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ABSTRACT
Background Computational biomedical simulations frequently contain parameters that model
physical features, material coefficients, and physiological effects, whose values are typically
assumed known a priori. Understanding the effect of variability in those assumed values is
currently a topic of great interest. A general-purpose software tool that quantifies how variation
in these parameters affects model outputs is not broadly available in biomedicine. For this reason,
we developed the ‘UncertainSCI’ uncertainty quantification software suite to facilitate analysis
of uncertainty due to parametric variability.
Methods We developed and distributed a new open-source Python-based software tool, Un-
certainSCI, which employs advanced parameter sampling techniques to build polynomial chaos
(PC) emulators that can be used to predict model outputs for general parameter values. Un-
certainty of model outputs is studied by modeling parameters as random variables, and model
output statistics and sensitivities are then easily computed from the emulator. Our approaches
utilize modern, near-optimal techniques for sampling and PC construction based on weighted
Fekete points constructed by subsampling from a suitably randomized candidate set.
Results Concentrating on two test cases—modeling bioelectric potentials in the heart and elec-
tric stimulation in the brain—we illustrate the use of UncertainSCI to estimate variability, statis-
tics, and sensitivities associated with multiple parameters in these models.
Conclusions UncertainSCI is a powerful yet lightweight tool enabling sophisticated probing
of parametric variability and uncertainty in biomedical simulations. Its non-intrusive pipeline
allows users to leverage existing software libraries and suites to accurately ascertain parametric
uncertainty in a variety of applications.

ords: Biomedical simulations, uncertainty quantification, open-source software

ntroduction
omputer simulations have become an invaluable tool for investigating and predicting biological function in biomedicine,
are useful in designing and assessing treatments. Typical computer simulations or forward models in biomedicine
ain numerous parameters, possibly hand-tuned or optimized by comparing to experimental data, that influence the
ome of the simulation. For example, the width and conductivity of the cerebrospinal fluid layer surrounding the
have direct impact on the predicted electric fields in simulations of neuromodulation [20, 21]. It is rare that these

meters have well-established, fixed values, especially because such parameters typically vary among individuals
patient cohort, and within individuals over time. The possible parameter variations, therefore, limit the predictive
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UncertainSCI: Uncertainty Quantification Software

er and efficacy of forward models only tuned with nominal values, resulting in the need for quantification of the
t on model outputs of parameter variability for increased model understanding and impact.
n the field of uncertainty quantification (UQ), techniques for “forward” propagation of uncertainty provide quanti-
e evaluations of the effects of parametric variability on forward models. (The field of UQ is quite broad, including
astic inverse and inference problems, decision theory, design and optimization, and model selection, but the fo-
in this article is on forward UQ.) In our particular setting of parametric UQ, input parameters to a simulation
odeled as random variables endowed with a probability distribution that reflects previous experience about the
tion of the parameter. The randomness due to these parameters is pushed forward to a model output, which itself
mes random. The resulting probability distribution of the output becomes the target of interest, and computational
niques in UQ can be used to approximate statistics of this output distribution. In this way, means and standard
ations can be computed, in addition to more sophisticated descriptors such as quantiles, sensitivities, and higher-
r statistics such as skewness and kurtosis. In particular, see Table 2 for more precise descriptions of some of these
putable statistics.
on-intrusive UQ strategies are preferred in practice since they require little or no changes to existing simulation
lines, and instead utilize several evaluations of a forward simulation to characterize the distribution of the model
ut. The most direct approach is a simple Monte Carlo (MC) method [27, 6, 49]. However, MC approaches have
ations that more sophisticated UQ can address. In particular, when dependence on parameters is smooth (which
equently the case in biomedical simulations), non-intrusive polynomial chaos (PC) techniques can provide very
rate estimates for model output statistics with orders-of-magnitude fewer forward model evaluations compared to
C approach. For this reason, PC approaches are promising techniques for the biomedical community. Of particular
rtance is the development of open-source software, which makes UQ capabilities accessible to a diverse range of
tists, and enables extension and modification by technically savvy users.
owever, general-purpose and open-source tools using modern UQ techniques are lacking in some respects. Ex-

g UQ toolboxes [30, 44, 14, 36, 26, 1, 33, 12, 11, 32, 40, 39, 41] do not leverage recent advances in data science
ptimally building UQ emulators, and are not closely integrated with existing biomedical software.
ne particular existing opportunity for community benefit is through the exercise of near-optimal least squares
oximation methods that employ randomized subsampling techniques. Such procedures are typically called lever-
score sketching for large least squares problems in the numerical linear algebra and theoretical computer science
munities [24, 48], and optimal or induced sampling in the approximation theory community [10, 25]. The imple-
tation of such procedures in an open-source software package is one achievement of work in this manuscript.
e have developed a Python-based software suite, UncertainSCI [30], which utilizes modern PC techniques to

