
LARGE-SCALE DISTRIBUTED RUNTIME SYSTEM FOR

DAG-BASED COMPUTATIONAL FRAMEWORK

by

Qingyu Meng

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

August 2014



Copyright c© Qingyu Meng 2014

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l  
 
 
 

STATEMENT OF DISSERTATION APPROVAL 
 
 
 

The dissertation of Qingyu Meng 

has been approved by the following supervisory committee members: 

 

Martin Berzins , Chair 04-23-2014 
Date Approved

Mike Kirby , Member 04-23-2014 

 
Date Approved

Mary Hall , Member 04-23-2014 

 
Date Approved

Ganesh Gopalakrishnan , Member 04-23-2014 

 
Date Approved

James Sutherland , Member 04-23-2014 

 
Date Approved

 

and by Ross Whitaker , Chair/Dean of  

the Department/College/School of Computing 
 

and by David B. Kieda, Dean of The Graduate School. 
 
 



ABSTRACT

Recent trends in high performance computing present larger and more diverse

computers using multicore nodes possibly with accelerators and/or coprocessors

and reduced memory. These changes pose formidable challenges for applications

code to attain scalability. Software frameworks that execute machine-independent

applications code using a runtime system that shields users from architectural

complexities offer a portable solution for easy programming. The Uintah frame-

work, for example, solves a broad class of large-scale problems on structured

adaptive grids using fluid-flow solvers coupled with particle-based solids methods.

However, the original Uintah code had limited scalability as tasks were run in

a predefined order based solely on static analysis of the task graph and used

only message passing interface (MPI) for parallelism. By using a new hybrid

multithread and MPI runtime system, this research has made it possible for Uintah

to scale to 700K central processing unit (CPU) cores when solving challenging

fluid-structure interaction problems. Those problems often involve moving objects

with adaptive mesh refinement and thus with highly variable and unpredictable

work patterns. This research has also demonstrated an ability to run capability jobs

on the heterogeneous systems with Nvidia graphics processing unit (GPU) acceler-

ators or Intel Xeon Phi coprocessors. The new runtime system for Uintah executes

directed acyclic graphs of computational tasks with a scalable asynchronous and

dynamic runtime system for multicore CPUs and/or accelerators/coprocessors on

a node. Uintah’s clear separation between application and runtime code has led to

scalability increases without significant changes to application code. This research

concludes that the adaptive directed acyclic graph (DAG)-based approach pro-

vides a very powerful abstraction for solving challenging multiscale multiphysics

engineering problems. Excellent scalability with regard to the different processors



and communications performance are achieved on some of the largest and most

powerful computers available today.

iv



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 DAG-based Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. RELATED COMPUTATIONAL FRAMEWORKS . . . . . . . . . . . . . . . . . . . 10

3. UINTAH RUNTIME SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Distributed Task Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Detailed Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Task Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.5 Task Graph Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Data Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. DYNAMIC SCHEDULER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Original Static Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Dynamic Runtime System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Tasks Ready Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Variable Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Synchronization Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Improvement and Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Dynamic Scheduling Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Task Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Granularity Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



5. HYBRID SCHEDULER - MASTER/SLAVE MODEL . . . . . . . . . . . . . . . . 41
5.1 Uintah Global Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Ghost Cell Data in Uintah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Global Meta-data in Uintah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.3 A Model for Memory Saving in Uintah . . . . . . . . . . . . . . . . . . . . 44

5.2 Hybrid Runtime System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.1 Control Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Worker Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.3 Thread-safe Data Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.4 Task Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.5 Global Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Improvement and Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6. HYBRID SCHEDULER - DECENTRALIZED MODEL . . . . . . . . . . . . . . 55
6.1 Uintah’s Fluid-Structure Interaction Methodology . . . . . . . . . . . . . . . 57

6.1.1 The ICE Multimaterial CFD Approach . . . . . . . . . . . . . . . . . . . . . 58
6.1.2 The Material Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1.3 Uintah Fluid-Structure Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.4 Scaling Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Decentralized Hybrid Runtime System Design . . . . . . . . . . . . . . . . . . 65
6.3 Uintah Hybrid Parallelism Improvements . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Reducing Particle Relocation Costs . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.2 Load Balancing Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.3 Using Lock-free Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.1 Single Node Performance Improvement . . . . . . . . . . . . . . . . . . . 72
6.4.2 Overall Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7. UNIFIED SCHEDULER - GPU SUPPORT . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1 Radiation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 GPU Runtime System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Unified Runtime System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.1 Decentralized Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.2 GPU Data Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8. UNIFIED SCHEDULER - MIC SUPPORT . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1 Xeon Phi Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2 Native Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3 Offload Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.4 Symmetric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vi



9. PORTABILITY AND SCALABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.1 Target Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.1.1 Titan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.1.2 Stampede . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.1.3 Mira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2 Simulation Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.2.1 MPMICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.2.2 ARCHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.2.3 RMCRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.3 Scaling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3.1 Strong Scaling of MPMICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3.2 Weak Scaling of MPMICE and ARCHES . . . . . . . . . . . . . . . . . . . 115
9.3.3 Strong Scaling of RMCRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDIX: PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



LIST OF FIGURES

Figure Page

1.1 A Uintah Task Graph Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 A Uintah Patch Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Overview of Uintah Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Data Structure of Detailed Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Detecting External Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Task Graph Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Uintah Static MPI Task Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Uintah Dynamic MPI Task Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Region Versions of Foreign Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Dynamic Scheduling Speedup, Strong Scaling . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Dynamic Scheduling Speedup, Weak Scaling . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Granularity Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Uintah Hybrid Multithreaded MPI Scheduler . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Hybrid Scheduling Scalability Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Uintah AMR MPMICE Simulation Solution . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 AMR MPMICE Initial Scalability Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 MPM Particles and Task Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Thread and Shared Data Structures of Decentralized Hybrid Scheduler . . 66

6.5 Particle Relocation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6 Performance Comparison on Single Node . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.7 Improved AMR MPMICE Scalability Results . . . . . . . . . . . . . . . . . . . . . . . . 74

6.8 Weak Scaling Efficiency Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1 Outline of Reverse Monte Carlo Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Uintah Unified Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Uintah GPU Data Warehouse Implementation . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Uintah Scalability Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.5 RMCRT Scalability with CPU/GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



8.1 Xeon Phi Execution Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.2 Uintah Scalability on MIC Native Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3 MPI Error from a Floating Point Inconsistency . . . . . . . . . . . . . . . . . . . . . . 97

8.4 Uintah Scalability on MIC Symmetric Model . . . . . . . . . . . . . . . . . . . . . . . . 98

9.1 Communication Measurement of AMR MPMICE . . . . . . . . . . . . . . . . . . . . 105

9.2 Task Scheduling Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.3 Communication Measurement of ARCHES . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.4 RMCRT Mesh Coarsening Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.5 Communication Measurement of RMCRT . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.6 AMR MPMICE Strong Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.7 AMR MPMICE Weak Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.8 ARCHES with Hypre Weak Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.9 RMCRT Strong Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

ix



LIST OF TABLES

Table Page

2.1 AMR Framework Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Prioritization Algorithms Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 AMR ICE Relative Memory with Hybrid Approach Compared to MPI . . 53

5.2 AMR ICE Relative CPU Time with Hybrid Approach Compared to MPI . 53

6.1 Execution Time: Master-Slave vs Decentralized . . . . . . . . . . . . . . . . . . . . . 66

6.2 Shared Data Structure Locking Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Mixed MPI and Threads Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Execution Time: CPU-only Master-Slave vs Unified . . . . . . . . . . . . . . . . . . 87

7.2 Execution Time: CPU-GPU Master-Slave vs Unified . . . . . . . . . . . . . . . . . . 87

9.1 System Specifications: Titan, Stampede, and Mira . . . . . . . . . . . . . . . . . . . . 101



ACRONYMS

Two Dimensional (2D)

Three Dimensional (3D)

Adaptive Mesh Refinement (AMR)

Application Programming Interface (API)

Bounding Volume Hierarchy (BAH)

Computational Fluid Dynamics (CFD)

Compute Unified Device Architecture (CUDA)

Directed Acyclic Graph (DAG)

Data Warehouse (DW)

Graphics Processing Unit (GPU)

High Performance Computing (HPC)

Implicit Continuous-fluid Eulerian (ICE)

Many Integrated Core (MIC)

Message Passing Interface (MPI)

Material Point Method (MPM)

National Science Foundation (NSF)

Department of Energy (DOE)

Open Multi-Processing (OpenMP)

Partial Differential Equation (PDE)

Portable Operating System Interface Thread (Pthread)

Reverse Monte Carlo Ray-Tracing (RMCRT)

Structured Adaptive Mesh Refinement (SAMR)

Space-Filling Curves (SFC)



CHAPTER 1

INTRODUCTION

The trend in supercomputer systems moves towards larger and more diverse

computer architectures with multicore CPUs and coprocessors and GPU accel-

erators with differing communications networks. These recent changes pose

considerable challenges for achieving performance, scalability, and portability.

One approach that is suggested as a suitable candidate for exascale systems is

to represent computational tasks and their dependence with a directed acyclic

graph (DAG) and schedule the tasks to run on computing resources at runtime [20]

once the tasks they are dependent upon have completed. The tasks in the task

graph may be executed in an adaptive manner and if enough tasks are available,

choosing an alternate task to a waiting task may avoid communications and data

movement delays.

This dissertation presents a novel and highly-scalable task scheduling and

distributed runtime system to schedule and execute on both multicore CPUs and/or

GPUs and/or coprocessor tasks simultaneously and dynamically for the multiscale

multiphysics Uintah software. The Uintah framework provides a general purpose

component-based environment for large-scale science and engineering simulations

including fluid-structure interaction problems though a combination of fluid-flow

solvers and/or particle-based methods for solids on structured adaptive mesh

refinement (SAMR) grids. This general design [23] makes it possible for Uintah to

use both data parallelism and task-based parallelism to achieve high scalability.

1.1 Background and Motivation
A widely-adopted general approach to parallel solution of large-scale scientific

and engineering computing problems is to decompose a domain into subdomains



2

that are allocated to processors. Although the tasks associated with the subdomains

may be executed in a loosely synchronous manner, it is also possible to view the

execution of these tasks as a workflow. This more general view of the computation

as a set of coupled tasks allows greater flexibility in task execution and makes it

possible to achieve greater computing efficiency.

Most scientific applications are workflow-based applications that process a huge

domain. In a distributed memory architecture, the domain is usually divided into

individual data sets for local computation, generally called data parallelism. Often

applications are also structured as a sequence of computational tasks, where each

sequence is executed on a different data set. Every task has its own communication

and computation requirements: it reads inputs from the previous task, processes

the data, and outputs results to the next task. Initial data are input to the first task

and final results are obtained as the output from the last task. The parallelism is

achieved when multiple tasks are executed concurrently, called task parallelism.

Graham et al. studied the problem of multiprocessor scheduling without

communication overhead in great depth [44]. However, when communication

overhead with arbitrary data size is included, the scheduling problem becomes

more difficult as the trade-off between parallelism and overhead needs to be

considered. To model this problem, a DAG representation is generally used, where

a node reflects a task and a directed edge reflects a communication between the

incident nodes.

Sarkar identified three problems [83] that need to be solved when using the

task-based parallel approach: identifying the parallelism, partitioning into tasks,

and scheduling tasks. Partitioning and scheduling is done either at compile time

or at runtime. If both the partitioning and scheduling decision are postponed

until runtime, we may be able to achieve better partitioning and partitioning

results. However, the large overhead of runtime analysis necessitates very simple

partitioning and scheduling algorithms. When both partitioning and scheduling

are performed at compile time, overhead of runtime partitioning and scheduling

are eliminated completely. The disadvantage of compile time scheduling is that

it requires an estimation of task execution times and communication overhead



3

at compile time which may simply not be accurate. By using an approach that

explicitly partitions the program into tasks at compile time and schedule tasks

at runtime, a macro-dataflow model can limit the runtime overhead. However, in

this model, the programmer must explicitly partition the problem and the resulting

tasks and their size may not make the best use of any given target machine.

In a macro-dataflow model, there is an optimal task granularity for a given

machine which can minimize parallel execution time in the presence of overhead.

Furthermore, an efficient near optimal task partitioning algorithm that can be used

in compile time was proposed [83]. For task scheduling, the complexity of finding

a smallest parallel execution time was proved to be an NP-complete problem [83].

Sinnen [86] identified the task-based parallelization process in this order: sub-

task decomposition, dependence analysis, and scheduling. Similar to Sarkar’s

model, subtask decomposition determines the program’s parallelism and partitions

it into subtasks. Several techniques can be used for subtask decomposition such

as data decomposition, recursive decomposition, exploratory decomposition, and

speculative decomposition. Furthermore, dependency analysis is considered as

an important foundation for scheduling. Dependency is a precedent relationship

in which one task must be completed before another task begins to run. During

this process, dependency needs to be built between tasks to form a directed acyclic

graph (DAG). This graph is often called a task graph, an example of task graph [65]

is shown in Figure 1.1.

List scheduling and clustering are two fundamental classes of scheduling algo-

rithms: For list scheduling algorithms, tasks are presorted into a list with topologi-

cal order. After that, each task of the list will be assigned to a processor. In clustering

algorithms, strongly coupled tasks are clustered before scheduling; then they can

be executed at the same processor. After clustering, clusters will be assigned

to processors. There is a trade-off between minimizing communication cost and

maximizing the concurrency of task execution. Several advanced techniques can

be used to improve the quality of scheduling. For example, we can improve the

processor utilization by inserting tasks to idle slots between already scheduled

nodes. Duplication of tasks can be used to reduce the communication costs.



4

Figure 1.1. A Uintah Task Graph Example

Network topology, contention communication resources, and the involvement of

processors are also included in the model to produce an accurate scheduling result.

Both Sarkar and Sinnen used graphs to represent task-based parallel programs.

They built models to abstract the scheduling problem and designed several efficient

algorithms based on them. The level of abstraction of those models was sufficiently

close to real systems to ensure that an accurate static scheduling result can be found

before runtime. Those algorithms provided important strategies to schedule tasks

in a multiprocessor system.

The challenge, however, is to extend such ideas to petascale machines with

complex architectures, including heterogeneous computing units, multilevel mem-

ory hierarchy, and sophisticated communication network. The working data sets

and therefore the task execution times and communication latency also change

dynamically and unpredictably during the simulation process. This is particularly

likely to happen in applications using techniques such as adaptive mesh refine-

ments (AMR) [31], in which the mesh (and hence the total computational work) is



5

dynamically modified depending on the solution. There are many factors that can

affect scheduling and that are hard or impossible to include in static models. The

task execution time may not be easy to predict on real simulations and network

latency may not be constant. Dynamic scheduling should be considered as a better

approach than a purely static one as it can use all the runtime information to

potentially produce a better scheduling result.

Another potential limitation of the above static scheduling algorithms is that

they require a centralized task graph [86]. On large-scale machines where the

number of processors could be hundreds of thousands, a task graph can easily

contains millions of tasks. Processing this huge task graph is likely to become a

scalability issue itself. Using a task-based approach on petascale machines requires

the development of a fully distributed runtime system that can dynamically sched-

ule computational tasks on the multicores and accelerators or coprocessors of the

architecture.

