number of classes
and examples (or shots) from each class, respectively. For the
segmentation tasks studied in this chapter, we use N = 1 as in
, i.e., for a task, we select a class at random and sample K
unique examples that together with the corresponding segmen-
tation masks form the support set, represented as S. Typically,
a single sample from the same class and its segmentation mask
is used to construct the query set, represented as (). In this
work, we denote the support set as S = {(I¥, M*)"}X | and
the query set as Q = {(19, M%)}, where I € RH*XWx3 jg
the support/query image and M € {1,...,C}H*W s the
corresponding segmentation mask with C' classes. The value
of C is six, seven, and six for the F3 [J3]], Penobscot
and Parihaka facies datasets. Unlike the regular setting
of the FSSS methods, the number of classes (C') varies across
datasets in our application.

Different tasks produced following the /-way 5-shot struc-
ture in the meta-training and meta-testing stages using samples

Support masks, M5

extracted from the datasets studied in this work are shown in
Figure [3l We denote the images in the support set (S) as I
and the corresponding masks as A/°. Similarly, the images
in the query set ()) are represented as /9 and the associated
masks as M9?. Meta-training tasks are used to train the FSSS
model in the meta-training stage. We evaluate the trained
model on unseen classes in the target data in the meta-testing
stage. The meta-testing tasks are also generated using the /-
way 5-shot setting used in the meta-training stage for ensuring
consistency between the training and evaluation scenarios.

A general layout of the meta-learning algorithm for the
FSSS is presented in Figure [d] In addition to an image encoder
and a decoder used in a standard segmentation network, the
meta-learning algorithm uses a meta-knowledge extractor that
learns general visual features from different meta-training
tasks (refer to Figure [3) to solve unseen meta-testing tasks
with only K annotated examples. In Figure 4 we illustrate
the training of a meta-learning algorithm using a 5-shot setup,
which is the meta-training stage. The predicted segmentation
mask is compared with the ground truth to compute the loss
that is used to update the model parameters. Under this setting,
we train the segmentation model end-to-end using stochastic
gradient descent. The flow of gradients is highlighted with
red dashed lines. The model parameters are trained on several
meta-training tasks as shown in Figure [3| that helps in learning
a generalized feature representation.

In Figure 4] a shared image encoder is used to extract
features from the support and query examples for further
processing. The initialization of the image encoder using the
statistics of a large image dataset, such as the ImageNet [33],
plays an important role in the performance of the FSSS. This
is conceivably due to the learning of rich visual features from
a large dataset with a lot of variability that assists in solving
other recognition tasks [36]. In general, the FSSS algorithm
freezes the update of the model parameters initialized with the
statistics of a large dataset, and this strategy has been found
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Fig. 4: A schematic of the few-shot semantic segmentation (FSSS) algorithm. We show here how a task in the meta-training
stage is used to train the model parameters. The FSSS method uses 5 support examples (i.e., K = 5 shots) from the F3 facies
dataset to make multi-class prediction (six classes) on the query image. The forward passes in the model are represented
using blue arrows. The predicted mask is compared with the ground truth to compute the loss that is used to update the model
parameters. The backward passes allowing the flow of gradients are represented with red dashed arrows.
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Fig. 5: The architecture of the DGPNet [22]] used for the binary segmentation task. The DGPNet uses K = 5 support examples
to predict the binary segmentation mask for a single facies type in the F3 facies dataset [3]] on the query image. The forward
passes in the model are represented using blue arrows. The predicted mask is compared with the ground truth to compute the
loss that is used to update the model parameters. The backward passes allowing the flow of gradients are represented with red

dashed arrows.

to be effective for making predictions on unseen classes in the
meta-testing stage. However, the availability of a vast anno-
tated dataset is challenging in many applications, such as the
interpretation of seismic images. Under such circumstances,
contrastive self-supervised algorithms, such as the SimCLR
[37], offer an alternative approach to initialize the backbone
image encoder. The advantage of self-supervised algorithms is
that we do not need labeling of the data, unlike the ImageNet
[35]]. Contrastive self-supervised algorithms use positive and
negative examples produced from unlabeled samples in a
dataset to train the network parameters.

A. Segmentation using the DGPNet [22|]

In this section, we discuss the formulation of the DG-
PNet [22]] developed for binary segmentation (a two-class
segmentation task) of natural image datasets. We adapt the
DGPNet in the proposed AdaSemSeg to segment seismic
facies. The DGPNet’s novelty is in using GP regressions in
deep latent spaces. We present a schematic of the DGPNet
[22] in Figure [5] demonstrating the binary segmentation of
a single facies type in the F3 facies dataset. The DGPNet
introduces a mask encoder for GP regressions in the latent
layers, and we leverage this design choice in our proposed
method, AdaSemSeg, to address the variability in the number
of classes across datasets. The GP regressions in the latent
layers of the DGPNet predict the segmentation mask in deeper
layers, which, combined with the encoded image features in
shallow layers, predicts the final segmentation output. We
discuss details in subsequent paragraphs.

The DGPNet, as shown in Figure [5] has three trainable
modules, namely, the image encoder (IE), mask encoder (ME),
and decoder (D). The image encoder encodes images in the
support and query set, whereas the mask encoder encodes the

binary masks in the support set. The decoder processes the
output of GP regressions in the latent space and the shallow
encoded image features to predict binary masks. We will
use the terminologies introduced in Section [[II] for explaining
binary few-shot segmentation using the DGPNet. Using the
support images, I°, and the corresponding binary masks,
M?#, in the support set, the segmentation network predicts a
binary mask, M4, on the query image, using the prediction of
GP regression (in deep layers) and the encoded query image
features (in the shallow layers). The predicted binary mask,
Ma, is compared with the ground truth M? to minimize
the mismatch. Under this setting, we train the segmentation
model end-to-end using stochastic gradient descent. We train
the DGPNet on several meta-training tasks from the source
data that help learn robust and generalizable representations.
The learned representations are used in the meta-testing stage
to predict the masks on samples in the target data.

