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Executive Summary 

Machine learning and other Artifical Intelligenece technologies (all indicated in the following as 

AI) used within a modern, smart cyberinfrastructure have become critical new avenues for 

discovery and validation in data-driven science and engineering disciplines of all kinds.  We can 

expect many landmark discoveries and new lines of productive research to be enabled through AI 

analysis of the rapidly growing treasure trove of scientific data. AI-based techniques have been 

applied in many fields of science and engineering, including remote sensing, cosmology, energy, 

cancer research, IT systems management, and machine design and control, but the lack of proper 

integration with the current NSF-supported cyberinfrastructure is limiting their potential. Recent 

events due to the COVID-19 pandemic have highlighted how cyberinfrastructure is a crucial 

enabler of modern research, with massive simulations and data management capabilities [8-10], 

but these events have also emphasized how the lack of proper integration with AI technology 

remains a major limiting factor for the advancement of science and engineering, especially when 

any kind of rapid response is needed. 

Summary of the Workshop 

The 2020 NSF Workshop on Smart Cyberinfrastructure was held at the Hyatt Regency Crystal 

City at Reagan National Airport in Arlington, VA, on February 25-27, 2020. A steering committee 

of domain experts and CI community representatives led the organization of the workshop. 

Workshop attendance was by invitation only and consisted of 60 participants, including AI/ML 

experts, domain scientists and engineers, representatives from the National Science Foundation 

(NSF), CyberInfrastructure (CI) professionals, and representatives from NSF-funded computing 

facilities. 

The overarching goal of the workshop was to develop a community view of the state of the art and 

research needed in the use of scientific cyberinfrastructure to advance AI technologies as well as 

how to use these technologies to manage NSF-sponsored cyberinfrastructure efficiently. The scale 

and high priority of AI research activities and opportunities call for the urgent and coherent 

development of a smart cyberinfrastructure that enables accelerated progress, shared outcomes, 

workforce training, and operational excellence. Developing a shared research vision allows us to 

identify the most crucial gaps in existing capabilities that are least likely to be filled by industry or 

existing efforts by NSF or other agencies. 

The pre-workshop activities involved an assessment of the state of the art via white papers that 

were collected and summarized by the steering committee. The 35 responses with white paper 

submissions were shared with the attendees prior to the workshop and made available to the 

general public through the workshop website. The workshop agenda was designed to maximize 

the interactions among the participants with 6 active breakout sessions and 4 panel discussions, in 

addition to questions and feedback during 3 keynote and 9 plenary presentations as well as 13 
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lightning talks. Based on the content of the white papers, the discussions were primarily focused 

on the following 4 themes: 

1. exploring and assessing the cyberinfrastructure requirements for AI/ML-based scientific 

applications, 

2. accelerating AI/ML algorithms on NSF-enabled cyberinfrastructure, 

3. promoting the efficient use of NSF-enabled cyberinfrastructure through AI/ML 

technologies, 

4. enabling easy and productive access to AI/ML tools by a large community of domestic 

and international science stakeholders. 

Overall, the enthusiastic engagement of all participants made the workshop a successful forum for 

open discussions, with a broad spectrum of perspectives from all stakeholders. This report 

documents and organizes the wealth of information provided by the participants before, during, 

and after the workshop. Additional details can be found at http://smartci2020.org/. 

Working Groups 

From the initial 4 areas of discussions, the workshop activities led to the creation of the following 

6 working groups, which collected and summarized the community feedback and distilled the 

associated findings and recommendations reported later in the report:  

● Cyberinfrastructure Requirement for AI-Based Scientific Applications: This working 

group explored the requirements for cyberinfrastructure to facilitate the application of AI 

in science and engineering applications. As the current CI has become an indispensable 

tool for modern scientific discovery, a smarter CI is expected to become an indispensable 

accelerator or gap-bridger for solving the pressing challenges in science and engineering. 

This working group assessed S&E requirements to achieve this goal, including the 

availability of hardware components, the effectiveness of the software infrastructures, and 

the usability of the data repositories that enable exploration of scientific and engineering 

opportunities, and solutions.  

● Development of the Next-Generation System Cyberinfrastructure Tightly Integrated 

with AI: This working group explored how AI can inform the design and operation of NSF 

cyberinfrastructure, both the hardware and software, in centralized facilities and at the 

edge. This discussion was facilitated throughout the workshop by a panel, several invited 

talks, and two breakout sessions.  The first breakout session focused primarily on the 

physical aspects of the “central” CI, inside the datacenter, with the second breakout focused 

more on “edge” issues, data acquisition, and software layers. 

● Improving AI/ML Associated Software Tools on NSF-Enabled Cyberinfrastructure: 

Although we have examples of resources and scientific applications that have successfully 

deployed artificial intelligence techniques as part of the solution, we face a number of 

http://smartci2020.org/
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challenges in scaling and generalizing the developed methods and tools at the CI level. 

Thus, this working group discussed the state of the art in this area and explored the potential 

improvements needed in AI/ML algorithms, software infrastructure, and data repositories 

to enable effective use of these technologies for (future) NSF infrastructure.  

● Improving AI/ML Associated Data Repositories on NSF-Enabled 

Cyberinfrastructure: This working group discussed the opportunities for building shared 

data and modeling repositories for training and inference, with applications in computer 

science, collaborative problem solving, and evidence-based CI development. These shared 

datasets include repositories of scientific data generated on the NSF-supported CI as well 

as the large amounts of data collected while monitoring scientific computations that can be 

used to enable AI control and optimization of the operations. In both cases, we aim to 

develop standards and repositories that facilitate data sharing and retargeting the 

information available for new AI tasks. 

● Human Capacity Development in AI and Smart Cyberinfrastructure: This working 

group gathered community feedback regarding the needs and requirements for the CI 

workforce (intended in a broad sense), comprised of all participants and contributors to the 

CI ecosystem, including students, staff, research professionals, scientists, and engineers at 

every level of expertise. This “human capacity” is the strategic asset that will allow us to 

ultimately deploy the smart cyberinfrastructure of the future by creating new knowledge, 

assess best AI practices, support end-users needing AI tools, and create/participate in 

training opportunities.  

● International Collaborations: This working group discussed existing challenges and 

proposed solutions associated with the ability to leverage international collaboration for 

the development, use, and sharing of AI technologies for a smart cyberinfrastructure.  

Key Findings and Recommended Actions 

The following findings and recommendations were developed based on information collected 

during the process, including a survey of the information provided in the white papers before the 

workshop; an account of the community feedback during the panel discussion and breakout 

sessions; and content from the plenary, keynote, and lightning talks, including the group 

discussions that followed each presentation.  
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Key findings: 

1.         The usability of AI techniques at all levels of the cyberinfrastructure remains a concern for 

domain scientists and engineers, ranging from the integration of new hardware to the accessibility 

of software stacks.  In addition, facilitating the interpretation of results, with a proper assessment 

of uncertainties and reliability, is a major gap within the current CI.  

2.         A largely untapped opportunity exists for developing new AI technology to improve CI by 

leveraging the existing logs, workflows, statistics of data collected, and curated data repositories 

that have been unavailable because they have not been built around data-sharing values. 

3.         A major CI challenge is the lack of critical mass in the human capacity that creates and 

maintains scientific and institutional knowledge, and that supports the development and 

deployment of smart cyberinfrastructure. The lack of educational and training opportunities will 

make this problem worse. 

4.         We have a critical lack of hardware, software tools, and systems in support of performant 

science and engineering application workflows that integrate AI technologies. 

5.         Institutional coordination among CI professionals, AI innovators, and domain scientists is 

critically needed to achieve fast technology creation and transfer, making the smart CI a key tool 

for scientific innovation. 

Recommended actions: 

1.         Foster collaboration between the domain scientists/engineers and CI experts through 

synergistic funding mechanisms, cross-disciplinary exchange during human capacity 

development, and AI-augmented science/engineering curriculum.  

2.         Promote the development of architectures, software tools, and systems supporting 

S&E+AI/ML application workflows, including providing vertically integrated, performant, and 

portable solution environments to support the responsible use of AI techniques. 

3.         Enable collaborative research within the CI community through open access to data 

collected and created from NSF-supported cyberinfrastructure, including the full spectrum of 

performance monitoring, software usage, AI models, and scientific outcomes. 

4.         Support the creation of testbeds that facilitate the experimentation of new AI technologies 

without disrupting CI operations in production environments. In particular, CI testbeds should 

enable innovation in AI-driven discovery and simulation, managing and decreasing energy 
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consumption, enhancing smart sensors at the edge, and facilitating the development of advanced 

software tools integrated with AI technologies. 

5.         Establish Centers of Excellence (for example, following the model of the Center for 

Trustworthy Scientific Cyberinfrastructure, CTSC) that connects domain scientists and engineers 

with the latest AI technology and facilitates its effective use on a smart CI with the adoption of 

best practices. A Center of Excellence would also constitute a model for AI-CI workforce 

development and training, identifying career paths, diversity, and international collaborations. 

 

The overall consensus was that the success of the workshop was due to the timely identification 

of an area of urgent need. The insights gained will need long-term sustained activities that continue 

to engage and grow this community. In particular, we have initiated a number of discussions in 

more focused areas to tackle more effectively and, in a coordinated way, the numerous challenges 

that we will face to build the smart cyberinfrastructure of the future.  
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1. Introduction 

Overview and Goals 

A broadly representative and diverse group of 60 scientists, researchers, and engineers met 

February 25-27 in Crystal City, Arlington, VA to consider the challenges and opportunities being 

presented by the incredibly rapid developments in AI (including machine learning and other smart 

technologies) with respect to their use on the NSF-supported cyberinfrastructure.  These 

technologies are of top national importance, as represented by the February 11, 2019, Executive 

Order on Maintaining American Leadership in Artificial Intelligence [7].  The 2.5-day workshop 

format was chosen to give full consideration to this important topic and allow active contributions 

by a broad spectrum of stakeholders, including junior researchers and underrepresented groups. 

This workshop took stock of the current use of artificial intelligence in the national 

cyberinfrastructure and yielded findings and recommendations to further this critical national 

priority. In particular, a key goal was to develop a common understanding of the current and future 

requirements for scientists and engineers; assess gaps in the architectures, best practices,  and 

enabling technologies; and identify the needs for creating a critical mass in the human capacity to 

support the operations, provide training opportunities, and ultimately create the knowledge 

necessary to create and manage a sustainable smart cyberinfrastructure. 

Specific goals of the workshop included: 

● Understand the best practices in integrating AI tools in workflows for science and 

engineering. 

● Identify the requirements for incorporating AI tools, quickly and effectively, in new 

science and engineering applications. 

● Identify gaps in the hardware infrastructure needed for the development of a smart 

cyberinfrastructure from the edge to the leadership-class computing facilities. 

● Understand the differences in priorities among industry, academia, and national 

laboratories to determine the unique role that can be undertaken by the National Science 

Foundation.  

● Develop interoperability guidelines, mechanisms, and processes that can make AI software 

quickly understood and adopted on the cyberinfrastructure. 

● Assess the need for a new class of data repositories that can enable CI-specific research 

goals that can be addressed with AI tools. 

● Understand the AI-specific needs of the CI workforce for deploying a new smart 

cyberinfrastructure, supporting the science and engineering challenges of NSF priorities, 

and creating the critical mass in human capacity that can be sustained in the long term.  
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● Provide recommendations that can serve as inputs to current and future NSF AI-CI related 

programs. 

Workshop Organization  

Steering Committee 

The steering committee of the workshop had the main responsibility to organize the workshop, 

identify a proper venue, invite participants with a broad spectrum of expertise, create a call to the 

community to provide pre-workshop input via white papers, and establish the workshop agenda, 

including a plan for keynote, plenary, and lightning talks; panel discussions; and breakout sessions. 

After the workshop, the steering committee was also responsible for producing the workshop 

report with the added help of 5 supporting editors who joined the group during the meeting. The 

committee was composed of 9 leading experts in the field representing the CI community and 

applied use of AI technologies.  

The committee members were as follows (bios are included in Appendix C): 

● Ilkay Altintas - San Diego Supercomputer Center 

● Jose Fortes - University of Florida 

● Ian Foster - The University of Chicago and Argonne National Laboratory 

● Helen Gu - North Carolina State University 

● Salim Hariri - University of Arizona 

● Valerio Pascucci (PI and Chair) - University of Utah 

● Dan Stanzione - University of Texas at Austin 

● Michela Taufer - University of Tennessee Knoxville 

● Xinyu Zhao - University of Connecticut 

The supporting editors were as follows: 

● Peer-Timo Bremer - Lawrence Livermore National Laboratory 

● Terry Moore - University of Tennessee Knoxville 

● Nick Nystrom - Pittsburgh Supercomputing Center 

● Steve Petruzza - University of Utah 

● Glenn Ricart - US Ignite 

Workshop Attendees  

Workshop attendance was by invitation only, based on a list of invitees developed by the steering 

committee. The workshop attendees included representatives from the CI community, AI experts 

and practitioners, and domain scientists and engineers. Moreover, the attendees were affiliated 

with diverse institution types, including academia, industry (e.g., Google), DOE national 

laboratories (e.g., ANL), international partners (e.g., AIST in Japan), and the National Science 

Foundation. 60 participants attended the workshop (of 65 registered). Travel support was provided 
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to a few early career researchers and international partners to broaden the workshop participation. 

The final attendee list is provided in Appendix A. 

Workshop Structure and Activities 

Pre-workshop Activities 

The pre-workshop activities were divided in two main tasks: (i) the steering committee created 

four preliminary working groups to compile an initial assessment of the state of the art and open 

challenges to be presented at the workshop; and (ii) the committee developed a call for white 

papers to provide additional input on the topics analyzed by the working groups and to guide the 

selection of additional speakers for lightning talks.    

White papers. The attendees who tentatively accepted the workshop invitation were requested to 

submit a short (about two pages in length) white paper based on their perspectives on at least one 

of the following suggested areas of interest: 

● Accelerate AI/ML algorithms on NSF-supported cyberinfrastructure  

● Efficient use NSF-supported cyberinfrastructure through AI/ML technologies 

● Provide easy and productive access to AI/ML tools by a broader and diverse scientific 

community of domestic and international stakeholders 

● Explore and assess cyberinfrastructure requirements for AI/ML-based scientific 

applications 

These areas were recommended to help structure the discussions, although one role of the white 

papers was also to assess if the attendees would highlight other topics of interest that may have 

been missed by the steering committee. To further facilitate combining the responses, the attendees 

were provided with the following questions: 

● What are the main open research challenges and/or promising research directions in AI/ML 

and other smart technologies that can positively impact future NSF-supported 

cyberinfrastructure? 

● What computational testbeds for community research can accelerate innovation and lead 

to future deployments? 

● What innovations are needed in the cyberinfrastructure of the future?  

● How can the community promote and implement workforce development and training to 

facilitate the support of cyberinfrastructure? 

● What tools and techniques are needed to support cyberinfrastructure-enabled science and 

engineering? 

 

31 
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We received 31 white papers, representing a broad set of ideas from the community that were 

made public and are reported in Appendix E. 

Preliminary Working Groups. The steering committee divided the work into the following four 

initial working groups and appointed one committee member to lead each group: 

● Cyberinfrastructure technology in support of AI and smart computing (including data and 

deployment): Led by  Ilkay Altintas 

● AI in support of a smart cyberinfrastructure: Led by Dan Stanzione 

● AI in support of science: Led by Xinyu Zhao 

● Workforce development and international initiatives: Led by Michela Taufer 

The white papers were analyzed by the members of the working group with three main tasks in 

mind: (i) analyze the content and prepare to provide a summary to the community at the opening 

of the workshop, (ii) select a diversity of speakers for lightning talks, and (iii) determine the topics 

to be addressed during the panel discussions and breakout sessions. After this activity and as a 

consequence of the discussions during the workshop, the working groups were reorganized as 

indicated in the executive summary. This revised organization is also used for the content in the 

remainder of this report. 

Workshop Website: The steering committee also created a website dedicated to the workshop 

activities, which can be found at http://smartci2020.org/. The website was used primarily to 

communicate to the attendees the details and objectives of the workshop, provide the structure of 

the agenda, announce the call for white papers, and make immediately available the white papers 

contributed. We also experimented with a set of calling cards that the attendees were requested to 

fill out to provide a short summary of their interests and an image to make them more easily 

recognizable. These calling cards were put on the website before the workshop started and played 

in a loop at the registration table and on the main screen during the breaks. The feature was highly 

appreciated, especially by the junior participants, because it made it much easier for everyone to 

identify one another from the beginning of the workshop and then interact with each other. 

Timeline for Pre-Workshop Activities:  The pre-workshop activities started during fall of 2019 

and continued until the workshop took place. White paper submissions were left open until early 

February for full consideration, although a few were accepted closer to the date of the workshop. 

The committee created four presentations that summarized the input from the community and used 

them to start the technical program with a set of open questions and thought-provoking discussion 

points that immediately created an atmosphere of intellectual debate with highly dynamic 

interactions.  

http://smartci2020.org/
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The Workshop 

The 2020 NSF Workshop on Smart Cyberinfrastructure was held at the Hyatt Regency Crystal 

City at Reagan National Airport in Arlington, VA, on February 25-27, 2020. Workshop 

participation was by invitation only and involved 60 participants, including AI/ML experts and 

practitioners, domain scientists and engineers, representatives from the National Science 

Foundation (NSF), CI professionals, and representatives from NSF-funded computing facilities. 

The program of the workshop, which was based on the white paper feedback to the steering 

committee, included 3 keynote talks, 9 plenary presentations, 13 lightning talks, 4 panel 

discussions, and 6 breakout sessions. The hallmark of the meeting was the continuous active 

discussions from the entire audience, combined with note-taking by scribes working with the 

steering committee and public access to several shared documents so that all the participants could 

augment their comments in person with additional written notes. Strong engagement from both 

junior and senior participants was highlighted by the opening keynote given by Amir Gholami, 

UC Berkeley postdoc expert in machine learning, followed by two more keynote presentations by 

Flemming Crim, Chief Operating Officer for the National Science Foundation, and Henry Kautz, 

Division Director for Information & Intelligent Systems (IIS) at the National Science Foundation. 

Overall, the workshop provided a unique forum for interaction and frank discussions among AI 

experts, CI professionals, and domain scientists and engineers, which was appreciated by all 

participants. 

Post-Workshop Activities / Deliverables 

Workshop Report: The steering committee worked with the supporting editors and other 

community members to produce this report, which captures all the activities that led to the 

preparation of the workshop as well as the outcome of the numerous discussions. In particular, the 

overall community feedback is compiled in six main sections corresponding to the six final 

working groups. The executive summary also includes a summary of the overall findings and 

recommendations. This report will be released to the public and posted on the workshop website.   

 

 

 

  



 

13 

 

 2020 NSF Workshop on Smart Cyberinfrastructure           SMARTCI2020.org 
 

2. Cyberinfrastructure Requirements for AI-Based Scientific 

Applications 
Goal: The goal of the working group was to explore the requirements for cyberinfrastructure to 

facilitate the application of AI in scientific applications, including hardware and software 

infrastructures, and data repositories to enable exploration of scientific and engineering on (future) 

NSF infrastructure. 

Background: Fast development of AI has inspired a wide adoption of AI-related techniques in 

science and engineering. AI-ML-based techniques have been applied in many fields of science and 

engineering, including remote sensing, cosmology, energy, cancer research, machine design and 

control, etc. Great national and international enthusiasm for launching major AI-centric new R&D 

programs is evident, as multiple workshops or mini-symposia on the early adoption of AI 

techniques have been sponsored by various federal agencies within the U.S. and across the world. 

CI has become an indispensable tool for modern scientific discovery, and a smarter future CI is 

perceived as an accelerator or gap-bridger for solving the pressing challenges in science and 

engineering.  

A smart CI can drive scientific discovery in two important ways. When AI is directly incorporated 

into the process of solving scientific problems, a smart CI needs to handle a variety of instruments, 

multiple interrelated data types and associated metadata, data representations, and workflows. Two 

exemplar scientific studies are showcased in the next paragraph to demonstrate the application of 

AI in scientific studies and the associated demands and problems. When scientific studies, both 

computational and experimental,  are constrained by their effective deployment of the fast-

evolving CI, a smart CI can bridge the knowledge gap between the CI experts and the domain 

scientists and accelerate the full cycle of scientific discovery through expedient harnessing of the 

most current computational power. This second aspect will be further discussed in the next section. 

Each scientific domain needs to identify the best strategy to leverage the rapid development of AI 

and smart CI, customized to their methodology and computational/experimental demands. At this 

early stage, exchanges of user examples and visions, as is happening in community workshops, 

have proven to be extremely inspiring for the entire scientific community to encourage adoption 

and customized development.   
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Figure 1 AI/Deep learning accelerates progress in predicting dangerous disruptive events in 

magnetically confined fusion plasmas with unprecedented accuracy and speed on modern 

supercomputers [1].  

A clean and sustainable energy future remains one of the major challenges for modern society. 

Breakthroughs are urgently needed for traditionally challenged research fields such as fusion and 

clean combustion. Figure 1 shows a simulated plasma flow using Princeton’s Fusion Recurrent 

Neural Network (FRNN) code. Fusion energy, once successfully implemented and controlled, 

could significantly reduce the stress of future energy demands. Spatial and temporal information 

is integrated using convolutional and recurrent neural network components for predicting 

disruptions in tokamak plasmas with unprecedented accuracy and speed on leadership-class 

supercomputers [1]. Physics-based interpretability is introduced to output not only when a 

“disruption score” for the probability of a disruption event but also when a “sensitivity score” in 

real-time to indicate the underlying physical reasons for the imminent disruption, which provides 

targeted guidance for control actuators upon implementation into a modern plasma control system.  

The convergence of advances in CI and AI is demonstrated by combining realistic pre-disruption 

classifier simulations on the Summit supercomputer using the exascale class GTC code with the 

AI workflow. With the continuous development of AI in computational studies of fusion, efficient 

and realistic control strategies based on advanced AI predictors are expected to emerge for 

optimization of performance and avoidance of disruptions in initial operations of ITER. 

Continuous vetting of stable, scalable, portable, control systems and associated methodology on 

existing tokamaks is also anticipated with the fast prediction offered by the AI-augmented 

simulations.  

In addition to being incorporated into modeling and inference processes, AI/ML are also employed 

in other aspects of scientific studies, such as formulating efficient and accurate numerical methods. 

In many physical systems, the governing equations are known with high confidence, but direct 

numerical solution is prohibitively expensive. Turbulence, a phenomenon related to but distinct 

from chaos and with strong roots in engineering, is such a field. Direct solutions of the governing 

equations involve discretizing the computational domain into sub-domains down to the smallest 

scale in the dynamic system, which remains computationally prohibitive when the scale separation 

is large. This situation can be alleviated by deriving effective models to approximate dynamics 

below the grid-scale, such that the requirement for resolution is less stringent. The derivation of 

subgrid models is often impossible to perform analytically and requires deep physical 

understanding. A recent study showcased methods of data-driven discretization to attain the 

desirable accuracy where necessary.  The method uses machine learning to systematically derive 

discretizations for continuous physical systems [1]. On a series of model problems, data-driven 

discretization gives accurate solutions with a dramatic drop in required resolution and, hence, the 

computational cost in solving the equations. Two representative challenges across many scientific 

domains are identified: speed constraints imposed by effective training of the neural network and 

the scaling constraints to go beyond one-dimensional toy problems. Solutions to address these 

challenges from the perspectives of both CI and AI are urgently needed.  

https://paperpile.com/c/rINlS0/D2YI
https://paperpile.com/c/rINlS0/D2YI
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The above examples are just two of the many recent developments in accelerating sustainable 

energy and complex multiscale physics; application of AI to numerous other scientific fields is 

ubiquitous, including cosmology, drug discovery and repurposing, cancer detection, additive 

manufacturing, and robotics. Although these studies represent fundamentally different science, 

their demands regarding cyberinfrastructure are often common: for example, CI with the capability 

to handle multiphysical simulations coupled with AI techniques that are interpretable by humans; 

scalable algorithms for massively parallel systems; and trained experts who understand AI, 

science, and CI simultaneously.  Other bottlenecks in fulfilling the promise of AI as a science 

driver that are not discussed above include the lack of common standards and benchmarks in 

respective scientific and engineering fields, due to the early stage of adoption, difficulty of defining 

benchmarks, and proprietary protection. In these cases, exemplar NSF programs and projects that 

can be used as a model for addressing these challenges and technical bottlenecks would prove to 

be tremendously beneficial to the whole scientific community.  

Based on the discussions during the workshop and feedback before and after from the larger 

scientific community, a list of findings is briefly described below, followed by recommendations.  

Findings:   

● Support for the entire scientific discovery lifecycle is essential.    

The applications of AI in science and engineering mostly focus on traditional model 

inference. However, the application of AI and smart CI to other largely manual, labor-

intensive, and rate-limiting aspects of the decision-making processes is limited, e.g., in 

formulating questions; designing studies; organizing, curating, connecting, correlating, and 

integrating cross-domain data; and interpreting results, etc. Efforts in developing 

hypotheses with unbiased data, connecting AI tools with multiscale modeling, human-in-

the-loop intelligence, mediated teams, and institutional collaborations, are also lacking. 

● Collaboration via combined teaming of domain, CS/AI, and CI experts is necessary. 

Without sufficient support for ready-to-deploy CI tools/middleware, domain scientists 

often shoulder the burden of tool development and optimization by themselves in an 

inefficient way, which adds to the difficulty of human capacity development and hinders 

the progress of scientific exploration. On the other hand, long-term support for training 

students/postdocs/research scientists who have the expertise of domain sciences, software 

engineering, AI, and cyberinfrastructure is rare.  

● There is little support for scalable AI algorithms deployed in production.   

Without the development of scalable AI algorithms, it is impossible to efficiently use 

existing and upcoming supercomputing AI infrastructure.  Methods such as stochastic 

gradient descent and other related first-order methods that use only gradient information 

are popular, but they have numerous well-known drawbacks.  In particular, these methods 

often require extensive hyperparameter tuning, and they often result in sub-optimal AI 

accuracy when trained at scale, in particular for problems such as those that arise in smart 

cyberinfrastructure. Current support for such an endeavor is inadequate.  
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● Domain-specific training opportunities that include CS/AI features are lacking for 

students in science and engineering.  

The need is clear for courses in the foundations of AI/CS to be incorporated in 

science/engineering disciplines. Such courses are offered for motivated students and users 

with the appropriate background and have proven to be successful and popular 

Recommendations: The workshop identified five priority research directions necessary to 

empower NSF scientists.  

● Enable access to the NSF-funded cyberinfrastructure as an “experimental 

instrument” with freely available data.   

Performance and behavior data monitored from applications, systems, and networks are 

valuable assets generated by NSF-funded cyberinfrastructure. Full visibility and 

instrumentation should be enabled to allow access to such data to facilitate development of 

AI for CI. Such efforts can be augmented by establishing platforms for data sharing with 

the broader CI research community.  

● Encourage and facilitate the application of AI to the full lifecycle of scientific 

discovery, to go beyond applying AI only to the model inference process in scientific 

discovery.  

Support is needed for nimble and trustworthy data cyberinfrastructures that manage a 

variety of instruments, multiple interrelated data types and associated metadata, and data 

representations, processes, protocols, and workflows. The software and expertise that can 

address the needs of multiscale modeling and its coupling with AI across levels need to be 

developed.  

● Develop special funding mechanisms to encourage interdisciplinary 

teaming/collaboration.  

Encouragement of interdisciplinary collaborative efforts through synergistic awards (e.g., 

AI Institutes or Centers of Excellence) will facilitate communication and collaboration 

across domains and provide direct support to domain scientists while connecting AI 

researchers and CI professionals to their specific needs. Funding support to develop AI 

middleware can be another solution to fill the gap between domain and CI scientists. The 

expertise of social scientists in the area of communication between different communities 

can be positively leveraged.  

● Support scalable AI software that goes beyond  PyTorch  and TensorFlow  as part of 

an NSF smart cyberinfrastructure agenda.  

Finding the right ML model and training it for a new task requires considerable expertise 

and extensive computational resources. Moreover, the process often includes ad hoc rules 

that do not generalize to different application domains. These problems have limited the 

applicability and usefulness of ML in science, especially for new learning tasks. Research 

investments in developing scalable solutions, such as second-order methods (e.g.,  

subsampled Newton methods, stochastic Lanczos methods, matrix-free iterative methods, 

and subsampled trust-region optimization), are recommended. These methods have been 
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shown to perform competitively for a range of AI training and inference tasks, and they are 

particularly well suited to upcoming supercomputing hardware technologies. 

● Augment the science and engineering curriculum with NSF-supported short courses 

and MOOCs.   

Understanding the latest developments in the theory and application of AI should be 

customized into the curriculum of respective scientific/engineering domains. In the short 

term, short summer courses and MOOC can be leveraged to train the workforce. Student 

fellowships such as the Frontera Computational Fellowship should be established to 

encourage the training of AI-driven scientific discovery. Deeper understanding from 

domain scientists is necessary in the longer term; the addition and reformation of existing 

mathematical or computational courses could be targeted.  
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3. Development of Next-Generation System Cyberinfrastructure 

Tightly Integrated with AI Technologies  

 

Goal: The goal of this working group was to explore how AI, ML, and smart technologies can 

inform the design and operation of NSF cyberinfrastructure, both the hardware and software, in 

centralized facilities and at the edge. 

This discussion was facilitated throughout the workshop by a panel, several invited talks, and two 

breakout sessions.  The first breakout session focused primarily on the physical aspects of the 

“central” CI, inside the data center, with the second breakout focused more on “edge” issues, data 

acquisition, and software layers. 

Background: NSF cyberinfrastructure is critical to the nation’s research leadership in science and 

engineering. The NSF cyberinfrastructure portfolio encompasses a spectrum of powerful 

platforms, including Frontera and Stampede-2 (TACC), Bridges/Bridges-AI, and Bridges-2 (PSC), 

Comet and Expanse (SDSC), Ookami (Stony Brook University), and Jetstream (Indiana 

University). These platforms provide invaluable computational and data management 

infrastructure to the national research community of faculty, postdocs, graduate and undergraduate 

students, and even K-12 students. They also support US industry, within well-defined limits, by 

providing unique resources to increase their competitiveness, and extensive training programs 

supported by the NSF XSEDE program and using NSF CI platforms for exercises that uniquely 

drive workforce development. This is an extraordinary foundation, and the service providers 

hosting the NSF CI platforms are experts in system design, deployment, and operation. The NSF 

CI ecosystem provides exceptional value and scientific impact. 

However, we now have the opportunity to do even better. This opportunity is driven by three 

factors: the greatly increased complexity of centralized cyberinfrastructure, a much greater 

diversity of user applications and their requirements for the underlying system, and the increasing 

importance of edge computing. These factors are addressed, in turn, below. 