mplish common forward-model UQ tasks in biomedical settings. UncertainSCI non-intrusively interfaces with
ing software that evaluates a forward model, repeatedly queries this forward model over a parameter ensemble, and
esses this gathered data to produce a parameter-to-model-output emulator. This computationally efficient emulator
ubsequently be used to replace the (typically expensive) forward model, or can be leveraged within UncertainSCI
mpute statistics (means, moments, sensitivities, quantiles) of the probability distribution of the model output.
ertainSCI allows the parameter random variables to be endowed with various types of distributions. While the
ious qualities are shared by many existing UQ toolboxes, the unique technology employed by UncertainSCI in-
es recent advances in high-dimensional approximation that ensures the construction of near-optimal emulators for
ral polynomial spaces in evaluating uncertainty. We demonstrate UncertainSCI’s ability to closely integrate with
ing biomedical software and produce meaningful forward UQ analysis results through two cardiac applications
two neural applications. We show that statistics and sensitivities can be easily computed and provide informative
ations of uncertainty. By releasing UncertainSCI as an open-source package we are leveraging both the software
neering advantages of open-source code (e.g., the need for proper documentation and interpretable code), as well
gineering application advantages of customizable prototypes (e.g., the ability to easily add new features or modify
ing ones to meet a user’s specific needs.)
Comparison to alternative UQ software
ncertainSCI is not the only toolbox for non-intrusively investigating uncertainty in forward models. Numerous
r toolboxes accomplish similar goals. Table 1 summarizes capabilities of several other software toolboxes for for-
UQ using PC methods, and showcases some advantages of UncertainSCI in the context of those other toolboxes.
e 1 is not meant as a comprehensive comparison, and should be used mainly to highlight the strengths of Uncer-
CI in terms of weighted-maximum, volume-based sampling and mean best-approximation guarantees, which are
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UncertainSCI: Uncertainty Quantification Software

e 1
are capabilities for PC-based forward uncertainty quantification. The features below are chosen to highlight the
gths of UncertainSCI. Many software packages have significant capabilities that UncertainSCI does not, e.g., methods
ependent random variables, inverse and inference problems, Gaussian process models, sparse grids, etc. For a more
se meaning of “Flexible polynomial spaces”, see section 2.3. For “Weighted max volume sampling”, see section 2.4.2.
Mean best-approximation guarantees”, see section 2.4.1.
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[30] [44] [14] [36] [26] [18] [1] [33] [12, 11] [32] [40, 39, 41]

-source 7 7 7 7 7 7 7 7 7 7 7

/second-order statistics 7 7 7 7 7 7 7 7 7 7 7

tivity analysis 7 7 7 7 7 7 7 7 7 7

ans, quantiles 7 7 7 7 7 7 7 7 7

ral scalar distributions 7 7 7 7 7 7 7 7

ble polynomial spaces 7 7 7 7 7 7 7 7

or-product sampling 7 7 7 7 7 7 7 7 7

hted max-volume sampling 7

best-approximation guarantees 7

bilities that do not exist in alternative toolboxes.
ike all software packages, UncertainSCI is not comprehensive. Some forward UQ capabilities not present in
ertainSCI that are available in some other software packages are sparse grid approximations and low discrepancy
si-Monte Carlo) sequences. UncertainSCI does not currently address inverse problems in UQ, which are prob-
of substantial modern interest. In contrast, some of the software packages in Table 1 do have capabilities for

rse problems. However, UncertainSCI provides the feature of best approximation guarantees that is unique among
petitors.

ethods
orward models in biomedical applications often involve aleatoric parametric uncertainty, i.e., that which is char-
ized typically by d parameters p ∈ Rd with an a priori known probability distribution �. The forward model is
rameter-to-output map u that takes as input a parameter value p, and returns a model output u(p), which typically
ists of field values in a potentially high-dimensional spaceRq . Realistic examples of both the parametric encoding
d the map u are as follows:
Shape variability appears in electrocardiographic imaging (ECGI), which entails estimating cardiac potentials u
from measured body surface potentials [43]. With an appropriate parametric model for shape variability, which
is due to the imaging and segmentation pipeline, values of p specify cardiac geometry. The output size q is the
number of discrete points on the cardiac surface.
Uncertainty in parameter values that govern physiological processes is present whenever patient-specific mea-
surements of such processes are effectively impossible. Forward simulations of transcranial current stimulation
seek to predict the electric field u in a target area in the brain due to a transcranially applied electric current [34].
The prediction of the field is parameterized by p, and embeds uncertainty due to conductivities of tissues such
as cerebrospinal fluid. Here, q is the number of discrete points in the target area.

