SOl INSTITUTE e
TECHNICAL REPORT

On the Convexification of Unstructured Grids From A
Scientific Visualization Perspective

Joao L.D. Comba, Joseph S.B. Mitchell, Claudio T. Silva

UUSCI-2004-004

Scientific Computing and Imaging Institute
University of Utah
Salt Lake City, UT 84112 USA

July 6, 2004

Abstract:

Unstructured grids are extensively used in modern computational solvers and, thus, play an
important role in scientific visualization. They come in many different types. One of the most
general types are non-convex meshes, which may contain voids and cavities. The lack of convexity
presents a problem for several algorithms, often causing performance issues.

One way around the complexity of non-convex methods is to convert them into convex ones for
visualization purposes. This idea was originally proposed by Peter Williams in his seminal paper
on visibility ordering. He proposed to fill the volume between the convex hull of the original mesh,
and its boundary with ”imaginary” cells. In his paper, he sketches two algorithms for potentially
performing this operation, but stops short of implementing them.

This paper discusses the convexification problem and surveys the relevant literature. We hope it is
useful for researchers interested in the visualization of unstructured grids.

THEU

UNIVERSITY
OFUTAH

On the Convexification of Unstructured Grids From
A Scientific Visualization Perspective

Jaao L.D. Comba Joseph S.B. Mitchell Claudio T. Silva
UFRGS Stony Brook University University of Utah

Abstract

Unstructured grids are extensively used in modern computational solvers and, thus, play
an important role in scientific visualization. They come in many different types. One of the
most general types are non-convex meshes, which may contain voids and cavities. The lack of
convexity presents a problem for several algorithms, often causing performance issues.

One way around the complexity of non-convex methods is to convert them into convex
ones for visualization purposes. This idea was originally proposed by Peter Williams in his
seminal paper on visibility ordering. He proposed to fill the volume between the convex hull
of the original mesh, and its boundary with “imaginary” cells. In his paper, he sketches two
algorithms for potentially performing this operation, but stops short of implementing them.

This paper discusses the convexification problem and surveys the relevant literature. We
hope it is useful for researchers interested in the visualization of unstructured grids.

1 Introduction

The most common input data type in Volume Visualization isgular (Cartesian) gricbf voxels

Given a general scalar field iR*, one can use a regular grid of voxels to represent the field by
regularly sampling the function at grid poirits:, \j, Ak), for integers, j, k, and some scale factor

A € R, thereby creating a regular grid of voxels. However, a serious drawback of this approach
arises when the scalar fielddssparate having nonuniform resolution with some large regions of
space having very little field variation, and other very small regions of space having very high field
variation. In such cases, which often arise in computational fluid dynamics and partial differential
eqguation solvers, the use of a regular grid is infeasible since the voxel size must be small enough to
model the smallest “features” in the field. Instemakgular grids (or meshef having cells that are

not necessarily uniform cubes, have been proposed as an effective means of representing disparate
field data.

Irregular-grid data comes in several different formats [21]. One very common format has been
curvilinear grids which arestructuredgrids in computational space that have been “warped” in
physical space, while preserving the same topological structure (connectivity) of a regular grid.
However, with the introduction of new methods for generating higher quality adaptive meshes, it is
becoming increasingly common to consider more genersiructurednon-curvilinear) irregular

1

grids, in which there is no implicit connectivity information. Furthermore, in some applications
disconnectedgrids arise.

Preliminaries

We begin with some basic definitions. golyhedronis a closed subset @t whose boundary
consists of a finite collection of convex polygor&sfaces or facetg whose union is a connected
2-manifold. Theedgeg1-face$ andvertices(0-face$ of a polyhedron are simply the edges and
vertices of the polygonal facets. A bounded convex polyhedron is caledytope A polytope
having exactly four vertices (and four triangular facets) is callstralex(tetrahedron. A finite
setS of polyhedra forms anesh(or anunstructured gridl if the intersection of any two polyhedra
from S is either empty, a single common vertex, a single common edge, or a single common facet
of the two polyhedra; such a sétis said to form acell complex The polyhedra of a mesh are
referred to as theells (or 3-face$. We say that celC' is adjacentto cell C’ if C andC’ share

a common facet. The adjacency relation is a binary relation on elemertistudt defines an
adjacency graph

A facet that is incident on only one cell is calledbaundary facet A boundary cellis any
cell having a boundary facet. The union of all boundary facets ibtmdaryof the mesh. If the
boundary of a mesh is also the boundary of the convex hull®fthensS is called aconvexmesh;
otherwise, it is called aon-convexnesh. If the cells are all simplicies, then we say that the mesh
is simplicial.