Centralized CI has increased greatly in complexity. Unlike the monolithic supercomputers of past 

decades, contemporary NSF-centralized CI resources are often heterogeneous, offering within the 

same platform multiple varieties of processors, accelerators, and memory configurations that are 

individually optimal for different applications and workflow components. Their heterogeneity is 

appropriate for supporting a wide range of applications (as described below); however, it presents 

challenges in efficient scheduling, measuring efficient use of system resources, improving energy 

efficiency, and optimizing software. 

The diversity of applications has also increased greatly. NSF CI has grown to support numerous 

research communities, including many “nontraditional” communities that only recently have 

begun to use high-performance computing. For example, PSC’s Bridges system has supported 

researchers representing 121 principal fields of study. That diverse user community now runs a 
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broad array of applications with different characteristics and requirements. Highly parallel, 

compute-intensive, physics-based simulation and modeling continues to be important, but is now 

only one aspect of the applications ecosystem. Equally important is applying AI to accelerate 

simulation and modeling by replacing computationally expensive phases with inferencing that can 

be many orders of magnitude faster with no loss of accuracy (“surrogate models”), AI applications 

requiring great amounts of resources for training and inferencing, scalable AI and ML for high-

performance data analytics (HPDA), applications written in Python and other high-productivity 

languages, image and text processing, and containerized applications of many different kinds. This 

introduces challenges in optimally mapping applications onto resources, guiding users to the best 

resources for their applications, and helping them estimate the levels of resources they will require.  

Edge computing adds a dimension to the complexities described above. Like centralized CI, edge 

computing encompasses a wide range of devices included in a single platform. Edge computing 

also must support a range of applications, and these applications add critical optimization criteria 

such as power consumption, memory footprint, and communications. Thus, the challenges that 

apply to centralized CI and diverse workloads apply also to edge computing and potentially 

without the substantial power of a centralized resource to leverage for solutions. 

Clearly, traditional expertise in system operations and user support does not scale to the 

complexities of the heterogeneous centralized cyberinfrastructure, diverse application workload, 

and emerging edge computing of today and tomorrow. AI has great potential to apply 

cyberinfrastructure more efficiently and to better support users, which will translate to greater 

scientific impact. The field of AIOps [11], also known as SysML, has been growing rapidly and 

may provide great benefit for NSF cyberinfrastructure. 

NSF CI service providers already collect a wealth of system instrumentation data from centralized 

CI. However, these data have been largely untapped, for a variety of reasons. Generally, the data 

have been collected for specific purposes within each site, so they reside in a variety of databases 

and formats, each well suited to its purpose, but needing substantial wrangling to be made 

interoperable. For example, individual sites have millions of job records, extensive system 

telemetry, and various performance data, each maintained separately. Fully preparing that data for 

analysis, even within one site, is human time-intensive. Furthermore, the metadata for system data 

have not yet been sufficiently standardized to bring data together from multiple service providers. 

However, this working group has recognized the great value in such standardization, so that AI 

techniques could be applied to improve system operations and the efficient use of system resources 

(“AIOps”), provide users with much-needed guidance regarding appropriate resources and 

resource estimation, and improve the mapping of applications onto resources. With sufficient data, 

we will also have opportunities to apply AI to design future cyberinfrastructure that will drive a 

new era of computational and data-driven science. 

The rapid evolution of computer hardware, especially to enable specific fields such as AI, creates 

the need for the science and engineering community to gain experience with new technologies. 

Testbeds consisting of relatively modest resources and experimental platforms consisting of 

resources that make sense only at a larger scale have proven valuable in other contexts. 
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In summary, both NSF cyberinfrastructure and the application workload that runs on it have 

increased greatly in complexity. Service providers have considerable data on system activity, but 

without an appropriate, shared metadata framework. Nonetheless, AIOps has great potential to 

improve system efficiencies and to guide users if the data can be properly curated. Testbeds and 

experimental platforms can play a vital role through broadening community experience with new 

technologies and informing the design of future systems, including, potentially, through AI 

techniques. 

Findings: The working group identified five broad findings relating to AI and smart CI 

technologies: 

● Numerous untapped opportunities exist for AI technologies to improve the NSF 

cyberinfrastructure. AI can address a number of challenges from the system 

infrastructure perspective of a smart CI, such as enhancing reliability, security, resilience, 

performance, energy efficiency, energy utilization, and usability. Cyberinfrastructure 

providers have, and can potentially provide, extensive system data, ranging from system 

health to performance counters. The data for each system must be aggregated into multiple 

databases, and the first stage of curating such data is typically manual. User privacy must 

be respected, requiring the data to be appropriately deidentified. 

● Architectural changes have enormous promise to reduce the time required for AI 

computations.  With the increasing computational demands of AI algorithms, training time 

and energy efficiency are both extremely important. Emerging architectures that are 

carefully tuned to deep learning training potentially offer orders of magnitude 

improvement. The potential of new architectures for science and engineering requires 

benchmarks from those developed primarily for social network and business uses. Testbeds 

and experimental platforms can range from modest through substantial investments, the 

latter for technologies where the unit cost and potential value are both substantial. 

● AI can help users make good decisions about how much power their computations 

cost. Maintaining awareness of overall energy utilization (beyond energy efficiency) is also 

important. The top priority of scientific impact should be pursued without losing sight of 

its carbon footprint. AI can help lower energy utilization, in some cases by many orders of 

magnitude, by replacing computationally intense simulations with surrogate models, 

reduced-order models, or other shortcuts. Furthermore, new architectures can reduce 

energy utilization by additional orders of magnitude. 

● The lack of skilled individuals who can bridge from infrastructure to application, 

especially in CI, is a factor limiting US progress, in industry and academia.  Noted 

primarily by the cloud providers in the group, human capacity development and retention 

are critical. We need to build communities and interdisciplinary expertise that bridges 

domains and AI. Although an acute problem in the academic research enterprise, this 

problem is perhaps more acute in the industry — salaries are not the issue;  we do not have 

enough individuals to go around, at virtually any price. 
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● At the edge of our CI are numerous pain points concerning how data can be acquired 

to drive models and take actions.  Concerns range from security and privacy to reliability 

and sharing. Standards for sensors are lacking at the edge — from ubiquitous tasks like 

authentication and validation to more complex areas like sharing data streams with multiple 

applications. Control and management of sensors are complicated, often making the 

assumption that relatively frequent manual intervention is acceptable for calibration, 

maintenance, resets, etc. Sensors are unreliable and often inaccurate, which without 

standards is difficult to quantify. 

Recommendations: The workshop identified five priorities to drive scientific and engineering 

discovery through smart CI:  

● Initiate a coordinated program through which CI providers make available curated 

system data. 

Data including job execution, I/O patterns, performance counters, and other quantities can 

be made available through modest curation, development of an appropriate controlled 

vocabulary, documentation, and potentially training and tools to facilitate access. The 

resulting datasets will then be of great value to optimize existing systems, design new ones, 

improve usability, and, eventually, develop self-optimizing systems. 

● Provide mechanisms for testbeds and experimental platforms to evaluate their 

effectiveness for science and engineering and to build community experience. 

“Testbeds” of small to moderate scope should be frequently refreshed. “Experimental 

platforms” should potentially be larger and longer term, to access technologies that have 

higher unit costs together with great potential. Each platform could possibly leverage 

public/private partnerships. Testbeds and experimental platforms should address important 

nontraditional application areas such as deep learning and graph analytics; energy-aware 

computing for evaluation of energy-efficient approaches, allowing exploration of 

constraining or guiding energy utilization; and smart sensors and other devices for edge 

computing, allowing the development of methods for AI-ready sensors and edge 

processors. Repositories of best practices between academia and industry should be 

created. “AI-defined CI experiments” should be supported, where a smart CI goal can be 

specified and transformed into a finite set of experiments to be evaluated and tested. 

● Broaden education and training opportunities to develop domain/AI interdisciplinary 

expertise. Interdisciplinary research should be fostered to expose AI students to domain 

science and vice versa.  
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4. AI/ML Improvements on NSF CI  

A number of example resources and scientific applications have successfully deployed artificial 

intelligence and machine learning (AI/ML) techniques as a part of the solution. However, these 

solutions are custom-built for the problems. We have several challenges in scaling and 

generalizing the developed methods and tools at the CI level. Thus, the goal of this working group 

was to discuss the state of the art in this area and explore potential improvements needed in AI/ML 

algorithms, software infrastructure, and data repositories to enable effective use of these 

technologies on (future) NSF infrastructure.  

Section 2 of this report outlined examples and needs for using AI and ML in scientific applications 

at scale. The summarized discussion demonstrated the impact of efforts not only on the application 

of AI/ML with domain expertise but also on the scalability of the developed methods for existing 

CI. Research teams still have difficulty deploying and using AI and ML in their scientific and 

engineering process without such significant effort.  

The panel discussion at the workshop discussed the state of the art in AI/ML within the existing 

CI ecosystem and technologies and explored potential improvements needed in AI/ML algorithms, 

software infrastructure, and data repositories to enable effective use of these technologies for 

(future) NSF infrastructure. This panel discussion captured some technology disruptors related to 

the deployment of hardware and software.  

The panel was asked about the state of the art in support of AI, ML, and smart computing as well 

as examples of any CI for AI within external and industry communities that could set an example 

for NSF. The panel also explored the state of the art, pain points, and opportunities for the 

deployment of tools, frameworks, and algorithms at scale and in production pertaining to the 

usability (both interactively and programmatically) by NSF’s user communities. Lastly, the panel 

was asked for their recommendations on how to create an NSF-lead team science environment 

driven by the needs of AI-integrated applications and teams collaborating to design such 

applications.  

An important part of the panel and the related breakout discussion focused on the importance of 

data flows and related workflow tools and software/systems engineering (DevOps) that can 

support AI/ML as a part of the bigger picture, including the coupling of systems, on-the-fly 

training, outer loop optimization, and large-scale deployment and utilization of AI infrastructure. 

Another important discussion point was related to how an NSF-scale AI infrastructure would be 

different compared to the industry-driven cloud-based AI platforms. It is important to focus on the 

needs of the science community that are not commonly supported in commercial applications and 

determine how to achieve economy of scale while using the industry resources. 

The discussion concluded by noting the open challenges and primary cyberinfrastructure research 

areas summarized in the following findings.  

Findings:   
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● Applications need better support to integrate cutting-edge hardware and software. 

Even where applicable technology exists, the effort needed to integrate these advances with 

the already complex scientific applications often proves insurmountable, which 

significantly hampers progress and wastes resources.  

● Current middleware and computer science infrastructure are not optimized for data-

centric workloads. A number of system-related parts of the software stack, such as data 

management, communication, file IO, etc., have been heavily optimized for simulation-

driven workflows and often do not support the more complex, data-driven needs of AI. 

● The complex iterative workflows necessary for AI do not map to existing batch- 

focused resource management. Applications increasingly consist of complex workflows 

incorporating heterogeneous CI capabilities, i.e. iterative or recursive scheduling, 

drastically varying job size, an unprecedented number of jobs, etc., that are not compatible 

with existing batch scheduling, resource allocations, security postures, etc.  

● Existing toolchains are made by and for ML experts. The currently available tools, 

although powerful, are driven almost exclusively by commercial applications and are used 

by ML experts. Application communities have faced challenges to build up sufficient 

expertise to deploy these solutions and, once built, to correctly and confidently interpret 

the results.  

To address the four high-level findings outlined above, the workgroup participants recommend 

four corresponding directions for improvement. 

Recommendations:  

● Low-Level Interfaces:  One of the challenges in applying AI technology is the incredible 

pace of innovation in both hardware and low-level software frameworks. Specialized 

hardware such as GPUs, TPUs, and other chip designs (e.g., Cerebras: cerebras.net/) as 

well as high-performance software frameworks, e.g. Horovod (github.com/horovod) and 

Aluminum [12], have the potential to accelerate the AI workflow. However, continuously 

integrating new technology into existing applications places an unsustainable burden on 

developers. As a result, domain scientists either spend a significant portion of their 

resources addressing low-level software challenges or forgo the potential performance 

gains by using outdated technology. Instead, we recommend research focus on developing 

transparent abstractions between low-level system libraries and specialized hardware to 

simplify sustainable software development. In particular, the focus should be on flexible, 

portable, and scalable solutions that allow applications to seamlessly transition from local 

computing resources to leadership facilities and cloud computing while maintaining high 

performance. 

● AI-Aware Middleware: Efficiently applying AI algorithms at scale depends on a variety 

of general-purpose capabilities, such as flexible workflows, scalable data stores, or 

efficient IO infrastructure. However, in many cases, AI/ML algorithms result in different 

usage patterns and bottlenecks compared to traditional simulation codes. For example, 

many AI workflows consist of a complex interactive assembly of different tools that must 

https://www.cerebras.net/
https://github.com/horovod
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be coordinated and connected, potentially across different facilities, i.e. to integrate 

streaming experimental data. Such solutions are often not compatible with existing batch 

scheduling, resource allocations, or security postures. Similarly, the random accesses 

inherent in stochastic gradient descent algorithms represent the worst-case behavior for file 

IO or data accesses in general. Instead, we recommend research focus on a new generation 

of AI/ML-aware middleware solution that adapts, extends, and optimizes existing 

frameworks for AI/ML algorithms as well as the corresponding hardware and software 

stacks. 

● Solution Environments: Currently, the use of machine learning techniques requires 

significant programming skills and advanced knowledge of the underlying methodologies. 

For example, developing efficient data representations, choosing appropriate model 

architectures, or tuning various hyperparameters all demand a detailed understanding of 

machine learning fundamentals, unfamiliar to many application scientists. This knowledge 

gap results in a significant bottleneck in the widespread use of AI techniques. To address 

this challenge, we recommend a research focus on high-level solution environments and 

next-generation workflow tools that provide easily accessible and composable components 

for various levels of expertise. For example, we need a (community-vetted) repository of 

standard AI models for different use cases and data types for nonexperts to apply. At the 

same time, solutions must be flexible and extendable to accommodate future applications. 

Finally, the access should be tiered, enabling users ranging from AI professionals, to 

experienced practitioners and nonexpert users access according to their knowledge and 

abilities.  

● Responsible AI: An often overlooked aspect of applying AI/ML technologies is the 

difficulties stemming from the complex, black-box nature of the models. Even experts find 

it challenging to confidently judge whether or not enough training data are available, what 

a model has learned, and how reliable any given model may be. This challenge is 

exacerbated by the lack of theoretical guarantees on the stability and generalizability of 

data-driven models. Consequently, interpreting results, understanding uncertainties 

inherent in a given solution, or recognizing potential biases in the data are all difficult if 

not impossible for application-focused researchers. To address this need, we recommend a 

research focus on both fundamental advances in machine learning to address issues such 

as interpretability, uncertainty quantification, privacy, etc. and the development of tools to 

make the research results accessible to nonexperts. Ultimately, the tools developed for this 

recommendation should be directly integrated into the solution environment discussed 

above to provide not only the means to produce results but also ways to understand the 

context in which these results were achieved, correctly interpret the findings, and check for 

biases and other potential pitfalls.  
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5. Improving AI-Associated Data Repositories on NSF-Enabled 

Cyberinfrastructure  

The working group discussed the opportunities for building shared data and model repositories for 

training and inference, with applications in computer science, collaborative problem solving, and 

evidence-based CI development. Major advances in applications, infrastructure, and collaborative 

discoveries can be effective in the collection and use of data to further understand the effectiveness 

of learning algorithms, hardware, middleware, user interfaces, and teamwork. These advances 

includes repositories of scientific data generated on the NSF-supported CI as well as the large 

amounts of data collected while monitoring the scientific computations that can be used to enable 

AI control and optimization of the operations. In both cases, we aim at developing standards and 

repositories that facilitate data sharing and retargeting the information available for new AI tasks. 

The panel and the associated breakout group were asked to discuss existing repositories of training 

data in support of AI within and outside NSF. Example programs and projects can be used as a 

model for creating a training data sharing ecosystem and the building blocks of such an ecosystem. 

Some of the discussion was related to human capacity development issues regarding (i) the ability 

of individuals and teams in the NSF user community to find, access, interpret, evaluate, and 

validate data and AI/ML capabilities and (ii) cultural issues regarding data and model sharing. 

Findings  

● Convergence research requires middleware for integration and scalability of AI 

services on cyberinfrastructure, but not having integrated CI performance data 

repositories hinders such research. Data-driven performance prediction and modeling 

work service and integrated applications are key to achieving smart CI capabilities at 

scale. Dynamic integration of system data with ML capabilities enables AI for smart 

middleware and workflow steering. However, the research of performance prediction 

currently depends on standalone databases collected and compiled by individual 

researchers and collaborators in supercomputer centers, making these data collections 

unavailable to the research community at large. Additionally, the collected performance 

and other related CI data lack standards, making the collected datasets often not 

interoperable. Open and community-driven archives of CI data are needed for increased 

research in smart CI middleware. 

● AI has the potential to add intelligence to CI and associated computer science 

research as well as other domain applications. AI/ML-integrated science often involves 

a team of scientists with cross-disciplinary expertise collaborating and communicating to 

solve a problem. The process might involve an interactive exploration of historical and 

real-time data, access to active storage systems, and the networking and computing 

resources available to the team. A smart CI should also enable the betterment of the science 

of collaboration applied to application-driven problem-solving.  

● AI techniques requiring a large amount of data and labeled training datasets benefit 

from shared infrastructure for data and models. Training data for AI/ML research are 
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an integral part of the at-scale applicability of AI/ML by diverse users. However, creating 

and maintaining high-quality labeled datasets can be costly and difficult to maintain as a 

service.  

● New CI that builds on the analysis of trends in utilization of CI systems and that 

provides transparent data on system and application performance in real-time can be 

prioritized. Major advances in AI/ML-integrated science can result from building the right 

computing infrastructure for the evolving needs of applications. New infrastructure 

decisions and priorities require AI-based techniques and data from existing systems to 

come together. However, current data from CI systems and their utilization are kept in silos 

that are hard to access and analyze. 

● The current CI culture is not built around data sharing, but the data have the 

potential to enable new innovations and improve teaching when available. The above-

mentioned siloed culture and organization related to CI use and system performance 

hinders the data-driven analysis of CI and, in turn, the development of smart CI techniques 

and middleware. The added workload to manage and openly share infrastructure is not 

justified by the incentive structure. Most often cyberinfrastructure providers do not directly 

have a teaching-related mission, and various contributions to computer science training are 

not directly supported by their funding. 

Recommendations 

1. NSF should support cross-cutting programs for the interoperability of CI data, 

methods, and models at scale.  Standards development for data related to CI is a potential 

enabler for interoperability and should be funded along with data infrastructure that ensures 

collection, curation, integration, and management of CI data in the long term. The data 

share should conform to FAIR data principles as well as enable programmatic access to 

data in real-time for intelligence and responsiveness of CI systems, services, and 

middleware. 

2. Research in support of interactions of collaborative groups with smart AI systems is 

required for the application of AI to problem-solving with scientific, societal, and 

educational impact. There is a need to develop research formalisms toward translational 

tools and environments for teams to integrate individual work in a trustworthy and 

responsible way into the scientific problem-solving process. The transition from 

exploration to scalability requires data collection within the CI of the performance, 

accuracy, and scientific integrity of each step as well as the integrated solutions. Research 

on dynamic utilization of AI should be encouraged to close the gap between developing 

individual steps and integrating team activities within solutions.  

3. The community needs to develop middleware that can federate and integrate open, 

shared, well-annotated data and model repositories for training and validation, with 

the possibility of intradisciplinary and interdisciplinary knowledge, model, and 

method transfer. Domain knowledge and annotations are needed for the curation of 

training data and models for smart CI. New standards for sharing and curating CI system 

data are needed. CI providers should participate in regular data curation sessions for the 
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development of open training datasets for smart CI development. Additionally, data 

repositories that provide access to historical and real-time usage data will enable smart CI 

middleware and tool development.  

4. New CI research methods and environments need to be developed for the systematic 

generation of digital twins for virtual experimental CI laboratories and instruments. 

Monitoring and managing NSF CI systems and facilities require having access to data from 

different parts of the infrastructure, including physical and digital components. Projects to 

generate digital replicas should be funded for community-driven progress toward smart CI 

systems and environments as well as more efficient facilities. Balancing privacy, 

transparency, and openness of CI-related data is an important research problem that needs 

to be addressed. 

5. NSF should develop programs that facilitate, incentivize, and reward data sharing 

among CI system providers. The abovementioned smart CI expectations add new 

complexities to the operational workflow of CI and facility providers. An updated funding 

model and/or incentive structure needs to be developed to catalyze and encourage the 

adoption of smart CI by system providers. At the minimum, smart CI should be added as a 

funded component of existing systems. However, connecting it as a function across 

systems is likely to have a bigger impact on new innovations. 
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6. Human Capacity Development in AI and Smart 

Cyberinfrastructure  

 

Goals.  The goal of this working group was to identify the existing challenges and proposed 

solutions associated with the creation of a sustainable and persistent generation of experts in AI, 

ML, big data, and CI.  Dedicated discussions took place in a panel and a breakout session; 

eventually, the discussion was facilitated throughout the workshop discussions across the other 

workshop components. 

 

Background. The workshop pointed out how, across an existing rich body of work, there is the 

tendency to use different terms and languages to discuss similar efforts targeting the creation of a 

solid, persistent generation of experts in CI and how most efforts, while successful, are 

compartmental in the sense that they tackle one aspect of a more complex problem (e.g., only the 

curriculum development at the undergraduate or graduate level).  The workshop started with the 

search and definition of a general term under which to include all aspects of human-capacity 

building, including the education, training, and forming of transdisciplinary, diverse experts who 

synthesize previously disjointed fields of science and engineering, and converged toward the term 

human-capacity development. 

 

Although specifically addressed by a working group at the workshop with a panel and a breakout 

session, the need for improved human-capacity development for smart cyberinfrastructure (CI) 

was a transversal topic discussed across all components of the workshop. The workshop concurred 

on the fact this is a pressing problem for science, education, and industry alike. The workshop 

participants also concurred that this problem is multidimensional with a variety of significant 

stakeholders, including: 

● the diverse individuals participating in the process, including students, staff, and research 

professionals at every level of expertise; 

●  a wide spectrum of science and engineering communities needing people with these skills, 

and 

● the academic, governmental, and industry sectors in which these research activities are 

embedded. 

 

To sum up, workshop participants identified the urgency for (i) the creation and maintenance of 

capable, diverse, and multidisciplinary human capacity (i.e., including students, staff, and research 

professionals at every level of expertise) and (ii) the creation of laboratory organizations to 

facilitate the substantial transformation of the values that inform the profession (i.e., from the 

number of papers written and students graduated to the number and type of intellectual property 

generated, the amount of software released and data acquired, and the number skilled professionals 
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produced). The participants concur on the fact that the success of a capable human capacity for 

smart CI can be achieved only with a broad coalition of stakeholders (including universities, 

industry, current cyberinfrastructure providers, multiple government agencies, and the 

international community).  

 

Findings: The working group identified two broad findings relating to workforce capability 

development: 

● Challenges faced in human capacity development. Experience shows that human- 

capacity development confronts a number of critical and diverse problems when dealing 

with creating and retaining capable individuals. These problems are fivefold. First, the pace 

of both intellectual and technological change in the area of smart CI outstrips the ability of 

academic institutions to adapt their curricula. Second, continuous retraining is required 

because of the rate of technological change, but this retraining does not fit in the traditional 

education model. Third, using smart CI for sciences and engineering is inherently a 

multidisciplinary, cooperative activity that requires communication and teamwork. Fourth, 

the different groups and individuals have different entry-level thresholds; the learning 

requirements are often domain-specific. Last, training-by-doing and on-the-job-learning 

are generally required. 

 

● Transformation of values that inform the profession. We have observed a substantial 

transformation of the values that inform the profession. Such a transformation, however, 

has a different pace for the emerging CI community in contrast to the traditional academic 

community. The productivity metrics in the CI community have moved from the number 

of papers written and students graduated to the number and type of intellectual properties 

generated, the amount of software released and data acquired, and the number of skilled 

professionals produced. The traditional academic business models, however, have not 

evolved at the same pace and do not support and, in fact, are often in conflict with this 

transformation of values. Addressing this dichotomy is a problem for the international 

community, including academia, professional societies, national labs, and government 

agencies. 

 

Recommendations: The workshop identified two priority recommendations necessary to build an 

adequate pipeline of capable scientists and engineers for smart CI.  

● Establish a capable, diverse, multidisciplinary human capacity. A broad coalition of 

stakeholders (including universities, industry, current cyberinfrastructure providers, and 

multiple government agencies) needs to address the creation and maintenance of a capable, 

diverse, multidisciplinary human capacity: 

a. To prevent obsolescence due to the pace of technology changes – universities 
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should refocus the core curricula around the foundational areas of mathematics and 

statistics (e.g., linear and tensor algebra, graph theory, statistics) that underlie all 

the different flavors of AI (e.g., neural network, machine learning, data mining) and 

are technology agnostic. 

b. To support multidisciplinary needs — universities should adapt traditional subject 

matters for a transdisciplinary audience (e.g., efforts at the University of Chicago 

to develop a computer architecture course for nonengineering students). 

c. To support different entry levels — smart CI facilities should focus on sustainable, 

common, cross-community interfaces for deployable scalability (for example, by 

leveraging the Jupyter Notebook or derivative tools such as Google’s 

Collaboratory, Microsoft’s Azure Notebook, and AWS’ SageMaker Notebook).  

● Create new laboratory organizations. The same broad coalition of stakeholders needs to 

address the creation of laboratory organizations to facilitate the transition to the new 

productivity model and prevent rollback to old ones. The creation process must consider 

these key aspects:  

a. The organizational design must be addressed from all the institutional loci that feed 

into that smart CI community, such as academia, professional societies, national 

labs, and government agencies, and across national boundaries. 

b. NSF should help stakeholders create new models of laboratory organizations with 

corresponding acknowledgment and support for individuals beyond / other than the 

postdoc position (e.g., research directors).  The new organizational structures 

should reflect the metrics of discovery, validation, collaboration, and human- 

capacity building. 

c. NSF should help stakeholders develop a reward system to facilitate and sustain the 

transition.  

d. To oversee the implementation of these recommendations and modify them as 

technologies continue to rapidly evolve, NSF should appoint a jointly managed 

federal, higher education, and industry commission.  They should report at least 

annually to the president’s science advisor. 
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7. International Collaborations  

 

Goal. The working group targeting human-capacity development also discussed existing 

challenges and proposed solutions associated with the leverage of international collaboration for 

the development, use, and sharing of AI, ML, and smart technologies. This discussion was 

facilitated throughout the same panel and breakout session hosting the discussion on human- 

capacity development. 

 

Background. International collaborations promoting smart CI interoperability and sharing across 

international groups are a vital part of successful domestic research built on AI, machine learning, 

and big data.  To this end, we need a general framework for international investment in global 

science and engineering that enables international researchers to identify potential collaborators 

and create trust among international collaborators through multiphase project organizations.  

 

The international nature of scientific collaborations requires smart CI interoperability and sharing 

across groups and countries; successful international collaborations add value for all parties in 

research and productivity activities (e.g., people, data, and software and hardware). The 

international community faces several challenges in the pursuit of such collaborations. In some 

cases, the already difficult access and use of smart CI services are exacerbated by factors such as: 

(i) the services are provided by industry subject to governments’ access limitations and restrictions, 

and (ii) the facilities are located in government buildings to which international collaborators have 

limited access. In other cases, services to support interoperability and sharing are not provided at 

all because, for example, they are not seen as being profitable. The ability of the smart CI 

community to excel depends on our ability to build upon existing international best efforts. 
  

Findings. The working group identified two key findings relating to existing international efforts: 

● Existing successful efforts. Existing international initiatives are already serving as 

successful models for sustainable collaborations. Examples of these initiatives include 

PRAGMA, CENTRA, and BDEC/IESP, among others. Moreover, NSF has successful 

program models through its office of International Science and Engineering, including 

PIRE, US-Japan, and US-Israel. 

● Existing successful NSF initiatives. Current NSF initiatives for project organizations are 

also promising solutions to serve the needs of an international platform.  These initiatives 

include the current augmentation of NSF annual reports to make the impact and outcome 

of projects searchable (e.g., through the collection of projects’ metadata), and the 

introduction of two-phase projects (i.e., a one-year planning project followed by a possible 

multiyear research project) to facilitate team building. 

Recommendations. The international efforts discussed above should be further extended by 

pursuing the following recommendations: 
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● Provide a framework for international investment. Such a framework should be co-

located in a global science and engineering AI, machine learning, big data, and smart CI 

ecosystem, for example, a National Academies-managed joint higher education and 

industry consortium to (i) develop new visions, (ii) develop strawman roadmaps, (iii) 

define suitable collaborative mechanisms (e.g., MOU, by-law), and (iv) define sustainable 

business models (e.g.,  persistent funding). 

● Enable international researchers to identify potential collaborators. This objective can 

be achieved by making different national research projects searchable and easy to access 

and by leveraging improvements in NSF annual reports, extending the current reports with 

richer searchable metadata. 

● Establish a multiphase project organization. Such an organization can thrive if 

supported by coordinated solicitation and awards at the international level. The 

organization should build mechanisms aimed at creating trust among international 

collaborators, to allow coordinated project progress and to enable sustainable funding. 
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Appendix B 

Workshop Program 

2020 NSF Workshop on Smart Cyberinfrastructure 

February 25-27, 2020, Hyatt Regency Crystal City, VA 

Rooms: Plenary sessions in Conference Theater  

Breakout 1 in Potomac I  

Breakout 2 in Potomac VI  

Breakout 3 in Potomac V 

Day 1 – Tuesday, February 25, 2020 

07:00 – 08:00 Registration/Breakfast   

08:00 – 08:10 Valerio Pascucci, University of Utah & Steering Committee  

Introductions, structure of the workshop, expected outcomes  

08:10 – 08:40 William Miller, Science Advisor, NSF Office of Advanced 

Cyberinfrastructure (OAC) 

Manish Parashar, Director, NSF Office of Advanced Cyberinfrastructure (OAC) 

NSF Welcome and workshop introduction  

08:40 – 10:00 Setting the stage: Steering Committee (10 min presentations + 5 min questions) 

● Ilkay Altintas, San Diego Supercomputer Center   

Improving AI Algorithms and Associated Data Repositories on NSF-Enabled 

Cyberinfrastructure 

● Dan Stanzione, The University of Chicago  

Improve Efficient Use of the NSF-Enabled Cyberinfrastructure Through AI/ML and Smart 

Technologies  

● Xinyu Zhao, University of Connecticut 

Cyberinfrastructure Requirements for AI/ML-Based Scientific Applications  

● Michela Taufer, The University of Tennessee, Knoxville   

Large Collaborative Initiatives and Engagement of the International Community 

● Open discussion (20 min) 

10:00 – 10:15 Coffee break 

10:15 – 10:45 Keynote talk 1, Amir Gholami, UC Berkeley  

An Integrated Approach for Efficient Neural Network Design, Training, and Inference 

10:45 – 11:45 15 min plenaries 
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Plenary talk 1, Karan Bhatia, Google 

The Google Cloud 

Plenary talk 2, Yoshio Tanaka, AI Bridging Cloud Infrastructure (ABCI)  

 Challenges for Smart Cyberinfrastructure in Making Society 5.0 a Reality 

Plenary talk 3, Bill Tang, Princeton Plasma Physics Laboratory  

Features of an NSF Smart Cyberinfrastructure Roadmap Supporting Science Applications 

Plenary talk 4, Mark Asch, University of Picardy  

Smart CI and the Real World 

11:45 – 12:00 Keynote talk 2, Fleming Crim, Chief Operating Officer, National Science 

Foundation,  

The NSF Vision 

12:00 – 13:00 Lunch break 

13:00 – 14:00 Panel discussion 1: AI/ML Opportunities for a Modernization of the NSF 

Cyberinfrastructure from the Edge to Large Facilities  

Organizer: Dan Stanzione  

Panelists: Ian Foster, Salim Hariri, Jelena Mirkovic, Helen Gu 

14:00 – 14:15 Organize breakout sessions  

14:15 – 15:15 Breakout sessions start parallel discussions:  

Breakout 1 in Potomac I: Cyberinfrastructure Requirements for AI/ML-Based Scientific 

Applications (Lead Xinyu Zhao, co-leads/scribes Jose Fortes, Helen Gu) 

Breakout 2 in Potomac VI: Development of the Next Generation Physical (Hardware) 

Cyberinfrastructure Tightly Integrated with AI, ML and Smart Technologies (Lead Dan 

Stanzione, co-leads/scribes Ian Foster, Steve Petruzza). 