n summary, deterministic simulations of u at fixed nominal values of p fail to capture variations due to uncertainty
, and, even if the nominal value accurately captures the average values of the parameters, they may not represent
n output behavior (the mean of the output need not be the output at the mean).
e describe in what follows themethodology that UncertainSCI uses to quantify forward uncertainty, non-intrusive

nomial chaos. Many characteristics of this approach are standard in forward UQ pipelines, and we refer to more
Narayan et al.: Preprint submitted to Elsevier Page 3 of 15
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UncertainSCI: Uncertainty Quantification Software

prehensive references for a detailed discussion of the approach [49, 37, 42]. We focus below on technical capabil-
in UncertainSCI that are notable and novel.
Input distribution for p
he d-dimensional random vector p is assumed to have independent components, i.e., the joint probability density
s the product form,

w(p) =
d∏
j=1

wj(pj), p = (p1,… , pd), (1)

each wj a one-dimensional probability density. UncertainSCI currently assumes this componentwise indepen-
e amongst the parameters, and for eachwj allows various families of parametric distributions (e.g., Normal, Beta,
nential, etc.) and nonparametric distributions (e.g., empirical distributions). One exception to the independence
mption is that correlated Normal distributions are allowed via a whitening transform.
he more general case when p has dependent components is becoming of practical interest and some of the al-
tive toolboxes discussed in Table 1 allow numerical treatment of dependent variables. However, a numerically
able and principled approach for general dependent parameter cases is currently lacking, and is the subject of
e research [19].
PC approaches
o capture and quantitatively compute metrics characterizing this uncertainty, UncertainSCI utilizes polynomial
s (PC) methods. PC methods build an emulator uN to u of the form,

u(p) ≈ uN (p) =
N∑
n=1

ûn�n(p), uN ∈ PN ∶= spann=1,…,N{�n}, (2)

re ûn are u-valued coefficients that must be computed from data, and {�n(p)} are d-variate polynomials in p. The
nomial functions �n are fixed, and are typically chosen as orthogonal polynomials with respect to the density w.
ive more details in section 2.3. Once uN is constructed, then evaluation and manipulation of uN in (2) is very
putationally efficient, and can easily yield output statistics or quantities of interest; see section 2.5 for a more
iled discussion of the outputs of UncertainSCI.
ncertainSCI requires as input model responses u(pm) over a particular ensemble {pm}Mm=1 and uses this to compute
oefficients ûn. This step typically forms the bulk of the computational time for UQ analysis, as collecting the model
can require M ≫ 1 solutions from a computationally intensive model u. We describe in the coming sections
the �n functions are chosen, how the model response data is collected, and how the resulting coefficients ûn areputed.
Setting the polynomials �nncertainSCI uses orthogonal polynomials as the basis functions �n, which is a common choice in PC approaches.
rticular, we fix variable j = 1,… , d, and let  (j)k (pj) be the degree-k polynomial in pj that is orthonormal under
arginal density wj of pj in (1):

deg (j)k = k, E

[
 (j)k (pj) 

(j)
l (pj)

]
= ∫

R

 (j)k (qj) 
(j)
l (qj)wj(qj)dqj = �k,l , (3)

,l = 0, 1,… and where �k,j is the Kronecker delta. When wj is a “standard” distribution, then the  (j)k are (nor-
zed) versions of classical orthogonal polynomials: Legendre polynomials if wj is uniform, Hermite polynomials
j is a Gaussian density, etc. [50].he basis functions used in UncertainSCI are products of these single-variable orthogonal polynomials. Let � =
… , �d) ∈ Nd

0 (N0 = {0, 1,… , }) be a d-dimensional multi-index, i.e., a point on the non-negative integer lattice
dimensions. Then a “degree”-� polynomial can be defined as,

 �(p) ∶=
d∏
j=1

 (j)�j (pj), (4)

Narayan et al.: Preprint submitted to Elsevier Page 4 of 15
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UncertainSCI: Uncertainty Quantification Software

we have that the polynomials { �}� are orthonormal with respect to the joint density w of p.
he polynomial functions �n in (2) are an(y) enumeration of the polynomials  � for � belonging to a size-N set
ulti-indices J . Thus,
{�n(p)}Nn=1 = { �(p)}�∈J . PN = span

{
 �

||| � ∈ J
}

(5)

ore detail, a multi-index set J is introduced, which is a size-N subset of the non-negative integer lattice Nd
0 . InertainSCI, this set J in general can be defined as a v-anisotropic ball of lp-radius k, that is,

J = J (v, p, k) =
{
� ∈ Nd

0
||| ‖�‖v,p ≤ k

}
, ‖�‖pv,p ∶=

d∑
j=1

|||||
�j
vj

|||||

p

, (6)

re v is a given d-dimensional vector (with vj ≠ 0 for all j), 0 < p < ∞, and k ≥ 0. The vector v controls anistropy,
oting importance of certain variables over others. The parameter p controls the number of interaction terms be-
n parameters: a large p yields many interaction terms. The parameter k is the “order” of the approximation, and
esponds to polynomial degree with p = 1 (and for this reason k is typically chosen as an integer). Larger k yields
er degree polynomial terms, which more accurately capture higher-order moments of the model response. Uncer-
CI allows slightly more general values of these parameters, for example p = 0,∞ with appropriate definitions of
0 and ‖ ⋅ ‖∞ in these cases.
s common examples, the values p = 1 and v = (1, 1,… , 1) corresponds to a set of multi-indices corresponding
lynomials up to degree-k in d variables. With the same v but p = ∞, then J corresponds to a tensor product
e of degree-k polynomials, containing polynomials up to degree k in any single variable.
ncertainSCI also allows more general definitions of J than in (6). In particular, anisotropic hyperbolic cross sets
llowed, and adaptively-built monotone lower index sets are supported as well.
Weighted least squares
ncertainSCI uses least-squares-based training to compute the coefficients ûn. With u(pm), m = 1,… ,M , data
cted from the forward model over the parameter ensemble {pm}Mm=1, we compute the coefficients via a standard
hted least-squares formulation,