1.2 DAG-based Implementations
A number of software frameworks and codes make use of task-based paradigms

to solve scientific computing problems. Underlying this approach is the idea of

using a directed acyclic graph (DAG) to guide the task execution. Frameworks and

libraries such as Charm++ [57], TBLAS [29], and Scioto [35] all have DAG-based

runtime systems. Computational entities in Charm++ can be defined using any

of a variety of programming models, and the execution is enabled by a message-

driven scheduler. This scheduler will automatically interleave the execution of the

computational tasks. TBLAS is a task-based linear algebra library. A matrix in

the TBLAS library is divided into blocks. Those blocks are mapped to different

compute nodes. Tasks are then created based on output blocks. A TBLAS

scheduler will automatically select a ready task and execute it. After finishing the

task, dependencies are resolved causing other tasks to become ready. The Scioto

framework uses a global array library to manage all distributed data. Therefore, all

data are accessible using a one-sided communication operation. Tasks can only be

scheduled if all its inputs are in a ”ready state”. The workload balancing is based



6

on a voting system, which allows an idle processor to randomly steal tasks from

other processors.

Uintah, the software framework considered in this study, use a DAG-based

runtime system to support computational tasks from a wide range of applications

on large core counts and also with AMR abilities present. The Uintah Software was

originally written as part of the University of Utah Center for the Simulation of

Accidental Fires and Explosions (C-SAFE) [34]. C-SAFE, a Department of Energy

ASC center, focused on providing science-based tools for the numerical simulation

of accidental fires and explosions. The aim of Uintah was to be able to solve

complex multiscale, multiphysics problems [22].

Uintah’s component design allows these individual components to be swapped

in and out, allowing them to be independently developed and tested within the

entire framework. This has led to a very flexible simulation package that has been

able to simulate a wide variety of problems [21]. The Uintah component approach

allows the application developer to only be concerned with solving the partial

differential equations on a local set of block-structured adaptive meshes, without

worrying about explicit message passing calls, GPU memory operations, or notions

of parallelization and load balancing. This approach also allows the developers

of the underlying parallel infrastructure to focus on scalability concerns, including

load balancing, task scheduling, component switching, and communications. This

component-based approach to solving complex problems allows improvements in

scalability to be immediately applied to applications without any additional work

by the application developer. Uintah is regularly released under the MIT license.

Uintah currently contains many simulation algorithms, or components: the

ICE compressible multimaterial computational fluid dynamics (CFD) formulation,

the particle-based material point method (MPM) for structural mechanics, the

combined fluid-structure interaction algorithm MPMICE [47], and the ARCHES

combustion simulation component. Development work is also underway on a

new component to provide basic molecular dynamics (MD) capabilities within

Uintah. Uintah also supports a domain-specific language, Wasatch, as a simulation

component which has great promise in simplifying the solution of very complex



7

partial differential equation (PDE) problems and in automating several parts of the

parallel computation pipeline in a multicore environment [23]. Uintah is regularly

released as open source software [3].

1.3 Contributions
The research of this dissertation shows that combining the adaptive DAG-based

approach together with a well-designed distributed runtime system can provide

a very powerful abstraction for solving challenging multiscale multiphysics en-

gineering problems on some of the largest and most powerful supercomputers

available today. To address the scalability and performance challenges presented

with each successive generation of supercomputers and to support new hetero-

geneous architectures, many generations of Uintah runtime systems have been

developed.

1. Dynamic MPI Scheduler: For over a decade, Uintah used a static MPI

scheduler and executed tasks from a predetermined list that was derived from

the task graph. This static order was the same for all processors and did not

change during runtime. Each task first posted the MPI receives, waited for all

the required MPI messages to arrive, and executed. MPI sends were then posted

after task execution. A limitation of this scheduler was that the overlapping of

communications could only be implemented on the sending side. A single task

waiting for an MPI receive causes the whole computation on a CPU core to sit

idle. To address this issue, a new Uintah dynamic scheduler was developed in this

research to better overlap communication and computation by using out-of-order

task execution.

2. MPI Multithread Hybrid Scheduler: While dynamic MPI scheduling works

well for overlapping the computations with communication on many machines by

using out-of-order execution, there were still further improvements to be made.

One limitation of only using MPI is that variables have to be passed through MPI

messages and copied to another process’ memory even if source and destination

tasks are on the same multicore node. For most PDE problems solved in Uintah,

ghost region copies, global meta-data, and third-party libraries consume a signifi-



8

cant amount of memory when running at large scale. With the number of cores per

node continuing to grow while memory sizes stay fixed, the memory usage limits

the problem size that Uintah can solve. The solution adopted here is to design an

efficient runtime system that uses MPI for internode communications and threads

for each multicore node.

3. Unified Heterogeneous Scheduler: The emergence of heterogeneous sys-

tems, with additional on-node accelerators and coprocessors, presents additional

design challenges in terms of effectively utilizing all computational resources

on-node and managing multiple levels of parallelism. A unified heterogeneous

runtime system for scheduling Uintah computational tasks on GPU and/or copro-

cessor has been developed. This new Uintah runtime system allows multicores or

accelerators/coprocessors to post MPI Isend/Irecieve, prepare data to copy from/to

a device, run CPU tasks, or run device tasks all at the same time dynamically.

4. Portability: To illustrate the new runtime system’s portability, we demon-

strated the Uintah software’s scalability on three of the seven fastest computers

as measured by the top 500 list of November 2012 [4]. These machines make

use of three very different processors and networks. Some of the machines have

GPU accelerators or Intel Xeon Phi coprocessors. The approach used here takes

three representative and challenging Uintah applications codes and examines their

scalability and performance on these very different machines.

1.4 Document Organization
Chapter 2 will discuss several related high level computational frameworks

similar to Uintah. In Chapter 3 of this dissertation, the Uintah software will

be outlined with the task graph generation algorithm. Chapter 4 will describe

the dynamic scheduler and its improvement over the original static scheduler.

The MPI multithread hybrid scheduler will be described in Chapter 5 with a

master/salve model. In Chapter 6, this hybrid scheduler is improved by using a

decentralized model and lock-free data structures. The scalability and performance

improvement results of a full fluid-structure interaction problem will be given.

Heterogeneous system support for both accelerators and coprocessors with the



9

new Unified scheduler will be present in Chapter 7 and Chapter 8, respectively.

Chapter 9 provides analysis of three Uintah components’ example communications

and task execution patterns on the three machines. The scalability and performance

results obtained will be given with an analysis of the different cases to show how

the task graph execution pattern adaptively varies to achieve scalability. Finally,

the conclusion of this research and possibly future research on this topic will be

given in Chapter 10. Chapter 3 and 4 correspond to paper [71], Chapter 5 and

6 correspond to papers [67, 68], respectively. Chapter 7 corresponds to papers

[52, 69]. Chapter 8 and 9 correspond to papers [70, 80], respectively.



CHAPTER 2

RELATED COMPUTATIONAL FRAMEWORKS

In this chapter, several well-known frameworks similar to Uintah with block-

structured adaptive mesh refinement (AMR) capability will be discussed. There

are many general purpose computational frameworks that have been developed

over the last few decades. The software capability of those general frameworks

is not tied to a particular application. These frameworks and their application

domains covered many fields from astrophysics, cosmology, and general relativity

to plasma physics, and particle accelerators; from climate science to combustion,

subsurface flow, turbulence, fluid-structure interactions.

BoxLib [1] is a software framework that supports the development of massively

parallel block-structured AMR applications. BoxLib is written in C++ and Fortran

and also includes a Fortran only implementation with limited functions. In the main

branch of BoxLib, the C++ portions of the program implemented memory man-

agement, flow control, parallel communications, and I/O functions. The multigrid

solvers and other numerically-intensive portions of the computation are written

in Fortran90. Parallelism of BoxLib is achieved by distributing grids: internodes

using MPI and on-nodes using OpenMP. Both grid and particle computations

are supported in BoxLib. In grid operations, both explicit and implicit solving

are supported in BoxLib. BoxLib includes single and multiple level multigrid

solvers for cell-based and node-based variables. The particles in BoxLib exist

on hierarchical grid meshes. BoxLib supports multiple time subcyling modes,

including no subcycling and standard subcycling, for adaptive mesh simulations.

BoxLib’s fundamental parallel abstraction is called MutiFab. MutiFab holds the

data on the union of grids at a level as multiple Fortran Array Boxes(FABs). Each

FAB is an array of data on a single grid. During each MultiFab operation, the



11

FABs composing that MultiFab are distributed among the nodes. MultiFabs at

each level of refinement are distributed independently primarily based on the

use of a Morton-ordering space-filling curve. MultiFab operations are performed

independently on its local data. When operations require data owned by other

processors, the MultiFab operations are preceded by a data exchange between

processors. BoxLib supplies a general capability for solving time-dependent PDEs

on an adaptive mesh hierarchy. There are a number BoxLib-based application

codes in scientific use today.

Cactus [24] was designed as a general purpose software framework for high-

performance computing which employs block-structured AMR. Cactus modules

consist of routines targeting logically rectangular grids; these routines are then

called by the core Cactus framework. Cactus-based simulations are parallelized

using both MPI and OpenMP. MPI parallelization is implemented by the driver.

OpenMP parallelization is provided via a generic loop traversal infrastructure

LoopControl that also provides loop tiling. The framework itself does not provide

parallelism or AMR. AMR support is instead implemented via a special driver

component. Carpet is the only widely-used driver in Cactus, while it would be

possible to replace Carpet by an alternative driver that provides a different AMR

algorithm. Application components can explicitly describe locations, shapes, and

depths of refined regions. Alternatively, the application can also mark individual

grid points for refinement, and Carpet will then employ a parallel tiling method to

build an efficient grid structure according to marked points. Cactus modules use a

domain-specific language (DSL) to describe the workflow of tasks. The framework

managed a distributed data structure which contains the values of a field on

every point of the grid (called grid functions), and parameter files. Cactus then

provides APIs to allow infrastructure components query this information. Cactus’s

first application area were astrophysical simulations of compact objects involving

general relativity such as black holes and neutron stars. Its most prominent

user today is the Einstein Toolkit, a large set of physics modules for relativistic

astrophysics simulations.

Chombo [32] is a spin-off of the BoxLib framework, having branched off from



12

BoxLib in 1998. Chombo shares many features with BoxLib, including the hybrid

C++ and Fortran approach. Similar as Boxlib, C++ handles abstractions, memory

management, I/O, and flow control, while Fortran is used for loop parallelism

and stencil computations. In Chombo, an union of patches is called a BoxLayout.

These maintain the mapping of patches to compute nodes. This meta-data is

replicated across all processors redundantly. In cases with extreme box counts,

this meta-data is compressed. Chombo keeps the Fortran Array Box (FAB) data

member from BoxLib, but it is templated on data type and data centering. Instead

of MultiFAB from BoxLib, Chombo has a hierarchy of templated data holders,

such as LayoutData, BoxLayoutData, and LevelData. Chombo currently supports

applications including magnetohydrodynamics (MHD) for tokamaks, wind tur-

bines, solar wind and its interaction with the interstellar medium, astrophysical

MHD turbulence, hydrology modelling, blood flow, subsurface reacting flow, heat

transfer in nuclear reactors, etc.

Enzo [37] was originally designed to simulate the formation of large-scale

cosmological structures, such as clusters of galaxies and the intergalactic medium.

Enzo uses C++ for the overall code infrastructure and memory management and

Fortran for most computationally intensive solvers. Enzo simulations are typically

parallelized by MPI, though a hybrid OpenMP+MPI version is available and used

by some applications. MPI-based parallelism takes place at the grid level, with

individual grids, which are composed of a number of baryon fields, as well as

particles of a variety of types, being used as the individual unit of load-balancing.

Threading is typically used in situations where each MPI process has large numbers

of grid patches from hundreds to thousands, and thus threading generally takes

place in loops over grids. GPUs and/or the Intel Xeon Phi supports is planned.

Enzo uses the block-structured adaptive mesh refinement with arbitrary grid sizes

and aspect ratios. The grids in Enzo must be rectangular solids, and there are

some practical limitations on grid sizes and locations. Adaptive time-stepping

is used throughout the code, with each level of the grid hierarchy taking its

own timestep. This adaptive timestepping is absolutely critical to the study of

gravitationally-driven astrophysical phenomena, since it is the local timescale for



13

evolution of physical systems.

FLASH [6,41] was originally designed for simulating astrophysical phenomena

dominated by compressible reactive flows. FLASH’s code is written in FOR-

TRAN90 and C. FLASH’s current parallelization using a hybrid MPI and OpenMP

model. The vast majority of FLASH applications still operate in an MPI-only mode.

Several key physics solvers have been threaded using OpenMP and are in use for

production. FLASH’s grid unit manages the mesh and all the associated data

structures. FLASH can use three interchangeable discretization grids: 1) a uniform

Grid, 2) a block-structured oct-tree-based adaptive grid using the PARAMESH li-

brary [66], and 3) a block-structured patch-based adaptive grid using Chombo [32].

FLASH’s explicit physics solvers are designed to independently work with any

type of underlying meshes. In this way, the application configuration can specify

solvers and grids separately. The physics units that rely on their solvers interacting

closely with the mesh are split into two components; the mechanics of the solvers

that need to know the details of the mesh, but are agnostic to the physics, become

subunits within the grid unit, while the sections that are physics-specific exist in

their own separate physics units. Within the grid unit, a unified API is provided

for the various underlying solvers, some of which are interfaces to libraries such as

Hypre. The FLASH code is being used actively for simulations of computational

astrophysics, high energy density physics, cosmology, turbulence, and biomechan-

ical systems.

A summary of AMR framework comparison [15] is shown in Table 2.1. Al-

though the Uintah framework will be described in detail in the next chapter, it is

worth noticing that Uintah is similar to the frameworks introduced above in terms

of its problem solving capability. Like many other frameworks, Uintah manages

its grid and the associated data structures. A Uintah grid contains one or more grid

levels. However, the refinement ratio of each level can be any arbitrary positive

integer on each dimension instead of a fixed definement ratio. On each grid level,

Uintah uses a bounding volume hierarchy (BVH) tree to save hexahedral mesh

patches. This approach gives the Uintah framework the ability to operate on

discontinuous refined grid. Uintah’s component design allows these individual



14

Table 2.1. AMR Framework Comparison

Framework BoxLib Cactus Chombo Enzo FLASH Uintah
Framework C++/ C/C++ C++ C++ Fortran C++
Language Fortran

Application Fortran C/C++/ Fortran Fortran Fortran C++/
Language Fortran Fortran
Block Size Variable Variable Variable Variable Fixed Variable

Refine Factor 2,4 2 2,4 any int 2 any int
MPI Block Block Block Block Block Block

OpenMP Block& Loop Block Blook& Blook& No
Loop Loop Loop

Pthread No No No No No Block&
Task

GPU No Yes No Yes Yes Yes
MIC No No No Yes No Yes
Load Yes Yes Yes Yes Yes Yes

Balancing (SFC) (SFC) (SFC) (SFC) (SFC)
Task No Yes Yes Yes No Yes

Scheduling (Static) (Static) (Static) (Dynamic)
Scalability 196K 128K 196K 92K 512K 756K

components, such as simulation solvers, load balancers, regridders, to be swapped

in and out independently. The simulation component in Uintah is written as a

MPI-free tasks working on a patch. The Uintah runtime system is also distinctive

in which it manages MPI communications automatically and asynchronously based

on the tasks’ inputs and outputs.



CHAPTER 3

UINTAH RUNTIME SYSTEM

The Uintah software framework originated in the University of Utah DOE Cen-

ter for the Simulation of Accidental Fires and Explosions (C-SAFE) [34] (9/97-3/08)

which focused on providing software for the numerical modeling and simulation

of accidental fires and explosions. The Uintah open-source (MIT License) software

has been used to solve many different challenging fluid, solid, and fluid-structure

interaction problems. The recent status of Uintah, including applications, is

described by [21].