Breakout 3 in Potomac V: Improving AI/ML Algorithms on NSF-Enabled 

Cyberinfrastructure: (Lead: Ilkay Altintas, co-leads/scribes Michela Taufer, Timo 

Bremer) 

 

15:15 – 15:30 Coffee break 

15:30 – 16:00 Breakout sessions reconvene and complete answers to main charge questions 

16:00 – 16:15 Breakout leads summarize findings and recommendations in a set of 

slides and a shared document  

16:15 – 17:00 Leads report to the entire workshop (15 min each group including questions)   
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Day 2 – Wednesday, February 26, 2020 

07:00 – 08:00 Breakfast  

08:00 - 08:10 Valerio Pascucci, University of Utah & Steering Committee  

Summary of Day 1 / Goals of the Day 2 

08:10 – 08:30 Plenary talk 5, Nicola Ferrier, Argonne National Laboratory 

AI@Edge: a Software-Defined Sensor Network 

08:30 – 09:40 Lightning talks session 1 

  10 min each (5 slides + panel) 

09:40 – 10:00 Plenary talk 6, Hank Hoffmann, The University of Chicago, 

AI/ML Methods for Computer Systems Optimization 

10:00 – 10:15 Coffee break 

10:15 – 11:15 Lightning talks session 2 

  10 min each (5 slides + panel) 

11:15 – 12:15 Panel discussion 3: Improving AI/ML Algorithms and Associated Data 

Repositories on NSF-Enabled Cyberinfrastructure  

Organizer: Ilkay Altintas, 

Speakers: Peer-Timo Bremer, Yoshio Tanaka, Andrew Chien, Karan Bhatia 

12:15 – 13:10 Lunch break 

13:10 – 14:10 Panel discussion 4: Effective Workforce Training, Development of a Community of  

  Researchers and Practitioners  

   Organizer: Michela Taufer 

  Panelists: Abani Patra, Jose Fortes, Mark Asch, Morris Riedel, Carlos Costa  

14:10 – 14:15 Organize breakout sessions  

14:15 – 15:15 Breakout sessions start parallel discussions:  

Breakout 4 in Potomac V: AI, ML and Smart Technologies for Data Acquisition, 

Experiments, and the Edge of the Cyberinfrastructure (Lead Hank Hoffmann, co-

lead/scribe Salim Hariri, Steve Petruzza) 

Breakout 5 in Potomac I: Improving AI/ML- Associated Data Repositories on NSF-

Enabled Cyberinfrastructure (Lead Ilkay Altintas, co-lead/scribe Helen Gu, Timo 

Bremer) 

Breakout 6 in Potomac VI: Effective Workforce Training, Development of an 

International Community of Researchers and Practitioners (Lead Michela Taufer, co-

lead/scribe Terry Moore, Jose Fortes)  
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15:15 – 15:30 Coffee break 

15:30 – 16:00 Breakout sessions reconvene and complete answers to main charge questions 

16:00 – 16:15 Breakout leads summarize findings and recommendations in a set of 

slides and a shared document  

16:15 – 17:00 Leads report to the entire workshop (15 min each group including questions)  

 

Day 3 – Thursday, February 27, 2020 

 

07:00 – 08:00 Breakfast  

08:00 - 08:15 Valerio Pascucci, University of Utah & Steering Committee  

Summary of Days 1-2 / Goals of  Day 3 

08:15 – 08:35 Plenary talk 7, Dan Stanzione, The University of Texas at Austin 

Providing AI/DL/ML Support in a Large Shared Facility: Perspective from TACC 

08:35 – 08:55 Plenary talk 8, Eliu Huerta, National Center for Supercomputing Applications 

Convergence of AI and HPC for Big-Data Experiments  

08:55 – 09:15 Plenary talk 9, Morris Riedel, Juelich Supercomputing Centre 

AI in international Initiatives 

09:15 – 10:30 Final breakout sessions: Feedback from community, assign 

responsibilities, and start drafting the report 

10:00 – 10:15 Coffee break 

10:15 – 10:45 Continue final breakout sessions: Commit to writing assignments after 

workshop 

10:45 – 11:15 Keynote talk 3, Henry Kautz, NSF,  Director, Division of Information and 

Intelligent Systems  (CISE/IIS), National Science Foundation 

An NSF Vision for AI Computational Infrastructure: From Tensor Clouds to the Edge 

11:15 – 11:30 Presentation of draft summary findings and recommendations (steering committee) 

11:30 – 12:00 Open discussion and feedback  

12:00 – 12:15 Closing remarks, assignments for writing the report  
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Appendix C 

Steering Committee Bios  

 

 

Dr. Ilkay Altintas is the Chief Data Science Officer at the San Diego Supercomputer Center 

(SDSC), UC San Diego, where she is also the Founder and Director for the Workflows for Data 

Science Center of Excellence as well as the WIFIRE Lab, and a Fellow of the Halicioglu Data 

Science Institute (HDSI). In her various roles and projects, she leads collaborative multi-

disciplinary teams with a research objective to deliver impactful results through making 

computational data science work more reusable, programmable, scalable, responsible and 

reproducible. Her Ph.D. degree is from the University of Amsterdam with an emphasis on 

provenance of workflow-driven collaborative science. Among the awards she has received are the 

2015 IEEE TCSC Award for Excellence in Scalable Computing for Early Career Researchers and 

the 2017 ACM SIGHPC Emerging Woman Leader in Technical Computing Award.  

 

Dr. Ian Foster is the Arthur Holly Compton Distinguished Service Professor of Computer Science 

at the University of Chicago and a Distinguished Fellow and Senior Scientist at Argonne National 

Laboratory, two wonderful institutions where science and scholarship are cherished, and the 

importance of new forms of instrumentation as enablers of discovery is appreciated. Dr. Foster is 

also affiliated with the Department of Computer Science, Mathematics and Computer Science 

Division, and Institute for Molecular Engineering at the University and Argonne. Dr. Foster 

interests include building software systems and  deploying services that solve problems in the 

sciences.  

 

Dr. José A.B. Fortes is the AT&T Eminent Scholar and Professor of Electrical and Computer 

Engineering at the University of Florida where he founded and is the Director of the Advanced 

Computing and Information Systems Laboratory. Among other current projects, he is leading the 

development of the cyberinfrastructure of the NSF-funded iDigBio project, is the principal 

investigator and Steering Committee Chair of the NSF-funded CENTRA initiative and is a 

principal or co-principal investigator of several other NSF projects (including HuMaIN and 

PRAGMA). José Fortes is a Fellow of the IEEE and a Fellow of the AAAS. 
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Dr. Xiaohui (Helen) Gu is a full professor in the Department of Computer Science at the North 

Carolina State University. She received her PhD degree in 2004 and MS degree in 2001 from the 

Department of Computer Science, University of Illinois at Urbana-Champaign. She received her 

BS degree in computer science from Peking University, Beijing, China in 1999. She was a research 

staff member at IBM T. J. Watson Research Center, Hawthorne, New York, between 2004 and 

2007. Dr. Gu received ILLIAC fellowship, David J. Kuck Best Master Thesis Award, and Saburo 

Muroga Fellowship from University of Illinois at Urbana-Champaign. She also received the IBM 

Invention Achievement Awards in 2004, 2006, and 2007.  She has filed 9 patents, and has 

published more than 80 research papers in international journals and major peer-reviewed 

conference proceedings.  

 

Dr. Salim Hariri is a professor and University of Arizona site director of the NSF-funded Center 

for Cloud and Autonomic Computing. He founded the IEEE/ACM International Symposium on 

High Performance Distributed Computing, or HPDC, and is the co-founder of the IEEE/ACM 

International Conference on Cloud and Autonomic Computing. Professor Hariri serves as editor-

in-chief of the scientific journal Cluster Computing, which presents "research and applications in 

parallel processing, distributed computing systems and computer networks." Additionally, he co-

authored three books on autonomic computing, parallel and distributed computing, and edited 

Active Middleware Services, a collection of papers from the second annual AMS workshop 

published by Kluwer in 2000. 

 

Dr. Valerio Pascucci is the Inaugural John R. Parks Endowed Chair of the University of Utah and 

the founding Director of the Center for Extreme Data Management Analysis and Visualization 

(CEDMAV) of the University of Utah. Valerio is also a Faculty of the Scientific Computing and 

Imaging Institute, a Professor of the School of Computing, University of Utah, and a Laboratory 

Fellow, of PNNL. Before joining the University of Utah, Valerio was the Data Analysis Group 

Leader of the Center for Applied Scientific Computing at Lawrence Livermore National 

Laboratory, and an Adjunct Professor of Computer Science at the University of California Davis. 

Valerio's research interests include Big Data management and analytics, progressive multi-

resolution techniques in scientific visualization, discrete topology, geometric compression, 

computer graphics, computational geometry, geometric programming, and solid modeling. Valerio 

is the coauthor of more than two hundred refereed journal and conference papers and is an 

Associate Editor of the IEEE Transactions on Visualization and Computer Graphics.  

 

Dr. Dan Stanzione is Associate Vice President for Research at The University of Texas at Austin 

since 2018 and Executive Director of the Texas Advanced Computing Center (TACC) since 2014, 

is a nationally recognized leader in high performance computing. He is the principal investigator 
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(PI) for several projects including a multimillion-dollar National Science Foundation (NSF) grant 

to acquire and deploy Frontera, which is the fastest supercomputer at a US university. Stanzione 

is also the PI of TACC's Stampede2 and Wrangler systems, supercomputers for high performance 

computing and for data-focused applications, respectively. He served for six years as the co-

director of CyVerse, a large-scale NSF life sciences cyberinfrastructure in which TACC is a major 

partner. In addition, Stanzione was a co-principal investigator for TACC's Ranger and Lonestar 

supercomputers, large-scale NSF systems previously deployed at UT Austin. 

 

Dr. Michela Taufer holds the Jack Dongarra Professorship in High Performance Computing in 

the Department of Electrical Engineering and Computer Science at the University of Tennessee, 

Knoxville (UTK). Michela Taufer has a long history of interdisciplinary work with scientists 

across domains and has been serving as the leading principal investigator on several NSF 

collaborative projects. Michela Taufer  is an ACM Distinguished Scientist, an IEEE Senior 

Member, and an IBM Fellow.  

 

Dr. Xinyu Zhao is an assistant professor of Mechanical Engineering at University of Connecticut. 

She is the director of the Computational Thermal Fluids Laboratory and her group is actively 

working on untangling the complex physical processes in turbulent reacting flows using high-

performance computing. Xinyu Zhao is the recipient of the AFOSR Young Investigator Award in 

2017 and the Irvin Glassman Young Investigator Award from the Eastern States Section of the 

Combustion Institute in 2020. 
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Appendix D 

Developing a Roadmap for the Next Generation of Smart Cyberinfrastructure 

February 25-27, 2020, Hyatt Regency Crystal City, VA, 

Call for White Papers 

 This NSF workshop (http://smartci2020.org/) aims to develop an understanding of the state of the 

art and the research needs in using scientific cyberinfrastructure powered by artificial intelligence 

(AI), machine learning (ML), and other smart technologies, as well as using these smart 

technologies to manage cyberinfrastructure efficiently, with an emphasis on NSF-supported 

cyberinfrastructure. The scale and priority of both research activities and opportunities that build 

on smart technologies call for the urgent and coherent development of smart cyberinfrastructures 

that enables accelerated progress, shared outcomes, high-quality workforce training, and 

operational excellence. Moreover, the shared research vision should allow for the identification of 

the most crucial gaps in existing capabilities that are least likely to be filled by industry or NSF or 

other agencies. 

The expected outcomes of this workshop include a cohesive overview of the state of the art in AI, 

ML, and other smart technologies in the context of several cyberinfrastructure focus areas, 

including: 

●        Accelerate AI/ML algorithms on NSF-supported cyberinfrastructure 

●        Efficiently use NSF-supported cyberinfrastructure through AI/ML technologies 

●        Provide easy and productive access to AI/ML tools by a broader and diverse scientific 

community of domestic and international stakeholders 

●        Explore and assess cyberinfrastructure requirements for AI/ML-based scientific 

applications 

To achieve the above-stated goals and outcomes, this workshop will include plenary presentations, 

panel discussions, breakout sessions, and lightning talks from contributed whitepapers. 

Accordingly, we invite you to submit short whitepapers (one- or two-page papers) that address one 

or more of the topics listed above. The whitepapers should provide your long-term vision and 

recommendations addressing key aspects that enable the development of a smart 

cyberinfrastructure, including, among others, the following issues: 

●        What are the main open research challenges and/or promising research directions in 

AI/ML and other smart technologies that can positively impact future NSF-supported 

cyberinfrastructure? 
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●        What computational testbeds for community research can accelerate innovation and lead 

to future deployments? 

●        What innovations are needed in the cyberinfrastructure of the future? 

●        How can the community promote and implement workforce development and training to 

facilitate the support of cyberinfrastructure? 

●        What tools and techniques are needed to support cyberinfrastructure-enabled science and 

engineering? 

The topics and questions listed here above are not meant to be comprehensive nor do we expect 

each white paper to touch all of them. Within the scope of the workshop, you should feel free to 

develop specific topics and subtopics as well as formulate your own questions.  Good ideas about 

potential lines of important research, emerging new types of relevant technology, or discussions 

of notable technology gaps are welcome. Putting such ideas in the context of your own experience 

or the experience of your research community is especially valuable. We will select as many white 

papers as possible for short presentations (four to five slides; presentations no more than 10 min 

each) by the authors as lightning talks. The whitepapers can be published as part of the workshop 

report. The final workshop report will be used to share findings and recommendations with NSF, 

the scientific communities, and the public. 

For full consideration for workshop presentations, send your contributions to Valerio Pascucci 

(pascucci.valerio@gmail.com) by February 15. We are looking forward to seeing you at the 

workshop. 
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Artificial Intelligence Accelerated Cyberinfrastructrure as a Research 
Multiplier at Small and Midsized Institutions 

Mike Austin1,2, Jim Lawson1,2, Andrew Evans1, Andrea Elledge1, and  
Adrian Del Maestro1,3 

1Vermont Advanced Computer Core, University of Vermont, Burlington, VT, 05405 
2Enterprise Technology Services, University of Vermont, Burlington, VT, 05405 

3Department of Physics, University of Vermont, Burlington, VT, 05405 
 

The increasing complexity of scientific data-driven workflows has led to an evolution in 
the types of tools both employed and demanded by interdisciplinary researchers. A survey 
of queue wait times and user needs at the University of Vermont Advanced Computing 
Core (VACC) identified an unmet demand for GPU supercomputing.     This gap was 
recently addressed through the NSF Major Research Infrastructure (MRI) program via 
the design and deployment of a special purpose device delivering 80 NVIDIA V100 GPUs 
with a custom-built NVMe over fabric filesystem. 

Adoption of the device by advanced users in our cestommunity was rapid, and high 
utilization developed within months. However, we identified a substantial portion of users 
that were interested in employing machine learning in their research, but have minimal 
previous experience with high performance computing and were unable to transition their 
scientific workflows to GPUs.  Thus, the efficient and broad utilization of NSF-supported 
cyberinfrastructure requires coordinated and simultaneous investment in hardware, 
research computing facilitation, and community tools that can be deployed for training 
purposes.  We have identified a number of areas where such efforts can have a multiplying 
effect on research, training, and workforce development. 

1. Training workshops that provide a low-level introduction to scientific 
programming and data analysis that include curricular material on machine 
learning frameworks with domain-agnostic examples.  These should be broadly 
advertised, especially to those outside of traditional STEM disciplines, and 
highlight that previous programming experience is not necessary for attendance. 

2. Deployment of web-based interfaces (such as Open OnDemand [1]) to research 
computing assets with environments pre-configured for artificial intelligence 
applications including Jupyter notebooks. We have seen broad utilization of these 
technologies by researchers, and high demand for deployment in the classroom by 
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faculty teaching courses with a computational component, requiring little to no 
software installation on student laptops. 

3. GPU virtualization technologies (e.g. NVIDIA vCompute Server) that enable 
GPU sharing can lead to higher utilization of expensive physical resources, 
especially for widely used off-the-shelf applications in materials science and 
chemistry with speedups reliant on a combination of CPU and GPU, that may 
not be able to exercise all of the processing capability of a single V100. 

4. Campus and region-wide coordination of networking, compute, and storage 
infrastructure to ensure successful implementation of next-generation imaging 
applications such as cryogenic electron microscopy and light sheet fluorescence 
microscopy.  There is currently a disconnect between the managers and users of 
these facilities and the cyberinfrastructure expertise required for sustainability. 

The procurement and implementation of specialized cyberinfrastructure with advanced 
artificial intelligence capabilities is playing an increasing and fundamental role in the 
university research ecosystem.  Enhanced planning and support, especially around training 
and research software development, is required to ensure broad utilization of smart 
technologies. 

[1] D. Hudak, D. Johnson, A. Chalker, J. Nicklas, E. Franz, T. Dockendorf, and B. L. 
McMichael. “Open OnDemand: A web-based client portal for HPC centers.” J. Open Src. 
Soft. 3, 622 (2018). https://dx.doi.org/10.21105/joss.00622 



AI4IO: A Suite of AI-based tools for capturing  IO patterns  

Michael Wyatt1, Stephen Herbein2, Kathleen Shoga2, Todd Gamblin2, Michela Taufer1 

1University of Tennessee Knoxville 2Lawrence Livermore National Laboratory 

1. Problem overview and community needs 

Resource managers like SLURM manage nodes and on-node resources, like processors and GPUs but fail 
to consider the wider set of resources in HPC systems, including the Parallel File System (PFS). The PFS 
can be a major bottleneck for HPC applications on large-scale systems: peak IO bandwidth is limited by 
power consumption constraints; concurrent executions compete for IO bandwidth (both on a machine and 
between different machines connected to the same PFS); and the rate of growth in PFSes to store the data 
is outpaced by the growth of HPC systems to generate data. Ultimately, HPC application jobs exhibit loss 
in performance and, in many cases, fail due to contention associated with partial or total loss in the 
PFSes’ IO bandwidth.  

Because there is an intrinsic complexity in predicting the occurrence of IO contention patterns (and 
failures) to access PFSes, current resource managers run short in accurate predictions. Consequently,  
resource managers often do not make efficient use of HPC resources when dealing with an heterogeneous 
ensemble of HPC jobs with a broad range of IO usage. When dealing with IO-intensive applications, in 
the best scenarios, the applications waste scarce node-hours by running their jobs slowly on congested 
resources; in the worst scenario, entire application allocations are wasted when their jobs fail because of 
the IO do not complete. Jobs that do very little IO may not be affected at all. If we can infer information 
about jobs, such as expected runtime and IO usage and which jobs are most affected by IO contention, we 
can inject the knowledge into the resource managers and ultimately mitigate the loss in performance for 
the impacted applications.  

The community is in need of tools that provide HPC stakeholders with a priori knowledge for managing 
the wider set of HPC resources. These tools must be able to: (1) identify and exploit temporal and system-
specific patterns in resource management; (2) augment resource managers to be resource-aware; and (3) 
avoid inconveniencing HPC users. Machine Learning (ML) based tools are a promising solution because: 
(1) ML can capture the trends unique to individual systems or utilities and leverage this for making 
predictions; (2) ML predictions can be pipelined into HPC resource managers to make schedulers 
resource-aware; and (3) ML can use the data that is already submitted to HPC machines as input and 
require no additional information from users.  

2. Our approach to tackle the problem 

We are tackling the overall problem by designing AI4IO, a suite of ML-based tools that capture trends in 
historical IO data and make predictions on IO patterns that resource managers can use to improve the 
overall system resource utilization. Our suite currently consists of two tools: PRIONN and CanarIO.   

These two tools approach the problem orthogonally to provide complimentary predictions: PRIONN 
works to prevent IO contention by providing resource managers with accurate predictions of individual 
job runtime and IO usage. We leverage PRIONN predictions to avoid scheduling IO-intensive jobs 
together, a common cause of IO resource contention and degradation. CanarIO works to detect and 
mitigate IO contentions by predicting the effects of IO degradation in real-time. We leverage CanarIO 
predictions to detect when IO degradation is occurring and which jobs are IO-sensitive and IO-resilient. 
We mitigate the contention effect by replacing IO-sensitive jobs with IO-resilient jobs in the execution 
queue during IO degradation, ultimately recovering wasted system resources.  

We evaluate each tool using real HPC data and simulating the execution jobs with a resource manager. 
Figure 1a shows the precision and sensitivity for which we are able to predict future IO bursts based on 
PRIONN predictions.  We are capable of predicting (and preventing) over 55% of IO bursts within 5 
minutes of the actual event.  Likewise, Figure 1b shows the node hours spent for data collection to train 



CanarIO and the node-hours recovered during an IO degradation event on the system.  In just a 10-day 
window, we observe over 1500 node-hours of saved system resources using predictions from CanarIO. 

 

  
(a) (b) 

Figure 1: Precision and sensitivity for which we are able to predict future IO bursts based on PRIONN 
predictions (a) and node hours spent for data collection to train CanarIO and the node-hours recovered 
during an IO degradation event (b). 

 

3. Challenges in using ML for HPC 

The accuracy of ML-based tools such as PRIONN and CanarIO heavily relies on the existence of 
pipelines collecting relevant data and making predictions actionable. In the development of our suite, the 
major challenge comes from the need for more reliable and accurate data collection infrastructure. 
Specifically, we observe that the resources being devoted to data collection on HPC machines is 
insufficient for the deployment of our tools on production machines.  PRIONN and CanarIO rely on 
datasets collected from several sources, including user job scripts, SLURM logs, PFS logs, and system 
monitoring tools.  When one or more of these datasets is unreliable (i.e., missing data or contains 
incorrect data) the ability to provide accurate predictions to the resource manager diminishes.  For this 
reason, it is necessary to improve data collection infrastructure on HPC machines to support the  tools’ 
backbone ML algorithms. In addition to the data-collection infrastructure necessary to support our suite of 
tools, we observe that innovation of HPC resource managers is necessary.  Current resource managers, 
such as SLURM, do not provide direct and native support for predictions from our tools.  Next-generation 
schedulers should adopt a design model that allows for easy integration and augmentation of the job 
schedule with tools such as PRIONN and CanarIO. 

4. Future directions  

We envision future additions to our suite to include tools for monitoring and modeling additional on-node 
resources, such as GPUs, with constraints for system resources, such as power.  Similar to our current 
tools, these tools will leverage the power of ML to provide predictions to resource managers that enable 
better scheduling for the wider set of HPC resources under many system- and node-level constraints.  In 
order to develop these tools, new data sources will need to be identified and collected on HPC systems. 
 



An Integrated Approach to Neural Network Design, Training, and
Inference

Amir Gholami1, Michael W. Mahoney2, Kurt Keutzer3

University of California, Berkeley
{amirgh,mahoneymw,keutzer}@berkeley.edu

Abstract— Finding the right Neural Network model and
training it for a new task requires considerable expertise
and extensive computational resources. Moreover, the process
often includes ad-hoc rules that do not generalize to different
application domains. These issues have limited the applicability
and usefulness of DNN models, especially for new learning
tasks. This problem is becoming more acute, as datasets and
models grow larger, which increases training time, making
random/brute force search approaches quickly untenable. In
large part, this situation is due to the first-order stochastic gra-
dient descent (SGD) methods that are widely-used for training
DNNs. Despite SGD’s well-known benefits, vanilla SGD tends
to perform poorly, and thus one introduces many (essentially
ad-hoc) knobs and hyper-parameters to make it work. It has
been found that these hyper-parameters are significantly more
sensitive to tuning in large scale training with SGD, and this
has impeded effective use of supercomputing systems. Here,
we argue that a multi-faceted approach is needed to address
these challenges by considering the full stack of neural network
architecture design, large scale training, and efficient inference
on edge platforms. This requires designing mechanisms to
better understand NN training and bridge the gap between
theoretical results for optimization, second order methods, and
high performance computing.

I. BACKGROUND AND SIGNIFICANCE

Deep Neural Networks (DNNs) have proven to be very
effective in diverse applications ranging from semantic seg-
mentation [1, 2] and detection [3, 4] in computer vision
to scientific applications such as astronomy [5], climate
science [6], and medical image analysis [7, 8]. In these
and many other applications of machine learning (ML) and
artificial intelligence (AI), finding the right DNN architec-
ture for a particular application and then training a high-
quality model requires extensive hyper-parameter tuning and
architecture search, often on very large data sets. The delay
associated with training DNNs is often the main bottleneck in
the design process, and this bottleneck limits the usefulness
of DNNs in many applications.

The most straightforward method for accelerating training
is to perform the so-called data parallel approach with
large batches [9]. However, to efficiently utilize distributed
processors, the batch size must grow with the number of
processes. In the ideal case, the hope is to decrease the
computational time proportional to the increase in batch size,
without any drop in generalization quality. However, this is
typically not the case; and, in fact, training with large batches
often results in poor generalization [10, 11]. It has been found
that large batch size training is more likely to converge
to the so-called “sharp” local minima, which often do not
generalize well. As opposed to this, small batch training has

Fig. 1. Reaching the next milestone in large scale machine learning,
requires a novel approach by integrating the full stack of designing Neural
Network architecture, training, and inference on a target hardware platform.
This requires development of new tools/hammers to gain more insight
into the problem such as through second-order methods, scalable training
methods that are robust to hyper-parameters, and direct integration of
inference constraints such as latency/power on a target hardware platform.

been found to converge to “flatter” local minima that do not
have this problem. However, the latter cannot be efficiently
scaled to parallel processes.

In order to address these drawbacks, many solutions have
been proposed [12–17]. However, these methods either work
only for particular models on particular datasets, or they
require massive hyper-parameter tuning. While extensive
hyper-parameter turning may result in good tables for pub-
lications, it is antithetical to the original motivation of using
large batch sizes to reduce training time in real applications.
This is still an open problem, and it has limited the effective
use of supercomputers for these computationally-intensive
AI/ML tasks. While one could naively use a supercomputer
and perform extensive hyper-parameter sweeps, this is not
possible for many large-scale tasks, it is not an efficient
use of computational resources, and it often undermines
the goal of scientific insight. For example, in our prior
work [18, 19] we showed that using large batch size training
with SGD leads to diminishing returns. Sample results are
shown in Fig. 2, where we show the achieved speed up by
increasing batch size for reaching a testing loss threshold. It
can be clearly seen that using larger batches does not lead
to speed up for a fixed testing loss target. In fact, it has been
observed that large batch size training with SGD requires
more iterations [20] to recover accuracy which limits the
overall speedups. That is even though larger batches can be
parallelized more efficiently from a systems perspective, but



Fig. 2. Speed up to a target testing accuracy versus batch size is shown for
both SGD and K-FAC for ResNet32 trained on CIFAR-10. The diminishing
returns effect can be seen for both K-FAC (circles) and SGD (triangles).
We can clearly see that using larger batches leads to significantly lower
speedups as compared to ideal line. For more details please see [19].

more work/iterations is needed to reach a target accuracy.
The main source for many of these problems stems from

the use of the first-order Stochastic Gradient Descent (SGD)
algorithm in training DNNs. While SGD has several well-
known benefits [21], it is also known to be very sensitive
to hyper-parameters such as step size (a.k.a. learning rate),
initialization, and momentum. These parameters vary widely
from one DNN model to another, sometimes by orders of
magnitude. This extreme sensitivity to tuning is exacerbated
when performing training with large batches [19]. Therefore,
one has to execute many (thousands of) tests to determine
the right hyper-parameter values. For example, one of the
problems with SGD training is that it uses the same step size
for all of the parameters, irrespective of curvature (Hessian)
information. Ideally, we want to use larger step sizes for
parameters that have small curvature, and vice versa. This
is illustrated in Fig. 3, where we show the top Hessian
eigenvalue for different layers of Inception-V3 trained on Im-
ageNet dataset. One can clearly see that there is an order of
magnitude difference in the associated curvature information.
For example, the loss landscape of the last layer of Inception-
V3 has very small curvature, which means that a larger step
size should be used for those parameters, as opposed to the
second layer, which has three orders of magnitude larger
curvature, and which thus needs a much smaller step size.
Adaptive variants of SGD have been proposed to address this
(e.g., AdaGrad and ADAM), but they work only somewhat
reliably, and they only work for particular problems.

To address these problems, a multi-faceted approach is
needed that can encapsulate the full stack of designing,
training, and executing the DNN model on a target hardware
platform. All of these stages are interconnected, and focusing
only on one area will lead to sub-optimal solutions. This
requires designing mechanisms to better understand DNN
training and bridging the gap between (i) theoretical results
for optimization, (ii) second order methods, and (iii) high
performance computing.

Along the first direction, we need to develop a more
practical theory for training NNs to enable large scale
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Fig. 3. Top eigenvalue of each individual block of pre-trained Inception-V3
on ImageNet. Note that the magnitudes of eigenvalues of different blocks
varies by orders of magnitude [30].

training of NNs with more robust and interpretable methods.
For example, our recent work has developed new theoretical
results in the use of higher order optimization methods and
in particular their strength and weaknesses as compared to
SGD [22–26]. Along the second direction, we have devel-
oped the PyHessian framework, which is an open source
library that enables fast computation of Hessian spectrum.
This includes the top eigenvalue, trace, and even the full
Eigenvalue Spectral Density of the Hessian for DNNs [11,
27]. This has lead to new insights in large scale training of
DNNs [11, 28], adversarial robustness [29], and development
of a novel Hessian AWare Quantization framework [30–33].
The latter has become the state-of-the-art for compressing
DNN models through quantization.