In this paragraph, we explain the details of GP regressions
used in the latent layers of the DGPNet. GP regression in
the latent layer learns the mapping from the encoded image
space to the encoded mask space. The encoded representation
of a support image, I°, and its corresponding mask, M
are denoted as e® = IE(I°) € RHXW'XF and ¢ =
ME(M?$) € RE W xF respectively. KH W' image and
mask encodings are produced from K samples in the support
set, S = {(I*, M*)"}X |, inthe F and F" dimensional feature
space, respectively. Similarly, the encoded repgesegtation of a
query image, I, defined as e? = IE(19) € R *" ¥ results
in HW' examples in the encoded image space. GP regression
in the latent layers of the DGPNet learns the mapping from
the encoded 1mage space, RY', to the encoded mask space,
RF using K HW image and mask encodings derived from
the support set, S. GP regression is a probabilistic regres-



sion technique, and the statistics of the posterior distribution,
P = {j14)5, 4|5}, estimated by the regression model are
defined as,
T 21y =15 H xw' xF'
Mq|S:KSq(KSS+gzI) 65 € R XWX

)
Sgs = Kgq— K& (Kss+021) ' Kgg € RT W XA W (2)

where Kgg, Ky, and Kg, are the co-variance matrices
computed using the encoded support images, e° = {e* } X,
and encoded query image, e?. The noise in the labeled data is
represented by o,. A squared exponential kernel (ksg) used
for computing the co-variance matrices, Kggs, Kqq, and Kgq,
is defined as follows:
2 —llz2 — 23
exp — 3)
where [ and o represent the kernel bandwidth and scaling
factor, respectively.

The DGPNet effectively segments natural images using off-
the-shelf segmentation models, such as the ResNet as
an image encoder and the DFN as the decoder. We can
change the backbone networks of the DGPNet depending on
the application. For example, our work does not use the DFN
as the decoder for segmenting seismic facies. We observed that
the performance of the DGPNet is strongly impacted by the
initialization of the image encoder with the pretrained statistics
of the large and complex ImageNet dataset [35]]. This is
because the ImageNet statistics help with the prior knowledge
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of almost all natural objects likely to be encountered as unseen
classes in the target data. This demonstrates the importance of
the initialization of the image encoder on the performance of
the FSSS methods. We address this issue in our application
using a different initialization technique.

The existing formulation of the DGPNet can be extended
to solve a multi-class segmentation problem, such as the
segmentation of seismic facies. However, similar to other
FSSS methods, we need to fix the number of output classes
in the decoder network. Therefore, we cannot use a DGPNet
trained on the F3 or Parihaka facies dataset, both having six
facies types, to make inferences on samples in the Penobscot
dataset having seven different types of facies. We solve this
problem using the proposed AdaSemSeg, which can handle
the variability in the number of classes across datasets.

IV. THE PROPOSED METHOD: ADASEMSEG

In this section, we present the proposed AdaSemSeg, a
few-shot semantic segmentation method developed for the
segmentation of seismic facies (a multi-class segmentation
problem) that can handle the variability in the number of
classes across datasets. To deal with the variability in the
number of classes across datasets, the AdaSemSeg splits the
original multi-class segmentation problem into several binary
segmentation problems. The AdaSemSeg uses the DGPNet
as the backbone to solve the binary segmentation tasks.
The parameters of the DGPNet are shared across all the binary
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Fig. 6: Here we show the use of a shared DGPNet for the binary segmentation task of four different types of facies in
the F3 facies dataset [3]]. In each quadrant, the same DGPNet uses K = 5 support examples to predict the binary segmentation
mask for a specific facies type on the query image. The forward passes in the model are represented using blue arrows. The
class-specific predicted masks are compared with the corresponding ground truths to compute class-wise losses.
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Fig. 7: The processing of the input to produce class-specific annotations on the support and query images. (a) Processing of
the multi-class labeled example, M ®3, in the support set to produce binary segmentation masks for 6 classes in the F3 dataset
. (b) Class-specific labels for the support (S) and query set (Q) for class ¢; and class cg of the F3 facies dataset .

segmentation tasks in the AdaSemSeg. Therefore, the number
of trainable parameters in the proposed method do not grow
with the number of classes in a dataset. Similar to other FSSS
methods, the model parameters are trained on the source data
in the meta-training stage. The trained parameters are used
in the meta-testing stage to predict segmentation masks of
samples in the target data using a few annotated examples from
the same dataset. We will use the terminologies introduced in
Section [lII| for explaining the AdaSemSeg.

We need to fix the number of output classes in the decoder
of the existing few-shot segmentation methods as deep neural
networks learn a deterministic mapping from the input image
to output segmentation masks. The use of GP regression (a
probabilistic regression method) in the DGPNet offers the
flexibility to solve different segmentation tasks using the same
support images (I°) based on the segmentation masks (M)

fed as input to the mask encoder (ME). Therefore, the DGPNet
produces different predictions on a query image based on the
input to the ME. The mean p, 5 of GP regression defined
in f:quation [[] is a function of the encoded support mask
(€% = ME(M®%)), which explains the prediction of different
binary masks on the same query image based on the support
masks, M*. In Figure El, we demonstrate the prediction of
the different segmentation masks on the same query image
by the DGPNet depending on the support masks provided as
input to the ME. In this example, we predict four different
types of facies (out of six) in the F3 facies dataset using
the same parameter settings of the DGPNet, i.e., the DGPNet
is shared across all the binary segmentation tasks. The use
of different segmentation masks, {M7, M7, M7, M2},
for the same support images, I , leads to the prediction of
different segmentation masks, { M, M, M&, M&} on the



query image, /9. We identified this property in the DGPNet
and used it in the AdaSemSeg to deal with the variability in
the number of facies across seismic datasets.

A. Processing of data for binary segmentation tasks

As discussed in the previous paragraph, the AdaSemSeg
segments seismic facies, a multi-class segmentation problem,
by solving several binary segmentation tasks using a shared
DGPNet [22]. To this end, the original labeled data, M?,
having multi-class annotations, is processed to produce binary
segmentation masks, M7, representing the mask for class c,
as shown in Fig. [7/(a) for an example in the support set.
The number of binary masks produced for a labeled input
depends on the number of facies, C, in the dataset, resulting
in M?% = {Mcs;'}f:l for a labeled mask M®¢ in the support
set. We produce class-specific annotations support and query
set using this processing step, defined as M S {M i
and M = {M{}, respectively, for class c;. F1g b) shows
the class- spemﬁc labels, {M7, M&} and {M, M2} for the
support and query set, representing class c¢; and cg of the
F3 facies dataset, respectively. Processing of the input using
this technique results in multiple class-specific annotations,
depending on the number of facies (C), for the same images
(I) in the support and query set. The processing of the
annotations in the support and query set to produce binary
masks is performed on the fly during the training/inference of
the AdaSemSeg.

