
Developing Uintah’s Runtime System For Forthcoming
Architectures

Brad Peterson†, Nan Xiao†, John Holmen†, Sahithi Chaganti†, Aditya Pakki†,
John Schmidt†, Dan Sunderland‡, Alan Humphrey†, Martin Berzins†

†Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 84112, USA
‡Sandia National Laboratories, PO Box 5800 / MS 1418, Albuquerque, NM, 87185, USA

mb@sci.utah.edu

ABSTRACT
The need to solve ever-more complex science and engineering prob-
lems on computer architectures that are rapidly evolving poses con-
siderable challenges for modern simulation frameworks and pack-
ages. While the decomposition of software into a programming
model that generates a task-graph for execution by a runtime sys-
tem make portability and performance possible, it also imposes
considerable demands on that runtime system. The challenge of
meeting those demands for near-term and longer term systems in
the context of the Uintah framework is considered in key areas such
as support for data structures, tasks on heterogeneous architectures,
performance portability, power management and designing for re-
silience by the use of replication based upon adaptive mesh refine-
ment processes is addressed. Examples of techniques in these ar-
eas are used to illustrate performance improvements obtained for
present large-scale systems and the needs of proposed systems con-
sidered.

Keywords
Uintah, scalability, parallel, adaptive

1. INTRODUCTION
The need to solve larger and more challenging multi-scale and

multi-physics science and engineering problems on computer ar-
chitectures that are rapidly evolving to address improvements in
performance and power consumption poses considerable challenges
for modern simulation frameworks and packages. A fundamental
decomposition in such software is to use a programming model to
specify a task form of the application and its associated numeri-
cal methods and then to execute these tasks by means of an adap-
tive runtime system. The potential value of this approach is stated
by [20, 30] Exascale programming will require prioritization of
critical-path and non-critical path tasks, adaptive directed acyclic
graph scheduling of critical-path tasks, and adaptive rebalancing
of all tasks with the freedom of not putting the rebalancing of non-
critical tasks on the path itself. This is the approach used in the
Uintah software e.g. [11,43]. The separation, of user code and run-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

time system and also the runtime system that is used on each com-
pute node, permits us to leverage advances in the runtime system,
such as scalability, to be immediately applied to applications with-
out any additional work by the component developer. The nodal
component of the runtime system has an execution layer that runs
on each core that also queries the nodal data structures in order to
find tasks to execute and works with a single data warehouse per
multi-core node to access local variables and and non-local vari-
ables through MPI communications. Each mesh patch that is ex-
ecuted on a node uses a local task graph that is composed of the
algorithmic steps (tasks) that are stored along with various queues
that determine which task is ready to run. Data management in-
cluding the movement of data between nodes along with the actual
storage of data in the Data Warehouse occurs on a per node basis.
The actual execution of the various tasks are distributed on a per
core level. A strength of this approach is that the applications code
is portable and indeed may oblivious to changes in architectures.
Indeed with this approach Uintah has been able to compute solu-
tions to complex engineering problems on a number of the present
most powerful machines such as Titan, Mira, Vulcan, Stampede
and Blue Waters, for the complex engineering problems described
in Section 2.

An implication of this approach is that the runtime system must
constantly evolve [14] to meet the challenges of future and present
architectures. The trends over the next five years seem to be that
present CPU architectures will continue at small to medium scale,
albeit with more power-efficient cores, while many newer scale
large architecture will embrace presently-evolving NVIDIA GPUs
or Intel Xeon Phi processors. Examples of such machines are the
IBM NVIDIA Summit machine with 3,500 nodes and multiple GPUs
per node at Oak Ridge National Laboratory and the Intel-Cray Aurora
machine with 50,000 Intel Xeon Phi chips at Argonne National
Lab. Public overviews of these machines are given at http://
science.energy.gov/ascr/ascac/meetings.

A key need for the present and future architectures is to address
the efficiency of data structures. An example of this is given in
Section 3, in which the data structures that support task-graph com-
pilation are revised to improve performance. At the same time het-
erogeneous architectures with multiple accelerators per node make
it important to create the infrastructure to support delay free task
execution, of tasks that may have quite short execution times, as
in Section 4. The need to combine efficient task execution with
portability may be resolved in a number of different ways. One is
through the use of domain specific languages such as the Nebo ap-
proach used with Uintah [21]. In Section 5 of this paper an alterna-
tive approach using the Kokkos intermediate layer is explored [23],
as Kokkos makes it possible for core loops to be written in a form
that maps the underlying data structures in the most efficient way

onto different architectures. The final challenge to address is that
of resiliency, as the runtime system has to evolve to meet the ex-
pected challenge of resiliency, by using fault tolerant approaches
such as, for example, the fault-tolerant message passing approach
of redMPI, [24]. For example If cores automatically reduce clock
speeds, then it will be possible to use our present approach to load
balance the calculation. If a core or node is not performing or is
consuming too much power, then tasks can be moved elsewhere or
delayed. In the case of node or core failures we are simulating the
approach of using system monitors for hard fault-tolerance. Should
calculations involving Uintah patches fail, it is always possible to
use checkpoint restarts. It is often also remarked upon that this ap-
proach is too expensive if failures are very frequent. In this case
in Section 7 we investigate using task replication at a coarse level
using Adaptive Mesh Refinement. A task may be replicated on a
coarser mesh at 1/8 of the cost of its parent. If the parent task fails
then interpolation is used to reconstruct the parent task data. A
key aspect of this process is the choice of the interpolation routines
which must preserve the physical characteristics of the underlying
solution, such as positivity. For this reason a modified Shepard in-
terpolant is proposed and its performance investigated as part of our
move to a runtime system that will eventually address all the above
challenges of forthcoming computer architectures.