Along the third direction, we have developed new methods
to scale training by using the so-called integrated parallelism
which is based on communication-avoiding algorithms [9].
The algorithm enables distributing the computations by find-
ing optimal partitioning of the data and model, and avoids
the problems of large batch size training. Mesh TensorFlow
library is a recent work from Google that has used this
approach and implemented it in TensorFlow [34].

II. CONCLUSIONS

One promising solution to address the challenges as-
sociated with large scale training of DNN models is to
incorporate recent advances in theory, second-order opti-
mization, and high performance computing. Our recent work,
has focused on developing the infrastructure required to
address these challenges. In particular, we have developed
PyHessian [27, 35] a novel library for second-order based
analysis of DNN models, HAWQ [30–33, 36] a library for
compressing DNN models for efficient inference at the
edge, and integrated parallelism [37] a new algorithm which
enables scaling training without changing hyper-parameters.

The next milestone in enabling efficient large scale training
of DNN models can be achieved by encapsulating the full
stack of training, designing, and executing the DNN model
on a target hardware platform. These three phases are intri-
cately related and only focusing on one aspect, will not lead
to optimal solutions.
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Selected European Perspectives and Trends as Top 5  
Recommendations for Smart Cyberinfrastructures for AI in the Future 

 
Executive Summary 
There is a wide variety of activities of developing ‘Cyberinfrastructures in Europe‘ (i.e., rather known 
as Research infrastructures) in several application domains such as those driven forward by the European 
Strategy Forum for Research Infrastructures (ESFRI) [1] that are primarily based on domain-specific 
use of data, computing, and tools. A key European Artificial Intelligence (AI) – driven effort that can 
not directly be considered as a ‘Cyberinfrastructure‘, but is rather a ‘AI on-demand platform‘ (AI4EU) 
[2] shares several ambitious goals with Cyberinfrastructures. This ‘top-down‘ initiated platform is 
currently in a very early stage of development but aims to inform the AI community about AI news, 
new AI tools, emerging AI services, and enable the sharing of AI techniques and algorithms between 
users of the platform and AI-related EU projects. In addition to European activities also national AI 
activities emerge like the Helmholtz AI initiative [11] funded by the Helmholtz Association in Germany. 
At the same time, we observe that ‘European Cyberinfrastructures‘ primarily focussed on computing 
and storage like the Partnership for Advanced Computing in Europe (PRACE) [3] or the European Grid 
Initiative (EGI) [4] work on satisfying an increasing number of requests related to AI applications. For 
example, this includes annual PRACE training courses such as ‘Parallel and Scalable Machine Learning‘ 
[5] or ‘Introduction to Deep Learning Model‘ [6]. The feedback of users in these training courses and 
the below outlined research activities contributed to lessons learned summarized as top five 
recommendations below for NSF w.r.t. development of smart cyberinfrastructures for AI in the future. 
 
Despite the momentum in deep learning, users of Cyberinfrastructures in Europe such as PRACE also 
increasingly use traditional feature engineering approaches like parallel component trees [15], or 
machine learning techniques like parallel and scalable Support Vector Machines (SVM) [12], or 
traditional data mining methods like parallel and scalable Density-based spatial clustering of 
applications with noise (DBSCAN) [13]. Especially for application areas with less labeled samples, this 
makes sense while we observe more and more availability of data (i.e., often quoted ‘big data‘) but that 
does not necessarily mean that ‘big data‘ is of high quality or perfectly labeled to be used with machine 
learning techniques. For cases where large quantities of data are available, Cyberinfrastructures support 
distributed deep learning training at scale, for example by using Horovod for scaling across many GPUs 
for AI applications like in remote sensing [14]. Internally, Horovod is using concepts of the Message 
Passing Interface (MPI). Also, users demand increased number of open datasets for AI applications. 
 
Given the fact that many users of Cyberinfrastructures continue to use it with simulation sciences based 
on numerical methods based on known physical laws, the increase in using AI workloads with new 
frameworks becomes a challenge for Cyberinfrastructures leading to more required heterogeneity in the 
Cyberinfrastructures. Examples include also the use of Apache Spark for AI workloads like using 
autoencoders [17] or the joint use of AI in physics-informed ML applications [21]. Resource providers 
need to support a broader set of workloads that investigations in the European DEEP series of projects 
[16] reveal leading to a modular supercomputing architecture (MSA) [22] implemented in the Juelich 
Supercomputing Centre (JSC). The modularity will be key for Cyberinfrastructures to support, not only 
to support traditional simulation sciences and more emerging AI workloads but also to integrate 
innovative computing aspects (e.g., quantum computing, neuromorphic computing, etc.). We have 
already started to use an SVM based on the quantum annealing approach [19] to solve an inherent 
optimization problem in remote sensing applications [18]. Hence, Quantum computing is in reach and 
need to be part of future ‘modular‘ concepts of Cyberinfrastructures. Another example of the need for 
modularity are MSA-enabled reinforcement learning environments that, for example, may help to deal 
with the large complexity of finding the right hyper-parameters in deep learning networks. 



Recommendation 1: Enable Application Enabling Process after Cyberinfrastructure Training 
After performing Cyberinfrastructure & AI training (i.e., lessons learned from PRACE training), users 
often raise demand for so-called ‘application-enabling‘ by high level support teams (HLSTs) that can 
be summarized as supporting AI users in several weeks of adopting new AI techniques within their 
application domains using Cyberinfrastructures; training and offering ‘some core-hours‘ alone is not 
enough to ensure an uptake of the Cyberinfrastructure capabilities and offered services & tools. 
 
Recommendation 2: Provide Easy Access and Sharing of Scripts & Data with JupyterLab 
PRACE training courses for AI as described above (but also for other topics like Python, MPI, etc.) are 
increasingly carried out with Jupyter notebooks and JupyterLab and this environment is available also 
for researchers at the Juelich Supercomputing Centre (JSC) and was presented at ISC2019 last year [10]. 
Cyberinfrastructures need to support these technologies more broadly to enable easier collaboration in 
research through the sharing of scripts, Jupyter kernels, or datasets for AI applications. This also lowers 
the technical boundary for AI end-users that are not familiar with concepts like SSH and could be 
considered for integration into existing Science Gateway activities in the US. Challenges for 
Cyberinfrastructure providers need to be tackled like supporting interactive access instead of the 
traditional batch operations and implement Jupyter kernels on various coherent versions of deep learning 
tools (e.g., specific versions of Tensorflow/Keras) and underlying hardware libraries (e.g., CUDDN). 
 
Recommendation 3: Contribute with Cyberinfrastructures to International AI Activities 
There are excellent examples of international collaboration activities such as the Joint Laboratory for 
Extreme-Scale Computing (JLESC) [7] or Big Data & Extreme-Scale Computing (BDEC) activities [8] 
that both are not primarily focussed on AI and rather focus towards developments in Exascale. Hence, 
in contrast to the AI4EU platform, the Joint Artificial Intelligence and Machine Learning Lab (JoAIML) 
[9] was created as a spin-off from JLESC as Bottom-Up activity to encourage the exchange of AI-based 
scripts and datasets via GitLab [9]. Although JoAIML is currently driven forward by the Helmholtz AI 
at JSC, the University of Iceland (UoIceland), and the National Center for Supercomputing Applications 
(NCSA), JoAIML is considered to be open to other international members (e.g., other partners from US, 
Japan, UK, etc.). More recently, discussions emerge how JoAIML can become broader and more visible 
(e.g., own Web page) for Cyberinfrastructure users in the future. 
 
Recommendation 4: Offer Parallel & Scalable Tools & Techniques at Scale 
Despite the fact that Deep Learning tools (e.g., TensorFlow, Keras, PyTorch, etc.) and distributed 
training frameworks (e.g., using Horovod) are required, it makes sense also to offer also traditional 
machine learning algorithms as parallel and scalable codes in the Cyberinfrastructure. Not all 
applications really need cutting-edge deep learning models like RESNET-50, for example, when labeled 
dataset samples are limited that is observed quite often in science and engineering. For example, SVMs, 
as desribed above, are robust methods that may lead to better results in some application areas. Reasons 
are grounded in statistical learning theory and that the number of parameters for SVMs is not much (in 
contrast to deep learning models) thus enabling better generalization and less risk in overfitting. 
 
Recommendation 5: Modularity of the Cyberinfrastructure with distinct Services & Resources 
The modularity of the Cyberinfrastructure will be key for AI applications in the future and is here 
inspired by the MSA as described above. While computational-intensive model training can be done by 
using cluster modules (CM) with high single-thread performance CPUs or specific GPUs, less 
computational-intensive AI model testing and inference can be performed on scalable booster modules 
(BM). Apache Spark stacks with AI algorithms can be supported by Data Analytics Modules (DAMs) 
contributing to the fact that for specific AI application problems it is more efficient to use specific 
devices. Like accelerators are used now for deep learning problems, it can be possible that a quantum 
device module can be used for the complex solving of optimization problems in AI algorithms. Equally 
interesting, future resources and services may offer neuromorphic devices or more use of containers 
(i.e., Docker, Singularity, etc.) for AI applications. Other distinct services of the Cyberinfrastructure 
should support end-users in a systematic fashion by enabling (instance-aware) Neural Architecture 
Search (NAS), for example, based on reinforcement learning environments as described in [20]. Finding 
the right hyper-parameter and parameter-tuning is very computational-intensive, overlaps with AutoML 
techniques, and is a key problem to be solved for AI communities by Cyberinfrastructures of the future. 
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1 Introduction

The volume and complexity of multidimensional signals have been growing
exponentially. Analysis of the big datasets collected by various sensors re-
mains a significant challenge for scientists and analysts. There is also a
growing need for real-time analysis of data on Edge in many applications
including emergency response, health care, surveillance, and cybersecurity.
The faster one can harness insights from data, the greater the benefit in
reducing costs, saving human lives, and increasing efficiency will be. While
traditional analyses provide some insights into the data, the complexity, scale,
and multi-disciplinary nature of the data necessitate advanced intelligent so-
lutions. The success of recent data analytics technique based on deep learning
have facilitated progress in a variety of tasks but they command significant
computational complexity and require the availability of a large amount of
labeled data for training.

2 Challenges and needs

Despite all recent advances of deep neural networks, there are currently sev-
eral challenges; firstly, success of recent deep learning approaches for a variety
of vision-based tasks highly depends on the availability of a large amount of
labeled data for training. In many real-world applications, such as natu-
ral disasters and health-care, manually labeling images requires a significant
amount of domain experts’ time that could otherwise be spent on high-level
scientific discovery. Secondly, most successful network architectures (such
as VGG-net[1], Resnet[2]) have improved the performance of various vision
tasks at the expense of significantly increased computational complexity and
as a result, they need several days for training on graphics processing units



(GPUs). In many applications, fast analysis of data is vital. For example,
after natural disasters, if one can reduce the initial response by one day, one
can reduce the entire recovery by a thousand days [3]. Another example is in
health-care; if one detects an elderly fall immediately, one can save his/her
life. Thirdly, several studies have shown that even a limited amount of noise
and perturbation greatly affects the performance of most deep learning tech-
niques [4, 5]. Finally, the interpretability of black box representations of
deep learning has long been the Achilles’ heel of deep learning. It achieves
superior performance at various tasks at the cost of low interpretability.

Critical need: There is a critical need in research community and in-
dustry to develop deep learning algorithms that are fast, unsupervised, less
computational, and less sensitive to the noise.

3 Our vision

To address the aforementioned challenges in deep learning in general, we
propose to devise new methodologies in time-frequency domain based on
multi-resolution analysis. This domain-transformed deep learning approach
has the potential to solve the issues of low training speed, and susceptibility
to noise, as well as the need for large amounts of labeled data. Wavelets pro-
vide several advantages when performing deep learning operations in that do-
main, including sparse representation, multi-resolution, and space-frequency
locality.
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Dealing with finite resolution and resources. As with all HPC simulations of phys-
ical systems, cosmological simulations of galaxy formation [1, 8] are limited by insufficient
computational resources. It is possible to directly follow the equations of gravity and gas
dynamics either at high resolution in a small volume or at low resolution in a large volume.
However, key processes of interest often result from the interplay of large scale environ-
ments and small scale physics. Drawing from the ongoing revolution in AI (specifically,
Deep Learning, DL, e.g., [3]) it is becoming possible to bridge this gap from large to small
scales. Neural Networks (NNs) have been developed that can learn from high resolution
image data [2, 5], and then make accurate super resolution versions of different low res-
olution images. We are beginning to apply these techniques [6] to physical modeling in
HPC simulations. The ideas are generally applicable, and our own use case is cosmological
hydrodynamics, leading to super resolution modeling of galaxy and black hole formation.

Training Generative Networks. The heart of these AI-assisted simulations are Gen-
erative Adversarial Networks (GANs) [4, 7]. A GAN is a class of DL system in which two
NNs contest against each other in a game: the generative network generates candidates
while the discriminative network evaluates them. Given a training set, this technique learns
to generate new data with the same characteristics as the training set. GANs can be used
to generate entirely new data from initially random inputs, or in the case of super resolu-
tion simulations we use low resolution full hydrodynamics data as input to the generative
network and produce data statistically consistent with high resolution simulations below
the resolution scale. Training sets are generated by running simulations at different native
resolutions, and results from different physics codes can be combined.

The path to hybrid AI/hydrodynamic modeling. Three different approaches are
being tried, in increasing order of complexity (i) enhancement of simulated galaxy im-
ages; (ii) post processing augmentation of simulated three dimensional gas, dark matter
and stellar density fields; and (iii) training and super resolution modeling inside running
simulations (”on the fly”) which allows for causal feedback between the generated and
physically simulated scales. .

On-chip AI: The suites of super resolution models will make use of on-chip AI in-
structions becoming available in HPC, such as Intel’s AVX-512 Vector Neural Network
Instruction set available on the Cascade Lake processors used in the NSF’s Frontera. Such
technology holds great promise to study problems where large scales and high resolution
are closely linked. In the case of astrophysics these super resolution simulations will bridge
the gap in scales between the formation of stars, planets and black holes and the dark
matter and dark energy that dominate the large-scale structure of the Universe. Our
understanding of both ends of this range — from small to large — will increase as a result.

Impact on NSF Cyberinfrastructure We will be running AI algorithms inside ad-
vanced physics simulations, with training and use happening in real time, as the AI will
affect the running simulation and learn from it at the same time. This level of coupling
between AI and direct physical modeling is unprecedented and should lead to advances in
the ways that AI can be used. Flexible tightly coupled systems of GPUs and CPUs with
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on-chip NN would be ideal resources for both NN training farms, and on the fly AI/fluid
dynamics runs. If this work fulfills its promise it could revolutionize the use of AI-enabled
chips in exascale high performance computing.
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Scientific workflows are key to today’s computational science, enabling the definition and execution of              
complex applications in heterogeneous and often distributed cyberinfrastructure (CI). There are several            
current challenges in managing scientific workflows in distributed systems: composing the workflows,            
provisioning the resources for the workflows, and executing the workflows efficiently and reliably.             
Promising machine learning (ML) techniques can be applied to meet these challenges thereby enhancing              
the current workflow management system capabilities [1]. We foresee that as the ML field progresses, the                
automation provided by workflow management systems will greatly increase and result in significant             
improvements in scientific productivity and reproducibility. We herein describe a few representative            
possible applications of ML technologies that can enable efficient and reliable use of NSF-supported CI               
by scientific workflows. 
 
Integrity Introspection for Scientific Workflows using ML: Data-driven science workflows often suffer            
from unintentional data integrity errors when executing on distributed national scale CI. However, today,              
there is a lack of tools that can collect and analyze integrity-relevant data from workflows and thus, many                  
of these errors go undetected jeopardizing the validity of scientific results. In the context of the IRIS                 
project [2], we are developing methods to automatically detect, diagnose, and pinpoint the source of               
unintentional integrity anomalies in scientific workflows executing on distributed CI. The approach is to              
develop an appropriate threat model and incorporate it in an integrity analysis framework that collects               
workflow and infrastructure data and uses ML algorithms to perform the needed analysis. Our goal is to                 
integrate our solutions into the Pegasus workflow management system [3], which is used by a wide                
variety of scientific domains. It is also important to engage with science application partners (e.g.               
gravitational-wave physics, earthquake science, and bioinformatics) to deploy the ML analysis framework            
for their workflows, and to iteratively fine tune the threat models, ML model training, and ML model                 
validation in a feedback loop.  
 
Testbed Experimentation and ML Model Validation: An important aspect of developing ML based             
analysis techniques is the appropriate use of testbed infrastructures (NSFCloud [4][5] and other             
NSF-supported testbeds, e.g. ExoGENI [6]) to simulate realistic infrastructure conditions and error            
scenarios to train the ML models. For example, we are currently simulating aspects of the Open Science                 
Grid [7] data distribution system in a testbed scenario to research on introspection and diagnosis of data                 
integrity errors. The goal is to build an analysis framework that is powered by novel ML-based methods                 
developed through experimentation in a controlled testbed, and then validated in and made broadly              
available on NSF production CI. Future NSF-supported infrastructures like the FABRIC [8] mid-scale             
research infrastructure can also be brought to bear to develop ML models for workflows with realistic                
production scenarios. 
 
Performance Analysis for Workflows: ML techniques can also be utilized to address many of the               
challenges faced in managing scientific workflows in distributed systems. Several ML techniques are             
being used today to analyze the behavior of workflows at various levels of abstraction (workflow, task,                
and infrastructure) using different processing modalities (online and offline) and techniques to train the ML               
models [1]. Although there are promising initial results in using ML algorithms for scheduling, anomaly               
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detection and provisioning resources for efficient and reliable workflow executions, the community is just              
at the beginning of exploring ML techniques in the scientific workflow space. Significant research              
advances need to be made in applications of ML technologies to the area of workflows to truly automate                  
the analysis of the workflow behavior, understand the sources of anomalies, and make adaptation              
decisions to efficiently support the entire workflow lifecycle. 
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Recent hardware and software advances have motivated the development of a transcontinuum digital infrastructures
concept to account for the convergence of data and compute capabilities across the digital continuum, which goes from
instruments and sensors at the edge, through wireless and network channels, to HPC and cloud facilities et the center.
This concept is not in a straight line from the past efforts and a paradigm change is needed: we will have to design
systems encompassing hundreds of billions of cores distributed over scientific instruments, IoT, supercomputers and
Cloud systems through Lan, Wlan and 5G networks.

Pushed by massive deployments of compute and storage capabilities at the edge, we require new system design to
accommodate the ecosystem change to be expected in the coming decades (environmental and technological) and
horizontally integrate the different actors. The new demands and challenges that combine data and compute, distributed
across the continuum, and the maintenance and resource efficiencies, are pushing for drastically increased software
and hardware sustainability. Furthermore, the need to provide high-level cybersecurity is profoundly changing the
game. Efficiency and resilience will have to reach levels never achieved so far, while taking into account the intrinsic
distributed and heterogeneous nature of the continuum. In addition, the question of dealing with such high volumes of
data needs to be faced, and quality versus quantity will become unavoidable. These considerations will spread over
all components. Long-lifetime hardware devices will have to be reconfigurable, modular, and self-aware in order to
be operational over extended periods. Algorithm efficiency will need to be drastically pushed up (e.g. more efficient
AI). Management and deployment of large-scale application workflows will have to be adapted, or invented. Network
protocols will have to offer better control over the data logistics, etc.

It is widely recognized that AI will play a central role in these extreme-scale, continuum infrastructures. This will occur
at three levels: (1) AI for Digital Infrastructure, (2) Digital Infrastructure for AI, and (3) AI for Science, Industry and
Societal Challenges. The first addresses how AI can pilot and monitor the continuum and in so doing provide solutions
to the points listed in the previous paragraph. The second treats the question of re-designing the cyberinfrastructure to
efficiently deal with data analysis and machine learning, which means tuning of data access, I/O, and low precision
arithmetic. The last deals with the ever-increasing needs to exploit AI techniques for extreme-scale, combining Data
and Compute through the interpretation and coupling of computing results, measurements and observations (eg. Digital
Twins in extreme earth modelling, combining climate models with satellite data and on-ground sensors).

The overall objective is to target high TRL solutions (7 and more), based on horizontal synergies between all the
concerned digital infrastructure technologies: HPC, Big Data, Machine Learning, IoT, 5G, cybersecurity, processor
technology and robotics. All of these components of the digital infrastructure will together be able to address the huge
societal challenges and sustainable development goals by mobilizing their amazing potential all the way across the
continuum.
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Developing and Accelerating Predictive Models for Predicting Relapse of Pediatric 
Oncology patients using Smart Cyberinfrastructure 
Mauricio Ferrato, Brad Atmiller, Erin Crowgey, Karl Franke, Sunita Chandrasekaran 
Affiliation: University of Delaware, Nemours/Alfred I. duPont Hospital for Children 
 
Goal: To apply ML/AI algorithms to clinical and genomic data of nearly 200 Leukemia patients 
to predict their relapse potential.  
 
Dataset: The TARGET (Therapeutically Applicable Research To Generate Effective 
Treatments) from National Cancer Institute (NCI) initiative provides comprehensive molecular 
characterization to the greater research community. TARGET has applied this approach to 
multiple types of cancer so far. Our focus is on Acute Lymphoblastic Leukemia (ALL), a cancer 
of white blood cells. One half of our data is each patient's Clinical Annotations; each patient's 
demographic data (like age and race) and medical data (like White Blood Cell count and 
Minimal Residual Disease) throughout their treatment. The other half is their genetic profile. 
One major benefit of using TARGET genetic data is that it is already pre-processed and clustered 
into gene groups with levels of expression for each. Instead of low-level gene data and 
nucleotides, we get to work with a spreadsheet that has 20,000 gene groups for each of the 200 
patients.  
 
Project Focus: Our project focuses on using both clinical and genetic data of Acute 
Lymphoblastic Leukemia (ALL) patients to determine molecular changes that drive childhood 
cancers. We aim to find what mix of feature selection techniques and classification models 
provide the most accurate and generalizable results.  
 
Approach: The first important step for any data science project is pre-processing, getting the 
data into a form that machine learning algorithms will recognize and can process. The primary 
data structure we use to hold our data is DataFrames from the Python Data Analysis Library 
(pandas). From there we clean up the data by removing columns that are missing too many 
values, fill in the rest of the absent value (using averages or placeholders), split categorical 
variables into a binary representation, and scale numeric columns to a consistent range. 
 
The second step is feature selection. One of the major pieces of our research is feature selection; 
how to best determine which features will be most useful in predicting relapse. The most 
accurate learning algorithms are those which are fed high-quality data. One possible 
formalization is that a good feature set contains features which are highly correlated with the 
class, yet uncorrelated with each other. Specifically determining which genes out of the 20,000 
will be most useful is quite difficult. There are a few different routes. One route is performing 
statistical analysis to find which variables are most closely correlated with relapse. Chi-squared 
statistic, correlation, information gain, Symmetrical uncertainty, ReliefF statistic, and a host of 
other forms of analysis are possible. One of the main analyses we've used is the ratio of 
expression for each gene between relapse and non-relapse patients. If we take the datascience 
route, there are several techniques we could employ to perform feature selection. Techniques 
could be Market Basket Analysis, PCA and autoencoder among others. 
 



The third step is classification. Once we have handled missing data and selected features, we to 
determine the type of classier to use to arrive at predictive and accurate models for the data under 
study. We will explore artificial neural networks, and ensemble models based on random splits, 
bootstrapping and cross validation. We will gather accuracy, specificity and sensitivity metrics 
and analyze how each of the models arrive at these metrics. If the above ensemble algorithms are 
not useful for the dataset under study, we use another ensemble method called the gradient 
boosting algorithm for the given dataset. Gradient boosting is one of these ensemble techniques 
that uses weak learners, like small decision trees called decision stumps, to learn in an iterative 
process. While using these ensemble approaches, we want to be cautious and observant that the 
model does not pick a random sample every time for multiple iterations. We also need to explore 
the applicability of our findings on a larger dataset or dataset that is different to the one under 
study. 
 
Research Challenges: As we can see, there are more than a handful of techniques one could use 
to perform feature selection or classification. Such an exploration is also very closely tied to the 
input dataset and the volume of the same, often termed as “Big Data” . In order to arrive at an 
acceptable % for accuracy, sensitivity and specificity (ROC curve for example) by the 
community, we are often bound to employing permutations and combinations of techniques. 
However, this is a very time-consuming approach. We need modular workflows.  
Secondly, we clearly need better software to be able to use ML/AI solutions. We need 
interoperability between frameworks such that programmers are not re-inventing the wheel when 
they have to move between architectures. Given for example Habana relies on a base architecture 
for both training and inference but optimizes the designs for different workload as opposed to 
another route where a company manufactures fundamentally different architectures for training 
and inference. The challenge is how do you target these architectures for the case under study – 
building models for predictive oncology? 
Thirdly, while disruptive hardware is fantastic for exploration, IMHO the community has not 
come to a consensus on the architectures we need for training and inference. Like mentioned 
above, sometimes the base architecture is the same and sometimes they are not. A better analysis 
or study of which is a better route would be very useful. To that end, we need ML/DL 
benchmark suite like SPEC CPU/HPG. MLPerf is something we have been referring to, however 
how comprehensive is the suite?  
 
Workforce Development and Training: Jupyter notebooks are one way to go that can be 
adopted by the next-generation workforce in order to use the smart cyberinfrastructure without 
needing to get into the nitty-gritties of the workflow itself.  
 
Tools and Techniques: We need “modular” workflows that can walk researchers through 
techniques and strategies employed for a given dataset. Scripts are OK but they are not helpful 
when the scientists have to test more than a handful of tools and techniques before arriving at the 
right combinations of tools for a given dataset.  
 
 



A Smart Cyberinfrastructure should use AI/ML to Reduce its Carbon Footprint and Negative 
Environmental Impacts 

 
Andrew A Chien, University of Chicago 

White Paper for the 2020 NSF Smart Cyberinfrastructure Workshop 
 
Computing is one of the largest consumers of electrical power and in most parts of the world, 
the fastest growing consumer.  While the largest fraction of this growth is due to the growth of 
cloud computing [Nature19], the scientific computing community’s carbon footprint has grown 
rapidly, with a recent estimate for the Top 500 at 3 million metric tons of carbon per year.   
While the growth is due in part to the end of Moore’s Law and the rising appreciation of the 
value of scientific computing, and there is a growing recognition that expanding use of AI/ML is 
a major contributor to this rapid increase [Amodei18,Hao19].  
 
We believe that the NSF’s Smart Cyberinfrastructure should use AI/ML to reduce its carbon 
footprint and negative environmental impacts.  Specifically,  
 

- AI/ML should be used to schedule workloads both at centers and at the edge to 
minimize the carbon impact of cyberinfrastructure computing resources, choosing 
location, time of day, and more to consume the least damaging electric power 

- AI/ML should be used to manage and plan cyberinfrastructure resources so as to 
achieve scientific ends with the minimum quantity of e-waste, maximizing the useful 
lifetime of equipment and scheduling computations on the resources that minimize the 
consumption of electric power 

 
In addition, the NSF’s Smart Cyberinfrastructure should make aggressive use of renewable 
energy, exploiting breakthrough insights that show that batch and throughput scientific 
computing can be delivered economically with zero or near zero-carbon approaches 
[ZCCloud19,Yang16].  This insight has several implications and opportunities: 
 

- NSF should exploit new types of renewable-energy models (stranded power), and new 
models of operation to achieve zero-carbon operation for large-scale computing 
resources, doing so can also reduce the power cost of operating these resources 

- NSF Smart Cyberinfrastructure should provide national and international thought 
leadership and operational leadership for both government, educational, and even 
commercial community to reduce the carbon impact of computing 

- NSF Smart Cyberinfrastructure adoption of these renewable based models represents 
the opportunity to maximize the ability to use compute-intensive AI/ML techniques for 
scientific and social good as well as to optimize scientific computing resource 
management 
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Artificial Intelligence Accelerated Cyberinfrastructrure as a Research 
Multiplier at Small and Midsized Institutions 
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The increasing complexity of scientific data-driven workflows has led to an evolution in 
the types of tools both employed and demanded by interdisciplinary researchers. A survey 
of queue wait times and user needs at the University of Vermont Advanced Computing 
Core (VACC) identified an unmet demand for GPU supercomputing.     This gap was 
recently addressed through the NSF Major Research Infrastructure (MRI) program via 
the design and deployment of a special purpose device delivering 80 NVIDIA V100 GPUs 
with a custom-built NVMe over fabric filesystem. 

Adoption of the device by advanced users in our cestommunity was rapid, and high 
utilization developed within months. However, we identified a substantial portion of users 
that were interested in employing machine learning in their research, but have minimal 
previous experience with high performance computing and were unable to transition their 
scientific workflows to GPUs.  Thus, the efficient and broad utilization of NSF-supported 
cyberinfrastructure requires coordinated and simultaneous investment in hardware, 
research computing facilitation, and community tools that can be deployed for training 
purposes.  We have identified a number of areas where such efforts can have a multiplying 
effect on research, training, and workforce development. 

1. Training workshops that provide a low-level introduction to scientific 
programming and data analysis that include curricular material on machine 
learning frameworks with domain-agnostic examples.  These should be broadly 
advertised, especially to those outside of traditional STEM disciplines, and 
highlight that previous programming experience is not necessary for attendance. 

2. Deployment of web-based interfaces (such as Open OnDemand [1]) to research 
computing assets with environments pre-configured for artificial intelligence 
applications including Jupyter notebooks. We have seen broad utilization of these 
technologies by researchers, and high demand for deployment in the classroom by 
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faculty teaching courses with a computational component, requiring little to no 
software installation on student laptops. 

3. GPU virtualization technologies (e.g. NVIDIA vCompute Server) that enable 
GPU sharing can lead to higher utilization of expensive physical resources, 
especially for widely used off-the-shelf applications in materials science and 
chemistry with speedups reliant on a combination of CPU and GPU, that may 
not be able to exercise all of the processing capability of a single V100. 

4. Campus and region-wide coordination of networking, compute, and storage 
infrastructure to ensure successful implementation of next-generation imaging 
applications such as cryogenic electron microscopy and light sheet fluorescence 
microscopy.  There is currently a disconnect between the managers and users of 
these facilities and the cyberinfrastructure expertise required for sustainability. 

The procurement and implementation of specialized cyberinfrastructure with advanced 
artificial intelligence capabilities is playing an increasing and fundamental role in the 
university research ecosystem.  Enhanced planning and support, especially around training 
and research software development, is required to ensure broad utilization of smart 
technologies. 