B. Network architecture

The AdaSemSeg segments seismic facies by solving multi-
ple class-wise binary segmentation tasks using a single shared

DGPNet [22]. Therefore, the number of trainable parameters
in the AdaSemSeg is the same as the DGPNet. Similar to the
DGPNet, the AdaSemSeg has three trainable modules, namely,
the image encoder (IE) that encodes images in the support
and query set, the mask encoder (ME) that encodes the class-
specific binary masks, M, ,i, in the support set and, the decoder
(D) that processes the output of the GP regressions in the latent
space and the shallow encoded image features to predict binary
masks, as shown in Fig. [8| The IE, ME, and D are deep neural
networks parameterized by ¢, 1, and 6, respectively. In Fig.
shared weights indicates the same neural network parameters
used to process different inputs. For example, the same mask
encoder is used to encode K class-specific binary masks in
the support set Mf] = {ij 1K . Therefore, the number of
trainable parameters in the AdaSemSeg is fixed and does not
grow with the number of facies in a dataset. This example
demonstrates the segmentation of facies in the F3 [3]] dataset.

The AdaSemSeg uses the support images, I°, and class-
specific binary masks in the support set, MCS; for the class
cj, to predict a binary mgsk, M¢,, on the query image. The
predicted binary mask, M¢,, is produced using the output of
GP regression (in deep layers) and the encoded query image
features (in the shallow layers). The GP in a latent layer in
the AdaSemSeg learns the mapping from the encoded image
space to the encoded mask space, similar to the DGPNet.
The statistics of the class-wise posterior distribution, P, =

{itg, Is..+ Xq. |5.. }» of GP regression [38]] are defined as,
7 J J J
Pae;18e; = Kgq(KSS +U§I)7lefj c RH xW xF @)
EqCJ‘S% = Kyq — Kgq(KSS +U§I)71qu c RHE W xH W ’
&)

Query image, 11 ~—_
= Shallow image features I:Ilmage Encoder (IE)
IE n
Deep image features I:lMaSk Encoder (ME)
Shared I:IDecnder (D)
weights
Gaussian process
(GP) regressor
IE
/ GPregressionin  Parameters of the - ’71 a
Support annotations for Class 1, MCS1 \ the latent space posterior distribution Prediction, M!  GT, M]
A'l/ CE loss for
ME \ GPC1 PCJ. D class 1, L,
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. ® o Shared
® ® welghts
P Py Prediction, Mq GT, ML
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CE loss for
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Total segmentation loss, L = Zj:lLL‘j

Fig. 8: Training of the AdaSemSeg using Algorithm (1| on the F3 facies dataset [3]] in the 5-shot setup. The AdaSemSeg
predicts class-wise binary segmentation masks using a shared DGPNet [22]]. Shared weights indicates the same neural network
parameters used to process different inputs, such as the same mask encoder (ME) is used to encode class-specific binary masks,
M(f’: , in the support set. The forward passes are represented using blue arrows.



Algorithm 1 : Meta-training of the AdaSemSeg

Algorithm 2 : Meta-testing of the AdaSemSeg

Input: X, batchSize, K
Output: Trained image encoder, mask encoder and decoder
parameters represented by ¢, 1, and 6, respectively.

/*Split data and initialize trainable parameters*/
Split Xy, into training, X3, and validation data, A2l

A2l is used for adjusting the learning rate

Initialize ¢, ¥ and 6

/*Meta-training over an epoch*/
for number of minibatch updates do

/*Minibatch from the training set with K —shots*/
miniBatch = getMiniBatch(X:21" batchSize, K)

src

/*Loss over a minibatch*/

totalLoss = 0

for bin [0,1,2,...,batchSize — 1] do
C, I°, M®, I, M9 = miniBatch[b]

/*Get the class- speciﬁc binary masks*/

{MS pER {M‘f = getBinaryMask(M*°, M1, O)

/*Accumulates the loss over all the classes™*/
classwiseLoss = 0
for jin [1,2,...,C] do
/*Shared parameters of the DGPNet*/
Mcq]. = DGPNet(I°, MS I7)
classwiseLoss += CrossEntropy(ng, ng )

end for

totalLoss += classwiselLoss
end for

/*Update the parameters of the DGPNet*/
Update ¢, ¥ and 6 by minimizing the total segmentation
loss, totalL.oss, using Stochastic Gradient Descent

end for

where Kgg, Ky, and Kg, are the co- variance matrices
computed using the encoded support images, e® = {e* } X,
and encoded query image, e?. The details of GP regression
are reported in Section The expressions in equation [
and [5] hold the same meaning as defined in Section It
should be noted that the Hq.,|Se, in equation EFI is a function

of the class-specific mask encoding, e

, and the X, s in
. .. J 7
equation [3] is independent of a class.

C. Meta-training

In the meta-training stage, we train the parameters of the
AdaSemSeg on a large annotated source data, Xy, to learn
generalizable features. This work uses two benchmark datasets
(out of three) as the source data. Independent segmentation
tasks are constructed from the source data following the
N-way K-shot structure as done in any few-shot semantic
segmentation algorithm (refer to Section [III| for more details).

Input: Xiarge, K, C, Trained AdaSemSeg parameters
Output: Predictions on samples in Xiuge¢ using only K
annotated samples

/*K support images in the target data with C' classes*/
S={(I, M*)'} L,

/*We treat the remaining images as the query set*/

Q = Xrarget - S

/*Predictions on the query set*/
results = []
for 19, M7 in @ do

/*Get the class-specific binary masks*/
{MZ S J | = getBinaryMask(M*°, O)

/*Class-wise predictions on the query image*/
classwisePreds = []
for jin [1,2,...,C] do

/*Predictions using the trained AdaSemSeg*/
/*Using the AdaSemSeg in the evaluation mode*/

M¢, = DGPNet(I°, M7, 19)
classwisePreds[j-1] = M,‘}j € RH>W

end for

/*Get the class index with maximum probability*/
M4 = argmax(classwisePreds) € R7T*W
c
results.append(/9, M9, M?)
end for

return results

Description of the meta-training stage of the AdaSemSeg is
reported in Algorithm [I}

In the meta-training stage defined in Algorithm [I] we split
Xy into training, X", and validation data, XY, In our
method, the validation data, X3!, is used for adjusting the
learning rate of the optimizer. A sample in a minibatch from
the training data, X' gives us the support (I S, M%) and
query ([9, M?) examples from a dataset in the source data
along with the number of classes (C) in that dataset. In the
AdaSemSeg, we divide the multi-class segmentation problem
into several binary segmentation problems. Therefore, we
process the multi-class segmentation masks to produce class-
specific binary masks, {M S j 1> and {MZ ¢_, correspond-
ing to the support (M) and query (M q) set respectively.
We follow the technique discussed in section [[V-A]to produce
the class-specific binary masks. Using the class-specific binary
masks M S in the support set, we predict the binary mask on
the query 1mage for class ¢; using the DGPNet [22]. The
predicted mask on the query image for class c;, Mcqj, is
compared with the ground truth annotation, MZ to compute
the loss for the class c;, L., as shown in Fig. However,
we do not update the parameters of the DGPNet using the
class-specific loss L. We repeat the above steps to predict
the segmentation masks on the query image for the remaining



C — 1 classes in the facies dataset using the class-specific
binary masks in the support set. This results in multiple GP
regressions, a key difference of the AdaSemSeg with the
DGPNet [22]]. It must be noted that we use the same DGPNet
parameters across all facies types in a dataset, i.e., the IE, ME,
and D are shared across classes.