2. UINTAH FRAMEWORK
The Uintah open-source software framework makes it possible to

solve a very broad problem class of fluid-structure interaction prob-
lems from a variety of science and engineering disciplines, [10].
The central idea [11, 43] is to use a layered approach, see Figure
1, that structure applications drivers and applications packages as
a Directed Acyclic Graph (DAG) of computational tasks, belong-
ing to Uintah components that access local and global data from a
data warehouse that is part of an MPI process and that deals with
the details of communication. A runtime system manages the asyn-
chronous and out-of-order (where appropriate) execution of these
tasks and addresses the complexities of (global) MPI and (per node)
thread based communication. Many Uintah problems are currently

Figure 1: Uintah Architecture

solved by making use of four primary components [11, 43]: 1) a

low and high-speed compressible flow solver, ICE; 2) a material
point method algorithm, MPM for structural mechanics; 3) a fluid-
structure interaction (FSI) algorithm, MPMICE which combines
the ICE and MPM components and 4) a turbulent reacting CFD
component, ARCHES designed for simulation of turbulent react-
ing flows with participating media radiation. Each component is
expressed as a sequence of tasks in which data dependencies (in-
puts and outputs) are explicitly specified. These tasks are then
compiled into a task-graph representation (Directed Acyclic Graph)
to express the parallel computation along with the underlying data
dependencies. The smallest unit of parallel work is a patch com-
posed of a hexahedral cube of grid cells. Each task has a C++
method for the actual computation and each component specifies
a list of tasks to be performed and the data dependencies between
them [13]. Uintah’s runtime system executes these tasks indepen-
dently of the application itself thus allowing the tasks and the in-
frastructure to be developed separately with scalability concerns
such as load balancing, task (component) scheduling, communica-
tions, including accelerator or co-processor interaction. Scalability
is achieved by continuously improving the runtime system to in-
clude features such as scalable adaptive mesh refinement [34] and
a novel load balancing approach [33]. While Uintah uses a Directed
Acyclic Graph approach for task scheduling, the use of dynamic/out-
of-order task execution is important in improving scalability [43].
For systems with reduced memory per core, only one MPI process
and only one data warehouse per node are used. Threads are used
for task execution on individual cores. This has made it possible
to reduce memory use by an order of magnitude and led to bet-
ter scalability [41]. Additional details surrounding Uintah’s run-
time system can be found in [43]. Even thought this approach is
very successful on a range of existing large machines [43] it is still
necessary for the applications user to ensure that there are enough
patches per core to hide communications costs, or at least to make
them scalable. In going to the next generation of machines the main
lesson from previous increases in the scale of Uintah is that while
the applications code may stay unchanged both the algorithms used
in the runtime system and the runtime system itself have to evolve
to take into account the features of the target machines, as will be
explored below.

3. DATA STRUCTURES FOR PETASCALE
AND BEYOND

For almost any machine that is capable of 100 PF or more it will
be necessary to have local data structures that can be easily and ef-
ficiently accessed. The Uintah task graph needs to be compiled at
the beginning of a simulation or whenever the patch layout changes
(recompiled) which typically occurs during an AMR simulation,
i.e. patches are refined or coarsened. Task graphs compilation has
been shown to be the predominant scalability concern [40] as we
approach the multi-million core regime. To address the scalability
bottlenecks, several non-incremental algorithms and data structures
were implemented. In Uintah, problem domain is decomposed
into many patches and each core has a global view of all of these
patches. Each core needs to know which patches are inside a given
index range from time to time. The compilation phase includes two
main steps: finding neighboring patches with their hosts and cre-
ating dependencies for tasks inside local patches. The Bounding
Value Hierarchy (BVH) tree was the predominant data structure
identified which dominated the overall time cost for finding neigh-
boring patches within a given index range. Apart from redesign
of these data structures, interfaces between functions and redun-
dant sorting processes were also optimized. The incorporation of

Figure 2: Time to Find Neighboring Patches

Figure 3: Time to Create Detailed Dependencies

Figure 4: Overall Recompile Time

the new data structures and algorithms reduced the time to perform
task graph compilation by approximately 45%, see Figure 4.

Before optimization, BVH tree structure is used for querying
patches in the grid during compilation. The time cost for creat-
ing the BVH tree is O(n(logn)2) and O(k logn) for each query,
where k represents number of patches returned. As part of the cre-
ation of the overall Taskgraph such as the dependency creation for
the tasks, patches must be sorted. The BVH tree stores the patches
randomly requiring an extra sorting process.

Uintah’s domain is decomposed into a collection of patches that
are geometrically uniformly distributed for each level of the grid
hierarchy. We project patches into a continuous space. The IDs
of patches are generally assigned based on patch’s index and are
in increasing order, which usually does not require an additional
sort for the returned patches. The query function returns all the
matched patches via a hash tree. The hash tree can be thought of
as a set of hash tables stored in a heap tree where each node is
linked to the head of a hash table. The return order inside each
hash table is sorted to accommodate the rare cases when several
patches at a finer levels may not be continuous with others leading
to a significant increase in memory.

The constructor for this data structure includes domain partition-
ing, a hashing function, and indexing. The partition algorithm is
used to cluster patches into several subdomains based on whether
they are adjacent to each other to improve the memory utilization
rate. Each subdomain has its own hash table. An indexing method
is used to improve the query performance by ensuring each empty
bucket points to the next non-empty one. A heap tree combines all
hash tables in subdomains. This approach results in improved scal-
ability results for both components of new task graph compilation:
finding neighboring patches, and creating tasks dependencies. In
order to obtain scaling results shown below, we tested and chose
the optimal patch configuration to demonstrate the scalability up to
256 cores on a modest sized HPC machine. Figure 2 demonstrates
the overall weak scaling for both old and new functions of find-
ing neighboring patches, Figure 3 demonstrates the overall weak
scaling for function creating tasks dependencies, and Figure 4 rep-
resents the weak scaling for overall task graph compilation, where
we observed approximate 1.8X speedup when running with 256
cores.

4. SUPPORTING HETEROGENEOUS
ARCHITECTURES AT RUNTIME

As computer node configurations are becoming more complex,
the need for a robust runtime system separate from an applica-
tion layer also increases. The Uintah framework is built with an
assumption that the application layer developer should not need
to worry about the details of memory management such as allo-
cating and pinning memory, copying data from one region to an-
other, gathering halo cells (hereafter referred to as ghost cells), etc.
Instead the runtime system should intelligently and efficiently pre-
pare all variable data prior to performing any needed computation.
This section describes the initial design of Uintah’s runtime sys-
tem for using multiple GPUs per node, describes its flaws, and
describes design changes to support a wider range of tasks. The
design changes are analyzed to demonstrate flexibility for future
node accelerator and memory configurations.

