
1

Hardware-Assisted Visibility Sorting for Unstructured

Volume Rendering

Steven P. Callahan, Milan Ikits, Joao L. D. Comba, Claudio T. Silva

UUSCI-2004-003

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

June 14, 2004

Abstract:

Harvesting the power of modern graphics hardware to solve the complex problem of real-time ren-
dering of large unstructured meshes is a major research goal in the volume visualization community.
While for regular grids, texture-based techniques are well suited for current GPUs, the steps neces-
sary for rendering unstructured meshes are not so easily mapped to current hardware. One major
hurdle is that computing the volume rendering equation requires strict ordering of the fragments.
While it is quite simple to generate the exact order for regular grids, the same computation is much
more complex for unstructured meshes. Typically, relatively complex and costly object-space sort-
ing techniques are needed to ensure that fragments are generated in sorted order for compositing
by the GPU.
We propose a novel technique that simplifies the CPU-based processing and shifts much of the
sorting burden to the GPU, where it can be performed more efficiently. Our hardware-assisted
visibility sorting algorithm is a hybrid technique that operates in both objectspace and image-
space. In object-space, the algorithm performs a partial sorting of the 3D primitives in preparation
for rasterization. The goal of the partial sorting is to create a list of primitives that generate
fragments in nearly sorted order. In image-space, the fragment stream is incrementally sorted
using a fixed-depth sorting network. In our algorithm, the object-space work is performed by the
CPU and the fragment-level sorting is done completely on the GPU. A prototype implementation
of the algorithm demonstrates that the fragment-level sorting achieves rendering rates of between
one and six million tetrahedral cells per second on an ATI Radeon 9800.

Hardware-Assisted Visibility Sorting for Unstructured Volume Rendering

Steven P. Callahan 1 Milan Ikits 1 João L. D. Comba 2 Cláudio T. Silva 1

1 Scientific Computing and Imaging Institute, University of Utah
2 Federal University of Rio Grande do Sul, Brazil

Figure 1: Results of the hardware-assisted visibility sorting algorithm (HAVS) for the fighter, blunt fin, and heart datasets. When running on a
Pentium 4 with an ATI Radeon 9800 in a 5122 viewport, the algorithm achieves rendering rates between one and six million cells per second
for large datasets. HAVS can handle arbitrary non-convex meshes with very low memory overhead, and requires only minimal and completely
automatic preprocessing of the data. Maximum data size is bounded by the available main memory of the system. The 3D pre-integrated
transfer function lookup table needed for accurate rendering is built entirely on the GPU, allowing users to interactively design transfer functions
with the user interface.

ABSTRACT

Harvesting the power of modern graphics hardware to solve the
complex problem of real-time rendering of large unstructured
meshes is a major research goal in the volume visualization com-
munity. While for regular grids, texture-based techniques are well
suited for current GPUs, the steps necessary for rendering unstruc-
tured meshes are not so easily mapped to current hardware.

One major hurdle is that computing the volume rendering equa-
tion requires strict ordering of the fragments. While it is quite sim-
ple to generate the exact order for regular grids, the same compu-
tation is much more complex for unstructured meshes. Typically,
relatively complex and costly object-space sorting techniques are
needed to ensure that fragments are generated in sorted order for
compositing by the GPU.

We propose a novel technique that simplifies the CPU-based pro-
cessing and shifts much of the sorting burden to the GPU, where it
can be performed more efficiently. Our hardware-assisted visibility
sorting algorithm is a hybrid technique that operates in both object-
space and image-space. In object-space, the algorithm performs a
partial sorting of the 3D primitives in preparation for rasterization.
The goal of the partial sorting is to create a list of primitives that
generate fragments in nearly sorted order. In image-space, the frag-
ment stream is incrementally sorted using a fixed-depth sorting net-
work. In our algorithm, the object-space work is performed by the
CPU and the fragment-level sorting is done completely on the GPU.
A prototype implementation of the algorithm demonstrates that the
fragment-level sorting achieves rendering rates of between one and
six million tetrahedral cells per second on an ATI Radeon 9800.

1 {stevec,ikits,csilva}@sci.utah.edu
2 comba@inf.ufrgs.br

1 INTRODUCTION

Given a general scalar field inR3, a regular grid of samples can
be used to represent the field at grid points(λ i,λ j,λk), for inte-
gersi, j,k and some scale factorλ ∈ R. One serious drawback of
this approach is that when the scalar field has highly nonuniform
variation, a situation that often arises in computational fluid dy-
namics and partial differential equation solvers, the voxel size must
be small enough to represent the smallest features in the field. Un-
structured grids with cells that are not necessarily uniform in size
have been proposed as an effective means for representing disparate
field data.

In this paper we are primarily interested in volume rendering un-
structured scalar datasets. In volume rendering, the scalar field is
modeled as a cloud-like material that both emits and attenuates light
along the viewing direction [23]. To create an image, the equations
for the optical model must be integrated along the viewing ray for
each pixel. For unstructured meshes, this requires computing a sep-
arate integral for the contribution of the ray segment inside each
cell. If the order of these segments is known, the individual con-
tributions can be accumulated using front-to-back or back-to-front
compositing.

On a practical level, the whole computation amounts to sampling
the volume along the viewing rays, determining the contribution of
each sample point, and accumulating the contributions in proper
order. Given the increasing size of volume datasets, performing
these operations in real-time requires the use of specialized hard-
ware. Modern GPUs [2] are quite effective at performing most of
these tasks. By coupling the rasterization engine with texture-based
fragment processing, it is possible to perform very efficient volume
sampling [14, 27]. However, generating the fragments in visibility
order is still necessary.

For regular grids, generating the fragments in visibility order
is straightforward. This is often accomplished by rendering poly-
gonsp1, p2, . . . , pn perpendicular to the view direction at different

CPU GPU

Partially Sort
Faces By
Centroid

Completely
Sort Fragments

With k-Buffer

Composite
Final Image

Rasterize
Faces

Specify
1D Colormap

Build 3D
Transfer
Function

Figure 2: Overview of the hardware-assisted visibility sorting algo-
rithm. Only a partial visibility ordering is performed on the CPU
based on the face centroids. On the GPU side, a fixed size A-buffer
is used to complete the sort on a per-fragment basis. The 3D pre-
integrated transfer function table is updated entirely on the GPU
using incremental computations.

depths. The polygons are used to slice the volume and generate the
samples for the cells that intersect them. The fact that the poly-
gons are rendered in sorted order and are parallel with each other
guarantees that all the fragments generated by rasterizing polygon
pi come before those forpi+1. In this case, compositing can be
accomplished by blending the fragments into the framebuffer in the
order they are generated. For details on performing these computa-
tions, see [15].