min
û1,…,ûN

M∑
m=1

w2m ‖‖uN (pm) − u(pm)‖‖22 , (7)

re the weightswm are frequently used to promote unbiasedness when the parameter ensemble {pm}Mm=1 is generatedomly. UncertainSCI has two options for computing the candidate set and the weights, which set it apart from
peting toolboxes in Table 1:
Random sampling from a distribution biased with respect to the density w of p.
Weighted D-optimal design computed via optimization, where an initial condition for the optimization is the
previous random sampling.

first approach is conceptually straightforward: one computes the ensemble (wm,pm)Mm=1 with which to solve (7),
tructing the pm as independent and identically distributed (iid) samples. The feature that makes UncertainSCI
ue is that a mean quasi-optimal error is achievable by the emulator uN by sampling pm via a special density
inct from w). The second approach identifies the pm as the solution to a D-optimal optimization problem that
otes stability of the least-squares problem (7) that determines the emulator uN . One loses rigorous mathematical
ergence statements with this approach, but our experiments (and existing investigations in the literature) suggest
this procedure is in practice more effective than random sampling.
owever, one strength common to both of these approaches is their flexibility with respect to the polynomial space
efined by the multi-index choice J . For example, the guarantees in section 2.4.1 hold for any choice of J . Such
antees do not hold for the sampling alternatives in table 1, e.g.,Monte Carlo, quasi-Monte Carlo, or sparse grids.

Narayan et al.: Preprint submitted to Elsevier Page 5 of 15
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UncertainSCI: Uncertainty Quantification Software

. Random sampling
ere we discuss the random sampling method described in the previous paragraph, and codify the “mean best-
oximation guarantees” claimed in Table 1. Our goal is to quantify the error of the computed emulator uN relative
e best mean-square approximation u∗N ,
u∗N = argmin

v∈PN
‖u − v‖L2w (8)

articular interest is the availability of a near-optimal approximation certificate when constructing the emulator uN ,
the identification of an � > 0 that connects the error committed by the optimization (7) to that of the optimal (best
ible) emulator u∗N :
‖‖u − uN‖‖2L2w ≤ (1 + �) ‖‖‖u − u∗N‖‖‖

2

L2w
. (9)

nt advances in leverage-score sampling methods from statistics and in optimal approximations from mathematics
te a random sampling strategy that is parsimonious and simultaneously results in such a near-optimality certificate.
isely, we define the distribution �N that is induced by the subspace PN as,
d�N (p) = sup

v∈PN∖{0}

v2(p)
‖v‖2

L2w

d�(p). (10)

induced distribution yields an optimality certificate � in the following sense: Given some 0 < � < 1 and 0 < � < 1,
samples p̃m be randomly drawn with weights wm, all chosen to obey
p̃m ∼ �N , wm =

d�
d�N

(p̃m), M̃ ≥ 3 log(4N∕�)
�2

N, (11)

an construct uN from these M̃ samples via a weighted least squares procedure (7). It turns out this is sufficient
ove rather strong guarantees on the emulator uN . To state this result, first note that the emulator can be truncated
twise as follows: Define � > 0 as the maximum value of u, and define a corresponding truncated emulator:
� ∶= max

p
|u(p)|, uN,� (p) ∶=

{
uN (p), if |uN (p)| ≤ �

�sign(uN (p)), if |uN (p)| > � (12)
, on average, uN,� achieves an error bound similar to (9):
E‖u − uN,�‖2L2w ≤ (1 + �)‖u − u∗N‖2L2w + 2�2� (13)

ve, the expectation is with respect to the randomness in the sampling of p̃m. The above result is an adaptation of
eminal estimates in [10], but similar results appear in related forms elsewhere [13, 24, 29]. We emphasize the
nt points of this bound: first, (13) holds in expectation, and not for any particular construction of uN ; hence it is a
n best-approximation guarantee. Second, (11) requires only log-linear sampling for M̃ with respect to N , which
ose to the optimal M̃ = N . Finally, the truncation parameter � should be thought of as a very large value, whose
ct in (13) is offset by taking smaller �.
ote that UncertainSCI does not require � as input, instead returning the (untruncated) emulator uN from (7). The

uncated emulator uN satisfies a similar bound as in (13) without the � term, but only with high probability (more
isely, with probability at least 1 − �).
f course, to achieve the bound above, one must sample p̃m from �N defined in (10). For general PN , this measure

be fairly complicated [17], and so using somewhat classical sampling approaches such as rejection sampling can
r a computational burden that scales exponentially with the number of parameters d. However, if the components
e random parameter p are independent, as is assumed in UncertainSCI, then sampling p̃m from the distribution
an be efficiently accomplished with complexity linear in d [28, 25].
he strength of this strictly random approach is the guarantee (13). However, note that the number of samples M̃
ired in (11) can still be quite large relative to N1 and so while UncertainSCI supports the procedure above, the
ult method used is a more parsimonious optimization-based sampling. This optimization procedure empirically
s quite well with many fewer samples, but loses rigorous mathematical guarantees.
For example, taking � = 1∕2, � = 10−2, andN = 100, then (11) requiresM ≳ 127N .