As outlined in [29], the Uintah runtime system was extended to
support multiple GPU devices per node for certain problems. This
design was kept relatively simple. Prior to a task’s execution, all
necessary data from the prior time step is copied into a GPU’s mem-
ory. That task is executed on that GPU. Then computed variables

are copied back to host memory. GPUs are assigned in a round-
robin fashion. This approach supported a small set of computa-
tions, such as computing radiation transfer using a reverse Monte
Carlo ray tracing (RMCRT) algorithm [28]. Each RMCRT task
required one second or more to compute, and the time to copy all
data in and out of the GPU is a minimal fraction of the computation
time. By employing multiple GPUs, a node could be assigned more
patches. By copying all computed data back to the host after each
time step, the existing runtime system could manage host memory
as if the task never ran on the GPU at all, and it would follow the
ghost cell scenarios as outlined in Figure 5.

Figure 5: Ghost cell management under the initial runtime en-
gine. A data management task could manage up to three source
to destination scenarios, namely, host to host, host to off-node,
and off-node to host.

This approach however does not work for many types of GPU
tasks. Specifically, GPU tasks which computed within a few mil-
liseconds do not perform well relative to CPU computation times
as the overhead to prepare data in the GPU was far greater than the
time spent computing the task. Also, GPU tasks which required
dozens of data variables suffered from the overhead of API call la-
tencies. The major motivation for this work is to support these GPU
tasks and simulations in a multi-GPU environment.

In a general sense, the Uintah runtime system needs to support
any number of cores per node, zero or more accelerator devices per
node, one or more patches per node, one or more patches per ac-
celerator device, patches partitioned in up to three dimensions, any
number of ghost cells per data variable, and this must all operate
on any number of MPI ranks. Data variables need to be kept resi-
dent on accelerator devices, avoiding unnecessary movement from
one memory location into another. The overhead for all memory
management should be kept within a few milliseconds or less. And
the Uintah runtime system needs to be prepared for any future ad-
ditional memory hierarchies.

Modifying the runtime system to handle these needs has proven
to be challenging. Many recently implemented improvements to
support a single GPU per physical node have been outlined in [45],
driving down overhead time between time steps to between one and
two milliseconds. This section will focus on the design decisions
to better support multiple on-node devices.

To support multiple GPUs, it is tempting give each GPU its own
MPI rank. If this model was used, data communication between
multiple GPUs can be managed simply through CUDA-aware MPI.
However, this comes at a cost of increasing the amount of MPI mes-
sages, duplicated shared data, and limited work stealing due to each
rank having fewer tasks. Uintah is designed that within an MPI
rank, Pthreads and shared data warehouses are employed to mini-
mize MPI ranks and accompanying MPI messages [42]. Therefore
multiple GPUs are designed to work within a single MPI rank,
while allowing for flexibility so that a physical node could be as-
signed multiple MPI ranks if desired. The resulting model of the

current runtime system is shown in Figure 6.

Figure 6: Ghost cell management under the new runtime en-
gine. A data management task is assigned a region of patches
and its associated GPU. It could manage up to twelve source
to destination scenarios if an MPI Rank contains two or more
GPUs.

Currently at the start of a new simulation time step, data man-
agement tasks are launched whose job is to identify and manage
the data dependencies for upcoming tasks in that time step. For
example, if a node has 26 MPI rank neighbors, then 26 data man-
agement tasks are created, each one sending MPI messages to its
assigned neighbor. Each of these tasks analyzes its own node’s task
graph and is able to identify all external data dependencies associ-
ated with other MPI ranks. To support multiple GPUs in the same
MPI rank, this same analysis can be done to find all internal de-
pendencies. If a node has three GPUs, then three additional data
management tasks should be created to prepare and process peer to
peer copies from its assigned GPU to any other on-node GPU.

Not shown in Figure 6 is the bulk nature in which ghost cells are
processed. The number of GPU API memory allocations, number
of memory copies, bytes of data copied, and kernel calls should
be kept to a minimum. To support this, the runtime system first
identifies all allocations and copies that will need to be made prior
to performing these actions. They are then processed in bulk. For
example, suppose a data management task is assigned a patch con-
taining a data variable in GPU #0. The runtime recognizes that
one neighbor patch is in on-node GPU #1. Another neighbor patch
is in on-node GPU #2. And another neighbor patch is in another
MPI rank. Contiguous staging arrays would be created on GPU #0
for each ghost cell region that needs to sent outside that GPU. A
kernel is launched which copies all ghost cell data into contiguous
arrays within GPU #0. Contiguous staging arrays would be created
in GPU #1 and #2. For the on-node GPUs, peer to peer GPU copies
are invoked. For the off-node neighbor, CUDA-aware MPI can be
invoked. This completes the duty of that data management task.
Later the runtime will analyze computational tasks prior to execu-
tion and gather ghost cells from these staging arrays back into their
data variables.

From a global perspective, the amount of MPI ranks doesn’t
change, and the amount of MPI messages do not change. As 6
demonstrates, an MPI rank will will still send messages from from
either host memory or GPU memory. The receiving ranks will re-
ceive messages and process them accordingly.

Overall this runtime system model is better able to scale as more
GPUs are assigned per node. It meets the needed goals of extend-
ing Uintah to support the types of GPU tasks and computational

problems that are not realistic or possible on the original Uintah
GPU runtime system. This approach works for additional accelera-
tors and memory hierarchies, including Intel Xeon Phis and a tiered
hierarchy of host memory. Each additional memory space simply
needs its own pool of contiguous staging arrays. For example, sup-
pose host memory was split into two tiers. Then in Figure 6, one
additional source and destination region would be managed. Much
of this framework has recently been implemented for one GPU per
node per MPI rank, and work is progressing for multiple GPUs per
MPI rank.