[1] D. Hudak, D. Johnson, A. Chalker, J. Nicklas, E. Franz, T. Dockendorf, and B. L. 
McMichael. “Open OnDemand: A web-based client portal for HPC centers.” J. Open Src. 
Soft. 3, 622 (2018). https://dx.doi.org/10.21105/joss.00622 



Finding the Lost:  
True Dissemination of Large Data through Efficient and Standardized System                   
Design  
Brian Summa, Assistant Professor, Department of Computer Science, Tulane University 
 
Datasets many gigabytes to terabytes in size are being produced daily by scientists throughout the world.                               
Examples include large simulations of physical phenomena being run on DOE supercomputers or large                           
NSF supported infrastructures; large microscopy scans from NSF or NIH supported projects; or even                           
climate models run at the National Center of Atmospheric Research. While crucial to the scientists who                               
produce them, just a small number of these large datasets could have a transformative impact for others,                                 
if the data can be shared simply and easily with researchers. For instance, consider computer vision                               
databases that collect, organize, and share the large number of photographs available online. Databases                           
like ImageNet [1] have fostered huge leaps in vision and machine learning (16k citations in 10 years).                                 
Plug-ins even exist to query this database directly in interactive data analytics pipelines (e.g. Jupiter                             
notebooks). Now consider that just a few hundred (~500) datasets from high-resolution, digital                         
microscopy contain approximately the same number of pixels as the entire ImageNet [2].  

 
Imagine the potential if such data could be made widely and easily available to researchers-at-large. This                               
begs the obvious question on what would be necessary for people to construct ​ImageNet-like databases                             
using their large datasets. The unfortunate truth is that even sharing a single large dataset can be a                                   
daunting task for researchers. Typically these data repositories are maintained by individual scientists or                           
groups. These ad-hoc repositories are especially challenging when datasets get large. For instance, the                           
repositories are often ​links to full-resolution raw data. In this scenario, datasets cannot be easily                             
transferred, stored, or processed given their sheer size. Moreover, interactive queries are not supported,                           
despite interactive analytics often being the key for novel scientific insights in new or complex                             
phenomena. Alternatively, scalable, interactive queries can be provided through more advanced large                       
data systems [3], although these systems are often highly-specialized, ad-hoc deployments with no                         
standardization for data access across different platforms. In total, meaningful and wide dissemination of                           
large data is not currently well-supported 
 
The only solution to sharing these datasets is through large data systems that are easy to deploy, query,                                   
and scale. To this end, the ad-hoc deployments, divergent designs, non-standardized data access, and                           
layering of heuristics that currently plague these systems must end. Work must be completed to model                               
and standardize these many approaches. Although, this is a difficult task. For instance, systems for large                               
data need to leverage (concurrently) several if not all of the following accelerators: high performance                             
backends; preprocessing data while loading or idle; pre-caching or pre-fetching of data; or stream                           
processing during data movement. Moreover, often scalable systems will need to support heterogeneous,                         
distributed computing and storage resources. This leads to a highly complex interplay of many moving                             
parts. Although, as this list above also shows there is justification that such standardization is possible                               
given the many commonalities in design between these ad-hoc systems. Therefore, I argue that such                             
standardization is not only necessary, but entirely possible given the proper support and effort. With                             
such work, the rich datasets that are currently being lost to researchers-at-large due to their size can                                 
finally be widely disseminated. 
 
[1] J. Deng et al. Imagenet: A large-scale hierarchical image database. In ​2009 IEEE Conference on                             

Computer Vision and Pattern Recognition​, pages 248–255. IEEE, 2009.  
[2] C. Mercan et al. Multi-instance multi-label learning for multi-class classification of whole slide breast                           

histopathology images. ​IEEE Transactions on Medical Imaging​, 37(1):316–325, 2017.  
[3] Bethel, E. Wes, Hank Childs, and Charles Hansen, eds​. High performance visualization:                       

Enabling extreme-scale scientific insight. CRC Press, 2012. 
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This White Paper will provide a viewpoint on (1) how scientific cyberinfrastructure will need to evolve to 

better support a wider range of Artificial Intelligence (AI) techniques and methodologies (which I call 

Multi-AI-Capable), and (2) example uses for Multi-AI-Capable Cyberinfrastructure in scientific discovery. 

 

Scientific Cyberinfrastructure to Better Support a Wider range of AI Techniques & Methodologies 
Existing NSFCloud infrastructures such as CloudLab and Chameleon as well as commercial cloud 

providers such as Azure and Amazon Web Services (AWS) are rapidly adding hardware optimized for 

machine learning and classification of patterns.  These include fast, parallel, and narrow graphics 

processing units (GPUs), tensor processing units (TPUs), and smart network interface controllers (smart 

NICs) among others.  There continues to be rapid evolution of hardware optimized for specific uses and 

keeping up with application-based requirements is a key challenge for both NSF Cloud and commercial 

providers. 

Most the newest and fastest supercomputers are also incorporating architectures designed to facilitate 

AI workloads.  The Japanese AI Bridging Cloud Infrastructure (ABCI) is #8 on the current TOP500 list, but 

this list ranks by the traditional High Performance Linpack (HPL) benchmark and doesn’t measure true AI 

capabilities.  Both next-generation Chinese and European supercomputers will have internal 

connectivity and augmented and adjunct processors friendly to multi-dimensional AI problems.  Two 

examples are the Vector Neural Network Instructions (VNNI) in current and future Intel Xeon CPUs, and 

continuous new takes on tensor co-processors. 

To date, most AI algorithms and cyberinfrastructure rely on just two related AI techniques: machine 

learning of patterns and classification based on those patterns.  This white paper argues not that these 

are unimportant—indeed, they are critically important—but that future AI applications will also rely on 

additional AI-related cyberinfrastruture capabilities as well.  Generically, I call this broader set of 

capabilities “Multi-AI Capable Cyberinfrastructure.” 

Multi-AI Capable Cyberinfrastructure will better support: 

- Traditional symbolic AI reasoning and ontological reasoning 

- Being able to explain why learning and classification networks are constructed the way they are 

- Game-theoretical extrapolations and predictions (leading to better machine and human 

decision-making) 

- AI-driven automatic big data exploration and discovery and testing these results against 

independent datasets 

- Evolutionary and genetically-driven AI capabilities 

mailto:Glenn.Ricart@utah.edu


- Quantum computing support for better probabilistic AI applications (Quantum wave function 

superpositioning might be used to represent probabilistic certainties (aka “uncertainties”) in AI 

algorithms) 

Each of these bullets deserves a paragraph to explore their importance and possible approaches to 

cyberinfrastructure to better support them.  But let’s leave that to a workshop report that covers those 

(and others) on which we have a degree of agreement. 

 

Multi-AI-Capable Cyberinfrastructure in Scientific Discovery 
There would appear to be a very long list of possible applications for Multi-AI-Capable 

Cyberinfrastructure in Scientific Discovery. Before listing some of these, let’s just note that we’re 

omitting big classes of applications which have already received significant attention such as military 

applications, autonomous vehicles, digital assistants, traffic management, social media, interpreting 

medical imaging, financial investing, etc.  And we’re not claiming these are already solved; just that 

we’re likely to make more of an NSF difference by focusing on some important issues in science. 

How might Multi-AI Capable Cyberinfrastucture better support science and engineering? 

1. Intelligent agents to facilitate use of the Scientific Method.  An AI-based digital lab assistant 

could help support documentation of the environment, hypotheses, helping with experimental 

design to maintain desired power in the results, accurately recording experiments (including 

those run on Multi-AI Capable Cyberinfrastructure), and aiding reproducibility and replicability.  

“Reproducibility and Replicability in Science” was the title of a Congressionally-required, NSF-

commissioned report by the National Academies of Science and Engineering released May 7th,. 

Using Multi-AI Capable Cyberinfrastructure to better design and document scientific hypotheses 

and experiments could have great value across all NSF directorates. 

 

2. Creation, testing, and tuning of scientific models / simulations / emulations / cyberphysical 

systems.  The Wikipedia article on Artificial Intelligence notes that “Leading AI textbooks define 

the field as the study of "intelligent agents": any device that perceives its environment and takes 

actions that maximize its chance of successfully achieving its goals.” (See English Wikipedia for 

references.)  I would suggest that models (and simulations and emulations and self-adjusting 

cyberphysical systems) are key to many areas of science.  A grand challenge might be a National 

Library of AI-driven Scientific Models. Many AI-driven topic-specific models already exist.  But 

they are few compared to the number of topic-specific models carefully constructed by 

knowledgeable scientists and engineers.  Multi-AI techniques could be the key to greatly 

expanding the breadth and number of useful models and helping them evolve to match new 

data.  Which brings us to… 

 

3. Discovery in data that goes beyond simple patterns and looks for multi-step explanations and 

interactions.  How are time-varying complex patterns related to each other?  Can Multi-AI-

Capable Cyberinfrastructure help with model verification?  Model-driven prediction?  Model 

tuning?  Model explanation? 

 

https://en.wikipedia.org/wiki/Intelligent_agent


4. Cybersecurity research is a constantly evolving subject that might be viewed as based on game 

theory.  Multi-AI-Capable Cyberinfrastructure designed for game theory applications could help 

produce significant new results in cybersecurity. 

 

5. Both student-directed and Socratic learning digital assistants.  Today’s dominant uses of linear 

textbooks, syllabus-based lectures, and educational projects work for some but not all learners.  

The National Science Foundation has an important interest in science and technology education 

that might better be achieved for some students with experience-inspired student-directed 

learning.  Can Multi-AI-Capable Cyberinfrastructure re-structure learning materials on the fly to 

meet the needs of a learner’s question?  Similarly, the Socratic Method is often very effective 

for some students but not widely used for teaching science and engineering.  How could a Multi-

AI-Capable Cyberinfrastructure ask probing questions, understand the student’s thinking based 

on their response, and then ask additional questions that lead the student to the answers they 

seek? (Another grand challenge.) 

 

6. Smart and Connected Communities research could widely benefit from Multi-AI-Capable 

Cyberinfrastructure.  A quick listing of example applications that would benefit from Multi-AI 

Capable techniques includes: 

 

a. Anticipating human needs (e.g. public safety, transportation, health) 

b. Consumer-driven AI to make it an even fight with marketing-driven AI (information 

asymmetry) 

c. Continuous health monitoring 

d. Robotic companions for seniors 

e. Advising citizens on changing existential habits (uses of energy, water, etc.) 

f. Micro transit coordination 

g. Micro grid coordination 

h. Countering social media addiction 

i. Ethical AI; where AI intersects with people, we can’t ignore the ethics 

 



White paper on Collaborations to Enable Transnational Smart Cyberinfrastructure Research, 
Applications and Workforce by José Fortes, University of Florida.i 

“…envisions vibrant partnerships among academia, government laboratories and industry, including international 

entities, for the development and stewardship of sustainable CI services that can enhance productivity and 

accelerate innovation in science and engineering.” In “Transforming Science Through Cyberinfrastructure:  NSF’s Blueprint for a 

National Cyberinfrastructure Ecosystem for Science and Engineering in the 21st Century” 

Broadly construed, Artificial Intelligence (AI) goes beyond algorithms and technology to include cultural, ethical 

and socio-technical issues. For AI to generalize in a global context it is essential to engage with transnational 

experts and users who are best positioned to understand those issues as well as to interface and integrate with 

technologies and user policies that differ across countries. In many scientific domains (e.g. biodiversity and 

environmental monitoring) data may be physically bound to specific locations and expressed in local languages. 

Therefore, learning may have to occur in a distributed fashion and research collaborations may require access and 

use of resources across different national cyberinfrastructures. These cyberinfrastructures typically use different 

hardware/software technologies, different management policies and external network connectivity. In this 

context, several cyberinfrastructure challenges are faced, including: 

 No framework for establishing, maintaining and executing transnational collaborative projects. 

 Inexistence of trusted networks of researchers upon which to build such a framework and a community 

with shared research goals that need transnational cyberinfrastructure. 

 Incomplete easy-to-use technical solutions for connecting cyberinfrastructures and overlaying 

trustworthy transnational systems across them. 

 No shared understanding of local requirements for solutions to global problems. 

 Very small number of researchers who are aware of variations across countries of socio-technical issues 

affecting shared/connected cyberinfrastructure and the problems that require its usage.  

 Insufficient training opportunities for workforce capable of contributing to transnational 

cyberinfrastructure and/or its applications. 

Successful solutions to the above-listed challenges exist for big science in specific domains such as physics and 

astronomy, as illustrated by recent well-publicized successes in observation of gravitational waves, detection of 

the Higgs particle and imaging of a black-hole. However, when dealing with the long-tail of (medium and small 

scale) science, most current solutions are ad-hoc, clunky, transient and built on personal links. There is a need for 

systematic, effective, persistent and structured approaches to the creation, execution and sustenance of 

collaborations for the development, usage and application of shareable transnational cyberinfrastructure. The 

NSF-funded PRAGMA and CENTRA projects (http://www.pragma-grid.net/ and 

http://www.globalcentra.org/) exemplify ongoing efforts to address this need and 

may provide a basis for international collaborations on smart cyberinfrastructure.  

PRAGMA has been building an international, distributed community of practice, 

primarily around the Pacific Rim, for technology and approaches that support the 

long tail of science, namely enabling small- to medium-sized international groups, 

to make rapid progress in conducting research and education by providing and 

developing international, experimental cyberinfrastructure. To realize this mission, 

PRAGMA's current activities include four interrelated activities: 

 Fostering international "scientific expeditions" by forging teams of domain scientists and cyberinfrastructure 

researchers who develop and test information technologies that are needed to solve specific scientific 

questions and create usable, international-scale, cyber environments; There are three current expeditions: 

o Biodiversity: Understanding adaption in extreme environments. 

o Limnology: Predicting lake eutrophication and training the next generation of lake scientists who are 

part of the Global Lakes Ecological Observatory Network (GLEON), an international organization, that 

PRAGMA’s activities

http://www.pragma-grid.net/
http://www.globalcentra.org/


grew out of an early PRAGMA experiment, whose mission is to understand, predict and communicate 

the role and response of lakes in a changing global environment. 

o ENT: Developing an experimental network testbed for experimenting with software-defined networks 

and monitoring impacts of choices. 

 Developing and improving a grassroots, international cyberinfrastructure for testing, computer-science insight 

and, advancing scientific applications by sharing resources, expertise and software; 

 Infusing new ideas by developing young researchers who gain experience in cross-border science and by 

extending engagements with strategic partners; 

 Building and enhancing the essential people-to-people trust and organization developed through regular, face-

to-face meetings - a core foundation of PRAGMA's success. 

CENTRA currently integrates participants from universities and research centers in the US, Korea, Japan, Portugal 

and Taiwan who meet annually and host visiting researchers involved in collaborations. CENTRA’s mission is:  

 To enable research on cyberinfrastructure technologies needed to address transnational societal needs in 

domains that include but are not limited to disaster management, environmental modeling and smart and 

connected communities; and to advance the science needed to design and use these technologies to build 

effective and efficient transnational IT systems. Collaborative projects emerge organically from interactions 

that take place within the CENTRA research network and annual meetings.  

 Train the next generation of junior researchers and innovators to work in transnational settings through 

o Convening experts in workshops and webinars to communicate or identify solutions to key problems. 

o Providing junior researchers an immersive experience in collaborative, multidisciplinary teams that 

address the transnational problems (including stays at international sites involved in collaborations). 

o Facilitating the use and development of prototypes and testbeds to demonstrate solutions. 

Communities like PRAGMA and CENTRA advance targeted 

science areas through developing, applying, and lowering 

the barriers to use of critical information technologies. 

Funding is highly leveraged, with each country funding its 

own researchers and cyberinfrastructure. These 

communities form the backbone people-network to 

create a unique, coordinated initiative to provide 

opportunities for cyberinfrastructure workforce training. 

Therefore, we have the opportunity to create multi-site 

programs that (a) identify promising researchers in early 

to mid-career, (b) gives them multiple rotational global 

experiences in labs run by leading global researchers, and (c) homes them strategically in their respective national 

research institutions. Over time, this would create a corps of international researchers who will advance global 

research effort through multidisciplinary and multinational collaboration. The guiding principle is to create 

strategically structured problem-based learning activities that enhance student skill sets with long-term 

engagement for students as they move from undergraduate to graduate stages within PRAGMA/CENTRA and 

among multiple institutions. This coordinated, multi-lateral approach, which is expected to provide additional 

value to both students and institutions, is a key difference when comparing this program to other bilateral 

approaches and provides different types of benefits for students, institutions, and companies.  

i Acknowledgement and Disclaimer: This paper is based on experience and discussions with many people, in the US 

and internationally, in PRAGMA and CENTRA over several years. The US parts of PRAGMA and CENTRA are funded 

by grants OAC 1234983 and ACI 1550126 from the National Science Foundation. In particular, I want to recognize 

Peter Arzberger, Jason Haga, Prapaporn Rattanatamrong, Glenn Ricart and Shava Smallen for discussions about 

international research-collaboration experiences for students. Errors and any lack of clarity are mine alone.  
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Abstract—This paper suggests that in order to build smart 

cyberinfrastructures towards being widespread and sustainable, 

the efforts would benefit from complementary insights from social 

science research. It proposes five areas of social science research –

user adoption and systemic diffusion, diverse workforce 

development, co-production between developers and users, 

thriving online communities, as well as inclusive and ethical 

infrastructures. The paper concludes with two recommendations 

for the NSF to consider – creating a ‘communication management 

plan’ requirement under the broader impacts criterion, and the 

(re)development of a social science research funding program 

under the Office of Advanced Cyberinfrastructure. 

Keywords—social science research, sustainable 

cyberinfrastructure, technology adoption, widespread innovation 

I. INTRODUCTION 

The 2020 vision of making cyberinfrastructure (CI) ‘smart’ 
with artificial intelligence (AI) and machine learning (ML) is 
exciting. Smart CI will take e-science, computational social 
science, and digital humanities to new heights. Over the last two 
decades or so, CI has been steadily developing and maturing. 
This can be seen in the strategic investment of the TeraGrid in 
2001, the publication of the Atkins Report in 2003, the initial 
establishment of the NSF Office of Cyberinfrastructure (OCI) in 
2005-2006, the iteration of the TeraGrid into XSEDE in 2011, 
the reinventions of OCI into the Division of Advanced 
Cyberinfrastructure in 2012-2013 and the Office of Advanced 
Cyberinfrastructure in 2015-2016.  

CI development started as a technical phenomenon. 
However, CI has also been argued as a socio-technical system 
[1]. This recognition is evident in the establishment of the 
Virtual Organizations as Sociotechnical Systems (VOSS) 
program under NSF OCI, which funded social science research 
on CI and technologies roughly between 2006 to 2013. With AI 
and ML being key components of smart CI, understanding the 
human and social dimensions is more important than ever.  

This paper proposes five social science research areas that 
can help generate insights towards making smart CI widespread 
and sustainable over the long-term. The premise here is that the 
NSF can maximize its investments in smart CI when CI also 
achieves widespread adoption and has a thriving ecosystem 
around it. This outcome requires research insights and practical 
strategies derived from the social sciences, and social science 
research can complement CI’s technical foundation.  

II. SOCIAL SCIENCE TOWARDS BUILDING WIDESPREAD AND 

SUSTAINABLE SMART CYBERINFRASTRUCTURES 

A. User Adoption and Systemic Diffusion  

A smart CI without users is void of data, activities, and 
outcomes. It is like a mall without customers, impressive in 
structures but without impacts on the economy. Moving from 
traditional experimental, theoretical, local, and small-scale 
research towards large-scale computational research with big 
data and empowered by smart CI requires a fundamental shift in 
the way researchers do their work. Meaningful use of smart CI 
begins with adoption by individual users. 

User adoption occurs at the individual level, and for smart 
CI to have the greatest impact on research and its applications 
for scientific breakthroughs, the US economy, citizens’ well-
being, national security, etc., user adoption needs to expand into 
systemic diffusion. ‘Diffusion’ refers to the widespread of smart 
CI as a platform innovation in the overall research community 
[2]. Such a diffusion of innovations that transformed the 
research community have been seen in the adoption of personal 
computers in the 1980s and the Internet in the 1990s. Smart CI 
is initiating a new wave of transformations.  

The need to conduct social science research to understand 
user adoption and systemic diffusion is the first strategic move 
towards becoming widespread. Le et al. [3] advanced the 
argument to debunk the romantic ideal of – “If you build it, they 
will come,” which they termed a ‘fallacy’. Without strategic 
promotions, smart CI may struggle with attracting users and 
attracting them quickly.  Social science research on technology 
adoption and innovation diffusion [2] can support such an effort. 

B. Diverse Workforce Development 

To continue building on the metaphor of the mall for smart 
CI – a buzzing mall also needs shopkeepers, cleaning crew, and 
security guards to ensure the smooth operation of businesses for 
customers. For smart CI to be successfully implemented, 
understanding how to develop and maintain a diverse workforce 
is critical. Social science research has shown that teams with 
diverse members are generally ‘smarter’ – better at generating 
new ideas and increasing innovations in projects [4]. 

Smart CI needs a diverse and ‘smart’ workforce to facilitate 
user training and user support, following widespread adoption 
and diffusion. What are the effective strategies in training and 

This material is partially based upon work supported by the US National 

Science Foundation (NSF) under awards #1322305 and #1453864. 

mailto:kerk.kee@ttu.edu


support? This remains an open research question. CI users do 
not usually come into a training workshop like a traditional 
student in the classroom – a blank slate to be given generic 
information about a topic. Most CI users come with specific 
questions and needs. Social science research on problem-based 
learning can optimize training. CI trainers also require having 
effective communication skills, beyond technical knowledge.  

C. Co-Productions between Developers and Users 

Generic user training is sufficient when users only need CI 
technologies ‘straight out of the box’. However, for many 
projects, users need custom-made technologies for specific 
research questions, methodologies, and datasets. In these cases, 
developers will work with users to identify their needs and 
design custom-made technologies. The co-production process is 
complex because many users do not fully know what is possible 
and/or what they really need. It is through multiple meetings 
between developers and users that they identify the solutions 
together. Effective co-productions will require research insights 
from user-centered design and human-computer interactions.  

To better identify users’ needs, and the requirements to 
prototype and test new tools through multiple iterations, another 
research topic is identifying a software development 
methodology, such as agile software development (ASD), for 
effective co-productions. The argument here is not to promote 
ASD, as ASD and its variations have practical limitations. The 
point here is to highlight the need to study the social dimensions 
in co-production in the development of smart CI. 

D. Thriving Online Communities 

Smart CI can develop thriving online communities of 
researchers across time and space. With all the pieces 
interwoven into a robust CI, researchers within and across 
domains can share and integrate data now and over a long period 
of time, to do large-scale and longitudinal research otherwise not 
possible. However, understanding virtual organizations, 
interdisciplinary collaborations, international partnerships, and 
online community building are all complex human endeavors 
that would benefit from the social sciences, such as 
organizational communication, organizational sociology, and 
computer supported cooperative work. The goal is to create and 
sustain a thriving ecosystem to carry smart CI forward. 

E.  Inclusive and Ethical Infrastructures  

Finally, a smart CI is also an ethical CI. It pays attention to 
who are included and excluded in the process of advancing CI 
research. Leigh Star and Geoff Bowker in science and 
technology studies wrote about the concept of the ‘installed 
base’ [5]. They caution against the activities in laying the 
foundation of any infrastructure, such that an ‘installed base’ 
with specific values and priorities are built into an infrastructure, 
creating a situation where future technologies and communities 
not fitting this base will be excluded. In the early phases of 
infrastructural developments, it is likely that decisions are made 
based on what makes sense for the immediate problems. It is 
likely that no groups are intentionally trying to exclude others in 
the future of the infrastructure being built at the moment. 
However, the argument here is to raise the awareness of how the 
decisions made together today will have future implications, and 
CI developers would be wise to keep the ‘long now’ [6] in mind. 

Furthermore, for smart CI to be optimal, it requires 
continuous gathering and processing of data, including data with 
sensitive information. This is especially true in the case of 
biomedical research, for example. Also, university committees, 
such as the Institutional Review Boards (IRBs), may have strict 
policies on governing the collection and longitudinal use of 
sensitive data for research. In the case of medical research with 
smart CI, AI algorithms and ML techniques may rise to 
becoming ‘deterministic’. How can patients’ wishes and their 
human values not be override by AI and ML in the name of 
being ‘smart’ is an important ethical question. It would be wise 
for smart CI developers to be mindful of the human ethical 
dimensions of CI, and/or work with social scientists and critical 
scholars who can help them attend to this particular challenge.  

III. CONCLUSION 

This paper proposes five specific areas in social science 
research that can help build smart, widespread, and sustainable 
CI towards transformation of research across domains, 
locations, and time. Recounting the argument advanced by Le et 
al. [2] – “If you build it, users may not come”. In order to address 
this concern, the NSF can consider two suggestions. First, 
similar to the requirement introduced in 2012 for proposals to 
include a data management plan, the NSF could consider adding 
a similar requirement (or an optional supplemental) for a 
‘communication management plan’ under the ‘Broader Impacts’ 
criterion. Such a plan would encourage PIs to be more 
thoughtful about promoting user adoption and systemic 
diffusion, cultivating a diverse workforce, facilitating co-
production between developers and users, building thriving 
online communities, and/or designing inclusive and ethical 
infrastructures in their smart CI projects. These social science 
topics are inherently ‘communication’ in nature. Second, the 
NSF may consider (re)developing a funding program similar to 
VOSS, and encourage more involvement of social scientists 
who can carry out research on the five areas (and other important 
topics) under OAC, towards a strategic and collective effort of 
building smart CI in a sustainable way with widespread adoption 
and successful implementation. This program should be under 
OAC as the context of CI is unique. Social science conducted 
within the context of CI is critical for accurate applications. 
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Abstract: Relational algebra (RA) comprises an important basis of operations, conspicuously sparse in
the HPC literature. It can be used to implement a variety of algorithms in satisfiability and constraint
solving [4], graph analytics [6], program analysis and verification [3], deductive databases [2], and machine
learning [5]. Many of these applications are, at their heart, cases of logical inference; a basis of performant
relational algebra is sufficient to power state-of-the-art forward reasoning engines for Datalog and related
logic-programming languages. Declarative logic programming offers the promise of unifying specification
and implementation, permitting programmers to focus on writing correct and maintainable code, and per-
mitting its operational evaluation to be synthesized automatically. Despite its expressive power, relational
algebra has not received the same attention in high-performance-computing research as more common prim-
itives like stencil computations, floating-point operations, numerical integration, and sparse linear algebra.
Furthermore, specific challenges in permitting fixed-point iteration, in addressing representation and com-
munication among distributed portions of a relation, and in balancing inherently unbalanced relations, have
previously thwarted successful scaling of relational algebra applications to HPC platforms. We are devel-
oping a set of efficient algorithms to effectively parallelize and scale key relational algebra primitives. We
aim to develop foundational theory, practical implementations, and rigorous evaluations of our approach
on three important application domains with the ultimate goal of enabling massively parallel distributed
reasoning on cluster computers directed by expressive, ergonomic, rule-based languages.

Applications: To evaluate the scalability of our parallel RA infrastructure, we focus on three applications:
graph mining (E1), static program analysis (E2), and deductive databases for physical simulation data
(E3). Figure 1 shows the overall pipeline we propose; the top shows our three experimental applications,
sitting atop a platform for logical inference, implemented with relational algebra that the techniques under
investigation (T1-T3) supports.

Graph 
mining

Static 
analysis

Deductive 
database

Bottom-up logical inference

Parallel relational algebra

Balancing RA
All-to-all 

communication
Storage and 
parallel I/O

T1 T2 T3

E1 E2 E3

Figure 1: An overview of our pipeline: our
application-foci are implemented as bottom-up logi-
cal inference, implemented as task- and data-parallel
relational algebra, built using the specific techniques
we investigate in our proposed work.

Typical graph computational algorithms are not
suited for mining tasks that aim to discover complex
structural patterns of a graph. Extracting such fea-
tures such as paths, cliques, frequent subgraphs, etc,
is straightforward to implement using relational al-
gebra. We focus on two fundamental graph-mining
tasks (E1), transitive closure and clique computa-
tion. These applications are the most immediate
uses of relational algebra; transitive closure is sim-
ply an iterated sequence of relational join, projec-
tion, and union, until a fixed point is reached. Sec-
ond, we focus on static program analysis (E2), a
vital logical inference problem that exemplifies the
power of our approach. Static analysis brings in
substantial task- and data-parallelism, as well as
evolution in balancing requirements across time. Fi-
nally, we focus on deductive database applications
and the use of relational algebra as a combined stor-
age and-inference system (E3). Of particular interest to us is the possibility that logical inference can benefit
traditional HPC problems for feature extraction in an automated way.
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Figure 2: (a) Intra-bucket communication; each
subbucket of T∆ sends its data to all subbuckets of
G. (b) Local, per-subbucket joins (including projec-
tion and re-hashing). (c) All to all communication.

Techniques: One of the central challenges in parallel
relational algebra is how to balance the various facets
of the problem: balancing communication and compu-
tation, balancing across iterations of an inference task,
balancing across relations, and balancing among task-
level components. We have built on previous approaches
by developing strategies that mitigate load-imbalance in
a dynamic manner. Our own approach [1] uses a two-
layered distributed hash-table to partition tuples over a
fixed set of buckets, and, within each bucket, to a dy-
namic set of subbuckets which may vary across buckets.
Each tuple is assigned to a bucket based on a hash of
its key-column values, but within each bucket tuples are
hashed on non-join-column values, assigning them to a
local subbucket, then mapped to an MPI process. The
first step in a join operation is an intra-bucket commu-
nication (Figure 2a) phase within each bucket so that
every subbucket receives all tuples for the outer relation
across all subbuckets (while the inner relation only needs
tuples belonging to the local subbucket). Following this,
a local join operation (with any necessary projection and
renaming) is performed in every subbucket (Figure 2b),
and, as output tuples may each belong to an arbitrary bucket in the output relation, an MPI all-to-all
communication phase (Figure 2c) shuffles the output of all joins to their managing processes (preparing
them for any subsequent iteration).
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Results: The transitive closure (T) of an input graph (G) is iteratively
extended by adding new paths discovered by a join operation until a fixed
point is reached, and no new paths can be added to T. We performed
strong scaling analysis for a graph with edge count 2,100,225 (mc2depi),
varying the number of processes from 4,096 to 32,768. Figure 3 shows
a preliminary strong-scaling study. We observed decent scaling to about
16k cores, producing a graph of over 276 billion paths. To the best of
our knowledge, this is the largest such feature extraction now described in
the literature. Given that this approach does not use any load balancing
and does nothing to optimize a synchronous use of MPI’s All to allv

primitive, this scaling plot is a promising proof-of-concept that iterated
joins on graphs derived from real applications will be scalable to 10k+
processes.