Narayan et al.: Preprint submitted to Elsevier Page 6 of 15
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UncertainSCI: Uncertainty Quantification Software

. Weighted D-optimal sampling
o simultaneously reduce the number of required samplesM and stabilize variability due to random sampling, we
loy a particular type of weighted D-optimal design, which we formulate as an optimization problem. Precisely, we
e the method of weighted approximate Fekete points [4, 16], which approximately solves a weighted maximum
me optimization problem,

argmax
p1,…,pM⊂{p̃m}M̃m=1

(det(ATA))
M∏
m=1

d�
d�N

(pm), (14)

here A is the standardM ×N design matrix, (A)m,n = �n(pm). The optimal solution to such a weighted maxvol
lem is known to have attractive stability properties. For example, one can show that the maximum possible value
e objective in (14) is unity, and if a design p1,… ,pM is computed that achieves this maximum, then the least
res problem (7) has unity condition number, and hence is optimally stable [16]. However, in practice, achieving
objective in (14) is rare. Nevertheless, it has been observed even in this case that sampling generated according
4) is rather effective. [16, 5]
omputing an exact solution to (14) is a rather difficult (e.g., non-convex) optimization problem. However, an
oximate solution is easily computed through a greedy procedure, which starts from a large discrete candidate set
prunes down this set via linear algebraic routines. This approximate solution procedure comes with provable
ptotic guarantees [4], and is the implementation in UncertainSCI. The candidate set we use is a set M̃ > M of
les that are iid generated as in (11).
nce the pm are computed as (approximate) solutions to (14), the final emulator uN that UncertainSCI builds is
east-squares solution (7), with wm set as in (11). Using this approach, M samples are generated that are quasi-
om: The candidate set of M̃ points generated through (11) is random, but the computational solution to (14) is
rministically generated from the candidate set.
he strength of this second approach is that empirically one achieves very good results even with a modestM ≈
10 samples [16, 5]. However, rigorous guarantees similar to (13) are not available.
. Investigating accuracy of uNecause the weighted maximum volume sampling method from the previous section loses strict mathematical
r, it is important to be able to ascertain accuracy of the constructed emulator uN . UncertainSCI computes and
es available two empirical metrics for inspection that can be used to evaluate accuracy. The first is simply the
ual from the least squares problem (7)

R2 =
M∑
m=1

w2m‖u(pm) − uN (pm)‖22. (15)

quantity can be used to evaluate how well the choice of polynomial space PN accurately captures variation in the
el response u. Larger values of R suggest that PN should include more polynomial terms.
he second empirical metric is a leave-one-out cross validation metric, computed as an m-averaged discrepancy
een uN and uN,m, where the latter is the least squares solution (7) formed by excluding sample u(pm):

CV = 1
M

M∑
m=1

‖‖uN − uN,m‖‖L2w , uN,m ∶= argmin
v∈PN

M∑
j=1
j≠m

w2j
‖‖‖uN (pj) − u(pj)

‖‖‖
2

2
. (16)

CV quantity measures sensitivity of the emulator uN to the data. Larger values of CV suggest that more samples
ld be collected to promote accuracy of the emulator.
Postprocessing the UQ emulator
nce the emulator uN is built, computing statistics of the model output is accomplished with relatively simple

ipulation of the emulator coefficients ûn. For example, ifE is the mathematical expectation under the randomness
to p, then the mean of u can be approximated by,

E u(p) ≈ E uN (p) =
N∑
n=1

ûn(E�n(p)), (17)

Narayan et al.: Preprint submitted to Elsevier Page 7 of 15
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e 2
istics computable by UncertainSCI via manipulation of a scalar-valued UQ emulator uN . For the global sensitivity,
summation is taken over all nonempty strict subsets  of . For vector-valued models, UncertainSCI computes
onentwise statistics.

an EuN (p)
riance Var(uN ) E(uN (p) −EuN (p))2

dian Value m such that P (uN ≤ m) ≥ 1
2
and P (uN ≥ m) ≥ 1

2
antiles Given � ∈ (0, 1), value q such that P (uN ≥ q) ≥ 1 − � and P (uN ≤ q) ≥ �
tal sensitivity ST , Given  ⊂ {1,… , d}, the ratio V ()∕Var(uN )
obal sensitivity SG, Given  ⊂ {1,… , d}, the ratio