5. PERFORMANCE PORTABILITY
THROUGH MAPPING ABSTRACTIONS

With its emphasis on large-scale simulations, Uintah must be
able to leverage the increasing adoption of accelerators and copro-
cessors within current and emerging heterogeneous supercomputer
architectures. However, this poses a challenge due to the differing
programming efforts required to achieve performance across archi-
tectures. To alleviate code bifurcation, efforts are underway explor-
ing the use of Kokkos [23] to help enable performance portability.
Here, performance portability refers to the maximization of porta-
bility across varying architectures while striving to achieve perfor-
mance comparable to hand-tuned codes.

Developed by Sandia National Laboratories, Kokkos is a C++ li-
brary that allows developers to write portable, thread-scalable code
optimized for CPU, GPU, or MIC-based architectures. Specifically,
this library provides developers with architecture-aware parallel al-
gorithms (parallel_for, parallel_reduce, and parallel_scan) and data
structures. When using these tools, Kokkos is able to select a mem-
ory layout and iteration scheme for a target architecture at compile
time. This is facilitated through a number of back-ends, which cur-
rently support CUDA, OpenMP, and PThreads programming mod-
els for NVIDIA GPU, Intel Xeon Phi, and CPU-based machines.
To manage thread placement, Kokkos also provides support for the
Portable Hardware Locality (HWLOC) [2] package. Detailed us-
age information and demonstrations of performance portability can
be found at the Kokkos tutorial webpage [22].

To best leverage Kokkos, developers are encouraged to use pro-
vided data structures and encapsulate algorithm kernels within C++
functors or lambdas to enable use of Kokkos parallel algorithms.
To begin our integration of Kokkos, we have enabled the use of
Kokkos parallel algorithms within Uintah. Traditionally, Uintah
creates task execution threads that are mapped to PThreads on a 1:1
basis for single-threaded task execution. To accommodate Kokkos,
we have enabled mapping of Uintah task execution threads to dis-
joint Kokkos thread pools. This one-to-many mapping allows for
use of Kokkos parallel algorithms and multi-threaded task execu-
tion. Note however, further modification of the runtime system is
required to fully support Kokkos (e.g. modifying the data ware-
house to return Kokkos views).

With these changes in place, Figure 7 demonstrates how to trans-
form a Uintah task into one supporting Kokkos. Generally, Uintah
tasks feature a header that declares and initializes mesh patch vari-
ables. These variables are then used within one or more loops when
executing tasks corresponding to a given mesh patch. To support
Kokkos, these loop bodies must be encapsulated within C++ func-
tors or lambdas as demonstrated in Figure 7.

As a proof of concept, a Poisson solver was modified to use a
Kokkos parallel loop. This example was chosen as the primary
work relied on one simple task. After creating a functor and en-
capsulating the original loop body within a Kokkos parallel loop,
experiments were run across two Xeon E5-2680 processors. An

Figure 7: Enabling Kokkos by transforming a standard Uintah
task. We can create a functor which has patch variable refer-
ences as members with a loop body implemented in the paren-
theses operator, or we can use a lambda which captures the loop
body.

Domain Sizes 1283 2563 5123 7683 10243

Grind – Original 1.521 1.978 1.651 1.602 1.550
Grind – Kokkos 0.723 0.840 0.833 0.780 0.847

Table 1: Per cell execution times as a function of the number of
cells within a domain.

overview of results from these experiments can be found in Figure
8, with exact results reported in Table 1.

Figure 8: Weak scaling of the Poisson task execution grind time
on a Sandy Bridge-based system.

For this proof of concept, emphasis was placed on understand-
ing how use of Kokkos parallel loops impacted task performance.
In addition to experimenting with multiple domain sizes, varying
thread pool configurations were also explored. Timings depicted in

Figure 8 and Table 1 correspond to the mean task execution time for
a single iteration of the Poisson solve on a per-cell basis. Further,
these timings correspond to the most advantageous thread pool con-
figuration identified for a given domain size.

These results demonstrate great weak scaling of the per-cell task
execution time with increasingly larger domains. A key takeaway
is that use of Kokkos parallel loops offered performance improve-
ments across the board. This is likely attributed to their enabling
of multi-threaded task execution, which provides greater control
over simulation mesh decomposition. For these experiments, use
of Kokkos thread pools allowed both hyper-threads within a given
core to cooperatively execute tasks. Such results suggest that Kokkos
will help better prepare Uintah for running well on current and
emerging architectures featuring increasingly larger core counts.

This initial effort has helped increase our understanding of what
Kokkos has to offer before pursuing wider-spread migration. In
addition to previously mentioned advantages, Kokkos also presents
an opportunity to reduce the gap between development time and our
ability to run on newly introduced machines. These advantages in
mind, Kokkos is believed to be a critical aspect in preparing Uintah
for future machines. Next steps presently underway include the
integration of Kokkos parallel loops within the Arches combustion
simulation component. Looking further ahead, considerations must
also be made for incorporating use of Kokkos data structures within
Uintah.

6. ADDRESSING RESILIENCE FOR NODE
AND CORE LEVEL

The next generation of clustered machines, capable of delivering
100−plus Petaflops with billion way parallelism, are not only ex-
pected to have higher number of components but also have a lower
Mean Time Between Failure (MTBF). The Blue Waters system, an
example of clustered Petascale machine with 362, 240 cores, built
from commodity components required remedial action for either
hardware or software failures, approximately every 4.2 hours [37]
during pre-production stage. As improvements in hardware to with-
stand failures been slower than the growth in computational power,
providing resiliency with the help of software is crucial. We at-
tempt to build a version of Uintah capable of withstanding failures
at the level of cores/ accelerators, on-node memory, node, and MPI
failure by injecting faults to the simulations through an interface
and resolving them using software and existing hardware capabili-
ties. Currently, Uintah uses a checkpoint restart mechanism to deal
with fail stop errors with an option to vary the frequency of check-
pointing to suit the simulation. At exascale, simple checkpointing
is not a feasible approach as low MTBF would require frequent
checkpointing and the huge volume of data generated per check-
point could inhibit forward progress of the simulation.