3.1 Overview
Uintah’s parallel software components facilitate the solution of partial differ-

ential equations (PDEs) on structured adaptive mesh refinement (SAMR) grids.

Uintah makes it possible to integrate multiple simulation components, analyze the

dependencies and communication patterns between these components, and effi-

ciently execute the resulting multiphysics simulation. Uintah contains the follow-

ing major simulation components: 1) the ICE [58, 59] code for both low-speed and

high-speed compressible flows; 2) the multimaterial particle-based code MPM [90]

for structural mechanics; 3) the combined fluid-structure interaction (FSI) algorithm

MPM-ICE [47, 48]; 4) the ARCHES turbulent reacting CFD component [56, 87]

that was designed for simulation of turbulent reacting flows with participating

media radiation; 5) MD component which provides Molecular Dynamics (MD)

capabilities within Uintah; and 6) Wastach is a simulation component which has

great promise in simplifying the solution of very complex PDE problems and

in automating several parts of the parallel computation pipeline in a multicore

environment [23] by using a domain-specific language, Nebo.



16

The component-oriented approach upon which Uintah is based [64, 73, 74]

allows the application developer to only be concerned with solving the partial

differential equations on a local set of block-structured adaptive meshes, without

worrying about explicit message passing calls in MPI, or indeed parallelization in

general. This is possible as the parallel execution of the tasks is handled by a runtime

system that is application-independent. This division of labor between the applica-

tion code and the runtime system allows the developers of the underlying parallel

infrastructure to focus on scalability concerns such as load balancing, task (com-

ponent) scheduling, and communications, including accelerator or coprocessor

interaction. This component-oriented parallel programming approach also makes

it possible to leverage advances in the runtime system, allowing improvements in

scalability to be immediately applied to applications without any additional work

by the application developer. This type of programming model is ideally suited

for a software environment like Uintah and has contributed significantly to its

scaling success. Nevertheless, the applications developer must still write code that

does not use excessive communication in relation to computation and/or a large

number of global communications operations. Should this unfortunate situation

occur, Uintah’s detailed monitoring system is often able to identify the source of

the inefficiency.

The complex engineering problems solved in Uintah require a large amount of

processing power, necessitating the need for both parallelism and adaptive mesh

refinement. Uintah achieves parallelism by dividing the grid into hexahedral mesh

patches, which are uniquely assigned to processing processors. Figure 3.1 shows a

Uintah patches which contains 64 cells. Each cell owns several types of variables:

i) node centered variables, such as velocity, mass, volume, and temperature; ii) cell

centered variables, such as density, internal energy, and momentum; iii) particles

in cell, which also have their own variables like mass, volume, temperature, and

velocity. All these variables are stored in a data warehouse, a directory-based hash

map. Each variable is indexed by name, type, and the patch id of the patch to

which it belongs.

Uintah components are C++ classes that follow a simple interface to establish



17

Uintah Patch

Cells

Particles

Cell Centered Variable

Node Centered Variable

Particle Variables

Uintah Variable Types

Figure 3.1. A Uintah Patch Example

connections with other components in the system. Uintah utilizes a task graph of

parallel computation and communication to express data dependencies between

multiple application components. The task graph is a directed acyclic graph (DAG)

in which each task reads inputs from the preceding task and produces outputs for

the subsequent tasks. Each task has a C++ method for the actual computation and

each component specifies a list of tasks to be performed and the data dependencies

between them [22].

Figure 3.2 shows an overview of the Uintah architecture. Uintah loads a selected

simulation component and a grid of hexahedral cells defined in the Uintah input

file. A Uintah grid can contain one or more levels with different resolutions while

each level is further divided into smaller hexahedral patches. When running

with adaptive mesh refinement (AMR), finer grid levels are created by the Uintah

Regridder [63]. Since finer grid levels may not be continuous across the domain,

Uintah uses a binary bounding volume hierarchy (BVH) tree to save patches on

a particular grid level. After patches on each grid level are created, the Uintah

load balancer is used to assign patches to MPI nodes. By profiling execution time

on each patch, this load balancer can use history data to predict the further work

load [62]. Once each MPI node has its patches assigned, tasks defined by the

selected simulation component are then created only on local and neighbouring

patches.

Uintah uses a process of checking the overlap of the input variables and the

output variables for each task that makes it possible to create a directed acyclic



18

Input file RegridderGrid

Load 

Balancer

Multi-level Grid

Dependency 

Analysis

Simulation 

Component

Tasks Local Patches

Scheduler

Task Graph

Task 

Queue
MPI

DataWare

house

Load 

Imblance?

History Profiling Data

(Yes)

Grid 

Changes?

Refinement Flags

(Yes)

Output/

Checkpoint?
Fininsh

Next Generation

(re-use taskgraph)

Data Archiver

Yes

Output data

X

Detailed Tasks

Parallel I/O

Figure 3.2. Overview of Uintah Components



19

task graph in which a node represents a task and a directed edge represents data

flows. During the task graph compilation process, the correctness of the task graph

is also checked by finding cycles or disconnect edges/nodes in the graph. This

checking allows missing or ambitious dependencies (requires without computes,

double computes) or cyclic dependencies (i.e., two or more tasks depend on each

other) to be reported to the simulation component developer. This reporting helps

developers to write correct and consistent task inputs and outputs. In the case

when a dependency that connects two tasks associated with patches on the same

MPI node is found, it is tagged as an internal dependency. Similarly, in the case

when a dependency that connects two tasks associated with patches on different

MPI nodes is found, an external dependency is created. At the end of task graph

compilation, an MPI message tag is assigned to each external dependency. Task

graph compilation can be done in parallel without any communications between

MPI nodes. Once the task graph is compiled, it can be used for multiple timesteps

without being recompiled unless the grid changes, such as when new patches are

created or deleted by the SAMR regridder or when the load balancer moves patches

from one node to another. Each MPI node runs a private runtime system that

makes scheduling decision locally and communicates with other nodes regarding

data dependencies when necessary.

3.2 Distributed Task Graph
Uintah simulation components are written as a set of Uintah tasks. In Uintah,

the scheduler is responsible for computing the dependencies of tasks, determining

the order of execution, and ensuring that the correct interprocess communication

via MPI is made when necessary. Uintah uses a call back task design [33]. A task

may be related to a single equation or stage of a simulation algorithm. A simulation

component contains a list of these user-written tasks by defining input variables,

output variables, and call back functions. Those tasks will be given to a scheduler,

and the scheduler determines when to call each task during the execution.



20

3.2.1 Tasks

In order to create a Uintah task, the programmer specifies variables which

are required for the task’s computation, variables the task computes, and a call

back function which performances computing on a generic patch. The following

example equation shows the algorithm of the fourth stage of ICE, which computes

face-centered velocities, according to the function:

~U f = f (∆t,Peq, ~g,ρ, ~U).

By specifying a task name (ICE::computeVel FC) and a call back function pointer

(&ICE::computeVel FC ), the Uintah task can be created:

Task task=new Task("ICE::computeVel_FC",

&ICE::computeVel_FC);

In this algorithm, the requirements of this task include the following input vari-

ables:

1. ∆t : delT global timing variable from previous timestep;

2. Peq : press equil CC cell centered pressure variable from the current timestep;

3. ~g : sp vol CC cell centered volume variable from the current timestep;

4. ρ : rho CC cell centered density variable from the current timestep;

5. ~U : vel CC cell centered velocity variable from the previous timestep.

where ∆t is a per level global variable. The variables Peq, ~g, ρ, ~U need one

neighbouring cell data value from neighboring patches. These neighbouring cells

of data, referred to as ghost cells, are copied locally to fulfill the data requirement

of the ICE discretization stencil that calculating a derivative in one mesh patch may

need information from an adjunct patch [58]. Variables exist either on a patch or

a mesh level and have various types, such as FaceCenter, CellCenter, or Global.

During the simulation, variables are stored in a dictionary data structure, the data

warehouse. Variables that existed on a previous timestep are stored in the old

data warehouse (OldDW) and variables that are computed in the current timestep

are stored in the new data warehouse (NewDW). At the end of each timestep, the

variables in the NewDW are mapped to the OldDW for the next timestep in the



21

simulation and a new NewDW is initialized. That is to say, variables from the

last timestep should be queried from the OldDW; variables from current timestep

should be queried from the NewDW. In this example, the requirements for task

ICE::computeVel FC can be set up as:

Ghost::GhostType gac = Ghost::AroundCells;

task->requires(OldDW, delT, getLevel(p));

task->requires(NewDW, press_equil_CC, gac,1);

task->requires(NewDW, sp_vol_CC, gac, 1);

task->requires(NewDW, rho_CC, gac, 1);

task->requires(OldDW, vel_CC, gac, 1);

From the algorithm, this task computes ~U f on all three faces of the cell: uvel FC,

vvel FC, wvel FC. They are all face centered variables. All output variables are

stored in NewDW, e.g.,

task->computes(uvel_FC);

task->computes(vvel_FC);

task->computes(wvel_FC);

Finally, the task is added to the scheduler component with specifications regarding

which patches and materials are associated with the actual computation.

scheduler->addTask(task, patches);

For more complex problems involving multiple materials and multiphysics calcu-

lations, a subset of the materials may only be used in the calculation of particular

tasks. The Uintah framework allows for the independent scheduling and compu-

tation of variables associated with an individual material within a multiphysics

calculation.

3.2.2 Load Balancing

A Uintah simulation grid can contain one or more levels with different resolu-

tions while each grid level is further divided into smaller hexahedral patches. When



22

running with SAMR, finer grid levels are created by the Uintah Regridder [63]. As

the simulation progresses, individual grid cells can also be tagged for refinement.

The regridder will take flags, and, wherever there are refinement flags, patches

are constructed around them on a finer level. Since finer grid levels may not be

continuous across the domain, Uintah uses a binary bounding volume hierarchy

(BVH) tree to save patches on a particular grid level.

After patches on each grid level are created, the Uintah load balancer is used

to partition and assigned patches to MPI nodes. By profiling execution time

on each patch, this load balancer can use history data to predict the further

work load [62]. After regridding, these patches are partitioned and assigned

to different processing resources by the load balance algorithm. Uintah’s load

balancer determines a reasonable allocation of patches to nodes using measurement

and geometric information [62]. The load balancer attempts to guarantee that

an equal amount of work is distributed to each processor allowing for optimal

scaling of the simulation to multiple processors. The weight for each patch is

predicted through certain criteria, such as history weights, number of particles,

number of cells, etc. In additional to reducing the communication cost, the load

balancing algorithm clusters neighboring patches together because communication

is predominantly local in that only a small area of ghost cells around each patch

needs to be communicated.

3.2.3 Detailed Tasks

In the Uintah framework, each patch will create its own instance of a task

which is referred to as a detailed task. Suppose a Uintah component designed M

tasks, and there are a total of N patches in the grid, a total of M×N detailed tasks

will be created globally. It is nontrivial to generate a centralized directed acyclic

graph(DAG) by creating one edge per dependency between detailed tasks.

1. Centralized Version In order to be more precise regarding the form of a task

graph, we use the flowing definition:

Definition 1. A centralized task graph is a two-tuple

GGlobal =< Tg,Dg >, where Tg is a set of nodes and Dg is a set of direct edges. Each

node ti ∈ Tg is a detailed task associated to a patch in the global mesh and a task.



23

There is an edge d < ti, t j >∈Dg if there is a dependency that ti need to be executed

before t j.

The complexity of creating a centralized task graph will be nearly O(|Tg| log |Tg|).

Since the number of tasks on a patch M is a constant, the complexity can be written

as O(N logN). There will be thousands to millions of patches created in total

depending on what problem size we are running. A centralized version of task

graph will thus clearly not scale on large simulations with high resolution meshes.

Therefore, Uintah uses a distributed algorithm to generate task graphs.

2. Distributed Version After patches are assigned to processors, each processor

creates its own and neighbors’ instances of tasks. The neighbors’ detailed tasks are

created only for dependency analysis and will not be actually executed. Suppose

the number of processors is P; each processor approximately has N/P local patches.

Definition 2. A distributed task graph is a two-tuple

GGlobal =< Tl
⋂

Tn,Dd >, where Tl is a set of locally detailed tasks and Tn is a set

of neighbor detailed tasks. Each node ti ∈ Tl is a detailed task associated with

a local patch. Each node ti ∈ Tn is a detailed task associated with a patch in its

neighborhood. These is an edge d < ti, t j >∈ Dd if ti need to be executed before t j,

ti ∈ Tl or t j ∈ Tl.

The complexity of creating a distributed task graph in Definition 2 will be approx-

imately [64]:

O(|Tl| log |Tl + Td|) = O(
N
P

log
N2

P
).

Consequently, a distributed version of the task graph will scale if the ratio of N/P

is sufficiently bounded.

These Uintah detailed tasks contain all the necessary information for the sched-

uler to analyze data dependencies and execute the tasks in a completely distributed

manner. Figure 3.3 shows the data structure of a detailed task in the Uintah

scheduling system. A detailed task contains the following information: 1) Patch:

the patch that the current detailed task will process, as assigned by the load

balancer. 2) Task-related information such as task name, task type, call back

function. 3) Input: Variables required for the computation in this task. These



24

Scheduler

Task A on patch 0

Task A on patch 1

Task B on level 1

Task C on patch 0

...

Detailed Task

Name

Task

Patch ID

Require
Variables

Compute
Varibles

Internal
Dependent

Tasks 
External

Dependency
Counter 

Internal Ready

External Ready

string

Task

Function 
Input Label 

Output Label

integer

Pointers to OLD data warehouse variables 
Pointers to NEW data warehouse variables 

Pointers to NEW data warehouse variables 

integer

boolean

boolean

...

Initialization

Task Graph Compile

Scheduled

Data         Available after 

Figure 3.3. Data Structure of Detailed Task

variables may come from the task’s patch or from neighbor patches. 4) Output:

Variables computed by this task. These variables will be written to local memory.

After the task graph is compiled, each detailed task also contains: an internal

dependency pointer that links to tasks which require variables from this task, an

external dependencies counter that specifies the number of MPI messages that need

to be received from the other processor. During run time, there are also some task

status flags. These flags indicate whether or not a task has all its internal data,

external data, is running, or has finished, respectively.

By using this design, computing patches and variables are not owned by

individual tasks. They are stored in an on-demand data warehouse, a directory-

based data structure. This enables the data warehouse to do the allocation and

deallocation work automatically. Also there are no MPI calls inside tasks. All the

MPI communication buffers are also created and destroyed automatically by the

data warehouse. A detailed task is essentially a runtime instance for a task on a

specific patch, and the smallest schedulable unit in Unitah.

3.2.4 Task Dependency

As the simulation component programmer writes tasks sequentially and does

not explicitly define dependencies between tasks, in order to ensure the task will run



25

in a correct order, Uintah’s scheduler will automatically detect these dependencies.

If there exists a data dependence between tasks, the scheduler can determine which

task precedes another. There are two types of dependencies in the Uintah frame-

work: internal dependencies and external dependencies. Internal dependencies

are between patches on the same processor and external dependencies are between

patches on different processors. Thus internal dependencies imply a necessary

order where external dependencies also specify necessary communication.

1. Internal Dependency The Uintah scheduler detects read after write (RAW),

write after read (WAR), and write after write (WAW) dependencies based on the

task inputs and outputs. Each Uintah task always has the input and output vari-

ables defined through requires and computes function. Therefore, the scheduler

can go through all the detailed tasks to match the patch and variables information.