The input to our problem will be a given mesh We letc denote the number of connected
components of. If ¢ = 1, the mesh i€onnectedotherwise, the mesh @isconnectedWe letn
denote the total number of edges of all polyhedral cells in the mesh. Then, théréareertices,
edges, facets, and cells.

We use a coordinate system in which the viewing direction is irthdirection, and the image
plane is thgx, y) plane. We lep, denote the ray from the viewpointthrough the point.

We say that cell§’ andC” areimmediate neighborsith respect to viewpoint if there exists a
ray p from v that intersect§’ andC’, and no other cell”” € S has a nonempty intersectici N p
that appears in between the segmentsp andC’ N p alongp. Note that ifC' andC” are adjacent,
then they are necessarily immediate neighbors with respect to very viewponin the plane of
the shared facet. Further, in a convex mesh,ahily pairs of cells that are immediate neighbors
are those that are adjacent.

A visibility ordering (or depth ordering, <,, of a meshS from a given viewpointy € %3
is a total (linear) order oty such that if cellC' € S visually obstructs celC’ € S, partially or
completely, thert”’ precede€’ in the orderingC’ <, C'. Avisibility ordering is a linear extension
of the binarybehindrelation, “<”, in which cell C' is behindcell C’ (written C' < ") if and only
if C'andC” are immediate neighbors add at least partially obstructs; i.e., if and only if there
exists a ray from the viewpoint such thap N C # 0, pN C" # B, p N C’ appears in between
andpnNC alongp, and no other cell” intersect at a point betweepnC andpNC’. A visibility
ordering can be obtained in linear time (by topological sorting) from the behind relafion,),
provided that the directed graph on the set of notlekefined by(S, <) is acyclic. If the behind

2

relation induces a directed cycle, then no visibility ordering exists. Certain types of meshes, (e.g.,
Delaunay triangulations [6]) are known to have a visibility ordering from any viewpotthey
do not have cycles, and thus can be calieyiclic meshes

Exploiting Mesh Properties

Meshes that conform to properties such as “convexity” and “acyclicity” are quite special, since they
simplify the algorithms that work with them. Here are three instances of visualization algorithms
that exploit different properties of meshes:

e A classic technique for hardware-based rendering of unstructured meshes couples the Shirley-
Tuchman technique for rendering a single tetrahedron [19] with Williams’ MPVO cell-
sorting algorithm [24]. For the case of acyclic convex meshes, this is a powerful combi-
nation that leads to a linear-time algorithm that is provably correctone is guaranteed to
get the right picturé.When the mesh is not convex or contains cycles, MPVO requires mod-
ifications that complicate the algorithm and its implementation and lead to slower rendering
times [4, 10, 20].

e Arecent hardware-based ray casting technique for unstructured grids has been proposed by
Weiler et al [23]. This is essentially a hardware-based implementation of the algorithm of
Garrity [8]. Strictly speaking, this technique only works for convex meshes. Due to the con-
straints of the hardware, instead of modifying the rendering algorithm, the authors employ a
process of “convexification”, originally proposed by Williams [24], to handle general cells.

e The complexities of the simplification of unstructured grids has led some researchers to
employ a convexification approach. As shown in Kraus and Ertl [11], this greatly simplifies
the simplification algorithm, since it becomes much simpler to handle the simplification of
the boundary of the mesh. Otherwise, expensive global operations are necessary to guarantee
that the simplified mesh does not suffer from self intersections.

The “convexification” concept as proposed by Williams [24] is the process of turning a non-
convex mesh into a convex one. The basic idea is that this process can be performed by adding a
set of non-overlapping cells that fill up any holes or non-convex regions up to the bounding box
of the original mesh. Also, Williams proposes that all the additional cells be marked “imaginary”.
This is exactly the concept that is used in the works of Weiler et al [23] and Kraus and Ertl [11].

In [11, 23], the non-convex meshes waenanuallymodified to be convex by the careful addition
of cells. This approach is not scalable to larger and more complex data.