Our planned approach to making Uintah resilient can be broadly
classified into areas involving prediction, detection, notification and
correction of hardware and software errors. It is difficult to pre-
dict the support for error detection that would be available at the
operating system level. Good examples of proposed system lay-
ers are given by Figure 9. Examples of monitoring approaches
for hardware failures are systems such as the Intelligent Platform
Management Interface (IPMI) which can also be used [47] as part
of a process to monitor hardware failures. We have attempted to
integrate features from Ganglia Monitoring System [38], a scalable
grid monitoring system with notification capabilities, to Uintah’s
run time system but found them to provide poor support for co-
processor and accelerator core monitoring. However, low mem-
ory allocation overhead per node and hierarchical data structures of

Ganglia are ideal characteristics to incorporate in future monitoring
and notification systems at exascale.

Figure 9: Proposed model of system layers

Silent data corruption (SDC) or software faults affect the data in-
tegrity in the system but are harder to detect as a bit flip won’t cause
the system to fail−stop but could give incorrect results. Using re-
dundancy based RedMPI [24], we compare the messages of a MPI
command, executed redundantly, typically twice or thrice, on the
sender side and detect a SDC on the receiver side, if the hash code
of the message content differs. The results in [24] suggest a trade
off in terms of redundant computing might be necessary for detect-
ing and recovering from SDC errors. We intend to use RedMPI
with available optimization to minimize communication overheads
and maximize the performance to power ratio.

In the first step towards building a resilient run time system, we
construct a single interface that models system shutdown at the
level of a node. This hardware level failure simulation can be done
by having randomized behavior in a task that causes it to stop,
with setting a flag that is equivalent to a system failure response.
This simple interface will allow us to experiment with the run time
system and to reschedule task execution by reinserting them into
the task queue. This facility necessitates a change to the scheduler
functionality, described below.

The Unified Scheduler, Uintah’s hybrid scheduler (using MPI
across nodes and Pthreads on-node) concurrently executes tasks in
a node without a central control thread. Each task execution thread
is pinned to a separate core by setting their CPU affinity to core
number and thereby avoiding double booking. Threads, when not
executing tasks or waiting for MPI receive message, continuously
monitor InternalReadyQueue and ExternalReadyQueue,
the queues having tasks with resolved dependencies. If a task’s
internal dependencies are satisfied, then the task is placed in the
internal queue, where it waits for completion of required MPI com-
munication. When the MPI communication is completed, the tasks
are moved to the external queue where the task is executed by the
first available thread. We model the core failure within a node by
choosing a random moment within the time-frame of simulation
experiment. In case a task is being executed by the thread at the
time of failure, we retrieve the task and push it back into the exter-
nal queue, while also reverting any state related to the reassigned
task, e.g. completed task counters, timing statistics, etc. Further
executions on the core (in subsequent timesteps) are prevented by
not sending a signal to the faulty core’s affiliated threads. We per-
formed the same set of experiments on multiple cores by killing
them one by one and randomly to study the ideal time to declare
node failure and trigger the load balancer to reassign patches across
other nodes.

To test the capability of declaring node failure in Uintah, we cus-
tomized the Poisson simulation to retrieve the task executed at the
time of core failure and pushing task back to the queue. We tried

determining the ideal time to declare node failure by running this
simulation for over 100 time steps, with 16 patches on a quad−core
dual socket Intel Xeon machine. The mean time to execute a task
within a time step was 42 ms. We assumed for this paper that, a
thread will not be executing a reduction task at the time of failure
or that the main thread will not fail. We have altered the input file
for parameters such as having a dynamic load balancer and higher
accuracy to avoid early completion. A total of 3900 tasks were
run over the course of simulation, with times averaged over 5 runs
per simulation. Table 2 shows the times for running the simula-
tions ending with no core failures. The core failure results shown
in Figure 10 measure the elapsed times of simulation that began
with 8 threads and having random number of threads fail at ran-
dom intervals, averaged over 5 runs. It is clear that the impact of
a single core failure can slow down the execution of the node and
the entire simulation in general. While the load balancer was not
triggered automatically in the simulation, migrating few patches on
detection of a failure to load balance might be necessary.

Table 2: Baseline times for running failure free Poisson simula-
tion having 39 tasks per iteration, for 100 iterations

Thread count 4 5 6 7 8
Time (s) 11.516 11.48 10.959 10.8 10.634

Figure 10: Timing the Poisson equation simulation with and
without failure

6.1 Resilience through AMR Replication
Another possible approach to address resilience is through fault-

tolerant algorithms. Addressing resilience through AMR replica-
tion would be a cost-effective approach as it requires only a few
modifications to the existing algorithms.

As discussed in the Inter-Agency Workshop on HPC Resilience
at Extreme Scale [3], existing approaches use checkpointing to
address fault-tolerance, and further research has been focused on
achieving faster checkpointing. System software must be given an
opportunity to recover from an error and to carry on with the com-
putation. A similar approach is followed in our system. When a
node dies, thereby causing data loss, we recover the lost data using
interpolation routines and the computation is carried on.

Figure 11: Norm vs Patch Resolution

Several experiments were conducted where different levels of
coarser and finer meshes were used in interpolation routines and the
accuracy of the interpolated data was observed. For the study, we
chose the solution of Laplace Equation and Shepard Interpolation
to preserve the positivity of the data [16]. We noticed that as the
coarseness of the patch increases, the error increases which is ex-
pected. It is interesting to note the amount of increase in error as
the coarseness of the patch increases. In this approach, a coarser
version of the patch is replicated. Thus in 3D, this approach has
only 12.5% overhead as suggested by Meng [39], Heroux [27] and
others.

N x N x N grid cells were taken and assuming that the center
patch of p x p x p grid cells is missing, the lost data is recovered
using the interpolation routine from the remaining data. This exper-
iment was repeated with coarser meshes of size [N

2
]
3, [N

4
]
3,[N

8
]
3,

and the center patch of p x p x p grid cells was recovered through
interpolation. Figure 11 shows the variation of the norm with in-
creasing coarseness of the patch. The infinity norm and L2 Norm
are shown along the y-axis. Patch coarseness is represented along
the x-axis.