The AdaSemSeg accumulates the loss across all the classes,
named as the total segmentation loss, L = ZJC:lLCj. We
use the pixel-wise binary cross-entropy loss to compare the
predicted masks with the ground truth, and the segmentation
loss across multiple classes is defined as,

¢ H W
1 .
= — q q .
L=-Gmm ;;;Mcj(h,w) log MY (h,w).  (6)

The loss function in equation [6] computes the average pixel-
wise binary cross-entropy loss over the number of classes,
C, in the dataset. The total loss calculated on a minibatch is
used to update the shared trainable parameters using stochastic
gradient descent. Following the outline in Algorithm [} we
train the AdaSemSeg over several epochs until convergence.

D. Meta-testing

After the AdaSemSeg is trained on the source data, we
evaluate its performance on the target data in the meta-testing
stage using a few annotated examples (/(-shots) from the
same dataset. It should be noted that the parameters of the
AdaSemSeg are not fine-tuned to K annotated examples from
the target dataset, Xiarget, and we use the trained AdaSemSeg
only for evaluation. Therefore, the meta-testing is equivalent

to the inference of a trained deep neural network. To maintain
consistency between the training and evaluation of the model,
we use the same number of support examples, K = {1,5}, in
both the meta-training and meta-testing stages. We outline the
steps in the meta-testing stage of the AdaSemSeg in Algorithm
] Similar to the meta-training stage, we predict the binary
segmentation mask on a query image using K class-specific
binary masks in the support set. The prediction of the binary
segmentation masks on the query image is repeated for all
the C classes in the target dataset. We accumulate the binary
predictions on different facies types in a dataset and apply
argmax at the pixel level to obtain the multi-class prediction
on the query image. We repeat this process to evaluate all the
test samples in the target dataset.

In Fig. 0] we illustrate the prediction of the multi-class
segmentation mask by the AdaSemSeg on the F3 facies dataset
(i.e., the target dataset in this context) using K = 5 annotated
support examples. For each class in the F3 facies dataset, we
predict the binary segmentation mask of the query image using
the class-specific binary mask of the support examples and a
trained DGPNet shared across all classes. We stack the class-
wise predicted mask on the query image and get the multi-class
prediction using the argmax at each pixel location.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets: We use the Penobscot [12], Parihaka [T1]],
and F3 [3] facies datasets for evaluation of the AdaSemSeg
under different scenarios. The train, validation, and test set

Predict segmentation masks for all six classes in the F3 facies dataset

Predicting mask for Class 1 in the F3 facies dataset

Support masks for Class 1, Mcs]

Predicted

Z \
Query image, 17

Predicting mask for Class 6 in the F3 facies dataset

Support masks for Class 6, Mfﬁ

Predicted
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Fig. 9: Inference using the AdaSemSeg following Algorithm [2on the F3 facies dataset [3] in the 5-shot setup. The AdaSemSeg
predicts class-wise binary segmentation masks M¢, using a shared DGPNet || The forward passes are represented using
blue arrows. We accumulate the class-wise predicted mask on the query image and get the multi-class prediction M9 using

the argmax at each pixel location.



Test, Test,

600

Validation,

Validation,

Inline
Inline

Cuonepnea
fssyl

Inline

BT
tuopeplien
“sal

Cuoneppnea

210
200

Validation,

Test,

Crossline 410 420 471

(a) Penobscot

Crossline

(b) Parinaka

Crossline
(c)F3

662 682 782 691 700 900

Fig. 10: The train, validation, and test distribution of the (a) Penobscot [12]], (b) Parihaka [[11]] and (c) F3 [3]] datasets.

distribution for all the datasets are shown in Fig. For the
F3 dataset, we use the train-val-test split proposed in [3]]. The
Penobscot dataset is processed to remove the corrupted images
that resulted in 460 inline and 471 crossline images from the
original volume containing 601 inline and 481 crossline slices
[31]]. With the expert’s suggestion, we reduced the depth of the
Penobscot dataset to 900 (originally 1501). We do not merge
underrepresented horizons, such as layers 2 and 3, as done
in [31]. The Parihaka facies dataset was released as a part of
the challenge, where the organizers withheld the original test
annotations. Thus, we select a small part of the training data
as the test data for evaluating different methods, such that the
selected test slices are close to the real test data along the
inline and crossline directions [29]].

We process the Penobscot and Parihaka datasets
using percentile-based filtering, such as the 1 — 99
percentile, to remove the extreme intensity values (aka
outliers). We estimate an acceptable range of values
[lower-threshold, upper-threshold] —using the percentile-
based filtering, such that intensity values less than the
lower-threshold are clipped to lower-threshold, and
values higher than the upper-threshold are mapped to
upper-threshold. This work uses the 5 — 95 percentile range to
remove the outliers. We re-scale the values of all the datasets
to the range of 0 — 255.

We extract 2D patches of size 256 x 256 along the inline
and crossline directions to train the AdaSemSeg and other
methods studied in this work for all the data volumes [3]],
[4], [26]. Using whole slices instead of patches gives better
results for a dataset as demonstrated in [3]], [29]]. However, we
hypothesize that patches offer more variability in the training
data, resulting in better generalization to other unseen datasets.
In addition, whole slices require a lot of GPU memory to train
the deep neural networks, which can be impractical for large
data volumes. Therefore, we use 2D patches of size 256 x
256 for all seismic datasets to train the AdaSemSeg and other
competing methods studied in this work. However, we evaluate
a trained model using whole slices from a target dataset.

We use the leave-one-out policy to create the data for the
meta-training and meta-testing. For example, to evaluate the
AdaSemSeg on the Parihaka dataset (target data used in the
meta-testing stage), we train the AdaSemSeg on the Penobscot
and F3 dataset (source data used in the meta-training stage).

Similarly, the AdaSemSeg is evaluated on the Penobscot and
F3 datasets when the model is trained on the remaining
two datasets. Under this experimental setting, we assess the
generalization of the AdaSemSeg to unseen target datasets.