In this paper, we discuss the general problem of convexification. We start by reviewing Williams’
work, and discuss a number of issues. Then, we talk about two techniques for achieving convex-
ification: techniques based on constrained and conforming Delaunay tetrahedralization, and tech-
niques based on the use of a binary space partition (BSP). Finally, we conclude the paper with
some observations and open questions. One of the goals of this paper is to help researchers be able
to choose among tools and options for convexification solutions.

1The rendering technique of Shirley and Tuchman [19] requires certain modifications as proposed in Stein et al [22].

3

2 Williams’ Convexification Framework

In his seminal paper [24] on techniques for computing visibility orderings for meshes, Williams
discusses the problem of handling non-convex meshes (Section 9). (Also related is Section 8,
which contains a discussion of cycles and the use of Delaunay triangulations.) After explaining
some challenges of using his visibility sorting algorithm on non-convex meshes, Williams says:

“Therefore, an important area of research is to find ways to convert non-convex meshes
into convex meshes, so that the regular MPVO algorithm can be used.”

Williams proposes two solution approaches to the problem; each relies on “treating the voids
and cavities as ‘imaginary’ cells in the mesh.” Basically, he proposes that such non-convex re-
gions could be eithetriangulated or decomposednto convex pieces, and their parts marked as
imaginary cells for the purpose of rendering. Implementing this “simple idea” is actually not easy.
In fact, after discussing this general approach, Williams talks about some of the challenges, and
finishes the section with the following remark:

“The implementation of the preprocessing methods, described in this section, for con-
verting a non-convex mesh into a convex mesh could take a very significant amount of
time; they are by no means trivial. The implementation of a 3D conformed Delaunay
triangulation is still a research question at this time.”

In fact, Williams does not provide an implementation of any of the two proposed convexifica-
tion algorithms. Instead, he developed a variant of MPVO that works on non-convex meshes at the
expense of not being guaranteed to generate correct visibility orders.

The first convexification technique that Williams proposes is based on triangulating the data
using a conforming Delaunay triangulation. The idea here is to keep adding more points to the
dataset until the original triangulation becomes a Delaunay triangulation. This is discussed in
more details in the next section.

The second technique Williams sketches is based on the idea of applying a decomposition al-
gorithm to each of the non-convex polyhedra that constitute the B¢15) \ S, which is the set dif-
ference between the convex hull of the mesh and the mesh itself. In geriérés) \ S is a union
of highly non-convex polyhedra of complex topology. Each connected compon€t o) \ S is
a non-convex polyhedron that can be decomposed into convex polyhedra (e.g., tetrahedra) using,
for example, the algorithm of Chazelle and Palios [2], which adds certain new vertices (Steiner
points), whose number depends on the number of “reflex” edges of the polyhedron. In general,
non-convex polyhedra require the addition of Steiner points in order to decompose them; in fact,
it is NP-complete to decide if a polyhedron can be tetrahedralized without the addition of Steiner
points [13].

2.1 Issues

Achieving Peter Williams’s vision of a simple convexification algorithm is much harder than it
appears at first. The problem is peculiar since we start with an existing 3D mesh (likely to be a

4

tetrahedralization) that contains not only vertices, edges, and triangles, but also volumetric cells,
which need to be respected. Furthermore, the mesh is not guaranteed to respect global geometric
criteria (e.g., of being Delaunay). Most techniques need to modify the original mesh in some way.
The goal is to “disturb” it as little as possible, preserving most of its original properties.

In particular, several issues need to be considered:

Preserving acyclicity. Even if the original mesh has no cycles, the convexification process can
potentially cause the resulting convex mesh to contain cycles. Certain techniques, such as con-
structing a conforming Delaunay tetrahedralization, are guaranteed to generate a cycle-free mesh.
Ideally, the convexification procedure will not create new cycles in the mesh.

Output size. For the convexification technique to be useful the number of cells added by the
algorithm needs to be kept as small as possible. Ideally, there is a provable bound on the number
of cells as well as experimental evidence that for typical input meshes, the size of the output mesh
is not much larger than the input mesle(the set of additional cells is small).

Computational and memory complexity. Other important factors are the processing time and
the amount of memory used in the algorithm. In order to be practical on the meshes that arise
in computational experiments (having on the order of several thousand to a few million cells),
convexification algorithms must run in near-linear time, in practice.