The obvious advantage of using AMR replication is that it adds
an overhead of only 12.5% to the amount of storage when the
patches are one level coarser. In the case of time integration, it may
be possible to integrate coarse patches, twice as large as the fine
mesh, within a time step, which reduces the cost of further time
integration. The disadvantage is that every time a patch fails there
is the equivalent of a spatial re-mesh. The challenge is then ensur-
ing that the fine patch is recreated with enough accuracy from the
coarse patch. The key to this process is performing spatial interpo-
lation with enough accuracy. An analysis of the errors introduced
in this process is given in [12]. The analysis shows that interpola-
tion accuracy is critical after re-meshing restarts. In our case, this
applies also to the interpolation after a patch crashes.

6.2 Power Management Systems

When considering the proposed 20 MW power cap adopted by
the Exascale Initiative Steering Committee to reach exascale [9],
it is important that a resilience strategy not restrict itself to hard-
ware and software failures alone. Due to available power budgets
and restrictions, it may be necessary for computation to be "throt-
tled down" at times. Power management approaches such as the
PowerAPI [19] from Sandia National Laboratories, seek to provide
a portable API for power measurement and control to accomplish

this. It is commonly considered that, through this measurement
and control, exascale energy efficiency requirements will be met.
As proposed in [19], dynamic runtime adaptation is one anticipated
system-level approach to power management, making throttling de-
cisions based on power and performance counter data. In this ap-
proach, clock modulation is used to reduce power usage on one or
more cores per chip. The Uintah runtime system is well positioned
to adapt to an approach such as this because of its task-based de-
sign.

In this work, we have added the Uintah facility to artificially
slowdown hardware, emulating these power reduction scenarios.
The effect of this facility ranges from individual cores to entire
nodes within a running simulation, and allows programmatic ran-
domization of a subset of the overall ranks involved in MPI_COMM_WORLD.
For these ranks, sleep() calls are injected in between the end of
task execution and the task finalization stage in such a way that this
delay is seen by the Uintah load balancer. The key aim is to see
what the effect of either a core or complete nodal slowdown has on
the Uintah load balancer, specifically how Uintah’s load balancing
algorithms [32] respond to slower execution by certain MPI ranks.

Table 3: Effect of randomized slowdown of randomized MPI
ranks

GT .01 .025 .50 .1 .15 .2 .25 .3

Time (s) 594 397 292 406 446 424 819 1178

Table 3 shows preliminary results for a single-material, single-
level ICE problem with initially uniform workload across compu-
tational domain with 8 MPI ranks and a computational domain de-
composed into 25 mesh patches. 2 slow ranks were selected at
the beginning of the simulation, which ran for 100 timesteps. The
Kalman cost algorithm was used and GainThreshold (GT) of
the load balancer varied from 0.01 to 0.3. Load balancing was
triggered every 5 timesteps. The table illustrates the ability of the
nodal slowdown facility to impact the Uintah load balancer. We are
currently exploring how and when patches are migrated off "slow
nodes".

7. RELATED WORK
There has been much recent activity in the area of task-based

approaches that also use run time systems to address issues such
as portability and resilience. One of the the most widely used task
based approaches is the Charm++ system of Kale and co-workers
which has used a checkpointing approach since 2004 [51]. There
are similar initiatives in DOE labs and other often connected efforts
to build parallel system software for exascale machines. The design
of modern operating systems such as ARGO [1] and Hobbes [15],
custom languages such as Habanero language [18, 50] and The
Sandia Xpress Xstack Project involving Sterling’s ParallelX ap-
proach [31] are very promising ideas for exascale computing. In
addition, there are many papers about the challenges at exascale
such as [17, 48] which give a detailed discussion on the current
state and approaches to building resilience.

The work of the EXAHD project uses a two-level sparse grid
approach for higher-dimensional problems [44, 46]. This study
proved that we might not need the entire data for recovery pro-
cedures. Extending the same idea, we use a coarser grid for check-
pointing as we do not need the complete data for recovery.

The Inria RUNTIME team led by Namyst with his colleagues are
developing a suite of tools and software layers including StarPU [4–

8,25,26,35,36,49] for task based runtime systems that work across
the heterogeneous platforms of exoscale HPC systems.

8. CONCLUSIONS AND FUTURE WORK
Future Uintah run time system development will entail continued

development and implementation of the described design for sup-
porting multiple GPUs per node and assigning a single MPI rank
per node to minimize latencies and memory management overhead.
We will continue to leverage the capabilities of the Kokkos layer to
handle the changes and challenges of multiple memory hierarchies
and various accelerator architectures in an agnostic way. Full sup-
port of Kokkos will require modifying Uintah’s data warehouse to
return Kokkos views. Data structure improvements will focus on
eliminating the storage of the entire patch decomposition per MPI
rank. The cost of storing and processing all of these patches per
MPI rank limits the scalability at exascale problem sizes. The ul-
timate solution is to store a subset of the patches per MPI rank
and communicate information as needed. While simulating core
slowdown through software is an effective means for exploring ap-
proaches for handling resiliency and redundancy in the runtime sys-
tem, we will augment simulated hardware failures at the core/node
levels with actual deployment and testing on hardware that can be
controlled programatically such as found on the Sandia test bed
machines. In addition, we will continue to investigate the use of
RedMPI as a toolkit for exploring the injection of faults into the
runtime system layer to stress test our approaches to redundancy
and resiliency management.

The simulation to test core failure has two subtle assumptions:
cores don’t fail during a reduction task and the main core doesn’t
fail. Both these constraints will be removed to handle core failures
at any stage of simulation. While the cores have been programmed
to fail randomly, we plan to improve the prediction capabilities of
the runtime system to trigger the code to handle core failure.

Finally, the resilient system that we are trying to build must dy-
namically adapt to the system errors with minimal hardware sup-
port. Better algorithms for interpolation including radial basis func-
tions, and Kriging will be investigated as a means to recover from
errors such as data loss that obviate a checkpoint restart. The recov-
ery algorithms should be faster than restarting from a checkpoint
and so help greatly in the case of predicted frequent faults.

9. ACKNOWLEDGMENTS
This work has been supported by the Department of Energy,

National Nuclear Security Administration, under Award Number
DE-NA0002375 and by the National Science Foundation XPS award
number 1337145.

10. REFERENCES
[1] Argo: An exascale operating system.

http://www.mcs.anl.gov/project/argo-exascale-operating-
system.