Conclusion and research direction: Effective declarative programming represents a long-standing
dream of computing—exchanging code describing how to compute for code simply describing what to
compute. Instead of requiring programmers to themselves balance the vying concerns of correctness, main-
tainability, and scalability in each task, declarative programming languages permit users to focus on the first
two concerns, writing high-level specifications of what should be computed, while allowing the underlying
implementation (i.e.,how the operational mechanics of the program work) to be extracted automatically.
With this research we are making inroads by developing techniques for parallelizing relational algebra as a
platform for declarative logical inference tasks. Our research is motivated by applications from the domain
of graph analysis (feature extraction), static program analysis (reverse engineering, component verification,
exploit generation, etc), and deductive databases (statistical and topological features).
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Artificial Intelligence (AI) and Machine Learning (ML) have penetrated every discipline of 
science and engineering. Many scientific discovery and engineering breakthrough today are 
empowered by AI  and ML capabilities. NSF is in the unique position to develop the next 
generation of smart Cyberinfrastructure for supporting and facilitating AI-enabled scientific 
research discovery and engineering innovations in all sciences and engineering disciplines.  
 
AI and ML capable hardware cyber-infrastructures.  
As AI and ML capabilities rapidly evolve in science and engineering research and 
development efforts supported by NSF, it is vital to scale NSF supported cyber-infrastructure 
from experimentation to implementation, enabling and facilitating  researchers and 
graduate students from different science and engineering disciplines to conduct field 
experiments using advanced AI-capable cyber infrastructures sponsored by NSF, successfully 
enabling universities and research institutes to achieve AI at scale. I below list three 
examples 

(1) Huge Data Capable AI-ML model training infrastructures, including various scales of 
GPU clusters with industry strength huge model training capability.   

(2) Large scale Federated Learning cyber infrastructure, including large scale AI-compute 
clusters, each with large number AI-capable computer nodes, enabling distributed 
federated training implementation and experimentation. 

(3) A variety of EdgeSystems, enabling EdgeAI infrastructures for large scale 
implementation and experimentation of Edge AI model training, model prediction 
and active-learning. 

Taking Federated Learning Infrastructures as an example. Traditionally, training ML models 
requires all data to be residing in the same trusted compute server. For huge data, this can 
be communication intensive in addition to privacy concerns and legislations such as General 
Data Protection Regulation (GDPR) and Health Insurance Portability and Accountability Act 
(HIPAA). Federated deep learning has emerged as an important alternative AI-capable 
cyberinfrastructure and distributed AI-training paradigm. Federated Learning (FL) has been 
fueled by a number of big data companies, represented by Google, Facebook, Amazon, 
Apple. In a typical federated deep learning system, each data owner (participant) maintains 
its own data locally and follows a federated learning protocol where only updates of the 
model training parameters are shared with the trusted parameter server (model training 
aggregator). Participants as workers are responsible for training the same model on 
different mini-batches of the huge data (compute intensive tasks). In each training iteration, 
each participant sends its local parameter updates to the parameter server, typically hosted 



in the Cloud, which stores, aggregates and maintains a set of shared parameters. The 
parameter server shares the aggregated parameters with each of the participants in the 
federated learning system and each participant updates its local parameters in the 
subsequent iteration. This distributed training process iterates until the model training 
reaches the pre-defined convergence condition. In these FL scenarios, participants are 
heterogeneous compute nodes that communicate with the parameter server in either a 
client-server style or decentralized peer to peer style. We refer to this in-network memory 
computing paradigm a Cloud coordinated in-network memory computing.  

Setting such federated learning cyberinfrastructure at scale is not only a huge challenge for 
all academic researchers and graduate students and it also requires large up front capital 
investments. By providing the NSF-sponsored smart cyberinfrastructures to facilitate 
federated learning, on one hand, it will fuel the research innovation and advancement in 
federated learning systems, algorithms and optimizations; and on the other hand, it will 
enable many scientific research labs to train on their local data collections and share only 
parameters, which can be significantly beneficial for hospitals, healthcare professionals, 
virus research laboratories, and so forth. Such federated learning empowerment will 
shorten the path and sparkle the lights towards new, transformative scientific discovery and 
engineering innovations.  

AI and ML capable Software Cyberinfrastructures. The next generation smart 
cyberinfrastructure should also be equipped with AI and ML enabled software as a service 
platforms and tools. Such AI software agents can be instrumental in the event of rare virus 
spreading. For example, if there is a shortage of doctors, caregivers can remotely monitor at 
risk patients and robots can deliver medicines for humans to minimize infection spreading 
and help reduce reliance on doctors for routine readings and so forth.  

In the digital transformation and big data age, AI is an important tool, which will make 
changes in the ways how scientists and engineers tackle problems in every area of our 
sciences and engineering and daily life. AI-capable software agents will make things easier 
for scientists and engineers to focus more closely on innovation and technology trends.  

AI and ML Security and Privacy Cyberinfrastructures. AI models and ML models are 
vulnerable to adversarial perturbation attacks. A smart cyberinfrastructure should be 
capable of providing built-in secure AI workflows throughout the AI-training and AI 
prediction workflow life cycle, enabling data input guard, AI inference guards and AI output 
guards.  

I have done research in the above areas, especially in federated learning infrastructures and 
secure AI/ML workflow system infrastructures. I am happy to share my experiences, 
expertise and lessons learned with the workshop attendees and contribute to discussions at 
the workshop and learn from other participants on their visions and experiences on the 
open challenges in building the next generation smart cyber-infrastructures at the 
workshop. 

 

 



White Paper for NSF Smart Cyberinfrastructure (CI) Workshop 
Washington DC Feb. 25-27, 2020 

Naveen Sharma, Rochester Institute of Technology, Rochester, NY 
We live in the era where the confluence of “big data” and software offers unprecedented opportunities to 
accelerate progress across all aspects of human endeavor. Big data is already enabling dramatic transformations in 
science, engineering, medicine, and public policy [1]. Consequently, we are witnessing an explosion of research and 
technology development initiatives that employ various data-driven methods under the broad umbrella of machine 
learning (ML) and data-driven artificial intelligence (AI). While ML/AI have gained much popularity and have 
shown notable successes in business for some time, fostered by industries such as e-commerce, marketing, and 
process optimization significant efforts are underway in its applications to natural sciences, where algorithms are 
used to stimulate scientific discovery. For example, advances in image processing, big data, data visualization, 
coupled with domain-specific computational models for climate science are enabling climatologists to model 
climate changes from data such as high spatial resolution (HSR) remote sensing images of sea ice (sea ice acts as 
both an indicator and an amplifier of climate change) [2]. Similarly, applications of ML/AI along with advances in 
information extraction and big data processing are enabling: biologists to gain insights into how living systems 
adapt; health scientists to devise targeted treatments and interventions to optimize health outcomes; education 
researchers to personalize pedagogy to optimize learning outcomes; social scientists to study why organizations, 
societies, and cultures succeed or fail; urban planners to design for optimal traffic flow; material scientists to 
develop new materials with properties not seen before. Progress in many areas of human endeavor is increasingly 
enabled by our ability to acquire, share, integrate, and analyze disparate types and modalities of data (i.e. big data) 
and new methods and tools for data integration, analysis, modeling, and interpretation. Holistically, seamlessly 
integrated “big data” and “software enabled capabilities” with networking, security resources, tools and services, 
and people skills collectively enables these new capabilities [3]. We advocate that to exercise their full potential 
future CIs (“Smart CI”) will be highly programmable by the domain experts. Also, CIs enabling solutions to urban 
challenges will need to seamlessly integrate with the community and its citizenry.    

Current ML and AI technologies do not provide easy ways for domain experts who are not ML/AI experts to 
develop applications. The fundamental goal of ML is to induce or synthesize programs that are able to learn from 
data. However, in current practice the programs are reduced to a model or set of models mapping inputs to 
outputs. Learning is an optimization process driven by an objective function of a predefined form [4]. Also, 
despite advances in “big data” the task of developing ML/AI applications is largely manual and labor-intensive. 
The real promise of ML/AI is rather limited to organizations possessing advance skills in computing, algorithms, 
and statistics. Thus, advancing the capability and capacity for ML/AI use in predictions and data-driven decision 
making in science, engineering, and public policy requires extensive support and involvement of skilled data 
scientists. Domain experts working with data scientists develop computational abstractions for relevant domains 
and associated methods and tools for domain data analysis, simulation, visualization, and sharing, and integration. 
Currently, multiple NSF-funded research efforts across wide array of domains are underway that focus on building 
domain-specific frameworks or platforms. Generally, these systems intend to provide good toolboxes and libraries 
for ML/AI based on existing techniques and domain-specific data in one place. Examples for such CI span across 
computational physics, climate modeling, cardiovascular simulations, material discovery, plasma physics, 
hydrologic modeling, and many more. In general, the focus is on building CIs comprising proven domain-specific 
models and abstractions along with integrated domain-data and views from various disparate sources (e.g. open 



data sets). In most cases, ML models are the key component of these systems, but a typical solution involves 
multiple such models, along with significant levels of reasoning with the models’ output and input. Current 
technologies do not make such techniques easy to use for domain experts who are not fluent in ML nor for ML 
experts who aim at testing ideas and models on real-world data in the context of the overall AI system. To realize 
full potential, we argue that the future CI systems will need to provide easy to use interface by being highly 
programmable – both to attract a larger user base as well as software evolution. Quickly, variability is the number of 
possible different evolutions of a system (CI) where as programmability is the capability of a system to change or to 
react to external stimuli (input) in order to alter its behavior [5]. A highly programmable CI system will raise the 
level of abstraction at which the user conceptualizes and develops ML/AI models. Lowering the technical barriers 
to access CI will enable easy and productive access to AI/ML tools for science as well as a large community of 
science stakeholders. On one hand, the complexity of ML/AI necessitates this capability for wider scale adoption; 
on the hand ML/AI techniques itself can help design this capability. Thus such a capability enables both CI for 
ML/AI and ML/AI or CI paradigms. A highly-programmable CI in a specific domain, e.g. hydrologic modeling or 
material discovery will most likely offer a domain-specific interface – i.e. a very high level and domain-specific 
programming language – conducive to that domain, it will enable synthesis of a set of programs implementing 
ML/AI models for the data presented. Users can pick and choose which models best fit their application. Such 
programmable interface will exercise CI in multitudes of innovative ways and far more than a canned interface.   

By 2050 it is predicted that 66% of the global population will habitat in large- and mid-size cities. To date “smart 
city” solutions to issues of human development, while sometimes useful, do not get to the core of the urban 
issues, specifically at the communitya and neighborhood levels. Having more high-quality data about the activities 
of citizens, households, and businesses in a community and having easy access to this data in a secured, timely and 
open fashion, can undoubtedly be of great help in designing service delivery systems or managing infrastructure 
efficiently. Community Based Participatory Research (CBPR) is widely used and has become a standard approach 
in a wide variety of domains, such as environmental and sustainability studies, criminology, community 
psychology, studies of race and gender, urban planning, community development and urban studies, migration 
studies and international development studies. “CBPR emphasizes collaborative, equitable partnerships among researchers, 
stakeholders and community members throughout all phases of research. ... Communities are involved in decision-making throughout 
the research process, from developing research questions to disseminating research findings” [6]. CBPR emphasizes the importance 
of identifying and validating the community’s strengths and assets, avoiding an exclusive focus on problems. We 
argue that future CI systems focused on urban issues (or Urban CI) will need to seamlessly integrate with 
communities and neighborhoods empowering its citizenry. From driverless vehicles to software that runs subways 
systems to dynamic bus scheduling to smart grids, Urban CIs enable and help run a city more efficiently. However, 
over the long run, the parameters of these engineered systems and services, such as the quality of service in terms 
of use of time, comfort, economic cost, etc., must continuously adapt to societal issues. In fact, the Urban CIs will 
need to evolve as the community evolves. True integration with the community will enable community residents 
to use and contribute to Urban CI as part of evolution. In other words Urban CIs shall be for the community and by the 
community! Armed with data and access to analytics, communities can cut through ideological boundaries, focus on 
things that matter, and engage in conversations about challenges and opportunities. Such systems can engender 
processes with added benefit of creating a path of dialogue and inclusion to the urban poor and of responsive and 
knowledgeable government around practical issues for official organizations and private actors. 
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Abstract—Significant investments to upgrade or construct
large-scale scientific facilities demand commensurate investments
in R&D to design algorithms and computing approaches to enable
scientific and engineering breakthroughs in the big data era.
The remarkable success of Artificial Intelligence (AI) algorithms
to turn big-data challenges in industry and technology into
transformational digital solutions that drive a multi-billion dollar
industry, which play an ever increasing role shaping human
social patterns, has promoted AI as the most sought after signal
processing tool in big-data research. As AI continues to evolve
into a computing tool endowed with statistical and mathematical
rigor, and which encodes domain expertise to inform and inspire
AI architectures and optimization algorithms, it has become
apparent that single-GPU solutions for training, validation,
and testing are no longer sufficient. This realization has been
driving the confluence of AI and high performance computing
(HPC) to reduce time-to-insight and to produce robust, reliable,
trustworthy, and computationally efficient AI solutions. In this
white paper, we present a summary of recent developments in
this field, and discuss avenues to accelerate and streamline the
use of HPC platforms to design accelerated AI algorithms.

I. INTRODUCTION

The big data revolution disrupted the digital and computing
landscape in the early 2010s [1]. Data torrents produced
by corporations such as Google, Amazon, Facebook and
YouTube, among others, presented a unique opportunity for
innovation. Traditional signal processing tools and computing
methodologies were inadequate to turn these big-data chal-
lenges into technological breakthroughs. A radical rethinking
was urgently needed [2], [3].

Large Scale Visual Recognition Challenges [4] set the scene
for the ongoing digital revolution. The quest for novel pattern
recognition algorithms [5]–[7] that sift through large, high-
quality data sets eventually led to a disruptive combination
of deep learning and graphics processing units (GPUs) that
enabled a rapid succession of advances in computer vision,

speech recognition, natural language processing, and robotics,
to mention just a few [8], [9]. These developments are cur-
rently powering the renaissance of AI, which is the engine of
a multi-billion dollar industry.

Within just a few years, the emergence of high-quality data
sets, e.g., ImageNet [10]; GPU-accelerated computing [11];
open source software platforms to design, train, validate and
test AI models; improved AI architectures and novel tech-
niques to enhance the performance of deep neural networks,
such as robust optimizers and regularization techniques, led to
the rapid development of AI tools that significantly outperform
other signal processing tools on many tasks. These develop-
ments have been astonishing to witness. Data-driven discovery
is now also informing and stirring the design of exascale
cyberinfrastructure, in which HPC and data have become a
single entity, namely HPCD [2], [12].

II. CONVERGENCE OF AI AND HPC

The convergence of AI and HPC is being pursued in
earnest across the HPC ecosystem. Recent accomplishments
of this program have been reported in plasma physics [13],
cosmology [14], gravitational wave astrophysics [15], multi-
messenger astrophysics [16], materials science [17], data
management [18], [19] of unstructured datasets, and genetic
data [20], among others.

These achievements share a common thread, namely, the
algorithms developed to accelerate the training of AI models
in HPC platforms have a strong experimental component. To
date, there is no rigorous framework to constrain the ideal
set of hyper-parameters that ensures rapid convergence and
optimal performance of AI models as the number of GPU
nodes is increased to accelerate the training stage.
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Fig. 1. Left panel: the training of an AI model (which characterizes the
signal manifold of spinning binary black hole mergers) is reduced, achieving
state-of-the-art performance, from one week to 17 hours by distributing the
training workload up to up to 44 V100 GPUs using Horovod on the HAL
cluster. Right panel: as the left panel, but now the training is reduced from 5
hours to 90 seconds using the entire HAL cluster. This AI model is used to
classify and label galaxy images observed by two electromagnetic surveys.

In the context of NSF-supported infrastructure, we present
two sample cases of AI and HPC convergence using the
Hardware-Accelerated Learning (HAL) cluster [21] at NCSA.

The HAL cluster has 64 NVIDIA V100 GPUs distributed
evenly across 16 nodes, and connected by NVLink 2.0 [21]
inside the nodes and EDR InfiniBand across the nodes. Using
this system, Figure 1 presents two science drivers: (1) an
AI model to characterize the signal manifold of binary black
mergers that is trained with time-series signals that describe
gravitational wave signals [22]; (2) an AI model that classifies
galaxy images collected by the Sloan Digital Sky Survey
(SDSS), and automatically labels images collected by the Dark
Energy Survey (DES) [14]. Using a single V100 GPU, these
two models take on average one week and five hours to train,
respectively. However, when the training of these models is
distributed across HAL, one may fully train them achieving
state-of-the-art performance within 17 hours and 90 seconds,
respectively.
These examples clearly underscore the importance of coupling
AI with HPC, i.e., accelerating the training stage enables:
(1) the exploration of domain-inspired architectures and op-
timization schemes that are critical for the design of rigorous,
trustworthy and interpretable AI solutions; (ii) the use of larger
training data sets to boost the accuracy and reliability of AI
models.

III. SOFTWARE AND HARDWARE CHALLENGES

While open source software platforms have played a key
role in the swift evolution of AI, they present a number of
challenges when used in HPC platforms. This is because open
source software platforms such as TensorFlow [23] and
PyTorch [24] are updated at a much faster pace than li-
braries deployed cluster-wide on HPC platforms. Furthermore,
producing AI models usually requires a unique set of pack-
age dependencies. Therefore, the traditional use of modules
has limited effectiveness since software dependencies change
between projects and sometimes evolve even during a single
project. Common solutions to give users more fine-grained

control over software environments include containerization
(e.g., Singularity [25] or Kubernetes [26]), and virtual
environments (e.g., Anaconda [27], which is extensively
used by deep learning practitioners). We provide below a
number of recommendations to streamline the use of HPC
resources for AI research:

1) Provide up-to-date documentation and tutorials to set up
containers and virtual environments, and adequate help
desk support to enable smooth, fast-paced project life-
cycles.

2) Maintain a versatile, up-to-date base container image,
and base virtual environment that users can easily clone
and modify for their specific needs.

3) Distributed training software stacks such as
TensorFlow depend on distributed training software
stacks (e.g., Horovod [28]), which in turn depend
on system architecture and specific versions of MPI
installed by the root administrator. It is important
to have clear up-to-date documentation on system
architecture and MPI versions installed, and clear
instructions on how to install/update distributed training
software packages like Horovod into the user’s
container/virtual environment.

In addition to these considerations, the AI model architec-
ture, data set, and training optimizer prevent a seamless use
of distributed training. Stochastic gradient decent (SGD) and
its variants are the workhorse optimizer for AI training. The
common way to parallelize training is to use “mini-batches”
with SGD. In principle, a larger mini-batch may naively utilize
more GPUs (or CPUs). Training time to solution will often
scale linearly with small batch size. Figure 1 shows good
generalization at 64 GPUs, which amounts to a global batch
size of 128 samples. However, it is known that as data sets
and number of features grow, naively scaling number of GPUs,
and subsequently batch size, will often take more epochs to
achieve an acceptable validation error. The state-of-the art
in AI training at scale was reported in [29], who trained
ResNet-50 using a batch size of 64k samples, run across
2048 Tesla P40s. While achieving this level of scaling required
a lot of experimental work, this benchmark, and others [30],
indicate that scaling AI models to larger data and feature sets is
indeed possible. However, it requires a considerable amount
of human effort to tune the model and training pipeline. A
mixture of fast human model development cycle mixed with
automated hyperparameter tuning is a candidate solution to
tackle this problem.

IV. CLOUD COMPUTING AND HPC

Cloud computing and containerization became popular for
developing customer facing web apps. It allowed a DevOps
team to keep strict control of the customer facing software,
while new features and bug fixes were designed, developed,
and tested in an environment that “looked the same” as a live
one. Depending on the business cycle, companies could dy-
namically scale their infrastructure with virtually no overhead



of purchasing hardware, and then relinquish it when it was no
longer needed.

HPC would do well to adopt a DevOps cycle like the
ones seen in startup culture. However HPC has some unique
challenges that make this difficult. 1) Data storage separated
from compute in the form of a shared file system and an
instance on maintaining a traditional tree like file system.
Cloud computing delivers a unit of compute and storage in
tandem as a single instance and isolates distinct resources. A
developer using cloud resources treats a compute instance as
only the host for their code and must explicitly choose how
to move large volumes of data on and off. This is usually
done by allocating a specialized cloud instance of a data
store (e.g., SQL databases). Improved cloud solutions provide
Kubernetes (and other cluster manager) recipes to allocate
a skeleton of these resources, but it is still up to the developers
to choose exactly how data are moved between the resources
and to code the specific functions of their app. 2) HPC is
a shared resource. That is, many users with different projects
see the same file system and compute resource. Each developer
must wait their turn to see their code run. In cloud computing,
a resource belongs and is billed to the developer on demand.
When the resource is released, all of its state-full properties get
reset. 3) HPC is very concerned with the compute resources
interconnect. To have high bandwidth and low latency between
cloud compute instances, one pays a premium.

In the case of distributed training, one needs to ascertain
whether the cloud or HPC platforms provide an adequate
solution. On-demand, high throughput or cloudbursting of
single-node applications are ideally suited for the cloud. For
instance, in the case of genetic data analysis, the KnowEng
platform [20] is implemented as a web application where the
compute cluster is managed by Kubernetes, and provides
an example of a workflow that can be expanded to include
methods for intuitively managing library compatibility and
cloud bursting. This cloud-based solution includes: (1) the
ability to access disparate data; (2) set parameters for complex
AI experiments effortlessly; (3) deploy computation in a cloud
environment; (4) engage with sophisticated visualization tools
to evaluate data and study results; and (5) save results and
access parameter settings of prior runs.

However, large distributed training workloads, that run for
many hours or days will continue to excel on a high-end HPC
environment. For instance, the typical utilization of the HAL
cluster at NCSA, which tends to be well above 70%, would
require a monthly investment of around $100k in comparable
cloud compute resources; this is far higher than the amortized
cost of the HAL cluster and its support.

V. INDUSTRY APPLICATIONS

The confluence of AI and HPC is a booming enterprise
in the private sector. NCSA is spearheading its application
to support industry partners from the agriculture, healthcare,
energy, and financial, sectors to stay competitive on the global
market by analyzing bigger and more complex data to uncover
hidden patterns, reveal market and cash flow trends, and

identify customer preferences. The confluence of modeling and
simulation and AI is another area of growing interest among
manufacturing and life science partners, promising to signifi-
cantly accelerate many extremely difficult and computationally
expensive methods and workflows in model-based design and
analysis [31]–[33].

Cross-pollination in AI research between academia and
industry will continue to inform these activities, making an
optimal use of HPC and cloud resources, to design and deploy
solutions that transform AI innovation into tangible societal as
well as business benefits.

VI. CONCLUSION

The convergence of AI and HPC is strongly poised to fully
exploit the potential of AI in science, engineering and industry.
Realizing this goal demands a concerted effort between AI
practitioners, HPC and domain experts. It is essential to
design and deploy commodity software across HPC platforms
to facilitate a seamless use of state-of-the-art open source
software platforms for AI research. It is urgent to go beyond
experimental approaches that lack generality to optimally use
oversubscribed NSF resources. An initial step in this direction
includes making open source existing solutions that scale well
while exhibiting good generalization in mid-scale clusters.
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HPC Algorithms for Scalable Machine Learning and Data Analytics 
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Increasingly, scientists and engineers are incorporating data analytics tasks in their workflows. Examples, 
of such tasks include uncertainty quantification, inverse problems, design and control, classification, 
anomaly detection, rare-event detection, data-assimilation, model reduction, pattern discovery, graph 
analytics, compression, visualization and dimensionality reduction to  name a few.  Many high-fidelity 
simulations in science and engineering require High Performance Computing (HPC) resources. Therefore,  
to increase the coherence between simulation and data analytics we need software that  scales to large 
datasets and can support current and future HPC architectures.  
 
 Many groups in industry, government  labs,  and academia are working towards such HPC machine 
learning and data analytics software. However, the need to process in-situ large scientific and engineering 
datasets is not fully met with current  software, and sometimes significant down-sampling is required in 
order to use existing tools. Also, popular ML libraries like Torch and TensorFlow are designed around 
industrial applications (natural language processing, audio, images, and video) and not scientific 
applications that have more unstructured data. 
 
In my group, we have been  focusing on algorithms and software for HPC machine learning 
algorithms with a focus on nearest neighbor graphs and kernel methods. (See figure below.) 

 
Left: Work on HPC algorithms for machine learning in the PADAS group at UT. Red boxes indicate  components developed in our 
group and support supervised and unsupervised learning. Different modules for kernel approximations, randomized nearest-
neighbors, factorization of kernel matrices, kernel PCA, and toward supervised and unsupervised learning. Right: Scalability of 
kernel regression on a dataset with 8 million points in 768 dimensions. The run took place on 16,384 of TACC’s Stampede I system. 
This research is funded by NSF awards CCF-1817048 and CCF-1725743. 

Examples of kernel methods include support vector machines, logistic regression, Gaussian 
process approximation, density estimation, and clustering.  These methods are in turn used in 
numerous applications in signal analysis, text analysis, and bioinformatics, and science and 
engineering.  A key bottleneck in kernel methods is that they scale quadratically with the problem 
size.  The problem size is typically defined as the number of examples (or training points) 

https://www.oden.utexas.edu/~biros
http://padas.oden.utexas.edu/
http://www.oden.utexas.edu/


presented to the machine learning algorithm.  Since training points can number in the millions, 
various approximation schemes are necessary for scalability to large-scale problems. Software 
for kernel methods has to meet several conflicting goals: it should use of state-of-the art 
algorithms (which may be complicated and difficult to parallelize), achieve both shared memory 
and distributed memory scalability so that large-scale problems can be solved, be robust and 
easy to use (no excessive parameter tuning), achieve high-performance so that the underling 
hardware resources are efficiently utilized, and offer a sufficiently general suite of algorithms.  
Most of the existing machine packages either avoid kernel methods due to their complexity 
(related to the need to approximate dense matrices), or when they include kernel methods they 
lack accuracy (due to crude approximations) and scalability---particularly on distributed memory 
architectures.  We have developed several C++ libraries that provide scalable implementations 
for a large class of problems. With support by NSF we have developed scalable software for kernel 
methods: ASKIT (library for kernel density estimation and kernel regression), RKDT (nearest 
neighbor algorithms), GOFMM (geometry oblivious hierarchical matrices that can be used to 
``invert'' kernel matrices), and KLR (a library for kernel logistic regression). These packages can 
be found in https://padas.oden.utexas.edu. These algorithms have been ported on several XSEDE 
platforms at TACC and  have been scaled to billions of points.  Scalability is achieved by using a 
combination of MPI, OpenMP and GPU acceleration. 
 
Outstanding challenges / requirements 

• Performance portability on upcoming heterogeneous architectures. 
• Utilizing variable precision algorithms.  
• Support of development and deployment of HPDA algorithms and software that supports 

a large variety of structured and unstructured data.  
• Support for easy to use interfaces, e.g., using Python or other high-level languages.  
• Simpler interfaces to leadership resources. 
• Long term publicly visible data repositories. 
• Reproducibility of complex workflows with dependencies to ever changing libraries and 

large data. 
  

https://padas.oden.utexas.edu/
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INTRODUCTION
Artificial intelligence (AI) and machine learning (ML) have vast
potential to advance research, and their increasing effectiveness
will both shape and enhance cyberinfrastructure (CI) to enable
the breakthroughs of the future. The rapidly expanding array of
algorithms and technologies is a transformation with potential
exceeding that of other architectural advances over the past few
decades -– for example, simulations are being accelerated by factors
of up to two billion [3], vastly outpacing what has been possible
through Dennard scaling – and it is also the greatest fundamen-
tal shift in how researchers engage in computational science and
engineering.

We face tremendous opportunities and exciting challenges in
helping the research community realize the benefits of AI and
ML. Hardware resources must continue to integrate high perfor-
mance computing (HPC) and scalable AI resources effectively into
heterogeneous systems, including a range of special-purpose AI
architectures that will be superior for specific workloads, and pro-
vide user-friendly software environments to make the resources
accessible to domain specialists (i.e., not only traditional HPC users).
User training of many kinds is, and will continue to be, absolutely
essential. Equally exciting is the prospect of applying AI and ML to
the operation of cyberinfrastructure, or Smart CI, which has begun
yet has considerable untapped potential. The increasing complexity
of heterogeneous CI and the extremely diverse workloads that are
executed on it make Smart CI vitally important to maximize the
resources’ potential and users’ productivity.

1 OPEN RESEARCH CHALLENGES AND
PROMISING RESEARCH DIRECTIONS

Fundamental AI research is flourishing [6] and beyond the scope
of this white paper. Instead, we focus on three specific, promising
areas of research that are of specific relevance to NSF-supported cy-
berinfrastructure: 1) scalable AI for scientific data; 2) AI-accelerated
simulation; and 3) AI for system operations, AIOps. For all three,
there is an opportunity to identify use cases that go beyond com-
mercial ones that will inform selection of appropriate hardware
technologies for production research platforms.

Scalable AI for Scientific Data: Research is needed to provide
more robust tools for data acquisition and preparation, to increase
the scalability of deep learning training (which will directly benefit
use of generative adversarial networks (GANs) and deep reinforce-
ment learning, methods that are being used to address challenges
involving limited or sensitive data), to work with multimodal data,
and in many other areas. Applications are analyses of very large

datasets from instruments or simulations, identifying rare events,
combining different kinds of data to allow answering new questions,
facilitating the discover and reuse of scientific data, and helping to
find relevant insights from scientific literature.

AI-Accelerated Simulation: Research is needed to improve the
development of surrogate models for accelerating and potentially
improving the accuracy of simulations, including scalable online
training (i.e., incorporating new data into a model on an ongoing
basis) for use with ensembles of simulations and data assimilation.
Published results already demonstrate up to nine orders of mag-
nitude acceleration [3] with no loss of accuracy [7], and impact
on other applications is probable given sufficient human resources
and user training. Applications are widespread, including both
nontraditional fields (genomics, protein signaling pathways, 3D
image processing, etc.) and traditional HPC (weather, chemistry,
astrophysics, engineering, etc.).

AIOps: There are many promising directions, limited primarily
by human resources, to improve CI through AIOps. Applying AIOps
to system instrumentation data can improve system operation, re-
liability, and performance by identifying degrading components
for proactive repair, spotting issues that negatively impact system
performance, and optimizing queue structure. AIOps can improve
users’ experience, particularly for nontraditional users who are
unaccustomed to advanced CI environments, as is being addressed
by PSC’s internal project Calima, led by Buitrago, for large systems
such as Bridges [5], Bridges-AI [2], and Bridges-2. AIOps can also
helpwith resource requests by helping tomatch advanced, heteroge-
neous computational resources to project requirements, helping to
match reviewers to resource proposals, and then assessing whether
the expected resource utilization is achieved.

2 TESTBEDS
Innovative hardware designed for specific aspects of AI and ML is
being developed at an unprecedented pace. For example, emerging
architectures accelerate deep learning training by orders of mag-
nitude, deliver a petaflop/s on a chip for streaming inference, and
maximize power efficiency for IoT sensor arrays.