Boundary and interior preservation. Ideally, the convexification procedure adds cells only “out-
side” of the original mesh. Furthermore, the newly created cells should exactly match the original
boundary of the mesh. In general, this is not feasible without subdividing or modifying the original
cells in some way (e.g., to break cycles, or to add extra geometry in order to respect the Delaunay
empty-circumsphere condition). Some techniques will only need to modify the cells that are at
or near the original boundary while others might need to perform more global modifications that
go all the way “inside” the original mesh. One needs to be careful when making such modifica-
tions because of issues related to interpolating the original data values in the mesh. Otherwise, the
visualization algorithm may generate incorrect pictures leading to wrong comprehension.

Robustness and degeneracy handlindt is very important for the convexification algorithms to
handle real data. Large scientific datasets often use floating-point precision for specifying vertices,
and are likely to have a number of degeneracies. For instance, these datasets are likely to have
many vertices (sample points) that are coplanar, or that lie on a common cylinder or sphere, etc.,
since the underlying physical model may have such features.

3 Delaunay-Based Techniques

Delaunay triangulations and Delaunay tetrahedralizations (DT) are very well known and studied
geometric entities (see, e.g., [6, Chapter 5]). A basic property that characterizes this geometric
structure is the fact that a tetrahedron belongs to the DT of a point set if the circumsphere passing
through the four vertices is empty, meaning no other point lies inside the circumsphere. Under
some non-degeneracy conditions (no 5 points co-spherical), this property completely characterizes
DTs and the DT is unique.

(a) Input geometry (b) DT (c) Conforming DT (d) Constrained DT

Figure 1:Different triangulation techniques. (a) The input geometry; (b) the Delaunay triangu-
lation; (c) a conforming Delaunay triangulation with input geometry marked in red — note how the
input faces have been broken into multiple pieces; and, (d) the constrained Delaunay triangulation.
These images are from Shewchuk [15].

Part of the appeal of Delaunay tetrahedralizations (see Figure 1(b)) is the relative ease of com-
puting the tetrahedralizations. As a well-studied structure, often used in mesh generation, standard
codes are readily available that compute the DT. The practical need of forcing certain faces to
be part of the tetrahedralizations led to the development of two main approacha®rming
Delaunay tetrahedralizations andnstrainedDelaunay tetrahedralizations. Here, we only give a
high-level discussion on the intuition behind these ideas; for details see, e.g., [17].

Given a set of face§f;} (Figure 1(a)) that need to be included in a DT, the idea bebord
formingDelaunay tetrahedralizations (Figure 1(c)) is to add points to the original input set in order
that the DT of the new point set (consisting of the original popitss the newly added points)
is such that each facg can be expressed as the union of a collection of faces of the DT. The
newly added points are often call&feinerpoints. A challenge in computing a conforming DT
is minimizing the number of Steiner points and avoiding the generation of very small tetrahedra.
While techniques for computing the traditional DT of point sites are well known, and reliable code
exists, conforming DT algorithms are still in active development [3,12]. The particular technique
for adding Steiner points affects the termination of the algorithm, and also the number and quality
of the added geometry.

For convexification purposes, the conforming DT seems to be a good solution upon first exami-
nation, and was one of the original techniques Williams proposed for the problem. One of the main
benefits is that since a conforming DT is actually a DT of a larger point set, it must be acyclic. On
closer inspection, we can see that conforming DTs have a number of potential weaknesses. First,
if the original mesh was not a DT, we may need to completely re-triangulate it. This means that
internal structures of the mesh, which may have been carefully designed by the modeler, are poten-
tially lost. In addition, the available experimental evidence [3] suggests that a considerable number
of Steiner points may be necessary. Part of the problem is that when 4, fescpierced by the
DT, adding docal point p to resolve this issue can potentially result in modifications to the mesh
deep within the triangulation, not just in the neighborhood of the poifnother potential issue

with using a conforming DT is the lack of available robust codes for the computation. This is an
issue that we expect soon to be resolved, with advances under way in the computational geometry
community.