[2] Portable hardware locality.
http://http://www.open-mpi.org/projects/hwloc/.

[3] B. Adolf, S. Borkar, N. DeBardeleben, M. Elnozahy,
M. Heroux, D. Rogers, R. Ross, V. Sarkar, M. Schulz,
M. Snir, and P. Woodward. Inter-agency workshop on hpc
resilience at extreme scale. National Security Agency,
Advanced Computing Systems, February 2012.

[4] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst,
S. Thibault, and S. Tomov. A Hybridization Methodology
for High-Performance Linear Algebra Software for GPUs. In
Wen-mei W. Hwu, editor, GPU Computing Gems, volume 2.
Morgan Kaufmann, Sept. 2010.

[5] E. Agullo, O. Beaumont, L. Eyraud-Dubois, J. Herrmann,
S. Kumar, L. Marchal, and S. Thibault. Bridging the Gap
between Performance and Bounds of Cholesky Factorization
on Heterogeneous Platforms. In Heterogeneity in Computing
Workshop 2015, Hyderabad, India, May 2015.

[6] C. Augonnet. Scheduling Tasks over Multicore machines
enhanced with Accelerators: a Runtime System’s
Perspective. PhD thesis, Université Bordeaux 1, 351 cours de
la Libération — 33405 TALENCE cedex, Dec. 2011.

[7] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier.
StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures. Concurrency and
Computation: Practice and Experience, Special Issue:
Euro-Par 2009, 23:187–198, Feb. 2011.

[8] S. Benkner, S. Pllana, J. L. Träff, P. Tsigas, U. Dolinsky,
C. Augonnet, B. Bachmayer, C. Kessler, D. Moloney, and
V. Osipov. PEPPHER: Efficient and Productive Usage of
Hybrid Computing Systems. IEEE Micro, 31(5):28–41, Sept.
2011.

[9] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Karp,
S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli,
S. Scott, A. Snavely, T. Sterling, R. S. Williams, K. Yelick,
K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Keckler,
D. Klein, P. Kogge, R. S. Williams, and K. Yelick. Exascale
computing study: Technology challenges in achieving
exascale systems peter kogge, editor and study lead, 2008.

[10] M. Berzins. Status of release of the Uintah Computational
Framework. Technical Report UUSCI-2012-001, Scientific
Computing and Imaging Institute, 2012.

[11] M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian,
A. Humphrey, Q. Meng, J. Schmidt, and C. Wight.
Extending the uintah framework through the petascale
modeling of detonation in arrays of high explosive devices.
Submitted to SIAM Journal on Scientific Computing, 2015.

[12] M. Berzins, P. Capon, and P. Jimack. On spatial adaptivity
and interpolation when using the method of lines. Applied
Numerical Mathematics, 26:117–134, 1998.

[13] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C. Wight, and
J. Peterson. Uintah - a scalable framework for hazard
analysis. In TG ’10: Proc. of 2010 TeraGrid Conference,
New York, NY, USA, 2010. ACM.

[14] M. Berzins, J. Schmidt, Q. Meng, and A. Humphrey. Past,
present, and future scalability of the uintah software. In
Proceedings of the Blue Waters Extreme Scaling Workshop

2012, page Article No.: 6, 2013.
[15] R. Brightwell, R. Oldfield, A. B. Maccabe, and D. E.

Bernholdt. Hobbes: Composition and virtualization as the
foundations of an extreme-scale os/r. In Proceedings of the
3rd International Workshop on Runtime and Operating
Systems for Supercomputers, ROSS ’13, pages 2:1–2:8, New
York, NY, USA, 2013. ACM.

[16] K. W. Brodlie, M. R. Asim, and K. Unsworth. Constrained
visualization using the shepard interpolation family.
Technical report, SCHOOL OF COMPUTING,
UNIVERSITY OF LEEDS, LEEDS, 2005.

[17] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and
M. Snir. Toward exascale resilience: 2014 update.
Supercomputing frontiers and innovations, 1(1), 2014.

[18] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-java:
The new adventures of old x10. In Proceedings of the 9th
International Conference on Principles and Practice of
Programming in Java, PPPJ ’11, pages 51–61, New York,
NY, USA, 2011. ACM.

[19] D. DeBonis, R. E. Grant, S. L. Olivier, M. Levenhagen,
S. M. Kelly, K. T. Pedretti, and J. H. Laros. A power api for
the hpc community. Sandia Report SAND2014-17061,
Sandia National Laboratories, 2014.

[20] D.L.Brown and P. et al. Scientific grand challenges:
Crosscutting technologies for computing at the exascale.
Technical Report Report PNNL 20168, US Dept. of Energy
Report from the Workshop on February 2-4, 2010
Washington, DC, 2011.

[21] C. Earl. Introspective Pushdown Analysis and Nebo. School
of Computing, University of Utah, 2014.

[22] H. C. Edwards, C. R. Trott, and J. Amelang. Kokkos
tutorials, 2015. https://github.com/kokkos/kokkos-tutorials.

[23] H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos:
Enabling manycore performance portability through
polymorphic memory access patterns. Journal of Parallel
and Distributed Computing, 74(12):3202 – 3216, 2014.
Domain-Specific Languages and High-Level Frameworks for
High-Performance Computing.

[24] D. Fiala. Detection and correction of silent data corruption
for large-scale high-performance computing. In Parallel and
Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pages
2069–2072, May 2011.

[25] S. Henry. Modèles de programmation et supports exécutifs
pour architectures hétérogènes. PhD thesis, Université
Bordeaux 1, 351 cours de la Libération — 33405 TALENCE
cedex, Nov. 2013.

[26] S. Henry, A. Denis, and D. Barthou. Programmation unifiée
multi-accélérateur OpenCL. Techniques et Sciences
Informatiques, (8-9-10):1233–1249, 2012.

[27] M. Heroux. Untitled manuscript. personal communication.
[28] A. Humphrey, T. Harman, M. Berzins, and P. Smith. A

scalable algorithm for radiative heat transfer using reverse
monte carlo ray tracing. In J. M. Kunkel and T. Ludwig,
editors, High Performance Computing, volume 9137 of
Lecture Notes in Computer Science, pages 212–230.
Springer International Publishing, 2015.