Whenever two tasks access the same variable in the same patch, the scheduler

detects a data dependency and updates the detailed tasks to put a dependency link

between them. In the RAW case, a variable is computed by the previous task and

required by the second. In the WAR case, a variable is required by the previous task,

but the second task updates its value. In the WAW case, both tasks compute the

same variable. Since WAR and WAW dependencies can be removed by renaming,

we only consider the true dependencies.

2. External Dependency In Uintah, almost every external dependency comes

from input variables with a ghost cell requirement, in that a task may require the

variable from multiple additional layers of cells around its patch, as demonstrated

by the variables press, rho, and velocity in the previous example task. Figure 3.4

shows two patches are assigned to two different processors; the task on patch 1

requires one additional layer of ghost cells which are on patch 0. Since all detailed

tasks of neighbors are also created, whenever a task requires ghost cells, we can

always find the corresponding originating task which computes that variable. If the

originating task has been assigned to the same processor, an internal dependency

will be added; otherwise, an external dependency batch object will be created. The

external dependency batch objects will later be used for MPI messages combination

and tag assignment.



26

Require(…,…)
Require(…,…)

Compute("Var0")

Require("Var0", 1)
Require(…,…)

Compute(…)

Patch 0 Patch 1

Processor 0                                                                 Processor 1

Figure 3.4. Detecting External Dependencies

Since the external dependencies for detailed tasks are computed in this dis-

tributed environment, each node only computes its own side of sends and receives.

Uintah’s distributed task graph can then guarantee that those sends and receives

will match each other without additional communication.

3.2.5 Task Graph Compilation

Once all tasks and data dependencies are detected, each processor creates a

distributed directed acyclic graph (DAG) by creating one-edge-per-variable depen-

dency between tasks. An initial graph is generated once we have processed all data

dependencies and made edges. For example, in Figure 3.5 (middle), the graph has

press_CC
rho_CC

temp_CC

f_theta_CC
press_equil_CC

sp_vol_CC
rho_CC

press_equil_CC
sp_vol_CC

rho_CC

del_T uvel_FC
wvel_FC
wvel_FC

uvel_FC
wvel_FC
wvel_FC

uvel_FCME
vvel_FCME
wwel_FCME

sp_vol_CC

Compute
Pressure

Compute
Vel_FC

Compute
Contributio
nToFCVel

press_equil_CC

sp_vol_CC

rho_CC

uvel_FCwvel_FCwvel_FC

sp_vol_CC
Create 
Edges

del_T

Previous Timestep

Combine 
Dependencies

Compute
Pressure

Compute
Vel_FC

Compute
Contributio
nToFCVel

Send
OldData

Tasks TaskGraph

Compute
Pressure

Compute
Vel_FC

Compute
Contributio
nToFCVel

Figure 3.5. Task Graph Compilation



27

a lot of redundant dependencies. If the number of variables is large, the overhead

for tracing the availability of all input variables will be dramatically increased. In

addition, a task graph will be executed many times and may need to be simplified

to record dependencies between tasks. Also, for those tasks requiring old data

warehouse variables, a special system task called SendOlddata will be generated

by the Unitah infrastructure to prepare old data warehouse variables by copying

necessary variables from the previous timestep. As a result, all dependencies

from the previous timestep will be replaced by dependencies from SendOlddata

task. A dependency is also removed if it can be recursively represented by other

dependencies. Figure 3.5 (right) shows part of the compiled task graph.

External dependencies are also combined if they will send data to a same des-

tination detailed task. MPI message tags are assigned after message combination

has taken place. Each detailed task will then initialize an external dependency

counter to trace the outstanding MPI messages. After a task graph is compiled, the

scheduler will continue to execute the same task graph on each timestep until the

grid is refined or the simulation component decides the task list is no longer valid.

3.3 Data Warehouse
Uintah variables are stored in a distributed dictionary data structure called the

on-demand data warehouse. The data warehouse is an abstraction of a global

single-assignment memory, with automatic data lifetime management and storage

reclamation. The dictionary uses three elements to index a variable: variable

name, variable type, and patch id. A variable in the data warehouse is a reference-

counted pointer to the local memory where the data are stored. The variable type

is used to identify the data structure and for managing memory, e.g., automatic

cleanup. Besides the common data types such as integer, double, and vector,

Uintah also defined its own set of variable types. For example, the particle variable

type associates with a particle with its location. Grid variable types including

FaceCenter type or CellCenter type associates with a face of cell or a center of cell,

respectively. Grid variables are typically 2D or 3D array-structured values with

geometric information. Patch id is used to identify in which patch the variables are



28

located physically.

The on-demand data warehouse not only contains local patch variables but also

contains foreign variables from other processors. A task can read the variables from

all local and foreign patches by calling get function to get the data pointer but can

only write to its own patch by calling put function. All the temporary memory that

task allocated in its own code should be discarded when it finished. In this way, a

task is limited to work on its own memory and exchange data only through the data

warehouse. If a task sets up its input and output variables correctly, the variables

of related patches will be ready in the data warehouse to read and write when the

task is being scheduled. In addition, the data warehouse will also track the life

span of all variables. The data warehouse will also clean up variable memory if no

future tasks are going to use that variable.



CHAPTER 4

DYNAMIC SCHEDULER

In moving Uintah to petascale machines, such as Ranger1 and Kraken2, it was

initially observed that there was a substantial increase in MPI communication time

when using a larger numbers of cores. The time spent waiting for communication

comes from the dependencies between computing tasks distributed to different

processors. This wait time is a combination of time spent waiting for data to be

computed by another task and time spent waiting for the data to be transmitted

through the network. Although Uintah’s task scheduler is designed to reduce

this wait time by automatically overlapping communication and computation, this

wait time is linked to the fixed order of execution of the tasks.

In order to address this wait time, we considered the design of a dynamic task

scheduling mechanism in Uintah [64, 74, 75] by allowing the tasks to run not in

a sequential order, but dynamically, asynchronously and out-of-order according

to the runtime information like a dataflow programming model. As Uintah is

a general computational framework, it supports various tasks which may have

asynchronous communication with different neighbors or calls to third party li-

braries such as PETSc. This dynamic scheduler must therefore be robust enough

to guarantee that all these tasks compute the correct results.

We accomplished this by putting fine-grained computational tasks in a directed

acyclic graph (DAG) and by isolating task memory. To achieve high scalability,

we use a decentralized scheduling scheme for a distributed memory system.

1Ranger is a NSF parallel computer at the Texas Advanced Computing Center with about 64K
Intel Xeon CPU cores.

2Kraken is a NSF parallel computer at the National Institute for Computational Sciences with
about 110K AMD Opteron CPU cores.



30

That is, each node schedules its tasks privately and communicates with other

nodes regarding data dependencies only when necessary. Furthermore, Uintah’s

scheduler respects task priorities and supports scheduling tasks which require a

global synchronization operation. In order to create as many independent tasks as

possible (to prevent processors from becoming idle), we allow multiple versions

of memory by adding a variable version table. This can help the system to remove

certain task dependencies and generate more independent tasks.

4.1 Original Static Design
Uintah’s task graph approach provides a high degree of automated parallelism.

The task graph in Uintah was originally used with static analysis of the data

dependencies of user-defined tasks. As shown in Figure 4.1, the scheduler gener-

ated a correct order of tasks for later execution through a task graph compilation.

The execution order was originally identical for all processors and the simulation

process in Uintah was synchronized. In the approach adopted here, new data

structures for the task graph are added to support dynamic execution of tasks

without changing the task interfaces for users.

The original task scheduler in Uintah uses asynchronous MPI communication

and combines messages which have the same source and destination. These

techniques can overlap some communication and computation and reduce the

data transmit time through the network. For example, after a task is finished, the

Task Graph
Running

Task
Data

Warehouse N
etw

ork

Get Var

Put Var

Sorted Tasks

All 
Message 
Received

Send

Receive

Task Flow Data / Control Flow

Schedule

Next Task

Add Foreign Var

Figure 4.1. Uintah Static MPI Task Scheduler



31

processor can execute a new task while sending the messages produced by the last

task, but a task must wait for the required messages arrival before it can be executed

and the computation cannot start without the data contained in these messages.

The original Uintah task scheduler generated a task graph to statically analyze task

dependencies and combine MPI messages. The task graph is a directed acyclic

graph (DAG) in which each node in the graph represents a task. Directed edges

are used to represent a data dependency or MPI communication. After the static

analysis is complete, the task execution order is determined and the scheduler runs

tasks based on this order.

If all tasks in the same period take the same amount of time to execute, there

will be little time spent waiting for data to arrive, as all the data are computed and

ready to be sent out at the same time when the whole simulation is synchronized.

Uintah supports AMR, in which the workloads for different patches may not

be equal, and particles move from a cell to another cell during the simulation,

and so the task workload per patch with particles is not constant. The result of

communications delays and variations in execution time is the time spent waiting

for data dependencies to be the majority of Uintah’s MPI Wait. Measurements

show that this type of wait is as much as 80 percent of the total MPI wait time in

Uintah. In order to reduce the task wait time and further improve the performance

of Uintah simulations, we will now investigate an alternate scheduling algorithm

which can dynamically execute tasks.

4.2 Dynamic Runtime System Design
In order to address the executive wait time described above, a new task sched-

uler was developed that solves this problem by dynamically determining the order

during execution to overlap communication and computation. In particular, the

architecture of the runtime system has been extended to support out-of-order

execution of tasks with respect to the task graph.

4.2.1 Tasks Ready Queues

Instead of using a fixed precomputed execution order list in Uintah’s static

scheduler, the new dynamic scheduler has two task queues (Figure 4.2): the



32

Task Graph

Running
Task

Data
Warehouse

N
etw

ork

Get Var

Put Var

Completed

Satisfied

Counter
==Zero

Send

Receive

Internal 
Ready 
Queue

External 
Ready 
Queue

Valid Foreign Var

Add 
Foreign

 Var

Schedule

External 
Dependency 

Counter

Task Flow Data / Control Flow

Figure 4.2. Uintah Dynamic MPI Task Scheduler

internal ready queue and external ready queue. After the task graph is compiled,

all the presatisfied tasks will be placed in the internal ready queue. The value of

the counter for tracking outstanding MPI messages is set according to information

provided by the task graph. When this counter reaches zero, the communication

phase is complete and the task is ready to be executed. At that point, it is placed in

the external ready queue. When scheduling a task, the scheduler chooses a task in

the external ready queue based on a prioritization algorithm. The scheduler prefers

to execute tasks on the external boundary patches first when possible, or execute

the tasks on internal patches while waiting for the communication for boundary

patches. This is described in Section 4.3.2.

When a task is completed, the task graph will check if a task’s local dependencies

are satisfied. Newly satisfied tasks will also be placed in the internal ready

queue and have their external dependencies initialized. The new scheduler allows

multiple tasks to wait for communication at the same time; a task can also be

executed when other tasks are waiting for foreign variables which are owned by

other processors to arrival. To prevent conflicting access on an uncompleted foreign

variables, the variable needs to be set to valid after communication is finished, and

then it can be accessed by tasks.

When the scheduler begins to run, the tasks will at first wait for all internal

dependencies to be satisfied and then wait for MPI messages to arrive. If a

task finally reaches the external ready queue, that means that it can be executed



33

immediately; all the variables it requests are available. As long as the external

queue is not empty, the processor always has tasks to run. This can help to overlap

task execution time with wait time for communication and has been found to be

critical in obtaining salabilities at large core counts.

4.2.2 Variable Versioning

In Uintah, different tasks may require the same variable on the same neighboring

patch multiple times: 1) They may need different ghost cells in the same patch;

2) They may need the input variables that are about to be modified. The original

data warehouse was designed for static scheduling and so has one variable under

each key. As tasks are executed in a fixed order, a new variable will replace an

existing one. But when tasks are running in an out-of-order way, multiple copies

of the same variable may exist at the same time. In order to let the correct values be

available for each requesting task, we have created multiple versions of variables

under the same key. The data warehouse is thus modified to automatically select

a proper version of a variable according to the task’s requests.

For example, in Figure 4.3, patch 0 is assigned to processor 0, patch 1,2,3 are

assigned to processor 1. If three tasks on patch 1,2,3 all require ghost cells of variable

v1, three regions A,B,C of the variable on patch 0 need to be sent to and stored at

processor 1. Combining all the three regions and sending a single message to save

a variable in the original data warehouse will create new data dependencies. This

removes the possibility that a task on patch 1 may run when region A is received

and region B and C are still waiting for data. To allow these tasks to be scheduled

Patch 0 Patch 1

Patch 2 Patch 3

Processor 0 Processor 1 

A

B C

A B C

DataWarehouse
(on Processor 1)

V1, Patch 1
(local)

V1, Patch 0
(foreign)

Figure 4.3. Region Versions of Foreign Variable



34

independently, the data warehouse uses variable versions to store all the regions

on the same patch.

As mentioned in Chapter 2, variable renaming can be used to avoid false

dependencies (WAR and WAW). A variable can be renamed and therefore be

written into another memory location other than the conflicting variable. For

example, if variable v is both an input variable and an output variable of a task,

we can rename the output variable v to v new. However, in some situations, such

as calling a library whose output must be at the same memory location of its

input, variable renaming cannot be used. In Uintah, the programmer can define

a modifiable variable requirement for a Uintah task to allow the task to read and

write at the same variable. When scheduling, dependencies will be added to a local

task graph to enforce that any task that requires a newer version of this variable

will not be executed before the modifiable task. As multiple time versions of a

variable under the same name will be sent through the network, the newer time

version of a variable will be appended to the end of version list under the same

key. The Uintah data warehouse can then select a correct version of variable for

the task which requires it.

Each variable may have several versions under the same label during execution.

This increased the memory usage in the data warehouse. Our experiments show

that the new structure uses around 10 percent more memory. This appears to be

an acceptable overhead for the increase of performance and scalability that results.

4.2.3 Synchronization Phases

Tasks that require the result of a global communication also require a specialized

scheduling mechanism when these tasks are running out of order. Those global

tasks are created when: a) A task computes a global variable which needs to be

updated through the whole grid. i.e., computation of the total mass of the system.

b) A task calls a third party library which needs the MPI communicator as an

argument, i.e., calling PETSc. These global tasks will create one instance on each

processor instead of one on each patch and need to be scheduled everywhere in the

system at the same time. In a static scheduler, as all tasks are executed in a fixed

order, the global tasks do not need special treatment, but when a task runs out of



35

order, two issues are noticed: deadlock and load imbalance.

Due to the limitation of MPI, there are no nonblocking reduction operations

provided to us in MPI versions 1&2. Such ability is provided in a recent adopted

MPI standard version 3. If global tasks run in an out-of-order way, processors

may not make progress if they are both blocked in different MPI reduction calls.

The load imbalance problem shows itself when processors choose a different path

before executing a global synchronization task. As they need to synchronize at that

task, when one processor has finished more tasks than another processor, a load

imbalance is observed.

To solve these two problems, tasks are divided into different phases in which

each phase contains only one global task. The scheduler only executes the global

task if all of other tasks in its phase have completed then moves to the next phase.

In this way, global task will be execute in a fixed order. In addition, the scheduler

allows nonglobal tasks to be executed in an earlier phase but not a later phase.

4.3 Improvement and Experimental Results
The new dynamic scheduler has produced a significant performance benefit

in lowering both the MPI wait time and the overall runtime. In this section, we

present performance results of a dynamic scheduler with various benchmarks to

demonstrate and analyzes its advantage. These tests were preformed on Kraken at

National Institute for Computational Sciences, the University of Tennessee and on

Ranger at Texas Advanced Computing Center, the University of Texas at Austin.