V ()−∑∅≠⊂ V ( )
Var(uN )

cal sensitivity Given a fixed parameter value p̃, ∇uN (p̃).

reE�n(p) are constants that are explicitly computable (e.g., in the common case where �1(p) ≡ 1, thenE�1 = 1,the remaining expectations are 0). Such simple manipulations allow for quick computations of output statistics
uding higher-order moments). Of notable utility are sensitivity indices [38], which, when p has independent com-
nts, measure the relative contribution of various parameters or parameter combinations to the overall variability
e emulator. To describe these indices, we define the variance associated to parameter index set  as,
V () ∶= Var (E (

u|p
))
,  ⊂ {1,… , d}, (18)

re the conditional expectationE (
u|p

) is a random variable, and where p denotes the size-|| vector of random
bles associated with index set . Sensitivity indices are computed as ratios of V () to the overall variance, cf.
e 2. Several other types of statistics are computable in UncertainSCI, also included in Table 2.

esults
e demonstrate the utility of UncertainSCI in characterizing and exploring uncertainty for biomedical applications
gh two cardiac and two neural bioelectric simulation applications. UncertainSCI is open-source and publicly
ed [30]. The size of the raw data for the following experiments makes dissemination of reproducible scripts
lenging, but upon request we can provide data and code associated with the figures in this manuscript.
n all our simulation, we use the weighted maximum volume sampling as described in section 2.4.2, with M =
10. The polynomial space is chosen as the isotropic total degree space J (v, 1, k) with v = (1, 1,… , 1) and k as
ribed in each section.
Cardiac application 1: Passive bidomain model
he passive bidomain describes a conceptual and numerical approach to a forward problem from cardiac cellular
membrane potentials to extracellular potentials during the plateau phase of the cardiac action potential [7, 47]. We
me that during the plateau there exists a difference in the transmembrane potential between healthy and ischemic
e of -40 mV, spread over a narrow transition region. We compute the extracellular potentials Φe by solving the
main equation (19) in a passive, quasi-static sense:
∇ ⋅ (�i∇Φm) = −∇ ⋅ (�ℎ∇Φe), (19)

re the transmembrane potentialsΦm, intracellular (�i), and tissue (�ℎ) conductivity tensors are defined throughoutyocardium. The conductivity tensor (�) is described in terms of longitudinal �L and transverse �T components
oth intracellular and interstitial domains.
able 3 contains typical conductivity values used in contemporary models; however, these values are unknown
alistic settings. We will therefore model these conductivity values as random parameters and use UncertainSCI
timate the resulting uncertainty in the extracellular potentials. Equation (19) is then discretized via finite ele-
ts, resulting in a simulation that maps transmembrane potentials, via random conductivity values, to extracellular
ntials on the heart surface.
Narayan et al.: Preprint submitted to Elsevier Page 8 of 15
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e 3
uctivity ratios relative to the base conductivity value (0.16 S/cm2) for each tissue label. Subscripts on � indicate the
e domain (i/e = intracellular/extracellular) and the direction of conductivity (L/T = longitudinal/transverse). The
cript ‘B’ represents the blood pool, where conductivity does not have a direction. For example, �eL is conductivity
in the extracellular domain in the longitudinal direction with respect to the base value, and �iB is the intracellular
d pool conductivity ratio with respect to the same base value.

Conductivity parameter Healthy Tissue Ischemic Tissue

Intracellular longitudinal �iL 1.0 0.1

Intracellular transverse �iT 0.1 0.001

Intracellular blood pool �iB 0.0 0.0

Extracellular longitudinal �eL 1.0 0.5

Extracellular transverse �eT 0.333 0.25

Extracellular blood pool �eB 3.0 3.0

e quantified forward parametric uncertainty in this passive bidomain model using UncertainSCI. We examined
ffects of varying the conductivity parameters �iL, �iT , �eL, and �eT within a known myocardial region in which
was acute myocardial ischemia. We varied these values uniformly with a range of ±20% of the values listed in
e 3, assuming independence of the parameters. We used a space of polynomials up to degree k = 5 for the subspace
Figure 1 shows the results of this analysis, depicting various statistics and sensitivities. The UQ analysis indicates
ar dependence on longitudinal conductivities �iL and �eL compared to profound insensitivity to transverse values
�eT . We also noted that the standard deviation of estimated extracellular potentials was highest in the region of
est disagreement between the measurements and forward solutions.
Cardiac application 2: Rule-based myocardial fiber orientations
e implemented a finite element simulation of the spread of electrical activation in the ventricles of the heart