2) Initialization of the image encoder : In general, few-
shot methods rely on backbone networks (e.g., ResNet [39])
as image encoders that have been pretrained on the ImageNet
data set [35], which is not only very large but also entails
recognition of natural objects that are associated with the
segmentation of unseen target classes (e.g., bicycles, cats).
However, we cannot access such a vast public dataset in seis-
mic image interpretation. Potential reasons are the challenges
associated with seismic imaging, annotation of seismic images
requiring specially skilled labor (unlike natural images), and
the cost involved in the process [5]—[7]. We have observed that
the initialization strategy significantly affects the performance
of the FSSS methods developed for natural images, such as
the DGPNet [22]. Thus, having a pretrained backbone network
for seismic datasets is important.

In the recent past, methods have been developed for the
interpretation of geological features, such as the faults [41],
salt bodies [42]], and facies [8]] in seismic images, where self-
supervised methods are used to initialize the parameters of the
segmentation networks. Self-supervised contrastive methods,
such as the SimCLR [37] and Barlow Twins [43]], are used to
extract salient geological features from the unlabeled seismic
data. Barlow Twins [43] self-supervised method is used in
[42] to initialize the encoder of the segmentation network
developed for the detection of salt bodies. The technique
in [8] uses reconstruction-based self-supervised learning to
initialize all the parameters of the segmentation network. Both
methods [8], [42]] fine-tune the model parameters with fewer
annotated examples from the target dataset to achieve com-
parable performance of the supervised segmentation methods.
Representations learned in an unsupervised framework using
deep latent variable models [44]-[48]] is another potential
technique for initializing the network parameters.

We use a self-supervised learning technique to initialize only
the image encoder of the AdaSemSeg with the statistics of
the seismic image datasets. The advantage of self-supervised
algorithms is that we do not need labeling of the data, unlike
the ImageNet [35]. Thus, this choice is very well aligned with
the scenario where we have limited annotated training data,



such as the problem of few-shot segmentation. In this work,
we use the SimCLR [37]], a contrastive self-supervised algo-
rithm for learning representations to assist the segmentation
of seismic facies. We use all three seismic datasets studied
in this work without the annotations for the facies to train
the image encoder parameters (f) of the AdaSemSeg using
the SimCLR method. Under this setting, the image encoder
parameters capture the statistics of the unknown target dataset.
However, the mask encoder (/) and decoder (6) parameters of
the AdaSemSeg that predict the facies in an input image are
never exposed to any annotated samples in the target dataset.
Therefore, the AdaSemSeg never learns the annotations in the
target dataset. The details of the experimental setup for training
the SimCLR, such as the augmentations used in generating
positive and negative pairs, batch size, and other optimization
configurations, are discussed in Section [B-A]

3) Baseline and other competing methods: The AdaSem-
Seg is evaluated on the target dataset without refinement of
the network parameters on the target dataset. This evaluation
setup is consistent with other FSSS methods that predict the
segmentation masks on unseen target classes. We choose the
AdaSemSeg trained only on the target dataset as one of the
baselines, Baseline-1, and a U-Net-based [@]] segmentation
network, named the Baseline-2, as another baseline, which is
also trained on the target dataset. Besides, we compare the

Index =210

Index =315

12

performance with a prototype-based FSSS method for
seismic facies [26]], referred to herein as the ProtoSemSeg.
Transfer learning has been widely used in deep learning
research, where the last few layers of a deep neural network are
retrained (sometimes with modifications) using a few examples
from the target dataset. It is used to interpret seismic images,
such as classifying seismic facies [50] and detecting faults
[27]. We train the Baseline-2 using transfer learning, where
the model is first trained on patches from the source data,
e.g., the F3 and Penobscot volume, and then we fine-tune the
parameters on a handful of annotated samples in the target
class, i.e., the Parihaka dataset with respect to this example.
The last layer of the decoder in the Baseline-2 is customized
to the number of classes in the facies dataset, such as 7 for the
Penobscot and 6 in the case of the Parihaka and F3 datasets.
4) Evaluation metrics: The performance of the AdaSemSeg
and other methods is evaluated under different metrics used in
the literature [3]], [4], such as the pixel accuracy (PA), class
accuracy, mean class accuracy (MCA), intersection over union
(IoU), and F} score. The IoU and Fj scores are weighted
by the frequency of the classes, denoted by the FwloU and
FwF} scores, respectively. We use whole slices to evaluate
all the methods (supported by convolutional neural networks)
for practical use cases and to avoid the complexity of patch
stitching [4]]. Moreover, patch stitching offers no additional

Index =420

Index = 525

(a) Support examples along the inline direction.

Index =132 Index = 263

Index = 394

Index =657

Index = 525

(b) Support examples along the crossline direction.

Fig. 11: The support set of the Parihaka dataset that spans through the entire volume both along the inline (slice
indices={105, 210, 315,420, 525}) and crossline (slice indices={132,263, 394, 525,657}) directions. For clarity, we overlay
the input with the ground truth annotations. We observe a lot of structural variability across slices in both directions. Thus,

we use a slice closest to the query image to predict facies.



TABLE I: Evaluation of the AdaSemSeg on the F3, Penobscot, and Parihaka datasets using K = 5 support examples or the
nearest slice in the support set. The use of the K = 5 support examples for evaluating the query image is indicated by X, and
the v' represents the use of the nearest slice as the support example. The best performance of the AdaSemSeg under different

evaluation scenarios is highlighted in bold.

. inline . crossline

Dataset Nearest slice PA MCA FwioU Wiy Nearest slice PA MCA EwloU Wi
F3 X 0.89 0.79 0.81 0.89 X 0.87 0.73 0.80 0.88

) v 0.85 0.73 0.78 0.85 v 0.80 0.58 0.71 0.81
Penobscot X 0.95 0.95 0.91 0.96 X 0.97 0.95 0.93 0.96
v 0.96 0.95 0.94 0.97 v 0.96 0.94 0.92 0.95

Parihaka X 0.78 0.68 0.66 0.79 X 0.79 0.65 0.67 0.80
v 0.86 0.76 0.76 0.86 v 0.84 0.68 0.74 0.85

TABLE II: Comparison of the AdaSemSeg (w/o refinement) with baselines trained only on the target datasets. NA under several
class indices for different datasets indicates the absence of the corresponding class indices in the ground truth annotations. The

performance of the best method is highlighted in bold.