[29] A. Humphrey, Q. Meng, M. Berzins, and T. Harman.
Radiation modeling using the Uintah heterogeneous
CPU/GPU runtime system. In Proceedings of the 1st
Conference of the Extreme Science and Engineering
Discovery Environment (XSEDE 2012). ACM, 2012.

[30] J.Ang and K. et al. Workshop on extreme-scale solvers:
Transition to future architectures. Technical Report USDept.
of Energy, Office of Advanced Scientific Computing
Research. Report of a meeting held on March 8-9 2012,
Washington DC, 2012.

[31] H. Kaiser, M. Brodowicz, and T. Sterling. Parallex an
advanced parallel execution model for scaling-impaired
applications. In Parallel Processing Workshops, 2009.
ICPPW ’09. International Conference on, pages 394–401,
Sept 2009.

[32] J. Luitjens. The Scalability of Parallel Adaptive Mesh
Refinement Within Uintah. PhD thesis, School of Computing,
University of Utah, 2011. Advisor: Martin Berzins.

[33] J. Luitjens and M. Berzins. Improving the performance of
Uintah: A large-scale adaptive meshing computational
framework. In Proc. of the 24th IEEE Int. Parallel and
Distributed Processing Symposium (IPDPS10), 2010.

[34] J. Luitjens and M. Berzins. Scalable parallel regridding
algorithms for block-structured adaptive mesh refinement.
Concurrency and Computation: Practice and Experience,
23(13):1522–1537, 2011.

[35] S. A. Mahmoudi, P. Manneback, C. Augonnet, and
S. Thibault. Traitements d’images sur architectures parallèles
et hétérogènes. Technique et Science Informatiques, 2012.

[36] V. Martínez, D. Michéa, F. Dupros, O. Aumage, S. Thibault,
H. Aochi, and P. O. A. Navaux. Towards seismic wave
modeling on heterogeneous many-core architectures using
task-based runtime system. In 27th International Symposium
on Computer Architecture and High Performance Computing
(SBAC-PAD), Florianopolis, Brazil, Oct. 2015.

[37] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico,
J. Fullop, and W. Kramer. Lessons learned from the analysis
of system failures at petascale: The case of blue waters. In
Proceedings of the 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, DSN ’14, pages 610–621, Washington, DC, USA,
2014. IEEE Computer Society.

[38] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia
distributed monitoring system: design, implementation, and
experience. Parallel Computing, 30(7):817 – 840, 2004.

[39] Q. Meng. Untitled manuscript. personal communication.
[40] Q. Meng. Large-scale distributed runtime system for

DAG-based computational framework. PhD thesis,
University of Utah, Salt Lake, 2014.

[41] Q. Meng and M. Berzins. Scalable large-scale fluid-structure
interaction solvers in the Uintah framework via hybrid
task-based parallelism algorithms. Concurrency and
Computation: Practice and Experience, 2013.

[42] Q. Meng, M. Berzins, and J. Schmidt. Using Hybrid
Parallelism to Improve Memory Use in the Uintah
Framework. In Proc. of the 2011 TeraGrid Conference
(TG11), Salt Lake City, Utah, 2011.

[43] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins.
Investigating applications portability with the Uintah
DAG-Based runtime system on PetScale supercomputers. In
Proceedings of SC13: International Conference for High
Performance Computing, Networking, Storage and Analysis,
pages 96:1–96:12. ACM, 2013.

[44] A. Parra Hinojosa, C. Kowitz, M. Heene, D. Pflüger, and
H.-J. Bungartz. Towards a fault-tolerant, scalable
implementation of gene. In Proceedings of ICCE 2014,
Lecture Notes in Computational Science and Engineering.

Springer-Verlag, 2015. Accepted.
[45] B. Peterson, H. Dasari, A. Humphrey, J. Sutherland, T. Saad,

and M. Berzins. Reducing overhead in the uintah framework
to support short-lived tasks on gpu-heterogeneous
architectures. In Under submission to WOLFHPC Workshop
- International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’15, 2015.

[46] D. Pflüger, H.-J. Bungartz, M. Griebel, F. Jenko, T. Dannert,
M. Heene, A. Parra Hinojosa, C. Kowitz, and P. Zaspel.
Exahd: An exa-scalable two-level sparse grid approach for
higher-dimensional problems in plasma physics and beyond.
In Euro-Par 2014: Parallel Processing Workshops, Lecture
Notes in Computer Science. Springer-Verlag, Sept. 2014.
accepted.

[47] R. Rajachandrasekar, X. Besseron, and D. K. Panda.
Monitoring and predicting hardware failures in hpc clusters
with ftb-ipmi. In Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, IPDPSW ’12, pages
1136–1143, Washington, DC, USA, 2012. IEEE Computer
Society.

[48] M. Snir, R. Wisniewski, J. Abraham, S. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson,
A. Chien, P. Coteus, N. Debardeleben, P. Diniz,
C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta,
F. Johnson, S. Krishnamoorthy, S. Leyffer, D. Liberty,
S. Mitra, T. Munson, R. Schreiber, J. Stearley, and
E. Hensbergen. Addressing Failures in Exascale Computing.
International Journal of High Performance Computing
Applications, March 21, 2014 2014.

[49] L. Stanisic, S. Thibault, A. Legrand, B. Videau, and J.-F.
Méhaut. Faithful Performance Prediction of a Dynamic
Task-Based Runtime System for Heterogeneous Multi-Core
Architectures. Concurrency and Computation: Practice and
Experience, page 16, May 2015.

[50] S. Tasirlar and V. Sarkar. Data-driven tasks and their
implementation. In Proceedings of the 2011 International
Conference on Parallel Processing, ICPP ’11, pages
652–661, Washington, DC, USA, 2011. IEEE Computer
Society.

[51] G. Zheng, L. Shi, and L. Kale. Ftc-charm++: an in-memory
checkpoint-based fault tolerant runtime for charm++ and
mpi. In Cluster Computing, 2004 IEEE International
Conference on, pages 93–103, Sept 2004.