It is essential for the research community to have access to a testbed
(or testbeds) of such technologies to gain timely experience and iden-
tify those technologies that would benefit science and engineering.
That knowledge would then inform larger-scale deployments of the
technologies that prove to be most valuable. In many cases, archi-
tectural and AI expertise is needed to fully exploit new hardware
technologies: simply providing users with access to newly emerg-
ing hardware is not sufficient. This kind of testbed is exactly what
PSC is doing through its NSF-supported Open Compass [1] project,



NSF Smart CI, February 25–27, 2020, Arlington, VA Paola A. Buitrago and Nicholas A. Nystrom

which is evaluating the performance of deep learning networks rele-
vant to research (which differ significantly from industry-motivated
benchmarks such as MLPerf and GLUE) on new AI technologies,
leveraging a frequently-refreshed AI technology testbed at PSC.
Sustaining and expanding such effort is vital for effectively bringing
new AI technologies to science and engineering research.

3 INNOVATIONS
Wide-ranging innovations will allow CI for AI-enabled science to
reach its full potential. These innovations range across all aspects
of resource provisioning, operations, and user engagement. Some
examples are as follows.

AIOps can improve system reliability, availability, and perfor-
mance. Early work has already been done to applying machine
learning to system instrumentation data, for example, to identify
and proactively repair components that are degrading.

The research community needs specialized, advanced hardware
that delivers great scalability for specific types of problems. (This is in
addition to testbeds of frequently-refreshed hardware as described
in §2.) For example, individual training runs can take hours to
weeks even on today’s most advanced GPUs, and fully training
a model can take hundreds or thousands of runs across different
network architectures and sets of hyperparameters. New kinds
of hardware that are architected specifically to accelerate deep
learning training can accelerate those runs by orders of magnitude,
potentially transforming researchers’ ability to produce higher-
accuracy models. Other kinds of specialized hardware are being
developed for inferencing, streaming data, and edge devices (which
can stream data back to large CI resources).

The research community also needs more flexible ways to build
customized software environments. Tools such as Anaconda work for
some software stacks, but not for all. Containers are an increasingly
popular alternative, and container technologies such as Singular-
ity [4] are widely adopted in HPC. However, many users lack local
resources to build their own containers, and for some purposes
(e.g., to incorporate system-specific libraries) it would be extremely
helpful to build containers on the target platform. For that, it would
be helpful to deploy “sandbox” environments which provide iso-
lated, secure spaces in which users can have the necessary privilege
levels to build or refine the containers they need.

The complexity of the AI landscape also introduces challenges in
applying for, and granting, research requests. Innovations are needed
in the process, guidelines, and tools to properly match project and
compute needs to the right resources. Improvedmethods are needed
for handling research proposals to accommodate the different, non-
traditional nature of AI/ML and data science research. There is
also an opportunity to use AIOps to improve the proposal review
process, specifically by applying natural language understanding
to infer the actual emphasis of each proposal, to assist in recruiting
and assigning the most appropriate reviewers.

4 TRAINING
User training in scalable AI for NSF-supported CI is greatly needed
and in very high demand. PSC leads the XSEDE HPC Monthly
Workshop series [8], which rotates through topics of MPI, OpenMP,
OpenACC, and Big Data &AI. To date, these workshops have hosted

11,921 participants. The most popular workshops, which are now
offered every other month, are on Big Data & AI, for which 7,158
individuals from 83 different institutions participated in 19 events.
Up to 26 institutions and 612 individuals have participated per event,
using PSC’s Wide Area Classroom format, and each event features
extensive hands-on exercises.

The XSEDE workshops have proven to be extremely successful
and valuable. A valuable next step would be to develop more ad-
vanced modules focusing on AI to foster workforce development
and more effective use of advanced CI. Specifically, users need
guidance on the following:

• Data acquisition and preparation, including tools for orches-
trating training (e.g., hyperparameter optimization) and mea-
surement of bias and correcting for it.

• Scalable AI, or using many AI accelerators together, includ-
ing distributed across many nodes and the use of advanced
hardware, to reduce the time needed to train models, thereby
facilitating higher accuracy and testing more ideas.

• Measuring and improving performance, including profiling,
I/O optimization, and maximizing the efficiency of task and
data parallelism.

• Choosing optimal resources and estimating requirements, in-
cluding how to determine which hardware technologies and
software frameworks would best fit specific tasks and how
to estimate computational requirements.

• Advanced topics, including explainability, developing and
validating surrogate models, multimodal data, reinforcement
learning, and domain-specific networks and data types.

5 TOOLS AND TECHNIQUES
Usability and effective tools are vital for CI- and AI-enabled science
and engineering. Users increasingly come from laptop and cloud
backgrounds where providers have prioritized usability to gain
market share. CI providers must place the user first and deliver the
following:

• Highly usable systems on par with cloud providers.
• Intuitive, interactivemonitoring tools for both service providers
and end users.

• Tools to assist with data acquisition and preparation, such as
cleaning and labeling.

• Flexible data handling tools to tackle the complex workflows
that occur when using AI for in a new field or new domain
challenge.

SUMMARY
The resurgence of innovation in computer architecture and the
high scientific impact of artificial intelligence and machine learning
present unique opportunities for deploying transformative cyberin-
frastructure platforms, enhancing their operation through use of
AIOps, engaging in research on AI & ML issues specific to computa-
tional science, training the computational science community, and
strengthening the software ecosystem with emphases on usability
and data. For each of these areas, the Pittsburgh Supercomputing
Center has initiatives already underway, yet significantly more
effort is needed.
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The current machine learning algorithms are mainly developed to run on sequential platforms. With the 
current exponential growth in data, and the large scale of ML applications, it is becoming critically 
important to reduce the execution time and improve the scalability of the ML algorithms. The main goal 
of this whitepaper is to highlight the main research challenges that must be addressed to allow high 
performance cyberinfrastructure to exploit the emerging big data programming paradigms (MapReduce), 
artificial intelligence, machine learning algorithms, and high performance platforms (parallel, distributed 
and clusters of GPUs).  
  

Research Challenges 
• How to handle large-scale dynamic and heterogeneous data streams? 

• The main research problem is here is how to detect accurately the changes in data 
streams  

• How to develop an intelligent recommender system that tells the user the best Ml algorithm to 
use and how it should be configured? 

• How to apply parallel/distributed algorithms and big data programming tools to speedup ML 
computations? 

• How do you validate and benchmark the proposed approach on a wide range of scientific and 
engineering applications. 

 
In this white paper, we will discuss ongoing research activities at the University of Arizona to address 
these challenges. Figure 1 shows an environment to develop an Intelligent Data Analytics Environment 
(IDEA) and Figure 2 shows how to detect changes in the data streams being analyzed. Figure 3 shows an 
approach to adopt the Ml algorithm so it can model the recent changes in data streams. The first three 
figures can potentially address the first two research challenges. 
Figure 4 shows a High Performance Machine Learning Framework (HPMLF) that can overcome the last 
two research challenges. The HPMLF will leverage Big Data analytics tools, MapRedue, 
parallel/distributed algorithms and high performance platforms (Parallel/distributed systems and GPU 
cluster). 
 



 
Figure 1. Intelligent data analytics environment. 

 

 
 

Figure 2. Change detection tasks and applications. 
 

 



 
 

Figure 3. Real-time adaptive machine learning algorithm. 
 

 
 

Figure 4. High performance machine learning framework (HPMLF). 
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1. Background 

Japan’s vision for the future called “Society 5.0” is a super-smart society where technologies 

such as big data, IoT, AI/ML, and robots fuse into every industry and across all social segments. 

The concept of Society 5.0 is similar to Cyber Physical Systems (CPS) and there are many 

challenges to develop smart cyberinfrastructure for making Society 5.0 a reality. One of the 

biggest challenges is to design the entire edge-to-cloud cyberinfrastructure on which open 

innovation platforms could be built. These platforms would create an ecosystem of data 

collection, storage, sharing, and analysis for Society 5.0. In collaboration with universities, 

research laboratories, and private sectors in Japan and around the world, AIST is meeting this 

challenge using ABCI (AI Bridging Cloud Infrastructure) as a key resource. ABCI is the world’s 

first large-scale open AI computing infrastructure constructed and operated by AIST. The 

development of ABCI has the following two phases, (1) develop ABCI as a powerful shared 

computing infrastructure for AI and (2) develop ABCI as an open innovation platform. Phase 



1 is underway since ABCI started its operation on August 2018, it has seen a steady increase 

in users both from industries and academia. ABCI’s software stack and tools provide easy-to-

use interfaces for users and achieves highly efficient resource utilization for various types of 

AI jobs. To achieve Phase 2 of ABCI development, there are many challenges that must be 

solved through by collaborative research. As a step toward solving these research issues the 

Japanese government is supporting a data platform project named “mdx” which is being 

jointly designed by a broad consortium of national universities and institutions. 

 

2. mdx: Data Platform Project 

 The purpose of mdx is to leverage data utilization throughout Japan making full use of a 

high-performance research and education network called “SINET”. mdx aims to provide a 

rapid PoC environment for R&D data utilization activities including industry-academia 

collaboration projects. The infrastructure of the data platform is based on a cloud (IaaS) 

concept that is distributed over a wide geographical area. Network links connecting data and 

IoT devices can be provisioned with compute and storage resources securely. The platform 

provides virtual infrastructure “slices” to users in such a way that the users can use the “slice” 

as a dedicated secure infrastructure for their purpose. The design of the entire edge-to-cloud 

cyberinfrastructure is illustrated in Fig. 1. In order to build this data platform, we have to solve 



at least the following issues. 

(1) Data management 

Managing data that enables cross-domain utilization is mandatory and challenging. Data 

management includes catalogue services and data access mechanisms with appropriate 

APIs and protocols with many aspects of scalability and high-performance. 

(2) Security 

Security and privacy which enable the hosting of sensitive data such as medical and 

personal data is necessary. 

(3) Support of real time processing 

The data platform will be connected to a huge number of IoT devices directly and must 

be capable of receiving all data and processing immediately without data loss or leakage. 

(4) Job scheduling 

Batch scheduling cannot be used for nodes which receive/send real time data, but it is 

efficient for high machine utilization. The data platform needs to combine long term 

assigned nodes/VMs with batch scheduled nodes to support jobs. 

(5) Management software 

IoT devices, wide area network, internal network, computing nodes, storage should be 

managed in a unified way. Existing cloud management software such as VMware, 



OpenStack, Kubernetes, etc. cannot satisfy all the requirements and we have to develop 

a novel management software. 

By solving the above issues, mdx is expected to start its operation in January 2021. 
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Fig. 1. Infrastructure of the data platform (by courtesy of Prof. T. Kudoh @ U. Tokyo) 



CyberInfrastructure for Monitoring and Inferencing at the
Edge for Sustainable Production
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1 Problem Statement

Climate change, water shortage, and reduced agricultural land are making the problem of meeting world’s
increased food demand significantly difficult. Data-driven agriculture practices have benefited farmers in
producing crops with reduced water intake [5] [6]. However, agriculture researchers have reported unex-
pected damage to high value crop such as apples, grapes, and peaches. Major reported cause is variations
in environment and pest behaviors due to climate change. Current weather models are coarse and do not
capture micro-climates that exist within farms. Agriculture researchers are at the forefront of researching
the future of our food production. Researchers are interested in automating agricultural practices that are
costly and prone to human error such as fruit pruning and cluster thinning. Also equipping farms to be
environment-aware for targeted and reduced chemical spraying. Constant and high-resolution trees moni-
toring for timely pest management both for disease control and sustainable production are critical for our
farm’s future. These practices are reliant on the proper use of technology that would enable an in-depth
insight into the farm using visual and environmental data at a high temporal and spatial resolution.

2 Challenges

There has been a lot of work on developing precision agriculture systems, both in industry and academia.
However, these systems are application-specific, assume always-on internet connectivity, rely on power
sources that negatively impact our environment, does not provide high-resolution spatial and temporal data,
does not support real-time applications, and hence do not contribute to our vision of sustainable production.
There are numerous challenges in providing an extensible system design to enable precision agriculture for
sustainable production. For example, micro-climates affect apple-thinning process and can be captured by
high-resolution tree-level sensing capability. Capturing images of apple clusters and correlating them to rich
environmental data automatically provides opportune clusters and times to perform apple-thinning without
any manual and error-prone process. However such use case demands gathering rich spatial and temporal
data that is affected by frequent power outages, intermittent network connectivity, and the availability of
low storage at end devices in the farm. Real time use cases also arise i.e. spraying pheromones to attract
specific insects and then spraying insecticides at opportune times to reduce chemical exposure. Sensing the
right event and taking action at the right time require event-driven and real-time design. To support such use
case however, resource-constrained edge sensing devices are incapable of running computationally intensive
ML algorithms, while offloading these computations to cloud incur large delays. Finally, various precision
agriculture applications in apple-thinning, pest-management, water irrigation, and pollination have different
sensing, communication, and actuation requirements. Existing systems cater to only specific applications,
for example, See & Spray technology by Blue River focuses only on smart herbicide spraying [1], CropX
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platform is designed for smart irrigation and fertilizing [4], and FieldAgent and PrecisionHawk systems
focus on generating field maps to monitor crop growth and health [2, 3]. The cost and complexity of
combining these systems to provide a holistic view of the farms will deter farmers and academic researchers.
To support sustainable production with minimal climate-footprint, it is essential to provide an extensible
design to fulfill most precision agriculture applications.

3 Intellectual Merit

The goals of proposed cyberinfrastructure for precision agriculture is increased and sustainable production
with reduced cost in terms of error-prone manual labor, and climate foot print. For a transformative land-
scape in precision agriculture, we foresee various promising research directions. High-resolution spatial
and temporal data require an always-on dense deployment of devices that pose challenges in device man-
agement, maintenance, and climate footprint of batteries. Open research areas involve designing batteryless
devices using energy harvesting mechanisms suitable for agriculture domain. Another area is the design of
RFID tags based sensors, and their readers. These designs should ensure system availability even in the face
of power and Internet outages caused by bad weather – a fairly common scenario for a farm – resulting in
missed communication and so reconstructing missing data is also an open research direction in this field.

Drones are one of the most exciting farm sensors used today [7] but they suffer from poor battery life.
Getting aerial imagery for a farm requires multiple drone flights and a long wait time in between when the
batteries are being charged. These characteristics are not suitable for our intended applications where we
need data of various parts of a single tree every few minutes, i.e. capturing multiple apple clusters on a
single tree every 5 minutes. This challenge is addressed by deploying an extensible network and compute
architecture with configurable sensing modalities that constantly monitor the entire farm. To support infer-
encing at the edge to support real-time use cases, an architecture that enables collaborative edge computing
by developing novel distributed ML algorithms to satisfy real-time constraints is also a promising research
direction in this domain. Finding opportune times and technologies to provide persistent storage over cloud
also needs to be explored along with enabling cross-farm analytics.

System Design: For an extensible design, we propose a three-tiered cyberinfrastructure. Lower tier
nodes are the most densely deployed and are close to trees and leaves. These devices are batteryless and
capable of only sensing and communicating with none to minimal storage. Middle tier nodes are sparsely
deployed but are capable of sensing high-resolution data. They receive data from lower tier nodes, store
in volatile memory, and process data locally to support sensor fusion, computer vision and ML algorithms
at the edge. Higher-tier cloud nodes are capable of persistent storage as well as long-term or cross-farm
analytics. This three-tiered architecture open doors for collaborative research across different disciplines
and pave path for future research in early disease detection and intervention, pollination patterns, and crop
management.

4 Broader Impact

Precision agriculture is a new field that has brought together farmers, diverse academic researchers, and in-
dustrial partners to further their common goal of sustainable production. Our proposed architecture does not
only address research challenges of immediate adoption but also open doors for future research in studying
the impact of climate change on our food supply through early disease control, pest treatment, and artificial
pollination. An Interdisciplinary course on precision agriculture will be formulated to train all stakeholders
across various disciplines and foster new partnerships.
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Abstract: Cyber Infrastructure (CI) is increasingly harnessed and is expanding to support the use of 
artificial intelligence (AI) techniques and applications to enable smart cities, power grids, computational 
simulations, real-time processing in big-data experiments (LIGO), supercomputing, and other important 
innovations.  Computation is essential to developing and using the analytics while CI networks and data 
facilities are central to moving and managing the immense volumes of data that enable progress and 
insight.  Just as AI offers opportunities to revolutionize all aspects of our lives, the potential for improving 
the design, evolution, optimization, performance, operation, security and sustainability of the CI is equally 
promising. A convergent research and implementation approach is required to enable the application of AI 
for the CI, comprising experts across the spectrum of cyberinfrastructure research, design, and deployment; 
computer and computational sciences; and systems design and engineering. 
Introduction: All domain science and commerce depend heavily on a robust Cyber Infrastructure (CI) 
comprising hardware and software systems across ranges of scale (from embedded devices to high 
performance computing (HPC)), functionalities (from sensing to computational modeling to data analytics 
to visualization, from data management to communications), and architectures (from centralized to 
distributed, from tightly coordinated to autonomous, with a wide diversity of underlying technology). All 
aspects of NSF’s, and indeed the nation’s, endeavors depend on the creation of scientific and engineering 
capabilities through the orchestration of CI layers and components that is only increasing as intelligence 
and autonomy are integrated into all layers and components.  Harnessing the power and capacity of current 
and future CI technologies presents unique and time critical challenges that must be identified, understood, 
and addressed to maintain and increase the nation’s leadership in scientific, industrial, and societal 
innovation and discovery.  
CI is increasingly harnessed to support artificial intelligence1 (AI) techniques and applications to enable 
innovation for smart cities, power grids, real-time processing in big-data experiments (such as LIGO), 
supercomputing simulations, and others.  Computation is essential to developing and using the requisite 
analytics, while CI networks and data facilities are central to acquiring, moving and managing the immense 
volumes of data required. Just as AI offers promises to revolutionize all aspects of our lives, the potential 
for improving the design, evolution, optimization, performance, operation, security and sustainability of CI 
is equally promising. Following the terminology used in the NSF Big Data and Extreme Computing 
Workshop series we refer to AI applied to challenges of improving Cyber Infrastructure as AI for CI [1]. 
A convergent research approach is required to explore the application of AI for CI, comprising experts from 
across the spectrum of cyberinfrastructure research, design, and deployment; computer and computational 
sciences; and systems design and engineering. To this end, we propose to create a National AI for CI 
research and development effort to drive transformative exploration of CI using AI methods including areas 
ranging from CI performance and optimization to the concept of enabling scientists to specify high-level 
science objectives from which workflows might be constructed and resources (hardware, software, data) 
might be assigned and made available.  
There are clear needs for AI innovations and implementations focused on the CI itself to build a new 
multidisciplinary community of AI and CI researchers. It will include people designing, implementing and 
supporting CI across the entire CI spectrum (from the largest to the smallest systems, from the tightest to 
loosest integration); and core AI/ML experts who can explore the use of AI to improve the effectiveness and 
efficiency of CI design and implementations.   

 
1 while there are differences in implementations and use of Machine Learning, Deep Learning and Artificial Intelligence, 
there are related for the sake of this paper we will refer to all methods as AI 
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Conceptual Framework: Harnessing AI to Reinvent Cyber Infrastructure: Machine Learning (ML), 
Deep Learning (DL), and AI have recently become important and practical alternative methods for data-
driven discovery in a number of science and engineering domains including physics, agriculture, natural 
language processing, facial and object recognition, imaging, and automation. Recent successes have been 
enabled a combination of massive increases in raw processing power, the availability of exponentially 
increasing data for analysis and learning and successes in algorithms for applying that processing power 
to solving AI problems.  All of these areas now rely on powerful and stable CI to apply AI methods to 
accomplish their domain science goals and innovation.   
These examples of using CI to empower AI represent tremendous research opportunities [5]. CI is complex, 
vast, expensive, and can be difficult to use effectively.   AI for CI endeavors will help reduce errors, decrease 
the time needed to rectify problems, faults and inefficiencies, and significantly decrease barriers to 
improving AI and other application performance. 
Disease vectors are increasing at an alarming rate with the increase in travel and export/import on a global 
scale as evidenced by the two recent outbreaks in coronavirus and aggressive flu epidemics. Creating 
timely cures and modeling contagion spread requires sophisticated CI that is currently lacking (e.g., 
distributed sensors coupled with computation, global connections of medical providers, etc.) All aspects of 
enabling this acceleration hinge on our ability to efficiently build and harness the CI that is integral to all 
aspects of modern technology. This is but one example of current and urgent problems; improving the CI 
addresses many other science, research, and engineering innovations needs that will enable acceleration 
of productivity and decreased time to insight/solution across all disciplines.  Enhancing prediction of severe 
weather, reducing time to discovery of new drugs and new materials, understanding our changing earth 
and these changes impacts on society and security, reducing energy use and increasing efficiency, 
understanding human behavior, understanding the universe’s origin and function, and many other areas all 
rely on fundamentally and dramatically improving how our CI works.  With the rate for hardware enabled 
improvements decreasing we must increasingly rely on much smarter and more effective software. 
To enable the end goal of accelerating discovery, it is critical that we incorporate AI improvements in our 
CI starting now.  The urgency comes from two parallel time-critical issues.  First, AI for CI can enable 
important improvements to the existing and soon to be deployed CI over the next 5 years but only if we 
begin work immediately.  Possibly even more important, new, long lasting CI architectures and systems are 
being designed today and it is imperative to their future performance that the new architectures incorporate 
AI in their CI in a comprehensive and efficient manner from the ground up. 
The Human-in-the-Loop (HIL) methods prevalent in many aspects of CI operations today are too limited 
when dealing with complexities for even small CI implementations and may become impossible when 
complexity grows to national scale CI.  The cost of HIL in terms of inefficient use, delayed or incomplete 
discovery, or simply unavailability of CI components is now too high given CI is expensive and each 
implementation has a limited time-span window to make an impact. The current “top-down, human-in-the-
loop” approaches for its design, implementation, effective use and improvement are very limiting and prone 
to error. Studies [7] [8]  show that human actions contribute significantly to downtime, errors, and rework in 
CI implementations.  HIL is typically limited to being reactive (or retrospective), using a postmortem analysis 
of events, anomalies or performance.  Data-driven AI based techniques appear the best options for making 
predictive approaches possible.  
Ultimately, AI has opportunity to go beyond simply assisting or augmenting present CI capabilities. It will 
be used to explore new CI capabilities such as developing high-level scientific problem specification 
constructs that can discover and evaluate relevant resources (data sources, instruments, computation) and 
services (algorithms, models), testing promising workflows from such components, and providing end users 
with prototype workflows to explore a specified problem.   
How might AI approaches be used to address CI challenges? First, AI can reduce the complexity of 
designing and operating CI. A single and/or small system may consist of millions of interacting components, 
whereas a larger, national-class system may contain billions of components. Similarly, the amount of code 
used to implement the systems ranges from millions to billions of lines.  By definition, CI is highly 
interconnected and systems are co-dependent. This complexity makes systems that afford security and 
sustainability increasingly difficult to correctly design, build, and operate. Discovering services and 
optimizing their interaction in workflows in CI will require new, more scalable approaches than in the past. 



White Paper for the NSF Workshop on Smart CI, February 23-25, 2020 

 
 

University of Illinois, Northwestern University, University of Chicago, University of Southern California 

3 

Second, AI can reduce the delay in responding to conditions of interest. Almost all CI systems have 
significant limitations for data movement. To improve efficiency, workflows and overall system performance, 
mismatches responses to changes in conditions and delays in mitigation generation must be identified and 
alleviated. With the increased power of edge devices and the heterogeneity of network capabilities, 
emerging CI systems require complex orchestration of computation and data movement to reduce 
dependence on communications (e.g., reducing data volume) as well as to enable CI to act in real time 
despite having components that are tens of milliseconds or further apart. Concurrently, the use of 
embedded, wearable, or other personal devices expands the concept of CI. 
Third, AI can reduce “Time-to-discovery” and “Time-to-actionable insights” in CI operations. Data sizes and 
complexities limit human’s ability to discover anomalies, inefficiencies, bottlenecks, faults, security 
vulnerabilities, and cyber-attacks on time-scales appropriate for taking corrective actions.  AI methodologies 
can efficiently extract such insights from large, complex data. However, as CI workflows and services 
become more complex it will be essential to improve our ability to create systems that behave in a way that 
can be explained to ensure confidence in taking action upon AI-based results. 
Specifically, CI that is used across applications that require resources ranging from the farthest edge 
devices to the largest of facilities, from dedicated ultra-scale instruments to the broad range of distributed 
devices, from stationary to mobile and autonomous devices and systems. Brief review of a few exemplar 
use cases help explain the challenges and objectives of AI for CI, adding new use cases as more insight is 
gained. These exemplars include (i) mid- and large-scale data and computational facilities, (ii) CI for large 
scale observing instruments, (iii) CI for automated and robotic devices, and (iv) CI for widely distributed 
instruments whether it is in cities or national scale. Social science considerations for CI are shared among 
these cases. Each exemplars use has unique challenges but it is also possible to identify commonality that 
can be applied to all or are easily adapted for different CI implementations. We call these exemplars 
“Families of CI”. These similarities will be conducive to developing common algorithmic approaches, 
interfaces, and protocols which will likely also extend to many other areas including those necessary in 
complex industrial scenarios. These families represent opportunities for AI for CI but are not exhaustive, 
and indeed are expected to be expanded. 
Research Themes for Exemplar Families of Scientific CI: Computational and Data Systems: CI for 
computational and data analysis systems and facilities come in all sizes from a modest handful of compute 
nodes with a Network File System (NFS) to support common storage to complex High Performance 
Compute (HPC) systems consisting of tens of thousands of compute nodes and tightly integrated 
subsystems for supporting large scale data buffering and file I/O, to global scale cloud computing facilities. 
Across the spectrum of size, configuration and workload, C&D CI systems share the challenge of being 
used inefficiently. Application developers struggle determining the best algorithms to optimally utilize the 
increasing diversity of architectural features. These challenges are only getting worse with the ever-
increasing complexity of all compute, network and data technologies. Across all such facilities this not only 
translates into waste in terms of energy, idle resources, and human capital, but also restricts the rate and 
quality of insight and output and extends the time to solution of some of humanity’s most pressing problems.  
In order to optimize the utilization of our compute and data related resources and minimize the time to 
solution of the problems being run on these resources, the technology industry and consumers have been 
adding CI in the form of instrumentation, communication, and analysis infrastructure for collecting and 
analyzing detailed information about all aspects of operation. To date this additional CI increases the burden 
on support staff and users of the technology to understand the complex interactions represented by the 
information and has been used largely for diagnosing problems reported and performance bottlenecks. Due 
to the high volume (tens of TB/day per system) and high dimensionality (thousands of different 
instrumentation points) of data, humans are only able to use a small subset of the data for analysis and are 
often unable to identify root causes of problems. Additionally, delays between problem occurrence and 
diagnosis for all but the most trivial problems limit the utility of current CI systems with respect to automated 
feedback and optimization of run time resources and configuration [10]. 
Research Themes for Exemplar Families of Scientific CI: CI for Large Instruments: The CI demands for 
next generation instruments, such as the Large Synoptic Survey Telescope (LSST) [3], are expected to 
exceed existing CI capabilities [11]. Upgrades to existing facilities, e.g., the advanced Laser Interferometer 
Gravitational-wave Observatory (LIGO) [12], and the next generation Large Hadron Collider [13] already 
demand the use of CI that are beyond in-house, tailored solutions for core-data analyses, requiring the use 
of the Open Science Grid, and other HPC platforms such as XSEDE and Blue Waters [14] [15]. There is 
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an urgent need to rethink the existing CI paradigm to cope with the volume and speed of data production 
and analysis of large-scale facilities. 
The convergence of AI with cloud, mid- and top-tier HPC centers has rapidly emerged as an alternative to 
handle the disruptive effects of the big-data revolution in strategic NSF- and DOE-funded investments. 
While the design and training of AI algorithms requires novel cyber-tools, such as distributed training 
schemes in HPC platforms, once these algorithms are fully trained, they enable real-time inference studies 
using minimal resources. Convergence between existing CI and AI-HPC inspired CI solutions,  with 
expanded AI for CI technology, could boost and enrich the scientific capabilities of current and next-
generation big-data experiments [16]. This approach will leverage the expertise of system architects, 
resource managers, and software developers to use AI to automate diagnostics tools that optimize the 
performance and throughput of CI resources. AI for CI will also carry out data-driven analyses, informed by 
the high-dimensionality of the in-situ system and application telemetry data, to form logical hypotheses 
about the data features essential to understanding relationships among architectures, behavioral 
characteristics of applications, and performance, even in the absence of labelled associated application 
runs and conditions, alleviating the need for relying on limited benchmarks and regression testing that is 
common practice today. 
Research Themes for Exemplar Families of Scientific CI: CI for Automation and Robotics: AI based 
cyber-physical autonomous agents that directly assist or interact with humans are becoming ubiquitous [17] 
[18] [19] [20]. However, field-deployment of trustworthy, safe, and performant autonomous agents has the 
following two CI interrelated challenges. First, the lack of automated processes for design and development 
of an end-to-end field-deployable autonomous agent CI [21] [22]. Addressing the system challenges in 
design and development is critically important as evident from the delays in deployment of self-driving cars 
despite the showcase of a working concept of a functional AV in DARPA 2007 Urban Challenge [23] 13 
years ago. Towards this goal, new and innovative automated processes must be created for operating 
systems and computational kernels that meet energy, latency and deadline requirements, and 
methods/protocols for testing, failure mitigation, recovery, and safety. Moreover, these problems are 
increasingly more challenging in the context of autonomous swarms that are geared towards execution of 
shared tasks (e.g., search and rescue missions) as they require methods for remote management (from a 
base station) and coordination of geo-distributed agents (edge devices) in uncertain human-centric 
environments.  The second challenge is the lack of data, code, and knowledge sharing across the field of 
automation and robotics [24] [25]. There is a significant commonality across autonomous agents in the field 
of automation and robotics, such as self-driving vehicles, manufacturing/industrial/surgical robots, and 
delivery bots. This commonality spans CI requirements and specifications (e.g., remote management and 
coordination), meeting real-time deadlines for executing actions, and maintaining safety. Although agents 
operate at different levels of autonomy and perform significantly different tasks (e.g., human transportation 
vs. package delivery), the significant commonality among them can be leveraged by investment in 
standards to create reusable design, development, and deployment patterns to maximize safety, efficiency, 
and benefit to society. 
In order to test ML and AI algorithms for perception, decision, and control of autonomous agents, industry 
has developed several open-source comprehensive testbeds [26] and [27] that utilize real-time physics-
based simulators to support software-in-the-loop,  hardware-in-the-loop, and human-in-the-loop methods. 
This allows developers to iterate on architecture, design and implementation of the autonomous CI system 
and generate large amounts of data on execution time of computational tasks, their safety, and resilience.  
Unique AI opportunities for automation/robotics: AI approaches are promising as the current methods for 
design and development of safe CI for robotics and automation are fragile as it depends on painstakingly 
tuned heuristics and partial solutions with insufficient safety assurance. AI-techniques can leverage 
simulation and field datasets as well as domain knowledge to enable automatic design space exploration 
and development of CI components that are performant, safe and resilient. 
Research Themes for Exemplar Families of Scientific CI: Edge Systems and Distributed Intelligent 
Observatories: NSF has supported the creation of distributed observatories ranging in scale from urban 
(e.g., Array of Things (AoT) in Chicago [28]) to regional (e.g., WIFIRE in Southern California [29]) to 
continental (e.g, National Ecological Observatory Network (NEON) [30]). At each of these scales there is 
need for measurements outside of the capabilities of traditional sensors, aimed at sensing factors ranging 
from vehicle or pedestrian flows in cities or the migratory patterns of wildlife. Desired capabilities include 
the ability to modify sampling rates to suit current conditions (e.g., low sampling rates when nothing out of 
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the ordinary is going on and higher sampling rates surrounding events or conditions of interest that resolve 
desired detail) and the ability to aggregate and anonymize data to levels appropriate to types of information 
being collected (e.g., anonymous pedestrian and traffic flows vs. identification in the case of collisions and 
altercations). 
Industry has begun a transition to monitoring and control using Internet-of-Things (IoT) technologies and is 
rapidly adopting edge computation to embed AI algorithms. Whether in factories, electrical and gas 
distribution networks, or urban measurement instruments, edge computation supports the creation of 
“software-defined sensors” that, like software-defined networks, are remotely programmed to allow 
flexibility and evolution of their measurement capabilities.  
Unique AI opportunities for edge systems include: AI-at-the-edge can provide support for multiple types of 
CI needs, for instance enabling instruments to enhance communication conserving low-frequency samples 
with anomaly detection to trigger changes in sampling rates appropriate to resolve events or conditions of 
interest. For example, cameras deployed in cities need not stream and save (with significant privacy 
implications) video to central servers if their embedded intelligence can both extract routine measurements 
(e.g., pedestrian flows) and adapt to events of interest (such as a vehicle collision). As new CI capabilities 
move from prototypes to production scale, CI services in observatories such as NEON [31], AI will be 
increasingly critical to the operation and optimization of distributed components with high degrees of 
heterogeneity, diverse services, and in some cases intermittent connectivity. 
Social Science Influence on CI: The social, economic, and behavioral science communities have 
significant experience working with sensitive data, maybe more than do the other NSF-supported sciences 
and have grappled with the ethics of the use of “big data” [32].  The advent of smartphones, wearables, in-
home devices, and location-based services has brought CI squarely into social science research.  The pace 
and scale of the use of such CI in the social sciences are such that the privacy, security, and ethics of the 
CI, and moreover of the use of AI within these devices, require a central rather than supporting role for 
social science in the use of AI for CI. 
Equally important is the impact of AI for CI from the point of view of stakeholder trust--whether the 
correctness of results, the security of systems embedded in the public way and in homes, or the ethical 
application of AI in the use of associated data. Without trust, there will be no adoption. Initiatives must 
address increasing autonomy in order to reduce latency for making high-quality decisions in high-
consequence and/or complex scenarios with the goal of increased performance, efficiency, security and 
safety. CI is a place where domain scientists make high consequence decisions and getting those decision-
makers and their stakeholders to trust AI is going to be difficult unless its explainable and transparent in 
some way. In particular, there is a need to explore the partnership and trust between the AI-decision making 
tools and the humans for high risk tasks. 
AI for CI research areas include low- through high-risk scenarios. Low-risk scenarios without significant 
incoming bias can provide a good testbed for testing acceptance and assessing confidence in results. For 
example, HPC scheduling decisions to improve performance can be low-risk as long as the affected 
applications are not high-consequence. Assessing criteria for tradeoffs in explainability-transparency-
acceptance-latency change higher risk scenarios (e.g., more urgent computations, autonomous vehicles) 
will be critical to acceptance of the new methods. 
Common Challenge Themes: The research challenges identified across the exemplar CI families all share 
some common themes: 1) CI systems are so complex that only domain experts can make reasonable and 
repeatable optimization decisions and the complexity is growing exponentially, 2) decision making should 
be performed with minimal lag time for optimum performance but the consequences of those decisions, in 
terms of human welfare and/or monetary cost, can be high, 3) processing telemetry data is a “big data” 
problem in itself with requirements for low latency time to solution in the presence of perhaps incomplete 
data, 4) individual data values are bounded but the high dimensionality and variability in aggregate makes 
full ensemble processing, within effective latency bounds, currently impossible, 5) social aspects of trusting 
the judgment of a machine must be overcome for significant deployment, 6) workload and resource 
scheduling, swarm coordination/management, resiliency, energy efficiency, ease of use by developers and 
end user, and 6) lack of labeled datasets as well as the high-cost of generating labeled datasets for training. 
Across CI families, AI approaches will enable domain experts to automate the design space exploration of 
performant, safe and reliable CI, and unlock new use across the domains of science, health, agriculture, 
manufacturing, energy, and transportation by combining field datasets, simulation techniques and domain 
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knowledge. We believe that these similarities will be conducive to the development of common algorithmic 
approaches (including explainability), interfaces, and protocols which will likely also extend to areas such 
as weather forecasting using drones/aircraft and more.    
Conclusion: A National AI-for-CI effort that organizes a community of both CI and AI experts and 
stakeholders to focus on identifying the challenges and opportunities for AI to enhance and eventually re-
invent the CI is a critical national need.  Equally important is AI for CI efforts including leaders from some 
of the largest and most complex of NSF’s CI projects and operating observatories and facilities to bring a 
diverse set of stakeholders and experts together from both a disciplinary standpoint and a human 
standpoint.  The ubiquitous and foundational changes to be empowered by applying AI to CI require new 
perspectives from new communities that challenge traditional thinking embedded in nearly four decades of 
NSF-supported CI.  Simply put, only such a bold approach can yield insights and new concepts that are 
required to fully exploit AI in achieving the promise of increasingly broad, powerful, and intelligent CI in the 
coming decade
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Tycho Brahe gathered considerable and accurate data on the movement of the planets (“big data” 
for his time). However, this data did not find real value until Johannes Kepler used it to discover 
his three laws of planetary motion. Later Isaac Newton used these laws and other data to derive his 
unified laws of motion and laid the foundations of classical physics. To do so, he had to invent 
calculus for describing such things as rates of change. Brahe, Kepler, and Newton were all engaged 
in the practice of science, a systematic process for acquiring knowledge through observation or 
experimentation and developing theories to describe and explain natural phenomena. The scientific 
process that they engaged in is summarized in Figure 1.  