Target Class accuracy
Dataset Method PA 1 5 3 7 3 5 = MCA | FwloU | FwFy
Parihake AdaSemSeg | 0.86 0.98 0.87 0.37 0.80 NA 0.76 NA 0.76 0.76 0.86
‘f‘“l.“ a Baseline—1 | 0.91 0.99 0.92 0.75 0.83 NA 0.87 NA 0.87 | 0.83 | 0.90
mlne Baseline—2 | 0.87 0.85 0.87 0.76 0.88 NA 0.87 NA 0.85 0.77 0.86
Parihake AdaSemSeg | 0.84 0.84 0.91 0.63 0.82 0.02 0.83 NA 0.63 0.74 0.85
an 1d a Baseline—1 | 0.91 0.83 0.91 0.89 0.90 0.82 0.97 NA 0.89 | 0.85 | 0.92
crossimne Baseline—2 | 0.86 0.76 0.88 0.92 0.93 0.65 0.77 NA 0.82 0.78 0.88
b AdaSemSeg | 0.95 0.97 0.99 0.92 0.94 0.99 0.90 0.91 0.95 0.91 0.96
e.“‘;.bsc"‘ Baseline—1 | 0.97 0.99 1.00 0.99 0.98 0.98 1.00 0.92 098 | 095 | 0.98
mine Baseline—2 | 0.97 0.99 0.99 0.99 0.99 1.00 0.99 0.90 098 | 095 | 098
Penoh AdaSemSeg | 0.97 0.96 0.97 0.92 0.88 0.98 0.96 0.98 0.95 0.93 0.96
cnodieot | Baseline—1 | 0,97 0.98 0.98 0.99 0.94 0.96 0.99 0.97 097 | 094 | 0.97
crossine Baseline—2 | 0.98 0.98 0.97 0.98 0.97 0.99 0.99 0.97 098 | 095 | 097
AdaSemSeg | 0.89 0.97 0.94 0.96 0.76 0.66 0.43 NA 0.79 0.81 0.89
F3 inline Baseline—1 | 0.91 0.99 0.94 0.97 0.81 0.73 0.88 NA 0.89 | 0.86 | 091
Baseline—2 | 0.88 0.99 0.94 0.96 0.89 0.56 0.67 NA 0.84 0.79 0.87
AdaSemSeg | 0.87 0.94 0.89 0.88 0.68 0.18 0.80 NA 0.73 0.80 0.88
F3 crossline Baseline—1 0.86 0.98 0.86 0.85 0.61 0.17 0.98 NA 0.74 0.80 0.87
Baseline—2 | 0.89 0.98 0.85 0.87 0.82 0.36 0.88 NA 079 | 0.82 | 0.89

performance benefits relative to whole slices.

B. Experimental Results

For all the results discussed in this section, we assume
that after completing the meta-training on source datasets,
the AdaSemSeg is evaluated on the target dataset without
refinement of the network parameters on samples from the
target dataset. The details of the image encoder (IE) and
decoder (D) used in the AdaSemSeg, Baseline-2, and ProS-
emSeg, along with the mask encoder (ME) used by the
AdaSemSeg are reported in Appendix [A] Refer to Appendix
for the configuration of the optimizer, learning rate scheduler,
augmentations, and other experimental details.

1) The use of the support examples for evaluation: The
AdaSemSeg uses K = {1,5} examples from the training
volume of the target dataset as the support set (S) that
spans the whole volume to predict the facies on the query
images, [9s, which are samples in the test set of the target
dataset. For example, the indices of the support set along
the crossline direction for the F3 facies dataset are S; =
{0,171,343,514,686} and the test data starts at the index
700 (refer to Fig.|10| for details). Instead of K support images,
we can use a single sample in the support set closest to the
query slice as the support sample, referred to herein as the

nearest slice. Under this evaluation scenario, we use the slice
at index 686 € .S; as the support set (S) to predict the mask for
the same test data. We hypothesize that the second approach
to constructing the support set is likely more effective when
significant morphological changes are present along an axis,
as shown in Fig. [T1] for the Parihaka dataset.

We evaluate the AdaSemSeg using both the sampling tech-
niques of the support set (discussed in the previous paragraph)
on all the datasets, separately along the inline and crossline
directions of the test data. From the results reported in Table
we observe that using more support examples is favorable for
the F3 dataset along both directions. We do not observe many
variations in performance between the sampling techniques of
the support set for the Penobscot dataset. Thus, we use all the
K examples in the support set for evaluation on the F3 and
Penobscot datasets. However, the performance on the Parihaka
dataset is more effective using the nearest slice in the support
set along both directions due to the structural variations in the
horizons. Therefore, we use the nearest slice to evaluate the
Parihaka dataset for subsequent analyses.

2) Comparison with baseline methods trained on the target
dataset: We evaluate the performance of the AdaSemSeg
and the baselines, Baseline-1 and Baseline-2, discussed in
section [V-AJ)| for all the datasets. Both baselines, Baseline-1
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Fig. 12: Prediction of facies on the test data of the F3 dataset along the inline and crossline directions by the AdaSemSeg
trained in the 5—shot setup on the Parihaka and Penobscot datasets. The AdaSemSeg uses only 5— support examples (shown

in Fig. [T3) to predict the facies on the unseen dataset.

Supportimages

(a) Support set along the inline direction.
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(b) Support set along the crossline direction.

Fig. 13: The support set of the F3 facies data that spans through the entire volume both along the inline (slice
indices={15,111,207,303,400}) and crossline (slice indices={0,171,343,514,686}) directions. The AdaSemSeg uses the
support examples to predict facies on the test slices of the F3, as shown in Fig. @

and Baseline-2, are trained on samples from the target dataset,
unlike the AdaSemSeg. From the results reported in Table [[I]
we observe that the Baseline-1, i.e., the AdaSemSeg trained
only on the target dataset, produces the best performance under
most of the evaluation scenarios across all the datasets. This
is possibly due to the flexible Gaussian process regression in
the latent space of the Baseline-1. However, for the F3 dataset
along the crossline direction, the Baseline—2 outperforms all
the methods under different evaluation metrics.

Though the parameters of the AdaSemSeg are not tuned
to interpret the images from the target dataset, its perfor-

mance is comparable to the baselines trained on the target
datasets. Moreover, we observe a marginal difference in the
performance of the AdaSemSeg relative to the baselines on
the Penobscot and F3 datasets. This demonstrates the gener-
alization capability of few-shot learning, where the statistics
of the support set (few annotated examples, K = {1,5})
are effectively used to make reasonable predictions on unseen
query images. However, the difference with the baselines is no-
ticeable in the Parihaka dataset, possibly due to the complexity
of the dataset as indicated by the visual interpretation of
geological features relative to the Penobscot and F3 datasets.