hich we varied the directions of the fibers that make up heart tissue. The mean directions of these fibers were
ned within each region in the heart by an angle, �, with respect to a ‘short axis’, i.e., a direction that crosses
idth of the heart. Baseline values of � represented the local average direction and could be assigned based on
ished rules [2, 15] to smoothly transition between -60◦ on the outer surface (epicardium), �epi, to +60◦ on the
r surface (endocardium), �endo of the ventricles [23].e used UncertainSCI to predict uncertainty in the spread of electrical activation through the heart associated with
bility in the fiber angles around the baseline values. Specifically, we modeled �epi and �endo as independent andrmly distributed from -35 to -85◦ and 35 to 85◦, respectively [23]. We used degree k = 5 for the polynomial
e PN and analyzed the spread of activation following a single stimulus from the epicardium of the left ventricular
wall. The CARPentry simulator was applied to calculate the spread of activation via a bi-Eikonal normalization
od [45, 31, 15].
igure 2A shows the epicardial projections of the activation sequence for baseline fiber orientations along with
ean and standard deviation from UncertainSCI. The baseline and mean activation sequences matched closely

e the overall standard deviation was only 10% as large and showed elevations near the anterior base and apex.
ertainSCI also provides (Figure 2B) separate standard deviations associated with the epicardial and endocardial
orientations (i.e., the variances V1 and V2 from (18)) as well as the combined global sensitivity map, i.e., S1,2.ations in the epicardial fiber orientation produced higher standard deviations (≤ 9) than did variations in the endo-
ial fiber orientation (≤ 2.7) with distinctly different spatial patterns. The combined global sensitivity was another
r of magnitude smaller, suggesting that the impacts of varying �endo and �epi are largely uncorrelated, showing
very small regions of significant variability (≤ 0.6) on the right ventricle.
Neural application 1: Transcranial direct current stimulation
ranscranial direct current stimulation (tDCS) sends weak currents through the brain via electrodes on the scalp
odulate brain function, known as neuromodulation. Effects range from improved memory function to faster re-
litation after stroke [22]. Finite element models can simulate the electric fields induced by tDCS to understand
improve experimental and clinical results. Such models represent the geometry of tissues in the head based on
Narayan et al.: Preprint submitted to Elsevier Page 9 of 15
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Figure 1: Cardiac bioelectric simulations with the passive bidomain model: UQ of simu-
lated zones of myocardial ischemia relative to measured potentials. A: Isosurfaces of 1)
the measured ischemic regions (black line shows cut plane for subsequent visualization,
with eye glyph pointing in direction of visualization), 2) measured extracellular potentials,
3) the mean forward solution, and 4) the standard deviation due to variation in the four
ischemic conductivity values. B: Sensitivity due to variation in 1) the extracellular lon-
gitudinal conductivity (�eL), 2) extracellular transverse conductivity (�eT ), 3) intracellular
longitudinal conductivity (�iL), and 4) intracellular transverse conductivity (�iT ). Results
adapted with permission from [3].

netic resonance images (MRI) and use tissue conductivities from the literature, but there is significant variation
in the literature for these conductivity values. We used UncertainSCI to quantify how this variability affects

S-induced electric fields.
e employed a finite element head model of a healthy volunteer (Fig. 3A), commonly used stimulation parameters
trodes over the motor cortices, 1 mA current), and standard numerical methods for solving the resulting equations
. We connected the SCIRun simulation software [8] to UncertainSCI to model variability due to all tissue conduc-
es, which were endowed with beta distributions with parameters � = � = 3 over predetermined intervals for each
meter. The conductivities we considered were scalp (0.28–0.87 S/m), skull (0.0016–0.33 S/m), cerebrospinal fluid
, 1.7696–1.8104 S/m), gray matter (0.22–0.67 S/m) and white matter (0.09–0.29 S/m) [46]. A polynomial order
was used for the space PN , and UncertainSCI utilized a parameter ensemble of size 1297, thus requiring 1297

rate SCIRun simulations.
ig. 3 presents results shown on coronal slices of the head model taken through the centers of the electrodes. The
n electric field strength (Fig. 3B) of all simulations is almost identical to a baseline simulation using the mean
l conductivity parameters (not shown). Standard deviations were high in areas where mean field strengths were
(Fig. 3B). Total sensitivity values in Fig. 3C indicate the relative contributions of each tissue conductivity to the
ard deviation in Fig. 3B. In the targeted brain area, the motor cortex, the electric field strength was primarily
ted by uncertainty in scalp and CSF conductivities. Overall, uncertainty in scalp conductivity had the largest
t.

Narayan et al.: Preprint submitted to Elsevier Page 10 of 15



Journal Pre-proof

3.4.
N

(ECo
plica
surg
and
mod
certa
elect

W
mon
loca
and
resu
� =
(0.09
rand

F
Fig.
direc
the l
relat

Akil
Jo
ur

na
l P

re
-p

ro
of

UncertainSCI: Uncertainty Quantification Software

Figure 2: A: Activation sequence for an epicardial stimulation location, showing 1) the
activation sequence for default fiber orientations, 2) the mean activation sequence, and 3)
the total standard deviation of the activation sequence. The top row of each pair contains
left-ventricular views and the bottom row contains right-ventricular views. B: Parameter
sensitivities for an epicardial stimulation location, showing the standard deviation contribu-
tions of the 1) epicardial and 2) endocardial fiber orientation, and 3) the global sensitivities
of the activation sequence due to both parameters. Views are the same as in panel A.
Results adapted with permission from [35].