The constrained DT (Figure 1(d)) is a different way to resolve the problem of respecting a given
set of faces. While in a conforming DT we only had to make sure that each giverf;faaa be
represented as the union of a set of faces in the conforming DT, for a constrained DT we insist that
each facef; appears exactly as a face in the tetrahedralization. In order to do this, weataxst
the empty-circumsphere criteridghat characterizes a DT; thus, a constrained$iot(in general)

a Delaunay tetrahedralization. The definition of the constrained DT requires a modification to the
empty-circumsphere criteria in which we use the input fagg$ as blockers of visibility and
empty-circumsphere tests are computing taking that into account. That is, when performing the
tests, we need tdiscard certain geometry when the sphere intersects one (or more) of the input
faces. We refer the reader to [17] and [6, Chapter 2] for a detailed discussion. In regions of the
mesh “away from” the input faces, a constrained DT looks very much like a standard DT. In fact,
they share many of the same properties [16].

Because we are not allowed to add Steiner points when building a constrained DT, they have
certain (theoretical) limitations. A particularly intriguing possibility is that it may not be possible
to create one because some polyhedra cannot be tetrahedralized without adding Steiner points. (In
fact, it is NP-complete to decide if a polyhedron can be tetrahedralized without adding Steiner
points [13].) Further, constrained DTs suffer from some of the same issues as conforming DTs
in that they may require re-triangulation of large portions of the original mesh. While it may be
possible to maintain the Delaunay property on the “internal” portions of the mesh, away from the
boundary faces, it is unclear what effect the non-Delaunay portions of the mesh near the boundary
have on global properties, such as acyclicity, of the mesh. At this point, some practical issues
related to constrained DTs are an area of active investigation [16, 18]; to our knowledge, there is
no reliable code available for computing them.

Whether using a conforming or a constrained Delaunay tetrahedralization, the robust computa-
tion of the structure for very large point sets is not trivial. Even the best codes take a long time and
use substantial amounts of memory. Some of the interesting non-convex meshes we would like to
handle have on the order of ten million tetrahedra or more. In the case that the whole dataset needs
to be re-triangulated, it is unclear if these techniques would be practical.

4 Direct Convexification Approaches Using BSP-trees

The Binary Space Partitioning tree (BSP-tree) is a geometric structure that has many interesting
properties that can be explored in the convexification problem. For instance, the BSP-tree induces
a hierarchical partition of the underlying space into convex cells that allows visibility ordering to
be extracted by a priority-search driven by the viewpoint position (in a near-to-far or far-to-near
fashion) [7]. In Figure 2 we show how the BSP is used to capture the structure of the empty space.

(@) (b) (©) (d)

Figure 2:Using BSP-trees to fill space(a) The input non-convex mesh; (b) the BSP decomposi-
tion using the boundary facets of the input mesh; (c) the corresponding BSP tree; and, (d) the input
mesh augmented with BSP cells.

4.1 Implicit BSP-Tree regions

The visibility-ordering produced by the BSP-tree was explored in [4] to produce missing visibility
relations in projective volume rendering. The approach relies on using the BSP-trees to represent
the empty space surrounding a non-convex mesh. Since the empty(Sfd¢g \ S and meshs

have a common intersection at the boundary facets of the MesBSP-tree was constructed using

cuts along the supporting planes of the boundary facets. The construction algorithm starts with the
collection of boundary facets of the mesh, and uses an appropriate heuristic to choose a cut at each
step to partition the space. The partition process associates each facet with the corresponding half-
space (two half-spaces if a facet is split), storing the geometric representations of the boundary
facets along the partitioning plane at the nodes of the BSP. The process is recursively repeated at
each subtree until a stopping criterion is satisfied.

The resulting BSP-tree partitions the space into convex cells that are either internal or external
to the mesh. If a consistent orientation for the boundary facet normals is used, these sets can be
distinguished by just checking to which side a given leaf node is with respect to its parent (see
Figure 2).

In this approach no effort was made to enumerate explicitly the convex regions corresponding
to the empty space in the BSP-tree. However, their implicit representation was used to help provide
the missing visibility ordering information in the empty space surrounding the mesh.

Central to this approach is the extraction of visibility relations between interior regions (mesh
cells) and exterior regions (the convex cells of the empty space induced by the BSP-tree). The
boundary facets of the meshare the common boundary between these two types of regions. The

(b)

Figure 3: Partially projected cells. Two cells, (a), and the corresponding BSP-tree, (b). The
moment that the traversal reaches nedeell C'1 cannot be projected, but has to wait until a
partially visited cellC2 has been projected.

approach used in [4] explores one way to obtain the visibility relations, using the visibility ordering
produced by the BSP-tree to drive this process. This is done by using a visibility ordering traversal
in the BSP-tree with respect to a given viewpoint (in a far-to-near fashion). When an internal
node is visited we reach a boundary facet of the mesh. Only facets facing away from the viewing
direction impose visibility ordering restrictions, and, for these, two situations can arise, as follows.