The sampling and compositing procedure for unstructured grids
is considerably more complicated. Although the intrinsic volume
rendering computations are similar, the requirement of generating
fragments in visibility order makes the computations more expen-
sive and difficult to implement. The Projected Tetrahedra (PT) al-
gorithm [30] was the first to show how to render tetrahedral cells
using the traditional 3D polygon-rendering pipeline. Given tetra-
hedraT and a viewing directionv, the technique first classifies the
faces ofT into front and back faces with respect tov. Next, for
correct fragment generation, the faces are subdivided into regions
of equal visibility. Note that the PT algorithm can properly han-
dle only a single tetrahedral cell. For rendering meshes, cells have
to be projected in visibility order, which can be accomplished us-
ing techniques such as the MPVO cell-sorting algorithm [36]. For
acyclic convex meshes, this is a powerful combination that leads
to a linear-time algorithm that is provably correct,i.e., it is guar-
anteed to produce the right picture. When the mesh is not convex
or contains cycles, MPVO requires modifications that significantly
complicate the algorithm and its implementation, leading to slower
rendering times [5,6,19,31].

The necessity of explicit fragment sorting for unstructured grids
is the main cause of the rendering-speed dichotomy between regu-
lar and unstructured grids. For regular grids, we are exploiting the
fact that we can sort in object space (implicit in the order of the
planes being rendered) and avoid sorting in image space (i.e. sort-
ing fragments). On modern GPUs, it is possible to render regular
volumes at very high frame rates. Unfortunately, performing visi-
bility ordering for unstructured grids completely in object space has
turned out to be quite expensive and complex [6].

We build on the previous work of Fariaset al. [10], Jouppi and
Chang [16], and Carpenter [4], and propose a new volume rendering
algorithm. Our main contributions are:

• We present a new algorithm for rendering unstructured vol-
umetric data that simplifies the CPU-based processing and
shifts much of the sorting burden to the GPU, where it can be
performed more efficiently. The basic idea of our algorithm
is to separate visibility sorting into two phases. First, we per-

form a partial visibility ordering of primitives in object-space
using the CPU. Note that this first phase does not guarantee
an exact visibility order of the fragments during rasterization.
In the second phase we use a modified A-buffer of fixed depth
(called thek-buffer) to sort the fragments in exact order on the
GPU (see Figure 2).

• We show how to efficiently implement thek-buffer using the
programmable functionality of existing GPUs.

• We perform detailed experimental analysis to evaluate the per-
formance of our algorithm using several datasets, the largest
of which having over 1.4 million cells. The experiments show
that our algorithm can handle general non-convex meshes
with very low memory overhead, and requires only a light
and completely automatic preprocessing step. Data size lim-
itations are bounded by the available main memory on the
system. The achieved rendering rates of over six million cells
per second are, to our knowledge, thefastestreported results
for volume rendering unstructured datasets.

• We build the 3D pre-integrated transfer function lookup ta-
ble from the user specified 1D colormap entirely on the GPU
using incremental computations [34], achieving highly inter-
active update rates (> 10 fps).

The remainder of this paper is organized as follows. We summarize
related work in Section 2. In Section 3, we describe our algorithm,
provide the definition ofk-nearly sorted sequences, and further de-
tails on the functionality of thek-buffer. In Section 4, we describe
how to efficiently implement thek-buffer using the programmable
features of current ATI hardware. Section 5 describes our experi-
ments and Section 6 presents our results. In Section 7, we discuss
different trade-offs of our approach. Finally, in Section 8, we pro-
vide final remarks and directions for future work.

2 RELATED WORK

The volume rendering literature is vast and we do not attempt a
comprehensive review here. Interested readers can find a more
complete treatment of previous work in [6,11,13,15,22]. We limit
our coverage to the most directly related work in visibility ordering
in both software and hardware.

In computer graphics, work on visibility ordering was pioneered
by Schumackeret al.and is later reviewed in [33]. An early solution
to computing a visibility order was given by Newell, Newell, and
Sancha (NNS) [25], which continues to be the basis for more recent
techniques [32]. The NNS algorithm starts by partially ordering the
primitives according to their depth. Then, for each primitive, the
algorithm improves the ordering by checking whether other primi-
tives precede it or not.

Fuchs, Kedem, and Naylor [12] developed the Binary Space
Partitioning tree (BSP-tree), a data structure that represents a hi-
erarchical convex decomposition of a given space (typically,R3).
Each nodeν of a BSP-treeT corresponds to a convex polyhe-
dral region,P(ν) ⊂ R3, and the root node corresponds to all of
R3. Each non-leaf nodeν is defined by a hyperplane,h(ν) that
partitionsP(ν) into two half-spaces,P(ν+) = h+(ν)∩P(ν) and
P(ν−) = h−(ν)∩P(ν), corresponding to the two children,ν+ and
ν− of ν . Here,h+(ν) (h−(ν)) is the half-space of points above (be-
low) the planeh(ν). Fuchset al. [12] demonstrated that BSP-trees
can be used for obtaining a visibility ordering of a set of objects or,
more precisely, an ordering of the fragments into which the objects
are cut by the partitioning planes. The key observation is that the
structure of the BSP-tree permits a simple recursive algorithm for
rendering the object fragments in back-to-front order. Thus, if the
viewpoint lies in the positive half-spaceh+(ν), we can recursively

draw the fragments stored in the leaves of the subtree rooted atν−,
followed by the object fragmentsS(ν) ⊂ h(ν). Finally, we recur-
sively draw the fragments stored in the leaves of the subtree rooted
atν+. Note that the BSP-tree does not actually generate a visibility
order for the original primitives, but forfragmentsof them.