Typically, scientific inquiry starts with a 
question within a domain of study, e.g., 
biology. With the question in hand, one 
has to assemble the background 
information and acquire the data 
necessary to answer the question. Then 
one proceeds to construct one or more 
models from data (and background 
information). Choosing a small set of 
models from among a much larger set of 
candidates involves additional 
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Figure 1: Major Components of the Scientific Process 



considerations (simplicity, consistency with what else is known), etc. The models can be used to 
advance hypotheses that result, ideally, in testable predictions. The observations or experiments 
designed to test the predictions yield additional data that feed into the larger scientific process. 
Science is a social endeavor, with multiple individuals and teams, driven by intrinsic as well as 
extrinsic incentives. Scientific findings go through peer review, communication, and publication, 
and replication before they are integrated into the larger body of knowledge in the relevant 
discipline. It is worth noting that there is considerable variability across scientific disciplines, e.g., 
in cosmology, where there is little possibility of executing designed experiments, one typically has 
to make do with observational data or the results of ‘natural’ experiments. Nevertheless, it is clear 
that the processes of acquiring, organizing, verifying, validating, integrating, analyzing, reasoning 
with, and communicating information (models, hypotheses, theories, explanations) about natural 
and built systems lie at the heart of the scientific enterprise. The past centuries have witnessed major 
scientific breakthroughs as a result of advances in instruments of observation, formalisms for 
describing the laws of nature, improved tools for calculation, and infusion of concepts, tools, and 
scientific practices across disciplines. 

Today, the experimental instruments are more powerful, the scientific questions more complex, and 
the mathematical, statistical and computational methods for analyzing data have become more 
sophisticated. The resulting emergence of “big data” offers unprecedented opportunities for 
accelerating science. Arguably, “big data” accelerates Brahe’s part of the scientific endeavor, and 
increasingly, Kepler’s part, with the increasing use of machine learning for building models from 
data. Nevertheless, most other aspects of the scientific process (understanding the current state 
of knowledge, formulating questions, designing studies, assembling and managing research 
teams, identifying designing, prioritizing, optimizing and executing experiments, organizing 
and integrating data, knowledge, and assumptions to draw inferences and interpret and 
explain results) constitute an even greater bottleneck than ever.  

In what follows, I will argue that: Accelerating science calls for foundational advances in 
Artificial Intelligence and the translation of the resulting advances into cognitive tools that 
amplify, augment, and extend human intellect and abilities through advanced 
cyberinfrastructure for science. 

Algorithmic Abstractions of Scientific Domains. Today, algorithmic abstractions increasingly 
play, across many sciences, the role played by calculus or more generally, mathematics, in the 
emergence of physics. For example, in biology, we will have a theory of protein folding when we 
can specify an algorithm that takes as input, a linear sequence of amino acids that make up the 
protein (and the relevant features of the cellular environment in which folding is to occur), and 
produces as output, a description of the 3-dimensional structure of the protein (or more precisely, 
a set of stable configurations). In cognitive science, we will have a theory of learning from 
experience, when we have an algorithm that learns from observations and experiments. 
Algorithmic abstractions of the relevant natural entities, relations, and processes in a scientific 
domain (e.g., biology) allow us to examine the domain through the computational lens and 
formulate and answer scientific questions in the domain in algorithmic terms. Once created, the 
algorithmic abstractions become first class computational artifacts in their own right that can be 



analyzed, shared, and integrated with other related artifacts, contributing to the acceleration of 
science. The creation of sufficiently expressive, yet practically useful algorithmic abstractions 
of scientific domains calls for major advances in AI, including in particular, knowledge 
representation, knowledge elicitation, and machine learning. Cyberinfrastructure for 
science must provide the necessary tools and infrastructure for the collaborative creation, 
sharing, and use of algorithmic abstractions of scientific domains. 

Algorithmic Abstractions of the Scientific Process: The scientific enterprise (See Figure 1), 
entails acquiring, organizing, verifying, validating, integrating, analyzing, reasoning with, and 
communicating information bearing scientific artifacts, namely, experiments, data, models, 
hypotheses, theories, and explanations associated with natural or built systems lie at the heart of the 
scientific enterprise. Hence, computing, which offers a powerful medium for digital representation 
and manipulation of information artifacts offers a powerful formal framework and exploratory 
apparatus for science. It also offers the theoretical and experimental tools for the study of the 
feasibility, structure, expression, and, when appropriate, automation of (aspects of) the scientific 
process, the structure and organization of collaborative teams, modeling the evolution of scientific 
disciplines, and measuring the impact of scientific discoveries. The creation and realization of 
algorithmic abstractions of the scientific process calls for foundational advances across 
multiple areas of AI, including knowledge representation, planning, optimization, search, 
multi-agent communication and coordination, natural language processing, information 
extraction, machine learning, among others. Cyberinfrastructure for science must provide 
generalizable, modular, extensible, interoperable infrastructure and tools for accelerating 
science by (i) whenever feasible, automating aspects of science (well beyond building 
predictive models from data using machine learning, and compute and data intensive 
simulations). 

Cognitive tools for Amplifying, Augmenting, and Extending Human Intellect and Abilities: 
Accelerating science requires effective computational tools for mapping the current state of 
knowledge in a discipline and identifying the major gaps; Generating and prioritizing questions 
that are ripe for investigation; Extracting and organizing descriptions of experimental protocols, 
scientific claims, supporting assumptions, and validating scientific claims from scientific 
literature, and increasingly scientific databases and knowledge bases; Literature-based discovery, 
including methods for drawing inferences and generating hypotheses from existing knowledge in 
the literature (augmented with discipline-specific databases and knowledge bases of varying 
quality when appropriate), and ranking the resulting hypotheses; Expressing, reasoning with, and 
updating scientific arguments (along with supporting assumptions, facts, observations), including 
languages and inference techniques for managing multiple, often conflicting arguments, assessing 
the plausibility of arguments, their uncertainty and provenance; Observing and experimenting, 
including describing and harmonizing the measurement process and data models, capturing and 
managing data provenance, describing, quantifying the utility, cost, and feasibility of experiments, 
comparing alternative experiments, and choosing optimal experiments (in a given 
context);Navigating the spaces of hypotheses, conjectures, theories, and the supporting 
observations and experiments; Analyzing and interpreting the results of observations and 



experiments, including modeling the measurement process, its bias, noise, resolution; 
incorporating constraints e.g., those derived from physics, into data- driven inference; closing the 
gap between model builders and model users by producing models that are expressible in 
representations familiar to the disciplinary scientists; Synthesizing, in a principled manner, the 
findings, e.g., causal relationships from disparate experimental and observational studies. The 
development of cognitive tools for scientists requires foundational advances in AI. Realizing 
the promise and potential of such cognitive tools to accelerate science requires advanced 
cyberinfrastructure for implementing, validating, deploying, and operating the tools. 

Advanced Cyberinfrastructure for Collaborative Science: Because major activities in science 
increasingly require on collaboration across disciplinary as well as organizational boundaries, 
there is a need for data and computational infrastructure to support: Organizing and participating 
in team projects, including tools for decomposing tasks, assigning tasks, integrating results, 
incentivizing participants, and engaging large numbers of participants with varying levels of 
expertise and ability in the process; Collaborating, communicating, and forming teams with 
partners with complementary knowledge, skills, expertise, and perspectives on problems of 
common interest (including problems that span disciplinary boundaries or levels of abstraction, 
and call for collaboration across government, industry and academia); Creating and sharing of 
human understandable and computable representations of the relevant artifacts, including data, 
experiments, hypotheses, conjectures, models, theories, workflows, etc. across organizational and 
disciplinary boundaries; Documenting, sharing, reviewing, replicating, and communicating entire 
studies in the form of reproducible and extensible workflows (with provision for capturing data 
provenance); Automating the discovery, adaptation, and when needed, assembly of complex 
analytic workflows from available components; Communicating results of studies or 
investigations and integrating the results into the larger body of knowledge within or across 
disciplines or communities of practice; Tracking scientific progress, the evolution of scientific 
disciplines, and impact on science, engineering, or public policy. Amplifying, augmenting, and 
extending human intellect and abilities to accelerate science, calls for fundamental advances 
in AI, especially, human-machine, machine-machine, and machine mediated human-human 
collaboration; and advanced cyberinfrastructure  collaborative science across disciplinary 
and institutional boundaries.    

Transparent, trustworthy, accountable cyberinfrastructure for science: As scientific 
advances rely on data (including sensitive data), infrastructure, and tools beyond those that any 
individual scientist can fully comprehend or manage, there is a need for: Computable data access 
and usage agreements that can be enforced within a secure cyberinfrastructure; Audit mechanisms 
that can be used to verify compliance with the applicable data access and use policies; Repositories 
of data and their usage agreements that can be adapted and reused in a variety of settings; Agile 
and secure computing and network services and protocols that can accommodate different types 
and vintages of instruments;   Access privileges that are responsive to the changing needs and roles 
of individuals; Distributed data management systems or virtual federated collaboratories that 
enable seamless sharing of data, computational resources, analysis tools, and results across 
disciplinary and organizational boundaries while ensuring compliance with applicable security as 



well as data access and use policies; Sustainable model for data and long-term preservation of both 
data and the software needed to make use of it; Data and software provenance and other 
mechanisms for ensuring transparency and reproducibility of data analysis, modeling, etc., 
detecting, and correcting for implicit or explicit biases or errors in the data as well as the 
algorithms. Accelerating science calls for advanced cyberinfrastructure, policy frameworks, 
and tools for ensuring  the  transparency, trustworthiness, and accountability of   advanced 
cyberinfrastructure for science.   

Education and Training: Realizing the promise and potential of advances in AI and  
cyberinfrastructure to accelerate science calls for: a diverse cadre of scientists who combine deep 
expertise in a scientific domain that have the knowledge and skills to develop and utilize 
algorithmic abstractions within their scientific domain; interdisciplinary teams  of scientists and 
engineers   to design, implement, and study end-to-end systems that flexibly integrate the relevant 
cognitive tools into complex workflows to solve broad classes of problems in specific domains;  
organizational,  social, behavioral and cognitive scientists to study cyberinfrastructure enabled 
team science and discover, and translate to practice how best to organize and incentivize such 
teams to optimize their effectiveness; and  organizational changes and funding models   that 
catalyze  the acceleration  of science through advances in AI and cyberinfrastructure



Understanding the Effect of Data Quality on Analysis Results 

The success of artificial intelligence(AI) and machine learning (ML) techniques is dependent on the 
quantity and quality of data. Despite the promise of data deluge, in reality, it is very difficult to 
obtain large amounts of representative data. This is due to many factors including, (i) the cost of 
gathering data, (ii) inconsistencies and bias in reported data and (iii) privacy issues dealing with data 
sharing. The technological, social and legal constraints of data gathering are unlikely to change 
soon. Thus, a crucial challenge for AI/ML researchers is to determine the how to deliver accurate 
results in face of these constraints.  

Although this problem is prevalent in all areas of AI/ML, I will specifically discuss in the context of 
networks analysis. Networks (or graphs) are mathematical models of complex systems of 
interacting entities. Analysis of the network structure provides insights to the properties of the 
underlying system. Network analysis is used in many disciplines from identifying genes with similar 
functions in gene correlation networks to recommendation systems in online markets. We consider 
issues with respect to these three types of poor-quality data; 

Incomplete Data. This is data where parts of the information, here edges or vertices are 
missing. The challenge lies in either filling in the missing information—such as through link 
prediction or in evaluating by how much the missing data affects the results.   Some of our 
preliminary results show that the accuracy is determined by not so much as the number of edges 
missing, but by the position of edges in the network. 

Erroneous/Biased Data. Erroneous data is distinguished from incomplete data, in that 
spurious edges/vertices that were not in the original network may have been added. Erroneous 
data can be detected by gathering the data multiple times, and comparing the associated network 
models. However, this is an extremely time consuming process, and often not feasible.  

An analytical approach would be to test the sensitivity of the data under perturbation. Under 
appropriate perturbation models, an unbiased data should give approximately the same quality of 
results, whereas biased data would clearly show different results under perturbation 

Anonymized Data. Due to privacy concerns, data is often shared in an anonymized form. A 
typical form of anonymization is to ensure that each node in the network shares some neighbors 
with k-other nodes. An important would be to study how this change affects the network analysis 
results, and to design anonymization techniques that can adapt to the type of analysis being 
performed, without sacrificing the security. 

To summarize, the quality and correctness of data, is an important concern for all learning 
algorithms. To date, there are not any standardized measures on how to evaluate quality of data or 
how to measure the sensitivity of results with respect to change in data. Moreover, most 
anonymization techniques are very general and not tuned to the analysis needs. These questions 
are critical to understand the limits of AI when developing smart cyberinfrastructure and to design 
techniques to improve the data quality. 

Bhowmick, Sanjukta
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Sensing modalities have been exploding in areas as diverse as materials science, biology, 
geographical and space science, with the resultant data as diverse as images, time-series, point-
clouds, and functional-data. However, with the rise of such scientific datasets, analytics 
techniques to convert the raw data to actionable insights have lagged behind. This is because in 
many of these areas, it is time-consuming to provide detailed human annotation of key concepts, 
or labels, that can be used to train effective machine learning techniques. Further, in these 
applications, often the goal is not to perform simple tasks like classification, but to arrive at 
scientific insights. Due to these reasons, standard applications of neural networks to these 
domains has resulted in slower progress than anticipated.  
 
For instance, in material science imaging data, for use in 4D material characterization, the 
imaged data is known to have characteristics at different spatial scales, very different from 
natural images. This makes standard application of techniques like image segmentation and 
classification difficult. Further, annotating materials datasets is a highly time-consuming process 
and acquiring new samples are also time consuming.  Simple data augmentation methods are 
currently used to make visual analytics with deep-nets more robust but also fail as augmentation 
methods are limited to simple effects like rotations, affine transforms, noise, blur and other 
factors; increasing the training-set requirements and training-time. Their generalizability beyond 
the factors considered is often unknown in scientific analytics.  
 
To overcome these limitations, new deep-learning architectures motivated by directly encoding 
physics-based constraints may help. These constraints include knowledge of imaging physics, 
illumination models, view-invariant representations, and invariance to image-quality 
degradation. Turaga work at the Geometric Media Lab uses methods rooted in geometry and 
topology to enforce these constraints analytically either in loss functions, or in constraints over 
latent spaces. This can lead to robust architectures providing higher performance under new 
imaging modalities especially under low-shot learning paradigms.  
 
We believe that we are at an important juncture where interdisciplinary insights from scientific 
domains, machine learning, cyberinfrastructure can come together to develop a new class of 
flexible techniques that are: 

• rooted in known domain science 
• leverage new mathematics from geometry, topology, functional-analysis 
• leverage existing cyberinfrastructure from other domains 
• adaptable to small datasets 
• provide robust, interpretable, and actionable scientific insights. 
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NSF Smart Cyberinfrastructure Workshop White Paper:     
William Tang, Princeton University/PPPL 
Title: “Features of a Possible NSF Smart Cyberinfrastructure Roadmap Supporting Science 
Applications”  
Focus:  Associated needs & requirements with illustrative exemplar application from Fusion 
Energy  
__________________________________________________________________________- 
 
The basic motivation behind NSF’s strong current interest in developing a “Smart Cyberinfrastructure (CI) 
Roadmap” is to appropriately address the challenge of integrating emerging new smart technologies in 
Artificial Intelligence/Deep Learning/Machine Learning into existing and future scientific investigations 
involving the synergistic engagement of the Agency’s CI and applications communities.  This process can 
begin by moving toward a common understanding of the current and evolving requirements of “Smart CI” 
in terms of architectures, algorithms, best practices, enabling technologies, and current gaps in CI for the 
present and near future,  
 
While there is abundant evidence of great national and international enthusiasm for launching major 
AI-centric new R&D programs, a logical starting point is to address the following basic set of 6 
associated questions: (1) What exciting grand challenge problems can best be addressed with AI-
enabled cross-disciplinary cyberinfrastructure” ?; (2) What transformational ideas for associated 
efficient coupling of simulations, experiments, & computing facilities are needed to  accelerate 
progress in scientific discovery?; (3) What kinds of modern computer architectures and associated 
infrastructure can best serve the needs of AI-enabled discovery science ?; (4) Since the coupling of 
AI and HPC is a well-recognized to be a huge opportunity for AI-enabled cyberinfrastructure, what 
approaches should be adopted ? (6) How can we best enhance exciting opportunities for international 
and industrial collaborations in an AI-enabled ecosystem? 
 
We can begin by considering some guiding principles for possible NSF Cross-Disciplinary AI 
Institutes with key themes that include, for example: (1) Trustworthy AI; (2) Foundations of Machine 
Learning; and (3) AI for Discovery in Physics.  The overall, targeted work-scope should cover both 
foundational as well as “use-inspired” AI research to be explored.  Another key element of such 
interdisciplinary computational institutes would be to further strengthen NSF’s mission for education & 
training of current and future generations of the US workforce -- with the skills to develop and apply AI 
tools and technologies with innovative impact on today’s economy and jobs of the future.  This would  
of cource focus on AI-enabled approaches for education and development of the Nation's graduate 
and undergraduate students, post-doctoral researchers, and skilled technical workforce.  Associated 
NSF Cross Disciplinary AI institutes could involve universities as well as NSF supercomputing centers 
(e.g., SDSC, TACC, NCSA, …) who would be well positioned to conduct courses in Deep 
Learning/Machine Learning with associated connections to workshops and “hackathons” for enabling 
timely assimilation of new concepts and methodologies in AI-enabled discovery science.  The 
institutes should also be encouraged to engage and establish attractive connections to leading 
industries – such as Microsoft, Nvidia, Intel, Google-Brain, & Facebook -- to help inject an exciting 
level of practical connections to accelerated deployment of modern technology.  
 
It is important to create a sense of excitement that requires identifying scientific applications that 
motivate/energize creation of such a new NSF Smart Cyberinfrastructure.  For example -- CNN’s 
“MOONSHOTS for 21st CENTURY” (Hosted by Fareed Zakaria) – has identified 6 grand challenge 
areas that are easily understandable to the general public to be hisworthy enterprises to be targeted.  
Fusion Energy is a compelling exemplar in this set, and an associated inspirational endorsement from 
Stephen Hawking came from his BBC Interview, 18 Nov. 2016, where he commented:  “I would like 
nuclear fusion to become a practical power source. It would provide an inexhaustible supply of 
energy, without pollution or global warming.” 
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At this point, we will now focus for the rest of this White Paper on using Fusion Energy as an 
exemplar for illustrating associated needs and requirements associated with “Smart 
Cyberinfrastructure.”  Here the major grand challenge involves the demonstration of the scientific and 
technological feasibility of delivering fusion power in the multinational ITER project – with the highest 
priority being to accurately predict & control disruptions for the $25B burning plasma ITER experiment 
that has the goal of exceeding “break-even” (or “power in = power out”) by a factor of 10 to 20. 
 
What can AI-enabled advanced cyberinfrastructure deliver today in this Exemplar area? 
 
Artificial Intelligence/Deep Learning brings new technology to accelerate progress 
"Predicting Disruptive Instabilities in Controlled Fusion Plasmas through Deep Learning” 
NATURE:  April, 2019 :  Princeton’s Fusion Recurrent Neural Network code (FRNN) uses 
convolutional & recurrent neural network components to integrate both spatial and temporal 
information for predicting disruptions in tokamak plasmas with unprecedented accuracy and speed on 
top supercomputers worldwide. 
 
Things we can do in  FES with AI now & on near term horizon in this Exemplar area include: 
i) Learn predictive models from data without relying upon analytic theory or deep mechanistic  
understanding:  Example: predicting dangerous disruptive events in tokamaks using AI/Deep 
Learning on huge measured data base enabled by training on leadership class supercomputers 
achieving unprecedented accuracy and speed. 
ii) Initiate moving from prediction to active real-time plasma control: 
Example: Introduce a “software integration wrapper” enabling conversion of deep learning predictors 
written in modern Python/Keras language into conventional plasma control systems written in the 
older C language. 
iii) Develop new software to help explain reasons for deep learning predictive accuracy: 
Example: Introduce capability to output not only the “disruption score” for the probability of a 
disruption event but also a “sensitivity score” in real-time to indicate the underlying physics reasons 
for the Imminent disruption. è physics-based interpretability + targeted guidance for control 
actuators upon Implementation into a modern plasma control system (PCS). 
Iv) Carry out convergence studies of HPC advances with DL/AI predictive workflow: 
 Example:  First obtain realistic pre-disruption classifiers (e.g. for experimentally-observed 
“neoclassical tearing modes) from “reduced models” derived from 1st-principles-based 
electromagnetic PIC simulation results carried out on the SUMMIT supercomputer using exascale 
class GTC code – and then insert into the AI/DL workflow. 
 
 
What can AI-enabled advanced cyberinfrastructure deliver within 5 years in this Exemplar area?. 
  
• Successful Development of: 
i) Efficient & realistic control strategies based on advanced AI/DL predictors emerge for  
optimization of performance and avoidance of disruptions in initial operations of ITER; 
ii) Continuous vetting of stable, scalable, portable control systems and associated methodology  
on existing tokamaks (e.g., DIII-D, JET, KSTAR, … leading to the large superconducting JT60-SA 
tokamak in Japan and finally to ITER)  
Cross-disciplinary Exploration: 
iii) Novel real-time control methods learned from expertise residing in application areas such as  
robotics and self-driving cars;  
 à Enables leveraging  vast experience from well established institutions, including (e.g., 
Alan Turing Institute in UK); active industrial engagement, such as Microsoft, NVIDIA, INTEL,  
GOOGLE, FACEBOOK, …..) 
• Automation & Acceleration of Discovery Science: 
• Systematically moving from (i) New Planning, to Creative Conjecture, to (ii) Further  
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Experimentation, to (iii) Confirmation/Validation and Integration of New Analysis  
è Vision of “End-to-End” automated harvesting of real-time scientific insights from operating  
modern experimental facilities  
 
What can AI-enabled advanced cyberinfrastructure deliver after 10 years in this Exemplar area? 
 
• Realistic real-time models to reduce actual numbers of necessary experiments as the 
experiments incorporate “lessons learned” from such AI-enabled higher physics fidelity models  
• AI becomes common part of scientific laboratory activities. 
• AI infuses new scientific, engineering, and operations methodologies into FES 
è Development of “Virtual Experiments” emerging from validation vs. large trustworthy  
data bases with associated sensitivity testing to provide an essential filter against "over-hyped” claims 
• Improved theoretical formulations from integration of new AI/DL-enabled statistically-validated 
insights to long-standing plasma physics/FES  theories remove/reduce problematic/uncertainty areas  
• Validated theory becomes data source for next-generation AI in FES, so that AI begins to contribute 
to advancing fundamental Plasma Physics/FES theory 
•  AI-enabled in-depth pursuit of creative FES physics scenarios – e.g., advanced materials, such as, 
 high-temperature superconducting large magnetic field to enable modularity and compactness. 
 
 
Concluding Comments/Observations on Impact of AI-enabled Advanced Cyberinfrastructure: 
 
• The rapid growth of AI/DL/AI in prominent application domains are likely to mirror the revolutionary 
trends seen in the business world today – e.g., the re-formation of Amazon and other top businesses 
that have incorporated AI/DL/ML 
https://www.wired.com/story/amazon-artificial-intelligence-flywheel/ 
 
• Cross-disciplinary engagement can yield accelerated mutually beneficial results (e.g., Cancer & 
Clean Energy Fusion R&D) 
 

n Cancer Research à Reference:  “Candle Project” with ECP Exascale Computing Project 
(DOE & NIH) to identify optimal cancer treatment strategies, by building a scalable deep 
neural network code called the CANcer Distributed Learning Environment (CANDLE).  

à development of predictive models for drug response, and automation of the analysis of 
information from millions of cancer patient records -- via developing, implementing, & testing 
DL/AI Algorithms and their benchmarks – such as hyperparameter tuning and  
associated complex workflows  
 

à development of predictive models (as just illustrated) in Clean Fusion Energy R&D have  
followed similar AI/DL approaches 

 
 
èDL/AI advances in very different key application Grand Challenge areas like Clean Energy Fusion 
and Cancer Research can stimulate enhanced cross-disciplinary efforts to leverage connections to 
enormous worldwide investments in AI/DL/ML R&D ! 

 
 
 
 
 