The first case happens when the facet stored at the node was not partitioned by the BSP-tree,
and therefore is entirely contained in the hyperplane (visible). Visiting an entirely visible boundary
facet allows the visibility ordering restriction imposed by this facet into the incident mesh cell to
be lifted, which may lead to the inclusion of the cell in the visibility ordering if all restrictions to
this cell were lifted.

The second case happens when the boundary facet is partially stored at the BSP node, which
indicates that is was partitioned by another cut in the BSP. In this case it is not possible to lift
the visibility ordering restriction, since other fragments were not yet reached by the BSP traversal
(and therefore not entirely visible). At the moment that the last facet fragment is visited, a cell
may be able to be included in the visibility ordering. The solution proposed in [4] uses a counter
to accumulate the number of facet fragments created, decrementing this counter for each fragment
visited, and lifting the conditions imposed by the fragment when the counter gets to zero.

However, the partition of boundary facets by cuts in the BSP-tree has additional side effects
that need to be taken into consideration. In such cases, the BSP traversal is not enough to produce a
valid visibility ordering for mesh cells. This happens because the BSP establishes a partial ordering
between the convex cells it defines, and a mesh cell that is partitioned by a BSP cut lies in different
convex cells of the BSP. In Figure 3 we have an example in which ateltannot enter the
visibility ordering because a partially visited cell has facet fragments that were not yet visited. If
the ordering to be produced is between the ¢élland the two sub-cells af'2, then the BSP
ordering suffices.

Cells that have partially visited facets need special treatment; the collection of all such cells at
any given time is maintained in a partially projected cells list (PPC). It can be shown that a valid
visibility ordering can be produced by the partial orderings provided by mesh adjacengigs)
the ordering produced by the BSP-tree traversal{r), and an additional intersection involving
cells in the PPC list€ ppc). The PPC test increases the complexity of the algorithm; however, it
is guaranteed not to generate cycles.

4.2 Explicit BSP-trees regions

The implicit use of the convex regions induced by the BSP-tree in the previous approach required a
BSP-traversal to drive the visibility ordering procedure. Another approach is to compute explicitly
such convex regiongiller cells) and combine them with the mesh to form a convex mesh.

The construction of the BSP-tree uses, as before, partitioning cuts defined by the planes through
the boundary facets, except that a different heuristic is used to select the cuts. The algorithm that
computes the filler cells needs to perform the following tasks:

e Computing the geometry of the filler cells:

Extracting convex regions associated with nodes of the BSP is straightforward; it can be
done in a top-down manner, starting at the root of the tree with a bounding box that is
guaranteed to contain the entire model. In order to obtain the convex regions of the left and
right children, the convex region associated with the node is partitioned by the hyperplane.
The resulting two convex regions are associated with the children nodes, and the process
continues recursively. Figure 4 illustrates this process.

Figure 4: Geometric computation of filler cells lllustration of the recursive procedure that ap-
plies a partitioning operation to the cell of a node.

e Computing topological adjacencies between mesh and filler cells:

The extraction of topological information in the BSP is not as straightforward. One difficulty
that arises is the fact that a cell may be adjacent, by a single facet, to more than one cell.
(The cells do not form a cell complex.) The fact that the BSP has arbitrary direction cuts

10

makes the task even harder, requiring an approach that handles numerical degeneracies. The
topological adjacencies that need to be computed include filler-to-filler adjacencies, mesh-
to-filler and filler-to-mesh adjacencies (see Figure 5).

(@) (b)

Figure 5: Topological adjacencies Filler-to-filler adjacency relations (a) and mesh-to-filler (and
vice-versa) relations (b) that need to be computed.