The work presented above operates inobject-space, i.e., they op-
erate on the primitives before they are rasterized by the graphics
hardware [2]. Carpenter [4] proposed the A-buffer, a technique that
operates on pixel fragments instead of object fragments. The ba-
sic idea is to rasterize all the objects into sets of pixel fragments,
then save those fragments in per-pixel linked lists. Each fragment
stores its depth, which can be used to sort the lists after all the ob-
jects have been rasterized. A nice property of the A-buffer is that
the objects can be rasterized in any order, and thus, do not require
any object-space ordering. A main shortcoming of the A-buffer is
that the memory requirements are substantial. Recently, there have
been proposals for implementing the A-buffer in hardware. The R-
buffer [37] is a pointerless A-buffer hardware architecture that im-
plements a method similar to a software algorithm described in [21]
for sorting transparent fragments in front of the front-most opaque
fragment. Current hardware implementations of this technique re-
quire multiple passes through the polygons in the scene [9]. In con-
trast, the R-buffer works by scan-converting all polygons only once
and saving the not yet composited or rejected fragments in a large
unordered recirculating fragment buffer on the graphics card, from
which multiple depth comparison passes can be made. TheZ3 hard-
ware [16] is an alternative design which devotes a fixed amount of
memory to the A-buffer. When there are more fragments generated
for a pixel than what the available memory can hold,Z3 merges the
extra fragments.

Hardware-accelerated unstructured volume rendering has seen a
number of recent advances. Recently, Wylieet al. has shown how
to implement the Shirley-Tuchman tetrahedron projection directly
on the GPU [38]. As mentioned before, the PT projection sorts
fragments for a single tetrahedron only and still requires that the
cells are sent to the GPU in sorted order. An alternative approach
is to perform pixel-level fragment sorting via ray-casting. This has
been shown possible for convex meshes by Weileret al. [34]. For
non-convex meshes the authors rely on a manual convexification al-
gorithm,i.e., editing a non-convex mesh by adding extra primitives
until the boundary of the resulting mesh is convex and the mesh
contains no holes.

Roughly speaking, all the work described above performs sort-
ing either in object-space or in image-space exclusively, where we
consider ray casting as sorting in image-space, and cell projec-
tion as sorting in object-space. There are also hybrid techniques
that sort both in image-space and object-space. For instance, the
ZSWEEP [10] algorithm works by performing a partial ordering of
primitives in object-space followed by an exact pixel-level ordering
of the fragments generated by rasterizing the objects. Depending on
several factors, including average object size, accuracy and speed
of the partial sorting, and cost of the fragment-level sorting, hy-
brid techniques can be more efficient than either pure object-space
or image-space algorithms. Another hybrid approach is presented
in [1], where the authors show how to improve the efficiency of the
R-buffer by shifting some of the work to object-space.

3 HARDWARE -ASSISTED V ISIBILITY SORTING

Our hardware-assisted visibility sorting (HAVS) algorithm is a hy-
brid technique that operates in both object-space and image-space.
In object-space, HAVS performs a partial sorting of the 3D primi-
tives in preparation for rasterization; the goal here is to generate a
list of primitives that cause the fragments to be generated innearly
sorted order. In image-space, the fragment stream is incrementally
sorted by the use of a fixed-depth sorting network. HAVSconcur-

rently exploits both the available CPU and GPU on current hard-
ware, where the object-space work is performed by the CPU while
the fragment-level sorting is implemented completely on the GPU
(see Figure 2). Depending on the relative speed of the CPU/GPU, it
is possible to shift work from one processor to the other by varying
the accuracy of the different sorting phases,i.e., by increasing the
depth of the fragment sorting network, we can use a less accurate
object-space sorting algorithm. As shown in Section 4, our cur-
rent implementation uses very simple data structures that require
essentially no topological information leading to a very low mem-
ory overhead. In the rest of the section, we concentrate on present-
ing further details of the two phases of HAVS.

3.1 Nearly-sorted object-space visibility ordering

Visibility ordering algorithms (e.g. , XMPVO [31]) sort 3D prim-
itives with respect to a given viewpointv in exact order, which
allows for direct blending and compositing of the rasterized frag-
ments. In our work, we differentiate the sorting of the 3D primitives
and the rasterized fragments to utilize faster object-space sorting al-
gorithms.

To define what we mean by nearly-sorted object-space visibil-
ity ordering, we first introduce some notation. Given a sequence
S of real values{s1,s2, . . . ,sn}, we call the tuple of distinct in-
teger values(a1,a2, . . . ,an) the Exactly Sorted Sequenceof S (or
ESS(S)) if each ai is the position ofsi in an ascending or de-
scending order of the elements inS. For instance, for the se-
quenceS= {0.6,0.2,0.3,0.5,0.4} the corresponding exactly sorted
sequence is ESS(S)= (5,1,2,4,3). Extensions to allow for dupli-
cated values in the sequence are easy to incorporate and are not
discussed here. Similarly, we call a tuple(b1,b2, . . . ,bn) of distinct
integer values ak-Nearly Sorted Sequenceof S (ork-NSS(S)) if the
maximum element of the pairwise absolute difference of elements
in ESS(S) andk-NSS(S) isk, i.e. , max(|a1−b1|, |a2−b2|, . . . |an−
bn|)) = k. For instance, the tuple(4,2,1,5,3) is a 1-NSS(S) (i.e.
max(|5− 4|, |1− 2|, |2− 1|, |4− 5|, |3− 3|) = 1), while the tuple
(3,1,4,5,2) is a 2-NSS(S). In this work, we process sequences of
the distances of the fragments from the viewpoint. We relax the
requirement of having exactly sorted sequences, which allows for
faster object-space sorting, but leads to nearly sorted sequences that
need to be sorted exactly during fragment processing.