TABLE III: Comparison of the AdaSemSeg with ProtoSemSeg and transfer learning under the 1-shot and 5-shot setup. The

best performance is highlighted in bold.

Target Metric 1—shot 5—shot

dataset AdaSemSeg ProtoSemSeg 1Franstter AdaSemSeg ProtoSemSeg Trans.ter
earning learning

PA 0.84 0.51 0.49 0.86 0.56 0.59

Parihaka MCA 0.75 0.45 0.60 0.76 0.53 0.66

inline FwloU 0.74 0.36 0.37 0.76 0.43 0.45

FwFy 0.84 0.52 0.54 0.86 0.58 0.62

PA 0.82 0.60 0.55 0.84 0.61 0.72

Parihaka MCA 0.71 0.42 0.66 0.68 0.58 0.74

crossline FwloU 0.71 0.46 0.41 0.74 0.48 0.59

FwFy 0.83 0.62 0.58 0.85 0.64 0.74

PA 0.92 0.58 0.67 0.95 0.71 0.89

Penobscot MCA 0.92 0.45 0.75 0.95 0.62 0.93

inline FwloU 0.85 0.42 0.53 0.91 0.56 0.81

FwFy 0.93 0.58 0.67 0.96 0.71 0.89

PA 0.91 0.54 0.62 0.97 0.70 0.87

Penobscot MCA 0.90 0.40 0.70 0.95 0.56 0.91

crossline FwloU 0.83 0.38 0.47 0.93 0.56 0.76

FwFy 0.90 0.54 0.62 0.96 0.70 0.86

PA 0.85 0.57 0.83 0.89 0.69 0.85

F3 inline MCA 0.72 0.45 0.80 0.79 0.56 0.79

FwloU 0.77 0.40 0.73 0.81 0.53 0.75

FwFy 0.85 0.55 0.84 0.89 0.68 0.84

PA 0.87 0.64 0.75 0.87 0.77 0.81

F3 crossline MCA 0.68 0.36 0.62 0.73 0.44 0.70

FwloU 0.79 0.50 0.68 0.80 0.65 0.72

FwFy 0.87 0.64 0.79 0.88 0.77 0.82

TABLE IV: Effect of the initialization strategy on the performance of the AdaSemSeg when evaluated on the Parihaka datasets
using k£ = {1,5} support examples. The performance of the best method is presented in bold.

Shots Initialization of the image inline crossline
encoder PA MCA FwloU FWF1 PA MCA FwloU FWF1
Random 0.61 0.58 0.48 0.64 0.56 0.50 0.42 0.59
1 SimCLR 0.84 0.75 0.74 0.84 0.82 0.71 0.71 0.83
Random 0.72 0.66 0.59 0.72 0.55 0.57 0.43 0.60
5 SimCLR 0.86 0.76 0.76 0.86 0.84 0.68 0.74 0.85

The experimental results show that the seismic features
learned from the Penobscot and F3 datasets (source datasets) in
the meta-training stage do not generalize well to the Parihaka
dataset (target dataset). However, the complex Parihaka dataset
in the meta-training stage is helping AdaSemSeg to produce
impressive predictions on unseen samples from the F3 and
Penobscot datasets. Overall, this experiment demonstrates the
strength of AdaSemSeg in adapting to the unseen target
dataset. Fig. [T2]illustrates the effectiveness of the AdaSemSeg
in predicting facies on the unseen F3 dataset (target dataset)
using the features learned from the Parihaka and Penobscot
datasets (source datasets). The AdaSemSeg uses 5 support
examples from the F3 facies dataset along the inline and
crossline as shown in Fig. [T3]directions to predict the segmen-
tation masks shown in Fig. We must remember that the
support examples from the F3 dataset (i.e., the target dataset)
are not used to fine-tune the parameters of the AdaSemSeg.
Predictions on other datasets and the corresponding support
examples used for predicting facies are shown in Appendix [C]

3) Comparison with other competing methods: In this
experiment, we compare the performance of the AdaSemSeg

with ProtoSemSeg and transfer learning under 1—shot and
5—shot scenarios, outlined in Table For the transfer
learning, we first train the Baseline-2 with patches extracted
from the source data, e.g., the F3 and Penobscot volume, and
fine-tuned the trained parameters on a handful of annotated
data from the target data, i.e., the Parihaka volume regarding
this example. We use patches extracted from {1,5} slice(s)
in the target dataset’s support set to fine-tune the Baseline-2
parameters. However, the AdaSemSeg and ProtoSemSeg are
not trained on the target dataset.

The AdaSemSeg outperforms all the competing methods
under multiple evaluation metrics. This experiment demon-
strates the strength of the GP-based few-shot learning in the
AdaSemSeg over the prototype-based few-shot segmentation
method. Moreover, fine-tuning the segmentation network on
the target dataset in transfer learning did not help in learning
generalized representations that would assist in identifying
facies in the target dataset.

4) Ablation study on the initialization of the image encoder:
In another experiment, we study the effect of the image
encoder’s initialization on the AdaSemSeg’s performance. In



this experiment, we initialize the image encoder randomly and
compare its performance with an image encoder trained using
the SimCLR contrastive learning algorithm. We evaluate the
performance of the proposed method on the Parihaka dataset
under 1 and 5-shot scenarios, and the metric scores reported
in Table [IV] explain the importance of the initialization of
the image encoder in the AdaSemSeg with the statistics of
the seismic datasets. This observation is consistent with the
performance of other FSSS methods developed for natural
images, such as the initialization of the image encoder of the
DGPNet [22] with the statistics of the ImageNet dataset [35]].

VI. CONCLUSION

This paper presents an FSSS method using GP regressions
that can adapt to different numbers of facies across datasets.
We train the proposed method on three public datasets (having
different numbers of facies) without making any changes in the
architecture for other datasets. The image encoder is initialized
with the statistics learned from the seismic datasets studied in
this work using a contrastive learning algorithm. This initial-
ization strategy is more effective than random initialization
and encourages the evaluation of the AdaSemSeg on unseen
target datasets without the refinement of the parameters. The
performance of the AdaSemSeg is comparable to the baselines
trained on the target datasets, notably the F3 and Penobscot
datasets. The AdaSemSeg outperforms another FSSS method
and a segmentation network trained with transfer learning
The comprehensive experimental evaluations on three datasets
demonstrate the generalization capability of the AdaSemSeg
to new seismic data with 1 or 5 annotated examples from the
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entire 3D volume and set a new state-of-the-art for the FSSS
of seismic facies.