This convexification approach needs to satisfy the requirements posed before; we briefly dis-
cuss them in the context of this approach:

Preserving acyclicity: Although the internal adjacencies of the mesh may not lead to cycles in
the visibility ordering, the addition of filler cells may lead to an augmented model (mesh plus
filler cells) that contains cycles. Since the mesh is assumed acyclic, cycles do not involve only
mesh cells, and from the visibility ordering property of BSP-trees, cycles do not involve only filler
cells. Cycles will not involve runs of several filler to mesh cells (filler-mesh), or vice-versa (mesh-
filler), since each one of the runs is acyclic. However, cycles can happen in filler-mesh-filler or
mesh-filler-mesh cells.

It is still an open problem how to design techniques to avoid or to minimize the appearance
of cycles. (See [1, 5] for theoretical results on cutting lines to avoid cycles.) Also, it would be
interesting to establish bounds on the number of cells in a cycle.

Output size: The number of cells generated is directly related to the size of the BSP-tree. Although
the BSP can have worst-ca®¢n?) in)3, in practice the use of heuristics reduces the typical size

of a BSP to linear. Preliminary tests show that one can expect an increase of 5-10% in the number
of cells produced.

Computational and memory complexity: The computational cost of the algorithm is propor-
tional to the time required to build a BSP for the boundary faces. The extraction of geometric and
topological information of the BSP is proportional to the time to perform a complete traversal of
the BSP.

Boundary and interior preservation: The BSP approach naturally preserves the boundary and
interior of the mesh, since it only constructs cells that are outSid€his requires that the mesh

has the interior well defined.e., each connected component of the boundary is a 2-manifold. A
consistent orientation of boundary facet normals allows an easy classification of which cells of the
BSP are interior or exterior to the mesh.

11

() (d)

Figure 6:Explicit BSP regions Two sample meshes ((a) and (c)) and the correspond BSP-regions
that fill space ((b) and (d)).

Robustness and degeneracy handlingThe fundamental operations used in the construction of
BSP-trees are point-hyperplane classification and the partition of a facet by a hyperplane. The fact
that geometric computations rely on only these two operations allows better control of issues of
numerical precision and floating point errors. Of course, unless one uses exact geometric computa-
tion [14,25], numerical errors are inevitable; however, several geometric and topological predicates
can be checked to verify if a given solution is numerically consistent. The literature on solid mod-
eling has important suggestions on how to do this [9], as in the problem of converting CSG solids
to a boundary representation. The possibility of having nearly coplanar boundary facets needs to
be treated carefully, since it may require the partition of a facet by a nearly coplanar hyperplane.

The filler cells obtained after a convexification algorithm need to be added to the non-convex
mesh, with updates to the topological relationships. In particular, three new types of topological
relationships need to be added: filler to filler adjacencies, filler to mesh adjacencies and mesh to
filler adjacencies. This problem is complicated by the fact that adjacencies do not occur at a single
facet {.e., a cell can be adjacent to more than one cell, as the cells do not necessarily form a cell
complex). Again, geometric and topological predicates that guarantee the validity of topological
relationships need to be enforcedd, if a cell ¢; is adjacent ta; by way of facetf,,, then there
must exist a facef,, such that; is adjacent te; by way of facetf,).

12

5 Final Remarks

This work presents a brief summary of the current status of strategies to compute a convexification
of space with respect to a non-convex mesh. We present a formal definition of the problem and
summarize the requirements that one solution needs to fulfill. We discuss two possible solutions.
The first is based in Delaunay triangulations; we point out some of the difficulties faced by this
approach. We discuss the use of BSP-trees as a potentially better and more practical solution to
the problem. However, many problems are still open. For example, what is a practical method for
convexification that avoids the generation of cycles in the visibility relationship?

Acknowledgements

Joseph S.B. Mitchell is supported by NASA Ames Research (NAG2-1325), the National Sci-
ence Foundation (CCR-0098172), Metron Aviation, Honda Fundamental Research Lab, and grant
No. 2000160 from the U.S.-Israel Binational Science Foundatioudid T. Silva is partially
supported by the DOE under the VIEWS program and the MICS office, and the National Sci-
ence Foundation under grants CCF-0401498 and EIA-0323604. The worea@tJ®. Comba is
supported by a CNPg grant 540414/01-8 and FAPERGS grant 01/0547.3.

References

[1] B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel, M. Sharir, and J. Snoeyink.
Counting and cutting cycles of lines and rods in sp&ut. Geom. Theory Appl:305—
323, 1992.