Several techniques implicitly generate nearly sorted sequences.
For example, several hierarchical spatial data structures provide
mechanisms for simple and efficient back-to-front traversal [28]. A
simple way of generating nearly-sorted object-space visibility or-
dering of a collection of 3D primitives is to use a BSP-tree. The
goal is to ensure that after rasterization, pixel fragments are at most
k positions out of order. In a preprocessing step, we can hierarchi-
cally build a BSP-tree such that no leaf of the BSP tree has more
thank elements. Note that this potentially splits the original prim-
itives into multiple ones. To generate the actual ordering of the
primitives, we can use the well-known algorithm for back-to-front
traversal of a BSP-tree and render the set ofk primitives in the leaf
nodes in any order. Since it is not strictly necessary to implement
this approach, simpler sorting techniques are used in our work. In
practice, most datasets are quite well behaved and even simple tech-
niques, such as sorting primitives by their centroid, or even by their
first vertex, are often sufficient to generate nearly sorted geome-
try. This was previously exploited in the ZSWEEP algorithm [10].
In ZSWEEP, primitives are sorted by considering a sweep plane
parallel to the viewing plane. As the sweep plane touches a ver-
tex of a face, the face is rasterized and the generated fragments are
added to an A-buffer using insertion sort. It was experimentally ob-
served that the insertion sort had nearly linear complexity, because
fragments were in almost sorted order. To avoid a space explosion
in the A-buffer, ZSWEEP uses aconservativetechnique for com-

(a) (b) (c) (d)

f1

f2

f3

f1

f2

f3

1

3

2

4

1

2

FramebufferTransfer Function

k-Buffer k-Buffer

fnew

Figure 3: Example of the k-buffer with k = 3 (see also Section 4).
(a) We start with the incoming fragment and the current k-buffer
entries and (b) find the two entries closest to the viewpoint. (c) Next,
we use the scalar values (v1,v2) and view distances (d1,d2) of the two
closest entries to look up the corresponding color and opacity in the
transfer function table. (d) In the final stage, the resulting color and
opacity are composited into the framebuffer and the remaining three
entries are written back into the k-buffer.

positing samples [10]. In our approach, we apply a moreaggressive
technique for managing the A-buffer.

3.2 Thek-buffer

The original A-buffer [4] stores all incoming fragments in a list,
which requires a potentially unbounded amount of memory. Our
approach is closely related to theZ3 architecture [16], which stores
only a fixed number of fragments and works by combining the
current fragments and discarding some of them as new fragments
arrive. Thek-buffer operates in a similar fashion and is simple
enough to be implemented on existing graphics architectures (see
Section 4).

The k-buffer is afragment stream sorterthat works as follows.
For each pixel, thek-buffer storesk entries< f1, f2, . . . , fk >. Each
entry contains the distance of the fragment from the viewpoint,
which is used for sorting the fragments in increasing order for front-
to-back compositing and in decreasing order for back-to-front com-
positing. For front-to-back compositing, each time a new fragment
fnew is inserted in thek-buffer, it dislodges the first entry (f1). Note
that boundary cases need to be handled properly and thatfnew may
be inserted at the beginning of the buffer if it is closer to the view-
point than all the other fragments or at the end if it is further. A
key property of thek-buffer is that given a sequence of fragments
such that each fragment is withink positions from its position in
the sorted order, it will output the fragments in the correct order.
Thus, thek-buffer can be used to sort ak-nearly sorted sequence of
n fragments inO(n) time. Note that to composite ak-nearly sorted
sequence of fragments, ak-buffer of sizek+1 is required, because
the first two entries in the buffer (f1 and f2) need to be in sorted
order. In practice, the hardware implementation is simplified by
keeping thek-buffer entries unsorted (see Figure 3).

Compared to ZSWEEP, thek-buffer offers a less conservative
fragment sorting scheme. Since onlyk entries are considered at a
time, if the incoming sequence is highly out of order, the output will
be incorrect, which may be noticeable in the images. As shown in
Section 5, even simple and inexpensive object-space ordering leads
to fragments that are almost completely sorted.

3.3 Volume Rendering Algorithm

The volume rendering algorithm is built upon the machinery pre-
sented above. First, we sort thefacesof the tetrahedral cells of the
unstructured grid on the CPU. To properly handle boundaries, the

(a) (b) (c)

Figure 4: Screen-space interpolation of texture coordinates. (a) The
rasterizer interpolates vertex attributes in perspective space, which
is typically used to map a 2D texture onto the faces of a 3D object.
(b) Using the projected vertices of a primitive as texture coordinates
to perform a lookup in a screen-space buffer yields incorrect results,
unless the primitive is parallel with the screen. (c) Computing the
texture coordinates directly from the fragment window position or
using projective texture mapping results in the desired screen-space
lookup.

vertices are marked whether they are internal or external. In the
k-buffer, we store both the scalar value and view distance for each
fragment generated by rasterizing the faces. When a fragment is
discarded from thek-buffer, we look up the color and opacity of
the ray segment defined by the closest and second closest entries
from a 3D pre-integrated lookup table and composite them with the
accumulated color and opacity in the framebuffer (see Figure 2).

4 HARDWARE I MPLEMENTATION

Thek-buffer can be efficiently implemented using themultiple ren-
der targetcapability of the latest generation of ATI graphics cards.
Our implementation uses theATI draw buffers OpenGL exten-
sion, which allows writing into up to four floating-point RGBA
buffers in the fragment shader. One of the buffers is used as the
framebuffer and contains the accumulated color and opacity of the
fragments that have already left thek-buffer. The remaining buffers
are used to store thek-buffer entries. In the simplest case, each
entry consists of the scalar data valuev and the distanced of the
fragment from the eye. This arrangement allows us to sort up to
seven fragments in a single pass (six entries from thek-buffer plus
the incoming fragment).

The fragment program comprises three stages (see Figure 3 and
the source code in the supplementary document). First, the program
reads the accumulated color and opacity from the framebuffer. Pro-
gram execution is terminated if the opacity is above a given thresh-
old (early ray termination). Unfortunately, we cannot exploit the
early z-test on current generation hardware, because depth write is
not possible with multiple floating-point render targets. This fea-
ture will be available on next generation hardware [3]. Next, the
program fetches the currentk-buffer entries from the associated
RGBA buffers and finds the two closest fragments to the eye by
sorting the entries based on the stored distanced. For the incom-
ing fragment,d is computed from its view-space position, which
is calculated in a vertex program and passed to the fragment stage
in one of the texture coordinate registers. The scalar values of the
two closest entries and their distance is used to obtain the color and
opacity of the ray segment defined by the two entries from the 3D
pre-integrated transfer function texture. Finally, the resulting color
and opacity are composited with the color and opacity from the
framebuffer, the closest fragment is discarded, and the remaining
entries are written back into thek-buffer (see also Figure 3).