4.3.1 Dynamic Scheduling Speedup

Component timing results show that our new dynamic scheduler significantly

reduced the task communication wait time. Figure 4.4 and Figure 4.5 show the

percent reduction of both wait time (which is as high as 90% in some cases) and

total execution time on Ranger and Kraken. The example problem used is a two

material compressible Navier Stokes type problem that models the movement of

one material through another at high speed as in [62]. This problem was chosen

as it is a typical example of the problems solved by Uintah and is also challenging

due to the variable and unpredictable workload resulting from the use of AMR.



36

512 1024 2048 4096

0

10

20

30

40

50

60

70

80

90

100

T
im

e
 R

e
d
u
c
e
d
 (

P
e
rc

e
n
t)

Processors

ICE Dynamic vs Static Scheduling (TACC Ranger)

Avg. Task Wait

Total Execution

Figure 4.4. Dynamic Scheduling Speedup, Strong Scaling

192 768 3072 12288 49152

0

10

20

30

40

50

60

70

80

90

100

T
im

e
 R

e
d
u
c
e
d
 (

P
e
rc

e
n
t)

Processors

ICE Dynamic vs Static Scheduling (NICS Kraken)

Avg. Task Wait

Total Execution

Figure 4.5. Dynamic Scheduling Speedup, Weak Scaling



37

In the context of this dissertation, we define strong scaling as a decrease in

execution time when a fixed size problem is solved on more cores, while weak

scaling should result in constant execution time when more cores are used to

solve a correspondingly larger problem. The results on Ranger (Figure 4.4) were

computed on a fixed problem size (strong scaling) with 24578 patches of 163 cells.

Task wait time from 512 to 4096 processors is reduced by about 65% to 90%. The

overall execution time is reduced up to 50% on runs with 49K cores, as when we use

more processors, the part of MPI wait is increasing. The results on Kraken (Figure

4.5) were produced on a fixed problem size per processor (weak scaling) with 8

patches of 163 cells on each processor. Task wait time from 192 to 48K processors

is reduced by around 50 to 60%. The MPI wait time is small part of total run

time on Kraken, due to the benefit of a faster communication network. The overall

execution time is reduced by nearly constant 10% on larger processor counts. These

results show that this approach is especially beneficial on systems with slow and

less consistent communication, a situation that may arise on a possibly very large

future system with very large core counts.

4.3.2 Task Priority

As Uintah does not have a global view of its task graph, traditional scheduling

algorithms based on the knowledge of a complete task graph cannot be used here.

We designed and tested different algorithms which use only local tasks’ status and

the local part of a task graph. The performance of dynamic scheduling depends

on how well the task executions overlap the communication between processors.

As long as a processer’s external ready queue is not empty, the processor will

always have a task to run while waiting for incoming messages. That is to say, the

scheduler will have more opportunity to reduce wait times if the external ready

queue is longer. One way to lengthen the external ready queue is to give the

priority to the task which can generate more ready tasks. Several prioritization

algorithms are designed to maintain a priority external task queue. Once a task’s

external inputs are available, it is inserted into an appropriate position in this

priority queue. The processer will always pick the top task of the priority queue to



38

run, which in turn is the task with the highest priority.

The prioritization algorithms we tested here are: i) Random: Randomly give

out priority. ii) First Come First Serve (FCFS): Give priority to the task which is

earliest satisfied. iii) Patch Order: Give priority to the task according to its patch’s

geometric position (e.g., from left to right). iv) MostMessages: Give priority to the

task which can satisfy most external dependencies (a.k.a., the task will send out

most MPI messages).

The ready queue length, wait time, and overall runtime on an ICE problem

with the above task algorithms are shown in Table 4.1. Results show that dynamic

scheduler needs an effective prioritization algorithm to perform well. We discov-

ered that a prioritization algorithm which can maintain a larger queue length led to

a lower wait time on the basis of this and other experiments. The Random and FCFS

algorithms do not take the communication into account and their scheduling results

are worse than others. The Patch Order algorithm uses the patch’s topologically

sorted order to guide the execution. This causes the scheduled task order trend to

a fixed order and more delays during communication synchronization. We chose

MostMessages as our default prioritization algorithm, as it favors the MPI sending

tasks, which can reduce the MPI waiting time of neighbors nodes.

4.3.3 Granularity Effects

We can also increase the size of the external ready queue by reducing the patch

size. Uintah’s patch design allows the user to easily change the size and data

layout which can affect performance. When the patch size is smaller, there are

more patches per processor. Therefore, more tasks are created per processor and

the size of the external ready queue increases. The following granularity results are

generated from a fixed ICE problem running with 24K cores on Kraken. If patches

are smaller, there are more patches per processor, the average length of the task

Table 4.1. Prioritization Algorithms Effect

Algorithm Random FCFS PatchOrder MostMsg.
Queue Length 3.11 3.16 4.05 4.29

Wait Time 18.9 18.0 7.0 2.6
Overall Time 315.35 308.73 187.19 139.39



39

ready queue increases, and the task wait time is lower.

Figure 4.6 shows that if we use smaller patches, the task wait time is small,

but the overhead of regridding, patch migration, and task scheduling is relatively

large. As a result, the program’s overall execution time will decrease first and then

increase, depending on which part of the effects dominate. This experiment also

shows that the 12x12x12 is an optimal patch size for this ICE problem running

on Kraken with 24K cores. From other experiments, this optimal patch size may

change when solving different problems or running on different machines.

4.4 Summary
We discovered that the time spent waiting for communication in Uintah is due to

dependencies between computing tasks distributed across different processors. A

new dynamic task scheduler that allows better overlapping of the communication

and computation is designed and evaluated in this study to improve the perfor-

mance of Uintah for petascale architecture. Uintah framework’s component design

allows us to replace its original static task scheduler without changing the user’s

8 12 16 20 24
0

2

4

6

8

10

12

14

16

18

Patch Size

M
ea

n 
Ti

m
e 

P
er

 T
im

es
te

p 
[s

ec
.]

ICE with different patch sizes (Kraken, with 24K cores)

 

 
Total Execution
Task Wait
Regrid & Migrate
Scheduling

Figure 4.6. Granularity Effects



40

interfaces or codes. In order to support asynchronous, out-of-order scheduling

of computational tasks, the new scheduler can determine the execution order of

tasks according to both task graph and runtime information by putting tasks in a

distributed directed acyclic graph (DAG) and further isolating task memory. This

new approach is shown to significantly reduce the communication wait time on

large-scale fluid-structure examples.

The next step will be to develop a new task scheduler to include a multithreaded

option to take advantage of the most recent and emerging multicore architectures

as well as future GPU-like architectures. The new scheduler will use MPI for

internode communication and multithreaded task graph execution within nodes.



CHAPTER 5

HYBRID SCHEDULER - MASTER/SLAVE

MODEL

Using the approaches described in the previous chapters, we showed that

Uintah scales well to about 98K cores with a dynamic scheduler for some ap-

plications [22], including a sympathetic explosion modeling problem, funded by

the NSF PetaApps Program, that is one of our main applications’ driving examples.

As we approach problem sizes requiring greater than 100K cores on machines such

as Jaguar1 and Kraken the memory requirements of these problems require a close

examination of the overall memory usage within the Uintah framework. The

typical message passing paradigm that Uintah operated under was that any data

that needed to be shared to a neighboring processor must be passed via MPI. For

multicore architectures, the process of passing data that is local to a node is both

wasteful in terms of latency from MPI sends and receives and in the duplication of

identical data that is shared between cores.

The threading model that is described in this chapter demonstrates the memory

savings that we have observed by eliminating the duplication of data within a

node. These memory savings allow us to expand the scope and range of problems

that we have been unable to explore up until now. For the architectures of Kraken

and Jaguar where the memory per node is limited to 16GB per node, the increase

in memory savings is significant and potentially opens up the range of problems

and core counts that were previously out of reach.

1Jaguar is a DOE supercomputer located at the Oak Ridge National Laboratory with 18,688
compute nodes each of which contains dual hex-core AMD Opteron 2435 (Istanbul 2.6GHz)
processors, 16GB memory, and a SeaStar 2+ router, giving 224,256 processing cores, 300TB of
memory, and a peak performance of 2.3 petaflop/s



42

In this chapter, we look at how to extend the novel approach of Uintah to the use

of this hybrid model. In contrast to many other approaches, the Uintah task-based

model lends itself better to the use of Pthreads, see [12], rather than OpenMP.

5.1 Uintah Global Data Structures
The global memory usage of Uintah when using a straight MPI model for

communication and computation is broken down into three main areas: shared

ghost/halo data from the main computational data from the solution of partial

differential equations, global meta data for the underlying computational grid and

load balancing, and finally the external library requirements. This last case is most

easily dealt with in that, based on experiments run on a single node of Ranger, as

much as roughly a third of the memory use was devoted to external third party

libraries such as MPI and other operating system dependencies, compared to the

internal memory usage for the Uintah framework itself.

5.1.1 Ghost Cell Data in Uintah

The ICE fluid-flow algorithm is a multimaterial computational fluid dynamics

approach that solves the compressible Navier Stokes representation of fluid materi-

als. The state of a single material is described by eight quantities and includes mass,

velocity, internal energy, temperature, specific volume, volume fraction, stress, and

equilibration pressure. For N materials, there are 8N state variables that are solved

for during a single timestep. During the individual steps of the ICE algorithm,

ghost cell data from one patch must be transferred to neighboring patches. For a

typical step, a single layer of ghost cell data is required; however, there are some

steps of the algorithm that require two layers of ghost cell data. In cases in which

turbulence modeling is included, three layers of ghost cell data are included for

several of the state variables. In the computational experiments in this chapter, two

materials were used in an AMR calculation, so there were 16 state variables with

their associated ghost cell data that needed to be transferred during each timestep

of the solution phase.

In the typical Uintah MPI model, ghost cell data are copied to a buffer on the

sending processor and then sent to the receiving processor where they are stored



43

in a buffer before being copied to the data warehouse. This buffer holds a message

consisting of variables whose destination is the same. Although during the sending

and receiving stage, there are potentially four copies of the data that are resident

in memory, once the ghost cell data have been copied to the data warehouse, the

buffers holding ghost cell data are deallocated, requiring only two copies of the

ghost cell data at any given time. In Uintah, the data warehouse is the repository of

solution variables that exists inside each process. The applications code typically

reads the variables it needs from the data warehouse, updates these variables, and

then writes back the updated variables.

It is straightforward to articulate this overhead in a framework like Uintah, as

the following example illustrates. Consider the case when each core has n3
el cubic

mesh patches each of which has n3
p points in it. The number of mesh points native

to that core is then given by Npc where

Npc = n3
eln

3
p.

Suppose that the computational stencil has a halo of nh ghost cells, then the storage

needed per core for the halo information, as denoted by Nh, is

Nh = 2 nh6n2
eln

2
p,

where the factor of two corresponds to a doubling of storage in connection with

MPI. The memory overhead percentage associated with the halo is then given by

Mover, where

Mover =
Nh

Npc
×100% =

12nh

nelnp
×100%.

In Uintah, nel is often in the range 2-4, np = 12 [71], and nh = 2, thus giving a halo

overhead of 100% if nel = 2 and a halo overhead of 50% if nel = 4. Of course this is a

considerable simplification and for a mesh partition that is not cubic when stored

on a core, the halo may be even larger. These numbers correspond to a similar

overhead identified in Cactus [94].

5.1.2 Global Meta-data in Uintah

The Uintah framework currently requires that certain data must be replicated

across the entire domain. This meta-data includes the underlying grid layout and



44

load balancing information, such as patch BVH tree and patch to owner processor

map. The current implementation requires that every processor must know the

extents of every patch (currently just a high and low 3-vector in index space) as well

as which processor owns which patches. Although this lightweight data structure

is relatively small at present (60 bytes or 7.5 doubles per patch) and can easily be

communicated, the growing demand for larger number of processors and patches

and the requirements of AMR can approach the point where this data structure

may, as we will see below, dominate the memory per core in an MPI approach.

On a machine with NTc cores in total, the size of this meta-data structure is Nmd

where

Nmd = 7.5NTc n3
el.

For a small number of partial differential equations each of which will need storage

of O(Npc), the mesh storage, Nmd, will quite easily exceed the core storage if, say,

100K cores are used.

Although only having one copy of the mesh data per node will help to reduce

the memory requirements, this may not completely solve the problem when the

number of cores and nodes approaches those predicted for exascale machines [20].

5.1.3 A Model for Memory Saving in Uintah

In order to assess the possible memory saving from the use of a hybrid approach,

consider a node with nc cores so that the total number of cores is given by

NTc = nnode×nc.

On each node, there are a total of 6nc n3
el internal and external faces of all the

patches. Of these, only 6n2
eln

2
3
c patch faces are on external faces of the node in that

they connect to patches on other nodes. The potential memory saving consists of

the difference between these two terms as well as the saving due to there being

only one copy of the global data structure. Hence the percentage potential memory

saving, Msav is given by

Msav =
6(ncn3

el−n2
eln

2
3
c )2nhn2

p + 7.5NTcn3
el(nc−1)

6ncn3
el2nhn2

p + ncn3
eln

3
p + 7.5NTcn3

elnc
×100%,



45

where the term ncn3
eln

3
p approximates the native variables stored per node. Dividing

both sides by ncn3
el gives

Msav =
(12α)nhn2

p + 7.5nnode(nc−1)

12nhn2
p + n3

p + 7.5nnodenc
×100%,

where α = 1−n−1
el n−1/3

c . Given that np = 12, nh = 2, nc = 12, nel ≈ 2, and α ≈ 0.76 ≈

1−1/(2.3nel) for Kraken, we get

Memsaved ≈
29 + 0.91nnode

58 + nnode
×100%.

Thus giving a potential memory saving of 90% as the number of nodes , nnodes,

becomes large, or, alternatively, a memory reduction to below 10% of the memory

used with MPI alone.

5.2 Hybrid Runtime System Design
As was shown in the previous section, a limitation of pure MPI scheduling is

that tasks which are created and executed on the same node cannot share data

and this causes excessive memory usage on a multicore architecture. The new

multithreaded MPI scheduler described below solves this problem by dynamically

assigning tasks to worker threads during execution and sharing the same infras-

tructure components between threads. The architecture of the runtime system

has been extended to support multithreaded execution. Compared to Uintah’s

dynamic MPI scheduler, the new multithreaded MPI scheduler has one control

thread and several worker threads per MPI process. The control thread holds all

infrastructure components such as the regridder, the load balancer, the task graph,

and the data warehouse and has read and write access to them.

As the control thread is responsible for sending ready tasks to all worker threads,

its efficiency is crucial for the performance of the whole code. If a bottleneck exists

in the control thread, the worker threads may not able to get tasks in time and so

will stay idle. This will cause the whole simulation to slow down. In Uintah’s

multithreaded MPI scheduler, the control thread is designed to be lightweight in

order to provide very quick responses to each worker thread. In the implementation

considered here, the control thread gives priority to assigning tasks to worker



46

threads. Only when all ready tasks have been assigned will the control thread

then start to process task queues and received MPI messages. Also, a separate core

is allocated for the control thread. This allows the control thread to manage task

queues and process MPI receives without undue delay.

The worker threads are designed to be easily manageable and only to execute

tasks assigned by the control thread. Each worker thread has read-only access to

all infrastructure components and also has write access to the data warehouse and

the scheduler queues.