[2] B. Chazelle and L. Palios. Triangulating a non-convex polytdpescrete Comput. Geom.
5:505-526, 1990.

[3] D. Cohen-Steiner, E. Colin de Vegtie, and M. Yvinec. Conforming Delaunay triangulations
in 3d. InProc. 18th Annu. ACM Sympos. Comput. Ge@002.

[4] J. L. Comba, J. T. Klosowski, N. Max, J. S. Mitchell, C. T. Silva, and P. Williams. Fast
polyhedral cell sorting for interactive rendering of unstructured grid€€dmputer Graphcs
Forum volume 18, pages 367-376, 1999.

[5] M. de Berg, M. Overmars, and O. Schwarzkopf. Computing and verifying depth orders.
sicomp 23:437-446, 1994.

[6] H. EdelsbrunnerGeometry and Topology for Mesh Generati@ambridge, 2001.

[7] H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation by a priori tree struc-
tures.Comput. Graph.14(3):124-133, 1980. Proc. SIGGRAPH '80.

13

[8] M. P. Garrity. Raytracing irregular volume dat@omputer Graphics (San Diego Workshop
on Volume Visualizationp4(5):35—-40, Nov. 1990.

[9] C. Hoffmann.Geometric and Solid ModelindMorgan-Kaufmann, San Mateo, CA, 1989.

[10] M. Kraus and T. Ertl. Cell-projection of cyclic meshes. IEEE Visualization 2001pages
215-222, Oct. 2001.

[11] M. Kraus and T. Ertl. Simplification of Nonconvex Tetrahedral Meshes. In Farin, G. and
Hagen, H. and Hamann, B., editétierarchical and Geometrical Methods in Scientific Visu-
alization, pages 185-196. Springer-Verlag, 2002.

[12] M. Murphy, D. M. Mount, and C. W. Gable. A point-placement strategy for conforming
Delaunay tetrahedralization. Proc. 11th ACM-SIAM Sympos. Discrete Algorithmpages
67-74, 2000.

[13] J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional non-convex
polyhedra.Discrete Comput. Geom/:227-253, 1992.

[14] S. Schirra. Robustness and precision issues in geometric computation. In J.-R. Sack and J. Ur-
rutia, editors,Handbook of Computational Geometghapter 14, pages 597—632. Elsevier
Science Publishers B.V. North-Holland, Amsterdam, 2000.

[15] J. R. Shewchuk. Constrained delaunay tetrahedralizations, bistellar flips, and provably good
boundary recovery. Talk slides; available from author’s web page.

[16] J. R. Shewchuk. A condition guaranteeing the existence of higher-dimensional constrained
Delaunay triangulations. IRroc. 14th Annu. ACM Sympos. Comput. Gegrages 76—85,
1998.

[17] J. R. Shewchuk. Lecture notes on delaunay mesh generation. Technical report, Department
of Electrical Engineering and Computer Science, University of California at Berkeley, 1999.

[18] J. R. Shewchuk. Sweep algorithms for constructing higher-dimensional constrained Delaunay
triangulations. IrProc. 16th Annu. ACM Sympos. Comput. Geqrages 350-359, 2000.

[19] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume rendering. In
San Diego Workshop on Volume Visualizatisolume 24 ofComput. Gr pages 63-70, Dec.
1990.

[20] C. T. Silva, J. S. Mitchell, and P. L. Williams. An exact interactive time visibility ordering
algorithm for polyhedral cell complexes. 998 Volume Visualization Symposiupages
87-94, Oct. 1998.

[21] D. Speray and S. Kennon. Volume probes: Interactive data exploration on arbitrary grids.
Computer Graphics (San Diego Workshop on Volume Visualizat&#{h):5-12, November
1990.

14

[22] C. Stein, B. Becker, and N. Max. Sorting and hardware assisted rendering for volume vi-
sualization. 1994 Symposium on Volume Visualizatipages 83—90, October 1994. ISBN
0-89791-741-3.

[23] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Based Ray Casting for Tetrahedral
Meshes. IrProceedings of IEEE Visualization 20Q3ages 333-340, 2003.

[24] P. L. Williams. Visibility ordering meshed polyhedraACM Transaction on Graphic¢s
11(2):103-125, Apr. 1992.

[25] C. Yap. Towards exact geometric computaticddomput. Geom. Theory Appl7(1):3-23,
1997.

15