Several important details have to be considered for the hard-
ware implementation of the algorithm. First, to look up values in a
screen-space buffer,e.g.when compositing a primitive into a pixel
buffer, previous implementations of volume rendering algorithms

used the technique of projecting the vertices of the primitive to the
screen, from which 2D texture coordinates are computed [18, 20].
As illustrated in Figure 4, this approach produces incorrect results,
unless the primitive is aligned with the screen, which happens only
when view-aligned slicing is used to sample the volume. The reason
for this problem is that the rasterization stage performs perspective-
correct texture coordinate interpolation, which cannot be disabled
on ATI cards [2]. Even if perspective-correct interpolation could
be disabled, other quantities,e.g.the scalar data value, still would
need to be interpolated in perspective space. Thus, to achieve the
desired screen space lookup, one has to compute the texture coordi-
nates from the fragment window position or use projective texture
mapping [29]. Since projective texturing requires a division in the
texture fetch stage of the pipeline, we decided to use the former
solution in our implementation.

Second, strictly speaking, the result of simultaneously reading
and writing a buffer is undefined when primitives are composited
on top of each other in the same rendering pass. The reason for the
undefined output is that there is no memory access synchronization
between primitives, therefore a fragment in an early pipeline stage
may not be able to access the result of a fragment at a later stage.
Thus, when reading from a buffer for compositing, the result of the
previous compositing step may not be in the buffer yet. Our experi-
ence is that the read-write race condition is not a problem as long as
there is sufficient distance between fragments in the pipeline, which
happense.g.when compositing slices in texture-based volume ren-
dering applications [15]. Unfortunately, compositing triangles of
varying sizes can yield artifacts, as shown by Figure 5. One way
to remedy this problem is to draw triangles in an order that maxi-
mizes the distance between fragments of overlapping primitives in
the pipeline,e.g.by drawing the triangles in equidistant layers from
the viewpoint. Temporary solutions such as this can remove many
of the artifacts until simultaneous read/write buffer access is avail-
able on future generation hardware.

Third, to properly handle holes in the data, vertices need to be
tagged whether they belong to the boundary or not. Ray segments
with both vertices on the boundary are assigned zero color and
opacity. Unfortunately, this approach removes cells on the edges
of the boundary as well. To solve this problem, a second tag is
required that indicates whether ak-buffer entry is internal or exter-
nal. This classification information is dynamically updated at every
step such that when the two closest entries are internal and the sec-
ond closest entry is on the boundary, allk-buffer entries are marked
external. When two external fragments are chosen as closest, thek-
buffer entries are reversed to internal and the color and opacity from
the transfer function is replaced with zero. Fortunately, these two
tags can be stored as the signs of the scalar data valuev and view
distanced in the k-buffer. A further advantage of tagging frag-
ments is that the classification allows for initializing and flushing
the k-buffer by drawing screen aligned rectangles. Unfortunately,
the number of instructions required to implement the logic for the
two tags, and to initialize and flush the buffer, exceeds current hard-
ware capabilities. Thus, currently we use only a single tag in our
implementation for initializing thek-buffer and do not handle holes
in the data properly (the holes in Figure 7(b) are visible because
of the smaller number of fragments composited along the viewing
rays going through them). Since the algorithm described above can
handle holes properly, complete handling of holes will be added
once next generation hardware becomes available.

4.1 Transfer Function Update

Interactive transfer function design is an important component of
modern volume visualization systems. Computing the 3D trans-
fer function lookup table required for accurate volume rendering
of unstructured meshes is time-consuming, because numerical in-
tegration of the whole table is ofO(n4) complexity [26]. Incre-

Figure 5: Rendering artifacts resulting from the fragment level race
condition when simultaneously reading and writing the same buffer.
These artifacts are generally less noticeable than the artifacts due to
the limited k-buffer size in the implementation.

mental computation reduces the complexity toO(n3) and signifi-
cantly speeds up the construction of the table [34]. Previous un-
structured volume rendering implementations either computed each
slice of the 3D pre-integrated texture by numerical integration on
the GPU [26], or performed incremental pre-integration on the
CPU [34]. Both approaches, however, provide only limited interac-
tivity (∼ 5 s/update and∼ 1.5 s/update forn = 128, respectively).
In the former case, numerical integration for each slice requires
compositing a large number of screen aligned rectangles into the
framebuffer, which is the same complexity as volume rendering the
whole table with a very high sampling rate. In contrast, the latter
approach, although it requires much fewer operations, does not ex-
ploit the inherent parallelism of GPU computations. In addition,
the lookup table from the CPU side has to be downloaded to GPU
memory after every update, which can be an expensive operation
that further reduces the achievable level of interactivity.

In this paper we combine the advantages of both approaches and
compute the 3D lookup table using incremental pre-integration on
the GPU. Thus, the table is immediately available for rendering af-
ter it is updated. The update procedure is divided into two parts.
First, we compute thebaseslice of the 3D table using a modified
version of the algorithm presented in [26]. The difference is that
we interpolate opacity-corrected associated colors instead of chro-
macities and use front-to-back compositing. A floating-point pixel
buffer is used to minimize round-off errors during the computation.
Note, that linear interpolation of the colormap entries has to be per-
formed explicitly in the fragment program, since current generation
hardware supports only nearest neighbor interpolation for floating
point texture lookups.

In the second stage, we incrementally compute each remaining
slice using the base slice and the result from the previous step. To
maximize performance, we use two sub-buffers (current and previ-
ous) of a single pixel buffer and alternate their role after each step
(ping-pong rendering). Before the current slice becomes the previ-
ous slice, its contents are copied to the corresponding location in
the 3D lookup table texture. Note that the slices are computed at
floating point accuracy, but are quantized to 8 or 16 bits during the
copy.

5 EXPERIMENTS

In our system, we do not use the object-space visibility ordering
scheme that provides a limit onk as described in Section 3.1. In-
stead, we implemented two simple sorting schemes based on either
sorting faces by their centroid, or the order induced by the front-
to-back ordering of the first vertex of a face. To assess the quality

of these heuristics and determine the requiredk-buffer size for a
given dataset, we ran extensive tests on several datasets. We imple-
mented a software version of our algorithm that uses an A-buffer
to compute the correct visibility order. As incoming fragments are
processed, we insert them into the ordered A-buffer and record how
deep the insertion was. This gives us ak size that is needed for the
dataset to produce accurate results. We also gain an insight on how
well our hardware implementation will do for givenk sizes. This
analysis is shown in Table 1. These results represent themaximum
values computed from fourteen fixed viewpoints on each dataset.