5.2.1 Control Thread

The control thread has two task queues (Figure 5.1): the internal ready queue

and external ready queue. After the task graph is compiled, all the presatisfied tasks

will be placed in the internal ready queue. The value of the counter for tracking

outstanding MPI messages is set according to information provided by the task

graph. When this counter reaches zero, the communication phase is complete and

the task is ready to be executed. At that point, it is placed in the external ready

queue. When scheduling a task, the scheduler chooses a task in the external ready

Figure 5.1. Uintah Hybrid Multithreaded MPI Scheduler



47

queue based on a prioritization algorithm.

At the time when a task is being scheduled, the control thread will select an idle

thread as a target thread and assign a task to it. After the assignment, the control

thread will then wake up this target worker thread through the worker thread’s

condition variable signal. If all threads are busy, the control thread will block itself

by waiting based on its own condition variable until a worker thread signals it.

Since MPI receives and task dependencies are also processed by control thread,

when the external ready queue is empty, the control thread will call MPI Testsome

or MPI Waitsome to process or wait for incoming MPI messages. The control

thread has three states: processing MPI receives and task dependencies, blocked

while requesting idle thread, and blocked in MPI wait. The algorithm for the

control thread must be carefully designed to handle all these cases. A simplified

version of control thread code is shown in Algorithm 5.1. The task external ready

Algorithm 5.1 Control Thread
while doneTasks < totalTasks do

if ReadyQ.Count () > 0 then
if idleThreads.Count () = 0 then

nextCondition.Wait()
end if
targetThread ← pickIdleThreadI()
targetThread.task ← ReadyQ.pop()
targetThread.runCondition.Signal()
doneTasks ++

else
if runnigThreads.Count () = 0 then

receiveMPIs.WaitSome()
else

receiveMPIs.Test()
end if

end if
end while

queue is referred to as ReadyQ here, and the internal ready queue is not shown.



48

5.2.2 Worker Thread

In Uintah’s multithreaded MPI scheduler, each worker thread has been made

easily manageable in that its data structure only contains few variables for thread

controlling and status recording. The scheduler will create a number of worker

threads according to user’s specification. When those threads are initialized, they

will immediately block on their run conditions. Algorithm 5.2 shows the main

loop of every worker thread. When a run signal is called by the control thread,

Algorithm 5.2 Worker Thread
while !QUIT do

runCondition.Wait()
task.Run()
task.SendMPIs()
task← EMPTY
controlThread.nextCondition.Signal()

end while

the worker thread will be awoken and then start running tasks. After each task is

executed, its MPI sends will also be posted by the worker thread. As the MPI send

operation only requires read-only access to the data warehouse, multiple messages

can be sent out concurrently. The worker thread will then ask the control thread for

its next task and block on a run condition again until the next task is assigned. If

the control thread is blocked, a signal from the worker thread will wake the control

thread up. When a task is completed, the worker thread will also check if any task’s

local dependencies are satisfied based on the task graph. Any newly satisfied task

will be placed in the internal ready queue waiting for the control thread’s process.

5.2.3 Thread-safe Data Warehouse

As mentioned above, the core scheduler component that stores simulation

variables is the data warehouse. The data warehouse is a hashed-map-based

dictionary which maps variable name and patch id’s to the memory address of a

variable. Each task can get its read and write variable memory by querying the

data warehouse with a variable name and a patch id. The task dependencies of

the task graph guarantee that there are no memory conflicts on local variables’



49

access, while variable versioning guarantees that there are no memory conflicts on

foreign variables access. These mechanisms have been implemented for supporting

out-of-order task execution in our previous work using a dynamic MPI scheduler

[71]. This means that a task’s variable memory has already been isolated. Hence,

no locks are needed for reads and writes on a task’s variables memory.

However, the dictionary data themself still need to be protected when a new

variable is created or an old variable is no longer needed by other tasks. As

dictionary data must be consistent across the worker threads, the data warehouse

has to be modified to be thread-safe by the addition of read-only and read-write

locks. When a task needs to query the memory position of a variable, a read-only

lock must be acquired before this operation is done. When a task needs the data

warehouse to allocate a new variable, or to cleanup an old variable, a read-write lock

must be acquired before this operation is done. while this increases the overhead

of multithread scheduling, locking on dictionary data is still a more efficient way

than locking all the variables.

5.2.4 Task Requirements

The Uintah scheduler ensures that no input and output variable conflicts will

exist in any two simultaneously running tasks. This also greatly helps users to

write thread-safe simulation components. In fact, all tasks in the ICE and AMRICE

components are thread-safe and can be supported by the multithreaded scheduler

without rewriting any task code. It is still possible, however, that some components

are not thread-safe even though all tasks’ input and output are isolated. For

example, when tasks reuse temporary static buffers which are allocated inside the

task code, those tasks cannot be executed concurrently. In order to enforce this will

require a rewrite of some task code. We are still working to make more of Uintah’s

simulation components compatible with the new multithreaded MPI scheduler.

5.2.5 Global Synchronization

In the approach proposed here, control threads may receive an MPI message

and more than one worker thread may send MPI messages concurrently. The

implication is that those MPI routines must be capable of being used by multiple



50

threads. Many MPI libraries such as MPICH2 and OpenMPI already support

thread-safety without the need for any user-provided thread locks. Once parallel

environment setups up are done correctly, the point-to-point MPI communication

interfaces do not require any changes. In the Uintah framework, these types of

task, which only communicates with neighboring tasks, are called Normal tasks.

However, Uintah also supports Global tasks that require the result of a global

communication. Those global tasks are created when a task computes a global

variable which needs to be updated through the whole grid, e.g., computation of

the total mass of the system, or when a task calls a third party library which needs

the MPI communicator as an argument, e.g., calling PETSc. These global tasks

will create one instance on each processor instead of one on each patch and need

to be scheduled everywhere in the system at the same time. In the purely MPI

scheduler, as no nonblocking reduction routines are provided, a synchronization

phase is introduced to support scheduling global tasks. Tasks are divided into

different phases in which each phase contains only one global task. The scheduler

only executes the global task if all of the other tasks in its phase have completed

and then moves to the next phase. In this way, global tasks will be executed in a

fixed order.

When running in a multithreaded environment, since many MPI collective

communications can happen at the same time, the whole of the task schedule will

not be blocked by a single global task. Hence the synchronization phase to enforce

the order of MPI collective is removed in Uintah’s multithreaded MPI scheduler.

However, there is another problem that arises when scheduling this type of task

in a multithreaded MPI environment. At present, there are no message tags in

current MPI collective routines. One process may be not able to process multiple

MPI collective calls correctly as there are no message tags to distinguish them. In

order to solve this problem, multiple copies of communicators are created. When

scheduling, one MPI communicator is assigned to each global task. This allows

multiple global tasks to run at the same time safely without blocking or interfering

with each other.



51

5.3 Improvement and Experimental Results
The aim of this section is to examine whether the hybrid memory version of Uin-

tah reduces the memory requirement sufficiently for us to consider running larger

problems. In what follows, measurements of the memory usage were obtained

by the MallocTrace memory profiling library described in [62]. Two prototypical

simulation studies were used to compare the hybrid multithreaded/MPI approach

versus the MPI approach. The two metrics that we looked at were memory usage

and run time. The ICE algorithm was tested in both the single level and AMR

case using a simulation of the transport of two fluids with a prescribed initial

velocity of Mach two. For this problem, the conservation of mass, momentum,

and energy equations were solved for two inviscid fluids. The fluids exchange

momentum and heat through the exchange terms in the compressible Navier Stokes

governing equations. This simulation is an explicit formulation and utilized the

w-cycle execution model [48,50] for timestepping in which proportionally smaller

timesteps were used on adaptively refined mesh patches. This problem exercises

all of the main features of ICE and amounts to solving eight partial differential

equations, along with two point-wise solves, and one iterative solve [22, 62].

This AMR ICE benchmark [62] involved three runs of varying sizes denoted

by A, B, and C. The refinement algorithm used tracked the interface between the

two materials, causing the simulation to regrid often while maintaining a fairly

constant sized grid, which allows the scalability to be more accurately measured.

This criteria led to each problem being about four times as large as the previous

one. All three runs are based on a same 3 level adaptive mesh problem but with

different resolutions. Run A uses a 64x64x64 coarse level resolution and contains in

total 26.8 million cells on all 3 levels of the refined mesh. Run B uses a 128x128x128

coarse level resolution and contains 108 million cells. Run C uses a 256x256x256

coarse level resolution and contains 435 million cells. Thus, the problem size of

run C is about four times that of run B and the problem size of run B is also about

four times that of run A. The refinement ratio of all three runs is 4 to 1. Three sets

of experiments were run on the 12 cores per node of Kraken: a pure MPI case,

a case where the 12 cores were split into two times 6 threads, and a third case



52

of 12 threads per node. The results with 12 threads were slightly better, but not

significantly different and so are reported here. The scalability results for cases

A, B, and C are shown in Figure 5.2. Weak scalability as defined in Section 4.3.1

is represented by the almost horizontal lines and strong scalability by the almost

straight diagonal lines in the three cases. The scalability results of these runs are

similar to those reported in [22].

Table 5.1 and Table 5.2 show the reductions in memory and the relative CPU

times when using the hybrid approach. In the strong scaling cases, the memory

saving increases when running with more cores. This follows from the analysis in

the previous section, because for the same grid, the ghost cell data increase as a

proportion of the total data when running with more cores, but a fixed size problem

size, hence the saving is larger when the number of cores increases. However, the

saving of CPU time decreases and sometimes slightly exceeds the pure MPI case

when running with more cores. The reason is that most of CPU savings come from

eliminating in-socket MPI communications. When the number of cores increases,

192 384 768 1.5K 3K 6K 12K 24K 49K 98K
10

1

10
2

E
x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Cores

AMR ICE: Scaling

A B C Strong

Weak

Figure 5.2. Hybrid Scheduling Scalability Results



53

Table 5.1. AMR ICE Relative Memory with Hybrid Approach Compared to MPI

ICE Strong/Weak Runs Memory % Used Relative to MPI
Weak Strong Run A Strong Run B Strong Run C
Run Cores % Cores % Cores %
1 192 50 768 60 3072 61
2 384 46 1536 53 6144 47
3 768 43 3072 44 12288 36
4 1536 34 6144 33 24576 27
5 3072 25 12288 24 49152 18
6 6144 19 24576 17 98304 11

Table 5.2. AMR ICE Relative CPU Time with Hybrid Approach Compared to MPI

ICE Strong/Weak Runs CPU % Used Relative to MPI
Weak Strong Run A Strong Run B Strong Run C
Run Cores CPU% Cores CPU% Cores CPU%
1 192 85 768 85 3072 88
2 384 84 1536 85 6144 91
3 768 90 3072 90 12288 95
4 1536 86 6144 90 24576 97
5 3072 98 12288 99 49152 100
6 6144 107 24576 104 98304 101

the amount of in-socket MPI communication decreases. Hence the saving of CPU

time decreases when running with more cores. The overhead due to the use of the

threaded approach, principally that of locking on the data warehouse and other

nonthreaded components such as the load balancer, will offset the savings from

eliminating in-socket MPI communications.

For the weak scaling cases, the memory savings show a slight increase when

running with more cores. This is because the global meta-data increases as the

number of cores increases. Even though most of memory savings that come

from reducing ghost cell data copies stays constant, the memory savings from

reducing the number of copies of global meta-data increases. Hence we can see

more memory savings on large number of cores in weak scaling tests even though

the ghost cell data per node is constant. In terms of CPU usage, as the in-socket

MPI communication per node stays the same, the effect of switching to the hybrid

approach is also roughly constant for these weak scaling cases.



54

Using the hybrid multithreaded MPI scheduler, we have also been able to

successfully run both the AMR problem and the non-AMR fluid structure inter-

action problem described in Sections 6 and 7 of [22] on as many as 196K cores

on Jaguar, with good scaling results, due to the reduced memory requirement.

These reductions in memory are illustrated by the two material CFD test problems

from [62] used on Jaguar using 110K cores that could not have been previously

run due to memory constraints. This problem had a resolution of 20483 cells and

1283 patches distributed amongst 110,592 cores on Jaguar. The overall memory use

per node was reduced from 13.5 GB per node to 1GB per node (12 cores) when

running the same size problem using the nonthreaded MPI scheduler with 98K

cores. Attempts were made to run this same problem on 110K cores with the MPI

scheduler, but the problem size was too large and we ran out of memory on each

node. The hybrid MPI/threaded approach thus allows us to consider problems that

were previously out of our scope due to memory constraints.

5.4 Summary
These results show great memory savings, and show great promise so far

on 200K cores on Jaguar. However, alongside these memory improvements, it

is the case that further algorithmic improvements will be needed, particularly

for fluid-structure interaction problems, for Uintah to be routinely used with

200-300K cores. This further work will be focused on two aspects: 1) further

improve the performance and scalability of Uintah with hybrid scheduler, 2) make

Uintah’s particle system thread-safe and allow MPMICE component to be able to

take advantage of this multithread approach. This work ultimately leads to the

development of a new runtime system in the next chapter.



CHAPTER 6

HYBRID SCHEDULER - DECENTRALIZED

MODEL

A significant part of the challenge in moving from petascale to exascale problems

will perhaps be to ensure that multiphysics multiscale codes that reflect real appli-

cations can be run in a scalable way on parallel computers with large core counts.

The multiscale challenge involved arises from the need to use approaches such as

adaptive mesh refinement while the multiphysics challenge is typified by different

physics being used in different parts of the domain with different computational

loads in these different spatial domains. In addition, it is necessary to couple these

domains with the different physics and this coupling is an interesting challenge

in itself as the coupling algorithm may be more complex than the algorithms

used away from the interface. These challenges are further compounded by the

anticipated relative memory per core potentially shrinking [14]. Furthermore, the

node architectures are becoming more complex with ever-increasing core counts

and with the potential for the use of accelerators as part of the node [13], on

machines such as Titan1 and Stampede2.

This chapter will start to address some of these challenges by developing

scheduling algorithms and associated software that will be used to tackle fluid-

structure interaction algorithms in which mesh refinement is used to resolve the

structure within the Uintah Computational Framework [33,74,75] described above.

The Uintah code was designed to solve fluid-structure interaction problems arising

1Titan is a parallel computer at Oak Ridge National Laboratory with about 299K CPU cores now
with a large number of attached GPUs to be added in 2012.

2Stampede is a parallel computer at Texas Advanced Computing Center with 2 petaflops of CPU
performance and 8 petaflops of accelerator performance.



56

from a number of physical scenarios. Uintah uses a combination of computational

fluid dynamics algorithms in its ICE solver [48, 50] and couples ICE to a particle-

based solver for solids known as the Material Point Method (MPM) [90, 91]. The

Adaptive Mesh Refinement (AMR) approach used in Uintah is that of multiple

levels of regularly refined mesh patches. This mesh is also used as a scratch pad

for the MPM calculation of the movement and deformation of the solid, [62, 63].

Uintah has been shown to scale successfully with many fluid and solid problems

with adaptive meshes, [22,68]; however, the scalability of fluid-structure interaction

problems has proven to be somewhat more challenging. This is at least partly

because the particles that represent the solid in Uintah can freely move across mesh

patch boundaries in a way that was not known beforehand and partly because not

all the domain is composed of the solid or fluid. There are two key components in

the approach that will be described here to improve the scalability of fluid-structure

interaction. The first component concerns access to data stored at the level of a

node in Uintah. In Uintah, a multicore node is treated similarly to a miniature

shared memory system, and only one copy of Uintah’s global data needs to be

stored per multicore node in the data warehouse that Uintah uses, thus saving

a considerable amount of memory overall [68] as shown above. This approach

also makes it possible to migrate particles across the cores in a node without

using MPI. However, for this approach to be successful, it is necessary to design

a data warehouse that large numbers of cores can simultaneously access without

contention.