Neural application 2: Direct electrocortical stimulation (DECS)
euromodulation can also occur by means of currents applied directly to the cortex through electrocorticography
G) grids implanted under the skull. ECoG grids can both stimulate and measure electrical activity. Clinical ap-
tions include brain-computer interfaces and mapping brain regions necessary for normal function before resection
ery. Applying simulation models of DECS to these scenarios can help investigators to understand experimental
clinical results and optimize stimulation to specific regions of interest. The major sources of uncertainty in these
els include tissue conductivities, electrode locations, and postoperative brain shift, all of which contribute to un-
inty in model predictions. Here we quantified the uncertainty of the simulated voltages due to conductivity and
rode location variability.
e created a detailed finite element model of the brain and CSF of an epilepsy patient undergoing preoperative

itoring. We simulated bipolar stimulation with 0.75 mA of current between a pair of neighboring ECoG electrodes
ted on motor cortex (see blue and red electrodes in Fig. 4A) with SCIRun using previously described methods [9],
calculated the resulting potential at each node in the brain. We used UncertainSCI to quantify the uncertainty
lting from variable tissue conductivities, where each conductivity was modeled with a beta distribution using
� = 3 over the following intervals: CSF (1.7696–1.8104 S/m), gray matter (0.22–0.67 S/m) and white matter
–0.29 S/m). We additionally modeled the variable locations of the stimulating electrodes as point sources by
omly selecting a node within a four-millimeter radius of the electrode centroid from a discrete uniform distribution.
ig. 4 shows a sagittal slice through the head model that includes the center of the bipolar stimulating electrodes.
4A shows themean and standard deviation of the voltage resulting from bipolar stimulation. Voltages were greatest
tly surrounding the stimulating electrodes and dropped offwith distance; areas around the electrodes also exhibited
argest standard deviations due to uncertainty. The total sensitivity values for each parameter (Fig. 4B) quantify the
ive contributions of uncertainty in tissue conductivities and electrode locations. From these results, we conclude

Narayan et al.: Preprint submitted to Elsevier Page 11 of 15
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Figure 3: Quantification of uncertainty in simulations of transcranial direct current stimu-
lation (tDCS). A: Head model with two electrodes through which current flow was simu-
lated. The vertical plane indicates where the model was cut for all subsequent figures. The
model includes skin (pink), skull (yellow), CSF (blue), gray matter (gray) and white matter
(white). B: Mean and standard deviation of electric field strength in 1297 simulations of
tDCS with all tissue conductivities modeled with uncertainty. C: Total sensitivity values
for each tissue conductivity indicate their relative contributions to the standard deviation.

variability in electrode locations contributed more uncertainty to the resulting voltages than did variability in CSF
uctivity.

onclusion
e have shown the utility of the Python-based software suite UncertainSCI in characterizing and exploring forward
rtainty in biomedical simulation pipelines. In particular we emphasize the following advantages of UncertainSCI:
The software package UncertainSCI is an open-source Python package that implements non-intrusive forward
UQ methods by building emulators.
UncertainSCI builds emulators through recent efficient implementations of randomized techniques that boast
near-optimal convergence guarantees [24, 48, 10, 25].
Emulators can be easily manipulated to yield statistics and sensitivities of model outputs, providing an informa-
tive summary of forward UQ in simulations.

e capabilities of UncertainSCI allow users to evaluate and compare the impacts of parameter variations in complex
gical models. In particular we have demonstrated UncertainSCI’s capabilities on four target applications:
uncertainty in cardiac extracellular potentials in a passive bidomain model due to variation in conductivity pa-
rameters;
impact of uncertainty in cardiac fiber orientation on electrical activation in ventricles of the heart;

Narayan et al.: Preprint submitted to Elsevier Page 12 of 15
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Figure 4: Quantification of uncertainty in tissue conductivities and electrode locations on
the voltage resulting from direct electrocortical stimulation. A: Sagittal slice through the
finite element model, which includes CSF (blue), gray matter (gray) and white matter
(white). The nodes used as possible locations for the cathode (blue) and anode (red) are
shown on the CSF surface. The mean voltage and standard deviation due to uncertainty
in tissue conductivities and electrode locations are shown on the same sagittal slice. B:
Total sensitivity values for each uncertain parameter indicate their relative contributions
to the standard deviation.

impact of tissue conductivity uncertainty in transcranical direct current stimulation;
uncertainty quantification for direct electrocortical stimulation varying tissue conductivity.
uture development of UncertainSCI will build in several new capabilities and methods to expand the types of UQ
lems that can be addressed, including features to handle dependent random variables, adaptive emulator construc-
inverse problems, and optimization-based design.
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Highlights

• UncertainSCI is novel software that implements support for uncertainty quantification 

• UncertainSCI is open-source python-based software that connects non-intrusively to any simulation software 
package 

• With four biomedical examples, we show usability, accuracy and efficiency of UncertainSCI 
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