Dataset Fragments Max A Max k k > 2 k > 6
kew 2,634,400 481 2 0 0
spx2 6,615,778 476 22 10,626 512
torso 7,223,435 649 15 43,317 1683
fighter 5,414,884 904 3 1 0

Table 1: Analysis of k-buffer accuracy for given datasets. For each
dataset, we show the number of total fragments generated when
rendering them at 5122 resolution, the maximum length of any A-
buffer pixel list, the maximum k (i.e., the number of positions any
fragment had to move to its correct position in the sorted order minus
one for compositing), and the number of pixels that require k to be
larger than two or six, which are the values currently supported by
our hardware implemention on the ATI Radeon 9800.

However, the results of Table 1 alone do not completely describe
the error in using a smallk. In addition, it is necessary to consider
the distribution of these areas in which a smallk size is not suf-
ficient. This is done by generating a set of images for each fixed
viewpoint of a dataset that reflect the distribution of the degenera-
cies. Figure 6 contains a sample of these images. This analysis
shows that the problematic areas are usually caused by degenerate
cells, those which are large but thin,i.e., have a bad aspect ratio.
We believe this problem can be solved by finding the degenerate
cells and subdividing them into smaller, more symmetric cells. In-
spired by the regularity of Delaunay tetrahedralizations [8, Chapter
5], we tried to isolate these bad cells by analyzing how much they
“differ” locally from a DT in the following sense. A basic property
that characterizes DT is the fact that a tetrahedron belongs to the
DT of a point set if the circumsphere passing through the four ver-
tices is empty, meaning no other point lies inside the circumsphere.
By finding the degenerate cells of a dataset that digress most from
this optimal property, and subdividing them, we can thereby lower
the maximumk needed to accomplish a correct visibility ordering.
Note that the artifacts caused by a limitedk size in the implementa-
tion are less noticeable when using a transparent transfer function.
Thus, users normally do not notice these artifacts when interacting
with our system.

6 RESULTS

Our implementation was tested on a PC with a 3.0 GHz Pentium 4
processor and 1024 MB RAM running Windows XP. We used
OpenGL in combination with an ATI Radeon 9800 Pro in order to
take advantage of multiple render targets. Table 2 shows the perfor-
mance of our hardware-assisted visibility sorting algorithm on sev-
eral datasets using the average values of fourteen fixed viewpoints.
The results reflect the GPU-based final sorting and do not include
the partial ordering of the faces done on the CPU. This includes the
time required to rasterize all the faces, run the fragment and vertex
programs, composite the final image, and draw it to the screen us-
ing glFinish. All rendering was done with a 5122 viewport and
a 1282 8-bit RGBA transfer function. These numbers represent the
time required to render the datasets with a low opacity colormap.
Due to the speedup in fragment processing while using early ray

(a) (b)

Figure 6: Distribution of k requirements for the (a) torso and (b) spx2
datasets. Regions denote k size required to obtain a correct visibility
sorting, for k > 6 (red), 2 < k ≤ 6 (yellow), and k ≤ 2 (green).

termination, we have been able to achieve over six million cells per
second with the fighter dataset using a high opacity colormap.

k = 2 k = 6
Dataset Cells Fps Tets/sec Fps Tets/sec
kew 416,926 5.45 2267 K 3.75 1561 K
spx2 827,904 2.07 1712 K 1.70 1407 K
torso 1,082,723 3.13 3390 K 1.86 1977 K
fighter 1,403,504 2.41 3387 K 1.56 2190 K

Table 2: Performance of the GPU sorting of our algorithm. The
results show average values for fourteen fixed viewpoints.

Though our main focus was not to optimize the partial sort done
on the CPU, the interactivity of rotating the volume depends on
this step. We briefly attempted two different methods for sorting
the faces. First, we sorted by face centroid to obtain a more correct
visibility ordering, and second we sorted by vertex for better perfor-
mance. The image quality achieved by the centroid sort is superior
to the vertex sort for smallerk sizes, but the slowdown is substan-
tial. The time required to do a complete re-sort of all the faces for
every view change ranges from∼ 0.02 to∼ 2.5 seconds for the
given datasets. Though the decrease in frame rate for small datasets
is not considerable, it is much more costly for the larger datasets.
Sorting by vertex yields results in the range of∼ 0.005 to∼ 1.1
seconds. This increase is due to the large disparity in the number of
vertices and the number of faces in the datasets. A hybrid approach
to achieve optimal frame rates from these methods would be to sort
by vertex during rotation and to sort by face otherwise.

Size Base Incremental Total
64×64×128 9.3 ms 19 ms 28.3 ms

128×128×128 35.6 ms 31.6 ms 67.2 ms
128×128×256 35.6 ms 63.2 ms 98.8 ms

Table 3: Timing results of incremental pre-integration of the transfer
function on the GPU (in milliseconds).

In addition to displaying large datasets, our implementation al-
lows interactive changes to the transfer function. The user interface
consists of a direct manipulation widget that displays the user spec-
ified opacity map together with the currently loaded colormap (see
Figure 1 and Figure 7). Modifying the opacity or loading a new
colormap triggers a transfer function update on the GPU. The per-
formance of hardware-assisted incremental pre-integration is given
in Table 3. The results represent the time required to regenerate an
8-bit RGBA texture. In general, a 1283 transfer function is suffi-
cient for high quality rendering.

(a) (b) (c)

Figure 7: Results of rendering the (a) torso (b) spx and (c) kew datasets with the HAVS algorithm.