The second component concerns how the cores themselves request work. In the

model proposed in Chapter 4 and in [68], a single centralized controller allocates

work to the cores. This approach has worked well on the Kraken and Jaguar XT5

architectures. This approach breaks down when there are more cores per node, and

when communications are faster, as on the new Jaguar XK6 machine that presently

consists of the CPU part of the proposed Titan machine. The solution, as will be

shown, is to move to a distributed approach in which the cores themselves are able

to request work.

Both approaches will be shown to make a substantial improvement to the



57

scalability of fluid-structure interaction problems. This improvement in scalability

will be demonstrated by using a challenging problem that consists of the motion

of a solid through a liquid that is modeled by the compressible Navier-Stokes

equations. The solid is modeled by particles on the finest part of an adaptive mesh.

The challenge addressed here is similar to that addressed in the PRONTO

work [16, 17] for the solution of contact problems in which the contact algorithm

requires more work than takes place in the rest of the domain. There are many

examples of other parallel fluid-structure interaction work [27, 36, 43, 45], but the

approach adopted here is somewhat different to many as it relies heavily upon the

asynchronous nature of Uintah.

6.1 Uintah’s Fluid-Structure Interaction Methodology
The Uintah Computational Framework was intended to make it possible to

solve complex fluid-structure interaction problems on parallel computers. In

particular, Uintah is designed for full physics simulations of fluid-structure in-

teractions involving large deformations and phase change. The term full physics

refers to problems involving strong coupling between the fluid and solid phases

with a full Navier-Stokes representation of fluid phase materials and the transient,

nonlinear response of solid phase materials which may include chemical or phase

transformation between the solid and fluid phases.

Uintah uses a full multimaterial approach in which each material is given a

continuum description and is defined over the complete computational domain.

Although at any point in space the material composition is uniquely defined, the

multimaterial approach adopts a statistical viewpoint whereby the material (either

fluid or solid) resides with some finite probability. To determine the probability

of finding a particular material at a specified point in space, together with its

current state (i.e., mass, momentum, energy), multimaterial equations are used.

The algorithm that uses a common framework to treat the coupled response of

a collection of arbitrary materials is described below. This methodology follows

the ideas of Kashiwa et al. [58, 60]. Individual equations of state are needed for

each material to determine relationships between pressure, density, temperature,



58

and internal energy. Constitutive models are also required to describe the stress

for each material based on appropriate input parameters (deformation, strain rate,

history variables, etc.). In addition to those parameters, the multimaterial nature

of the equations also requires closure for the volume fraction of each material.

6.1.1 The ICE Multimaterial CFD Approach

In order to represent fluids in its multimaterial CFD formulation, Uintah uses

the ICE ( Implicit Continuous-fluid Eulerian) method [49], further developed by

Kashiwa and others at Los Alamos National Laboratory [60]. The use of a cell

centered, finite volume approach is convenient for multimaterial simulations in

that a single control volume is used for all materials. This is particularly important

in regions where a material volume goes to zero, as by using the same control

volume for mass and momentum, if the material volume tends to zero, then the

associated mass and momentum also similarly tend to zero. The technique allows

wide generality in the types of problems that can be simulated.

The Uintah implementation of the ICE technique uses operator splitting in

which the solution consists of a separate Lagrangian phase where the physics of

the conservation laws are computed and an Eulerian fluids phase in which the

material state is transported via advection to the surrounding cells. The general

solution approach is well-developed and described in [47, 48, 50, 97].

6.1.2 The Material Point Method

Solids in Uintah are represented by the particle method known as the Material

Point Method (MPM) [90, 91]. MPM is a powerful technique for computational

solid mechanics and has found favor in applications such as those involving

complex geometries, large deformations, and fractures; see [21] for these and many

other examples. MPM is an extension to solid mechanics of FLIP [25], which is

a particle-in-cell (PIC) method for fluid flow simulation [26]. Uintah also uses

an implicit formulation of MPM [46]. In MPM, Lagrangian particles or material

points are used to discretize the volume of a solid material. Each particle carries

state information (e.g., mass, volume, velocity, and stress) about the portion of

the volume that it represents. The MPM method typically uses a cartesian grid



59

as a computational scratchpad for computing spatial gradients. This grid may be

arbitrary, and in Uintah it is the same grid used by the accompanying multimaterial

ICE CFD component. Particles are usually created on the finest level of the mesh

and are always mapped back to the background grid according to their coordinates.

The initial physical state of the solid is projected from the computational nodes to

the cell centers collocating the solid material state with that of the fluid. This

common reference frame is used for all physics that involve mass, momentum, or

energy exchange among the materials. This results in a tight coupling between the

fluid and solid phases. This coupling occurs through terms in the conservation

equations, rather than explicitly through specified boundary conditions at inter-

faces between materials. Since a common multifield reference frame is used for

interactions among materials, typical problems with convergence and stability of

solutions for separate domains communicating only through boundary conditions

are alleviated. Considerable improvements in MPM and its analysis [82, 89, 96, 99]

have resulted from work connected to the Uintah code.

6.1.3 Uintah Fluid-Structure Algorithm

The combination of MPM and ICE, MPMICE, is Uintah’s fluid-structure inter-

action component. One of the challenges in multiphysics simulations is that the

coupling algorithms involve calculations with each of the methods used in the

domains that are coupled. Such calculations impose extra work in the coupling

domain and also involve calls to the functions that implement the individual

methods being coupled. In the Uintah coupling algorithm, there are twelve steps.

Some of these steps apply only to the fluid (as labeled by ICE), others apply only

to the solid (as labeled by MPM), while other steps apply to both the fluid and

the solid (as labeled by MPMICE). If each phase of this algorithm is used as a

synchronization point, then the parts of the domain not containing a multiphysics

interface will be locked out while the interface calculation proceeds. The twelve

steps used in the Uintah coupling algorithm are [50]:

1. Interpolate particle state to grid, MPM;

2. Compute the equilibrium pressure, ICE;



60

3. Compute face centered velocities for the Eulerian advection, ICE;

4. Compute sources of mass, momentum, and energy as a result of phase

changing chemical reactions, MPMICE;

5. Compute an estimate of the time advanced pressure, ICE;

6. Calculate the face centered pressure using a density weighted approach, ICE;

7. Calculate material stresses, MPM;

8. Compute Lagrangian phase quantities at cell centers, ICE;

9. Calculate momentum and heat exchange between materials, MPMICE;

10. Compute the evolution in specific volume due to the changes in temperature

and pressure during the foregoing Lagrangian phase of the calculation, ICE;

11. Advect fluids for the fluid phase, ICE;

12. Advect solids for the solid phase, interpolate the time advanced grid velocity

and the corresponding velocity increment back to the particles, and use these

to advance the particle’s position and velocity, respectively, MPM.

The difficulties associated with this algorithm from a parallel scalability point of

view are twofold. The first difficulty is that the MPM work per patch depends

on the number of particles per patch. This value constantly changes as particles

enter or leave patches. The second difficulty is that as particles are not distributed

throughout the domain, the work associated with MPM only takes place in an

irregular and transient manner throughout the patch set.

6.1.4 Scaling Challenges

The motivating fluid-structure interaction problem used here arises from the

simulation of explosion of a small steel container filled with a solid explosive

(PBX-9501). The explosive ignites and begins to burn, converting the solid into

a high temperature gas which in turn causes the container to pressurize. As the

pressure increases, the container expands and eventually ruptures violently. The

benchmark problem used for this scalability study is the transport of a small cube

of steel container piece inside of the PBX product gas at an initial velocity of Mach

two. The simulation used an explicit formulation with the lock-step timestepping

algorithm which advances all levels simultaneously. This problem exercises all of



61

the main features of ICE, MPM, and AMR and amounts to solving eight partial

differential equations, along with two point-wise solves, and one iterative solve

as described in [22, 62]. The ICE method [58, 60, 96] is used to model the gas and

the MPM [90] method is used to model the solid. The interactions between the

gas and the solid that cause the block of material to move are modeled using the

algorithm described in [47, 48, 50]. This benchmark also included a model for the

deflagration of the explosive and the material damage model ViscoSCRAM [19]

in order to be representative of the type of target calculations at which Uintah is

aimed [22]. The simulation utilized three mesh refinement levels with each level

being a factor of four more refined than the previous level. The starting solution

with fluid velocity arrows and the refined spatial mesh around the moving block

of material to this problem is shown in Figure 6.1 as is the solution at the end of the

run again with with fluid velocity arrows and the refined spatial mesh around the

moving object. The initial solution with velocity arrows is shown on top left and

its mesh is shown on top right; the final Solution with velocity arrows is shown

on bottom left and its mesh is shown on bottom right. The refinement algorithm

used tracked the interface between the solid and the fluid, causing the simulation

to regrid often while maintaining a fairly constant sized grid, which allows the

scalability to be more accurately measured. This criteria led to each problem being

about four times as large as the previous one.

This test problem was originally run on NSF’s Kraken system [65] in 2011 with

the scaling results shown in Figure 6.2. In this figure, the average time per timestep

is compared against the number of cores used. The benchmark involved four

strong scaling runs of varying size. Each of these runs uses an initial coarse mesh

with doubled resolution with respect to the previous run. The refinement criteria

used in MPMICE refines the mesh anywhere that particles exist. This refinement

criteria led to each problem being about eight times as large as the previous one.

In the four cases shown, the number of mesh cells were 619K, 3.8M, 21.3M, and

152M, respectively, while the number of MPM points used to represent the solid

were 2.1M, 16.8M, 134M, and 1.1B in each of the strong scaling cases associated

with the four solid lines. In the case of the run with the largest number of points,



62

Figure 6.1. Uintah AMR MPMICE Simulation Solution



63

12 24 48 96 192 384 768 1.5K 3K 6K 12K 24K 49K 98K

1

2

3

4

5
6
7

9

M
ea

n 
Ti

m
e 

P
er

 T
im

es
te

p 
(s

)

Cores

AMR MPMICE: Scaling

 

 

Strong
Weak

Figure 6.2. AMR MPMICE Initial Scalability Results

the rightmost solid line, the strong scaling clearly breaks down as the line turns

up. In this case, the code has only only 16% relative efficiency [65] at the final point

with respect to the run in the top leftmost corner. The dashed lines show weak

scaling information in which the lines should be horizontal if weak scaling occurs

when moving to a larger core count with the same amount of work per core. In the

case of this problem at larger core counts, both weak as defined above and strong

scaling as defined in Section 4.3 break down.

In this example, as the solid moves through the domain, the number of particles

in a certain area changes significantly. Figure 6.3 shows how the number of particles

and execution time changes during the simulation at two different locations.

Location A is at the front of the object while location B is at one of the edges

of the object. Figure 6.3 shows that the computing cost of a patch with particles

is about six times as great as the cost of a patch without particles. This causes a

serious load imbalance issue which leads to poor scaling results as shown in Figure

6.2. Even with the measurement-based load balancer [62], the computational work

in a region with particles is hard to precisely predict. When running with pure MPI

scheduler, if one core has finished its assigned work faster than the other cores, it

has to stay idle and wait for them to finish even if they are in the same node.



64

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Simulation Timestep

N
um

be
r o

f P
ar

tic
le

s

 

 
Location A
Location B

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

Simulation Timestep

C
om

pu
tin

g 
Ti

m
e 

(s
ec

on
d)

 

 
Location A
Location B

Figure 6.3. MPM Particles and Task Execution Time



65

With the same code, adaptive mesh refinement scaled well to 98K cores, [68].

The challenges that arose in the scaling of this fluid-structure interaction problem

directly motivated and influenced the work presented here.

6.2 Decentralized Hybrid Runtime System Design
A potential bottleneck in the master slave model hybrid scheduler is that a

worker thread may become idle if the control thread cannot respond to its next

ready task request quickly enough. In order to guarantee a short response time,

the control thread was assigned to a dedicated core. This approach led to this core

being under-utilized when running with small number of cores, as there was not

enough work to keep the control thread busy. The solution to this was to design

a new decentralized multithreaded scheduler to allow all threads to process MPI

sends and receives or to execute tasks concurrently without a control thread.

Instead of asking the control thread for a ready task, the threads in the decentral-

ized multithreaded scheduler directly pull tasks from the two ready queues. When

a thread pulls a task from the internal ready queue, then MPI nonblocking receives

will be posted. Also, when a thread pulls a task from the external ready queue,

then a task’s call-back function will be executed and MPI sends will be posted after

task execution. Figure 6.4 shows the threads and shared data structures in this new

design. Furthermore, each thread must keep checking the task queues and MPI

receives when it is idle as there is no longer a central controller. As this could lead

to busy-locking on those shared resources when multiple threads become idle and

keep acquiring read locks, a two-stage execution approach is used.

The first stage is to check if any work is available, either to process MPI receives

or to execute a task for the current thread. When there is a ready task or a pending

MPI receive, the scheduler will switch to the second stage to execute the task or

to process MPI receives concurrently. If no work is available, a mutex needs to be

acquired before checking all the task queues and MPI receives again. The scheduler

will not release this mutex and so will prevent other idle threads from checking task

queues and MPI receives until a new ready task is available or a new MPI receive

is posted. In this way, when multiple threads become idle, checking for shared



66

Select Task &

Post MPI Receives

Select Task &

Execute Task

Check Records &

Find Ready Tasks

Comm

Records

Internal

Task Queue

External

Task Queue

Task

Graph

Post Task

MPI Sends

N
e
tw

o
rk

Data

Warehouse

(one per

node)

put

valid

send

get

recv

MPI_

ISend

MPI_

IRecv

MPI_

Test

Execution Layer

(runs on multiple cores)

Shared Objects

(one per node)

Data Management

Figure 6.4. Thread and Shared Data Structures of Decentralized Hybrid Scheduler

resources will be slowed down by this mutex and priority is given to threads that

are able to update the task queue or to post MPI receives.

Table 6.1 shows a performance comparison between the decentralized and

master-slave models in a single node. In this case, the decentralized model

outperforms the master-slave model on all runs up to 32 cores per node. By

monitoring the CPU utilization of each core, it was confirmed that the decentralized

model solved the issue of under utilization of the core that runs the control thread.

Furthermore, when one master control thread with 1, 3, 7, 15, and 31 worker

threads is used, the CPU loads on the control thread increase linearly and are about

0.3%, 0.7%, 1.7%, 3.0%, and 6.9%, respectively. There is an increase in master

control thread CPU usage with increasing numbers of worker threads. This makes

it difficult to balance the control thread workload with the worker threads. While

Table 6.1. Execution Time: Master-Slave vs Decentralized

Number of Cores 2 4 8 16 32
Master-Slave 57.28 20.72 9.4 4.81 2.95
Decentralized 29.8 15.84 8.2 4.59 2.78



67

the master-slave model will likely hit a control thread bottle neck when number

of cores per node increases, in contrast the decentralized scheduler is able to fully

utilize all available cores on-node, regardless of the number of cores.

6.3 Uintah Hybrid Parallelism Improvements
This section will discuss how the MPI multithreaded hybrid approach was

used to overcome the challenges with regard to scaling fluid-structure problems.