APPENDIX A
DETAILS OF THE NEURAL NETWORK ARCHITECTURES

Fig. [[4] shows the detail of the convolutional filters, batch
normalization layers, and activation functions used in the
image encoder (IE), mask encoder (ME), and decoder (D)
of the AdaSemSeg. The IE is the ResNet50 [39], and the
decoder is similar to that used in the U-Net [49] with double
convolution on the concatenated data followed by transpose
convolution. The GP regression takes as input the deep-
encoded image features and encoded mask features having
the same spatial resolutions. The GP regression is used in
two latent layers, i.e., at the bottleneck and the layer above
it, whose predictions are fed to the decoder. In addition, the
decoder uses shallow encoded image features to predict the
binary mask for a query image using support examples.

The Baseline-2 and ProtoSemSeg use the IE and D used
in the AdaSemSeg with skip connections at multiple layers of
encoding as shown in Fig. [T5] Essentially, this is a U-Net with
the ResNet as the encoder, and we call this the ResNet-UNet
model. In the case of the ProtoSemSeg [26], the ResNet-UNet
predicts binary mask C' = 2, similar to the AdaSemSeg, and
the total loss is accumulated across all the classes in a dataset.
However, depending on the dataset, the ResNet-UNet is fixed
to C' = 6,7 classes for the Baseline-2.
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Fig. 14: The neural network architecture of the AdaSemSeg used to predict the binary mask for a query image.
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Fig. 15: The neural network architecture used in Baseline-2 and ProtoSemSeg used to predict the multi-class (C') mask.

APPENDIX B
EXPERIMENTS

A. Training the SimCLR

The image encoder is trained using SimCLR [37] on a total
of 35648 patches extracted from the three datasets. Following
augmentations used for producing the positive and negative
samples: rotation ([—20°,20°]), horizontal flip, Gaussian blur
([0.1,2.0]), Gaussian noise ([le — 4,5e — 2]), random crop
with resize, brightness ([0.5, 1.5]), and contrast ([0.0, 2.0]). The
temperature parameter of the SImCLR is set as 7 = 0.07. The
batch size used in this work is 32, and we did not observe
any performance benefits from a bigger batch size. We used
the Adam optimizer with a learning rate of {r = 3e — 04 and
weight decay of le — 04, and the model was trained for 10
epochs. The SimCLR achieves an accuracy of 93.75% and
98.44% under top-1% and top-5% metric, respectively.

B. Training the AdaSemSeg

The GP regression used in the AdaSemSeg uses the config-
uration used in the DGPNet [22]]. The AdaSemSeg is trained
on patches extracted from three datasets. We use 8100, 7,664,
and 8, 206 patches extracted from the Penobscot, F3, and Par-
ihaka datasets to train the AdaSemSeg under different settings
discussed in the paper. We follow the leave-one-out policy
to train the AdaSemSeg in a few-shot setup. For example,
the source dataset used in the meta-training is built using the
Penobscot and F3 datasets, and the trained model is evaluated
on the unseen Parihaka dataset. The data augmentations used
in this experiment are the RandomRotate ([—20°,20°]), Ran-
domHorizontalFlip, GaussianBlur ([0.1, 2.0]), and GaussNoise

([1e — 4,5e — 2]). The image encoder is initialized with the
SimCLR-trained statistics. The AdamW optimizer with the
learning rate, lr = 5e — 05, and weight decay of le — 03
is used. The learning rate is reduced to 0.25 of the existing
rate when the validation loss does not improve for 5 epochs.

C. Training the Baselines and Competing methods

The baseline methods used in this work, Baseline-1 and
Baseline-2, and the competing methods, ProtoSemSeg [26]]
and transfer learning, use the same amount of training data
as the AdaSemSeg, under different evaluation scenarios. For
the different comparisons studied in this work, all the methods
are trained for the same number of epochs with the same
configuration for the optimizer and learning rate scheduler.
For the ProtoSemSeg, we refer to the settings reported in [[26]]
for all the experimental evaluations.

APPENDIX C
ADDITIONAL RESULTS

In this section, we discuss the predictions on the Parihaka,
and Penobscot datasets by the AdaSemSeg. For the F3 and
Penobscot datasets, we use all the support examples (Fig. [I3]
and Fog. Fig. [[9) for the predictions due to the structural
similarity across slices. However, we observe a lot of variation
across slices for the Parihaka dataset along both axes, as
shown in Fig. @ Thus, we resort to the idea of nearest
slice for the evaluation of test slices, as shown in Fig.
[I6] Thus, the support set has a single example along each
direction, slice index={525} along the inline axis and slice
index={657} along the crossline axis. The predictions on the
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Supportimage Ground truth Ground truth

Supportimage
———

(a) Support set along the inline direction.

(b) Support set alogtherossline dircti.
Fig. 16: The support set for the Parihaka dataset is the nearest slice to the test data both along the inline (slice index={525})
and crossline (slice index={657}) directions due to the structural variations along both axes (refer to Fig. . The AdaSemSeg
uses the support example along each axis to predict facies, as shown in Fig. |T_7}

Testimage Ground truth Prediction Testimage Ground truth Prediction

(a) Prediction along inline direction for slice index=564. (b) Prediction along crossline direction for slice index=726.

Fig. 17: Prediction of facies on the test set of the Parihaka dataset along the inline and crossline directions by the
AdaSemSeg trained in the 5—shot setup on the F3 and Penobscot datasets. The AdaSemSeg uses only 1— support examples
(as shown in Fig. @) to predict the facies on the unseen dataset.

Parihaka dataset are shown in Fig. |17 that is produced by the
AdaSemSeg without training its parameters on the Parihaka
dataset and using a single sample along each direction (shown
in Fig. [T6). The AdaSemSeg also does an impressive job in
identifying the facies in the Penobscot dataset as shown in
Fig. [I8] along the inline and crossline directions using the
corresponding support examples in Fig. [T9]
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Testimage Ground truth Prediction Testimage Ground truth Prediction

s e — R — g S —
(a) Prediction along inline direction for slice index=436. (b) Prediction along crossline direction for slice index=448.

Fig. 18: Prediction of facies on the test data of the Penobscot dataset along the inline and crossline axes by the AdaSemSeg
trained in the 5—shot setup on the F3 and Parihaka datasets. The AdaSemSeg uses 5— support examples, similar to the F3
dataset, to predict the facies on the unseen dataset.



20

Support images

(b) The support set of the Penobscot data along the crossline direction.

Fig. 19: The support set of the Penobscot facies data that spans the entire volume along the inline and crossline directions.
The AdaSemSeg uses the support examples to predict facies on the test slices of thePensobscot dataset shown in Fig. @
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