7 DISCUSSION

When we started this work, we were quite skeptical about the pos-
sibility of implementing thek-buffer on current GPUs. There were
several hurdles to overcome. First, given the potentially unbounded
size of pixel lists, it was less than obvious to us that small values
of k would suffice for large datasets. Another major problem was
the fact that reading and writing to the same texture is not a well
defined operation on current GPUs. We were pleasantly surprised
to find that even on current hardware, we get only minor artifacts.
Finally, we thought that the GPU would be the main bottleneck dur-
ing rendering. Hence, in our prototype implementation, we did not
spend much time optimizing the CPU sorting algorithm. This was a
mistake, because the ATI Radeon 9800 has been able to render over
six million cells per second when sorting on the CPU is not taken
into account.

There are several issues that we have not studied in depth. The
most important goal is to develop techniques that can refine datasets
to respect a givenk. Currently, our experiments show that when the
k-buffer is not large enough, a few pixels are rendered incorrectly.
So far, we have found that most of our computational datasets are
well behaved and the wrong pixels have no major effect on image
quality. In a practical implementation, one could consider raising
the value ofk or increasing the accuracy of the object-space visibil-
ity sorting algorithm, once the user stops rotating the model. Using
the smallest possiblek is required for efficiency.

Some of our speed limitations originate from limitations of cur-
rent GPUs. In particular, the lack of real conditionals forces us
to make a large number of texture lookups that we can potentially
avoid when next generation hardware is released. Furthermore, the
limit on the instruction count has forced us into an incorrect hole
handling method. With more instructions we could also incorpo-
rate shaded isosurface rendering without much difficulty.

Finally, there is plenty of interesting theoretical work remaining
to be done. It would be advantageous to develop input and output
sensitive algorithms for determining the object-space ordering and
estimation of the minimumk size for a given dataset. We have
preliminary evidence that by making the primitives more uniform in
size,k can be lowered. We believe it might be possible to formalize
these notions and perform proofs along the lines of the work of
Mitchell et al. [24] and de Berget al. [7].

8 CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel algorithm for volume render-
ing unstructured data. Our algorithm exploits the CPU and GPU
for sorting both in object-space and image-space. We use the

CPU to compute a partial ordering of the primitives for generat-
ing a nearly sorted fragment stream. We then use thek-buffer,
a fragment-stream sorter of constant depth, on the GPU for com-
plete sorting on a per-fragment basis. Despite limitations of current
GPUs, we show how to implement thek-buffer efficiently on an
ATI Radeon 9800. Our technique can handle arbitrary non-convex
meshes with very low memory overhead and requires only mini-
mal and completely automatic preprocessing of the data. Maxi-
mum data size is bounded by the available main memory of the
system. Another contribution of our work is an alternative tech-
nique for computing the 3D pre-integrated transfer function lookup
table needed for accurate rendering entirely on the GPU. Coupled
with our rendering algorithm, this allows users to interactively de-
sign transfer functions with the user interface.

The bottleneck of the Shirley-Tuchman PT algorithm [30] is the
time required to compute the polygonal decomposition necessary
for rendering the tetrahedra. Our optimized software implemen-
tation of their algorithm can process 300-700 Ktets/sec. Wylie
et al. [38] describes a GPU implementation of the PT algorithm.
They report rendering rates of up to 940 Ktets/sec when using a
constant color per cell, and 495 Ktets/sec when using linear vari-
ation. Our rendering rates are between five to ten times faster,
while producing higher quality images through the use of a 3D pre-
integrated transfer function table. Another recent technique is the
GPU-based ray casting of Weileret al. [35]. The fastest rendering
rates reported in their work are 764 Ktets/sec for a 148K Sphere
dataset. The technique of Weiler has certain limitations on the size
and shape (convexity) on the datasets that make it less general than
cell-projection techniques. Both of these approaches require a sub-
stantial amount of connectivity information for rendering, resulting
in a higher memory overhead than our work.

There are several interesting areas for future work. Further ex-
periments and code optimization are necessary for achieving even
faster rendering rates. In particular, we hope that next-generation
hardware will ease some of the current limitations and will allow us
to implement sorting networks with largerk sizes. Real fragment
program conditionals will allow us to reduce the effective number
of texture lookups. On next generation hardware we will also be
able to implement a more efficient early ray termination strategy.
Another interesting area for future research is rendering dynamic
meshes. We intend to explore techniques that do not require any
preprocessing and can be used for handling dynamic data. Finally,
we would like to devise a theoretical framework for analyzing the
direct trade-off between the amount of time spent sorting in object-
space and image-space.

ACKNOWLEDGMENTS

The authors thank Joe Kniss for suggesting that thek-buffer could
be implemented efficiently on ATI hardware. We thank Ricardo
Farias for insightful discussions that helped shape many ideas pre-
sented in this paper. The Teem toolkit [17] proved very useful for
processing our datasets and results. We thank Mark Segal from ATI
for his prompt answers to our questions. We are grateful to Pa-
tricia Crossno, Shachar Fleishman, Nelson Max, and Peter Shirley
for helpful suggestions and criticism. The authors also acknowl-
edge Bruce Hopenfeld and Robert MacLeod (University of Utah)
for the heart dataset, Bruno Notrosso (Electricite de France) for
the spx dataset, Hung and Buning for the blunt fin dataset, and
Neely and Batina for the fighter dataset. Steven P. Callahan is sup-
ported by the Department of Energy (DOE) under the VIEWS pro-
gram. Milan Ikits is supported by NSF grant ACI-9978063 and the
DOE Advanced Visualization Technology Center. Cláudio T. Silva
is partially supported by the DOE under the VIEWS program and
the MICS office, and the National Science Foundation under grants
CCF-0401498 and EIA-0323604. The work of João L. D. Comba
is supported by a CNPq grant 540414/01-8 and FAPERGS grant
01/0547.3).

REFERENCES

[1] T. Aila, V. Miettinen, and P. Nordlund. Delay Streams for Graph-
ics Hardware.ACM Transactions on Graphics, 22(3):792–800, July
2003.

[2] ATI. Radeon 9500/9600/9700/9800 OpenGL Programming and Opti-
mization Guide, 2003.http://www.ati.com.

[3] ATI. Personal Communication, 2004.
[4] L. Carpenter. The A-buffer, an Antialiased Hidden Surface Method.

In Computer Graphics (Proc. SIGGRAPH 84), volume 18, pages 103–
108, July 1984.

[5] J. Comba, J. T. Klosowski, N. Max, J. S. B. Mitchell, C. T. Silva, and
P. L. Williams. Fast Polyhedral Cell Sorting for Interactive Rendering
of Unstructured Grids.Computer Graphics Forum, 18(3):369–376,
Sept. 1999.

[6] R. Cook, N. Max, C. Silva, and P. Williams. Image-Space Visibility
Ordering for Cell Projection Volume Rendering of Unstructured Data.
IEEE Transactions on Visualization and Computer Graphics, 2004.
(to appear).

[7] M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels. Re-
alistic Input Models for Geometric Algorithms. InProc. Annual Sym-
posium on Computational Geometry, pages 294–303, 1997.

[8] H. Edelsbrunner.Geometry and Topology for Mesh Generation. Cam-
bridge University Press, 2001.

[9] C. Everitt. Interactive Order-Independent Transparency. Technical
report, NVIDIA, 2001.http://developer.nvidia.com.

[10] R. Farias, J. Mitchell, and C. Silva. ZSWEEP: An Efficient and Exact
Projection Algorithm for Unstructured Volume Rendering. InProc.
IEEE Volume Visualization and Graphics Symposium, pages 91–99,
2000.

[11] R. Farias and C. T. Silva. Out-Of-Core Rendering of Large, Unstruc-
tured Grids.IEEE Computer Graphics and Applications, 21(4):42–51,
2001.

[12] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On Visible Surface Gener-
ation by a Priori Tree Structures. InComputer Graphics (Proc. SIG-
GRAPH 80), volume 14, pages 124–133, July 1980.

[13] L. Guibas. Computational Geometry and Visualization: Problems at
the Interface. In N.M.Patrikalakis, editor,Scientific Visualization of
Physical Phenomena, pages 45–59. Springer-Verlag, 1991.

[14] S. Guthe, S. Roettger, A. Schieber, W. Straßer, and T. Ertl. High-
Quality Unstructured Volume Rendering on the PC Platform. InProc.
ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 119–126, Sept. 2002.

[15] M. Ikits, J. Kniss, A. Lefohn, and C. Hansen.GPU Gems: Program-
ming Techniques, Tips, and Tricks for Real-Time Graphics, chapter
Volume Rendering Techniques. Addison Wesley, 2004. 667–692.

[16] N. P. Jouppi and C.-F. Chang. Z3: An Economical Hardware Tech-
nique for High-Quality Antialiasing and Transparency. InProc. ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages
85–93, Aug. 1999.

[17] G. L. Kindlmann. Teem, 2003.http://teem.sourceforge.net.
[18] J. M. Kniss, S. Premǒze, C. D. Hansen, P. Shirley, and A. McPherson.

A Model for Volume Lighting and Modeling.IEEE Transactions on
Visualization and Computer Graphics, 9(2):150–162, 2003.

[19] M. Kraus and T. Ertl. Cell-Projection of Cyclic Meshes. InProc.
IEEE Visualization, pages 215–222, Oct. 2001.

[20] J. Krüger and R. Westermann. Acceleration Techniques for GPU-
based Volume Rendering. InProc. IEEE Visualization, pages 287–
292, 2003.

[21] A. Mammen. Transparency and Antialiasing Algorithms Implemented
with the Virtual Pixel Maps Technique.IEEE Computer Graphics and
Applications, 9:43–55, July 1984.

[22] N. L. Max. Sorting for Polyhedron Compositing. InFocus on Scien-
tific Visualization, pages 259–268. Springer-Verlag, 1993.

[23] N. L. Max. Optical Models for Direct Volume Rendering.IEEE Trans-
actions on Visualization and Computer Graphics, 1(2):99–108, June
1995.

[24] J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-Sensitive Ray
Shooting.International Journal of Computational Geometry and Ap-
plications, 7(4):317–347, Aug. 1997.

[25] M. Newell, R. Newell, and T. Sancha. A Solution to the Hidden Sur-
face Problem. InProc. ACM Annual Conference, pages 443–450,
1972.

[26] S. Roettger and T. Ertl. A Two-Step Approach for Interactive Pre-
Integrated Volume Rendering of Unstructured Grids. InProc. IEEE
Volume Visualization and Graphics Symposium, pages 23–28, 2002.

[27] S. Roettger, M. Kraus, and T. Ertl. Hardware-Accelerated Volume
and Isosurface Rendering Based on Cell-Projection. InProc. IEEE
Visualization, pages 109–116, Oct. 2000.

[28] H. Samet. The Quadtree and Related Hierarchical Data Structures.
ACM Computing Surveys, 16(2):187–260, 1984.

[29] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli.
Fast Shadows and Lighting Effects Using Texture Mapping. InProc.
ACM SIGGRAPH, pages 249–252, July 1992.

[30] P. Shirley and A. Tuchman. A Polygonal Approximation to Direct
Scalar Volume Rendering.Proc. San Diego Workshop on Volume Vi-
sualization, 24(5):63–70, Nov. 1990.

[31] C. T. Silva, J. S. Mitchell, and P. L. Williams. An Exact Interactive
Time Visibility Ordering Algorithm for Polyhedral Cell Complexes.
In Proc. IEEE Symposium on Volume Visualization, pages 87–94, Oct.
1998.

[32] C. Stein, B. Becker, and N. Max. Sorting and Hardware Assisted
Rendering for Volume Visualization. InProc. IEEE Symposium on
Volume Visualization, pages 83–89, Oct. 1994.

[33] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A Characteri-
zation of Ten Hidden-Surface Algorithms.ACM Computing Surveys,
6(1):1–55, Mar. 1974.

[34] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Based Ray
Casting for Tetrahedral Meshes. InProc. IEEE Visualization, pages
333–340, Oct. 2003.

[35] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Based View-
Independent Cell Projection.IEEE Transactions on Visualization and
Computer Graphics, 9(2):163–175, 2003.

[36] P. L. Williams. Visibility-Ordering Meshed Polyhedra.ACM Trans-
actions on Graphics, 11(2):103–126, Apr. 1992.

[37] C. Wittenbrink. R-Buffer: A Pointerless A-Buffer Hardware Architec-
ture. InProc. ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 73–80, 2001.

[38] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetrahedral Projec-
tion using Vertex Shaders. InProc. IEEE/ACM Symposium on Volume
Graphics and Visualization, pages 7–12, 2002.