Our previous published work used the multithreaded MPI approach for fluids

problems without particles by using ICE algorithm. Unlike all the tasks in ICE

components which were thread-safe, several race conditions were found to exist

on MPM simulation components. Most of these race conditions were due to the

use of global temporary data structures instead of local ones and were easily fixed.

However, much of the existing framework related to particles had to be rewritten

to guarantee thread-safety.

6.3.1 Reducing Particle Relocation Costs

As noted above, in Uintah, solid objects are represented by MPM particle

variables. During a timestep, each particle’s new location co-ordinates and other

physical attributes will be computed by MPM tasks and saved in the data ware-

house. If a particle’s position moves from one patch to another, it is the infrastruc-

ture’s responsibility to map those particle variables back into the background grid

according to their new locations. This is done by inserting a relocation task to the

task graph. During this process, each particle’s new “owner” patch will be located

in the patch BVH tree according to its new co-ordinates. If the new “owner” patch is

located on the same node, only a simple re-indexing of the patch’s particle variable

array is required. However, if the new “owner” patch is located on another node,

the particle information is transmitted using MPI. In particle relocation, only the

sending node has knowledge of the new particle location and how many particles

and their variables need to be transferred. The destination node must know the

source node id first, as MPI nonblocking receives cannot be posted without a source

rank id. To transfer the source node id to all destination nodes, Uintah uses an

MPI scatter message which can distribute a vector to all nodes concurrently. In



68

this way, for any particle that is moved using MPI, two messages are required.

Thus the cost of moving a particle off a node is much more expensive than that of

moving a particle inside a node or core. As illustrated in Figure 6.5, when using a

hybrid MPI multithreaded approach, the number of particles that need to be sent

is significantly reduced when using one MPI process per node as opposed to one

MPI process per core, as all transfers internal to a node no longer use MPI.

6.3.2 Load Balancing Improvements

By using the hybrid scheduling approach described above, all tasks in the same

node can be executed by any idle cores on that node. Moreover, the load balancer

now profiles and predicts workload per node instead of per core. The accuracy of

prediction is improved as changes of workload over a larger region are generally

more stable than those over a small region. The average core load imbalance value

was reduced from about 60% to 25% when running with nearly one patch per core

at 100K cores on the Jaguar XK6 by using this approach.

6.3.3 Using Lock-free Data Structures

A major overhead of the multithreaded scheduler approach [68] is due to the use

of locking to protect shared data structures. This overhead keeps increasing with

the number of cores per node as contention for acquiring locks also increases. A

significant reduction in tasks waiting was obtained by eliminating large amounts of

locking overhead through a redesign of some of the shared data structures so as to

make them lock-free, in particular by using hardware-based atomic operations [40],

Processor  

Boundary 

Patch Boundary 

MPI Thread/MPI 

Figure 6.5. Particle Relocation Example



69

which are supported by modern CPUs. These new data structures can be made to

be more efficient than using the traditional Pthread read write lock and mutex [40].

Uintah has three types of variables: 1) Grid variables exist everywhere in the

simulation grid for flow simulations. Grid variables on the same node can share a

combined 3D array with different memory windows. As both the memory window

and the 3D array are reference counted, the associated memory will be deallocated

when no longer referenced. 2) Particle variables exist only at a certain point for

solid MPM simulations in Uintah. Particles in a Uintah patch are saved in a simple

vector and indexed by a subset of that vector. By saving recent query ranges,

particle sets are cached so as to speed up later queries. 3) Reduction variables are

designed to combine multiple values provided by different tasks. The reduction

variable operator must be associative, so that the order of computation will not alter

the final value, apart from rounding errors. When the same reduction variable is

computed multiple times on the same node, the locally reduced value will be

updated immediately and stored in the data warehouse. After all local tasks have

computed reduction variables, the global value of the reduction variable will be

calculated through a call to MPI AllReduce. As mentioned above, Uintah variables

can share the same memory window and 3D array. In fact, most of Uintah objects

such as grid level, variable label, and MPI buffers are also reference counted so

that they can be easily deallocated when no longer needed. When running in

multithreaded mode originally, reference counters were protected by a fixed size

array of mutexes to ensure correctness. Once a new reference counted object was

created, a mutex from this array was assigned to it in a round-robin fashion. This

design allowed many objects to share a mutex instead of each object creating its

own as there may be thousands of reference counted objects and dynamically

creating thousands of mutexes is too expensive. However, potential false-conflicts

may exist when accessing two unrelated objects which happen to share the same

mutex. This reference counting lends itself to the use of atomic operations, [40].

A new reference counting class was implemented in Uintah by using add and fetch

and sub and fetch atomic operations to replace the Pthread mutex vector.

As described above, all tasks depend on the hashed multimap data warehouse



70

to look up and save variables by using a patch id and variable name key. Each

data warehouse has a Pthread read/write lock to protect the hashed multimap. A

read-only lock needs to be acquired when a task looks up a variable’s memory

address from the data warehouse. A write lock needs to be acquired when a new

variable needs to put a result into the data warehouse either from a computational

task or from MPI message. Based on our timing results on Uintah read-write locks

in Table 6.2, the data warehouse lock was seen to be the largest single source of

overhead, far exceeding the four other main data structures that used locks on a

node. For this reason, the hashed multimap data warehouse was redesigned to

be lock-free by using a two-step look up strategy. During task graph compilation,

a hash map containing keys of all locally computed and required variables is

created on-the-fly. This hash map will not change during task execution and

can also be shared by multiple data warehouses until the task graph needs to be

recompiled. The actual container of variables in each data warehouse will be a

preallocated vector which has exactly the same size as this hash map. The value

of this precomputed hash map will be the index to the container vector. When

accessing a variable, the data warehouse will first use the hash-map key to locate

the variable from its private container vector. As the precomputed hash map

is read-only during the task execution, no lock is needed to protect it. When

updating the container vector, atomic operations are used to achieve consistency

among threads.

A simplified version of the Variable Inserting Algorithm for putting a new

variable into the data warehouse using the compare and swap atomic operation is

shown in Algorithm 6.1. This algorithm inserts a variable to a linked list atomically.

The head of this linked list is saved in the container vector. A Variable Combining

Algorithm for reducing reduction variables using the test and set atomic operation

Table 6.2. Shared Data Structure Locking Cost

Data Structure DW Level Particle TaskQ(int) TaskQ(ext)
Read Lock(s) 7.86 0.066 0.056 0.035 0.009
Write Lock(s) 12.14 0.007 0.001 0.064 0.011



71

Algorithm 6.1 Variable Inserting: Put a variable into the data warehouse
function add(key,var)

idx← hash map[key]
di← new dataitem()
di∧.var← var
repeat

di∧.next← vector[idx]
until compare and swap(&vector[idx],di∧.next,di)

end function

is shown in Algorithm 6.2. This algorithm combines the new value of a variable

Algorithm 6.2 Variable Combining: Reduce a variable into the data warehouse
function reduce(key,var)

idx← hash map[key]
di← new dataitem()
di∧.var← var.clone()
repeat

old← test and set(&vector[idx],0)
if old = 0 then

old← di
else

old∧.var∧.reduce(di∧.var)
delete di

end if
di← test and set(&vector[idx],old)

until di = 0
end function

with the existing value in the data warehouse. When multiple threads try to update

this value, any two threads can compute the combined reduction value without

being serialized. As these atomic operations are used on our redesigned data

structures, Pthread locks are no longer needed to protect a long critical session

when accessing the hashed multimap data structure.

6.4 Experimental Results
This section will consider whether or not hybrid parallelism can sufficiently

improve the performance and scalability of fluid-structure interaction problems in

Uintah. We will also examine the performance difference between using a lock-free



72

data structure and a traditional lock-protected data structure. The prototypical

simulation study used in Section 6.1.4 was used to compare the hybrid multi-

threaded/MPI approach, the multithreaded/MPI with lock-free data warehouse

approach and the MPI approach.

6.4.1 Single Node Performance Improvement

The first comparison is between the hybrid multithreaded MPI approach and

the lock-free data warehouse on a single shared memory node. This test was run on

a Jaguar Cray XK-6 external node with 32 AMD interlagos cores. Figure 6.6 shows

the speedups when running with 2, 4, 8, 16, and 32 cores. Three sets of strong

scaling benchmark results were gathered by using the dynamic MPI scheduler, the

decentralized multithreaded MPI hybrid scheduler with the old Pthread locking

data warehouse and the decentralized multithreaded MPI hybrid scheduler with

the lock-free data warehouse. The input files for all three runs are identical and

generate 887K particles on an AMR grid. The multithreaded scheduler with the

lock-free data warehouse is 1.4X faster than with Pthread locking data warehouse

1 2 4 8 16 32

5

10

15

20

25

CPU Cores

S
p
e
e
d
u
p
 (

ti
m

e
s
)

MPI

Thread (pthread lock)

Thread (lockfree dw)

Figure 6.6. Performance Comparison on Single Node



73

and 2.4X faster than using MPI only.

Table 6.3 shows the execution time comparison results when running with

different numbers of MPI processes and with different numbers of threads per MPI

process. CPU affinity was used to guarantee that each thread is assigned to a

dedicated core. Threads in the same MPI process were assigned to nearby cores so

as to limit any possible cache-coherence overheads. These benchmark results show

that the optimized performance for this problem is achieved when running with

the maximum number of available threads per MPI process, also when increasing

the number of threads to be larger than the number of cores per node. The results

of using 64 and 128 threads on a 32 core node are about 9% slower than when using

32 threads. As Uintah threads are lightweight, we are able to run 1024 threads

per node, which is much larger than the 32 available cores and the additional

scheduling overhead is about 11%. With MPI-only, the execution times for 64 and

128 MPI processes on a 32 core node are 6.60 and 8.63 seconds, 27% and 67% slower

than 32 MPI process. We are unable to obtain a result for 1024 MPI processes per

node as this exceeds available memory due to the heavy memory footage by using

MPI process.

6.4.2 Overall Scalability

The scalability benchmark involved four runs with varying problem sizes using

a similar approach to that in Section 6.1.4 and the same test problem. Each run

uses a mesh that was refined by a factor of two in each dimension with respect to

the previous run. As the mesh is refined where particles exist, eight times as many

particles will be created than on the original coarse mesh. The number of particles

created in the four runs are 7.1 million, 56.6 millon, 452.9 millon, and 3.62 billion,

respectively. This leads to each run being approximately eight times as large as

the previous run. As we will also generate weak scaling results at the same time,

Table 6.3. Mixed MPI and Threads Performance

nMPI 32 16 8 4 2 1 1 1 1
nThread 1 2 4 8 16 32 64 128 1024

ExecTime(s) 5.18 3.77 3.05 2.79 2.62 2.22 2.40 2.41 2.47



74

the problem size per node needs to be constant. Therefore, eight times as many

cores were used from one run to the next. These tests were run on the Jaguar

Cray XK-6 machine with up to 256K cores and with 16 cores per node. Figure 6.7

shows the scaling results for four benchmark tests. Weak scalability is represented

by the almost-horizontal dashed lines and strong scalability by the almost-straight

diagonal solid lines in the four runs. The strong scaling efficiency of the largest

problem (the rightmost solid line) is 68% at 256K cores relative to the base case of

16K cores.

By using optimized hybrid multithreaded MPI algorithms, the number of MPI

ranks involved in communication is reduced without much performance overhead.

For the MPMICE problem, overheads as percentages of local computations are:

1.2% for allocation variables and put in the data warehouse, 6.9% for querying and

assembling variables from the data warehouse, 0.6% for querying particle sets from

the data warehouse, 1.5% for reading tasks from the work queue, 1.2% for inserting

tasks into the work queue with priority. The major single overhead (6.9%) of the

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K
1

2

3

4

5

6
7

9
10

20

M
e

a
n

 T
im

e
 P

e
r 

T
im

e
s
te

p
 (

s
)

Cores

AMR MPMICE: Scaling

Strong

Weak

Figure 6.7. Improved AMR MPMICE Scalability Results



75

Uintah framework is querying and assembling variables, in particular when: 1)

Mapping patches between different AMR levels, 2) Allocating new memory and

copying data to this new memory to hold both patch center and halo regions when

preallocation is not possible.

This approach leads to better weak scaling. Figure 6.8 shows the weak scaling

efficiency compared to the previous MPI only benchmark result. The base cases

to calculate efficiencies are 24 cores for MPI runs on Kraken and 64 cores for the

hybrid multithreaded MPI runs on Jaguar XK6. These two series are the same as the

second from bottom dashed weak scaling line in Figure 6.2 and the bottom dashed

weak scaling line in Figure 6.7. The results show significant improvement of weak

scaling efficiency when using hybrid multithreaded MPI approach, especially on

runs with large core counts.

10
1

10
2

10
3

10
4

10
5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU Cores

W
e
a
k
 S

c
a
lin

g
 E

ff
ic

ie
n
c
y

MPI (Kraken XT5, 2011)

Hybrid MPI/Pthreads (Jaguar XK6, 2012)

Figure 6.8. Weak Scaling Efficiency Comparison



76

6.5 Summary
These results presented here show great performance improvements, and also

show good scalability so far on 256K cores on Jaguar Cray XK-6 by using the hybrid

multithreaded MPI scheduler and the new lock-free data structures. However,

alongside the lock-free data warehouse, many other shared data structures such as

task queues, particle subset caches, and patch BVH trees still need to be redesigned

to be lock-free. Even though these data structures are accessed less frequently than

the data warehouse, the waiting time for acquiring locks related to these structures

is going to grow as the number of core per node increases. The future removal

of all these locks and making Uintah fully lock-free will improve the scaling here

still further on present and future many-core and multicore machines. The present

decentralized scheduler will also be used instead of the current master-slave model

used in the Uintah GPU scheduler [52]. This will require the current GPU controller

thread routines to be rewritten to guarantee thread-safety, but will allow these

scalability results to be extended to heterogeneous CPU-GPU architectures.



CHAPTER 7

UNIFIED SCHEDULER - GPU SUPPORT

An important trend in high performance computing is the planning and design

of software framework architectures for emerging and future systems with multi-

petaflop and eventually exaflop performance [68]. Such frameworks must address

the formidable scalability and performance challenges associated with running on

these systems, and must also insulate application developers from the inherent

complexity of the parallelism involved. Traditional systems are now commonly

augmented with graphics processing units (GPUs). Software framework designs

must consider these heterogeneous architectures and additionally plan for future

many-core designs.

In this chapter, we describe the evolution of Uintah’s hybrid multithreaded

MPI runtime system [68] to support, schedule, and execute both CPU and GPU

tasks simultaneously, without a central control thread. In this study, this new

design is examined in the context of a hierarchical GPU-based ray tracing radiation

transport model that provides Uintah with additional capabilities for heat transfer

and electromagnetic wave propagation. Preliminary results from computational

experiments on TitanDev1 are presented.

7.1 Radiation Modeling
We extended the Uintah framework so that problems involving radiation can

also be directly supported within Uintah. Some kinds of radiation transport

problems already use CFD codes and AMR techniques [55, 78]; however, other

1TitanDev was a 960 node partition on the DOE supercomputer Jaguar, available during its
upgrade to Titan in late 2012. Each node contains a single 16-core AMD Opteron 6200 Series
(Interlagos cores @2.6GHz) processor on one of its two sockets, the second socket contains a single
Nvidia Tesla 20-series GPU, for a total of 15,360 CPU cores and 960 GPUs.



78

problems require the concept of tracing rays or particles, such as the simulation of

light transport, heat, radiation, or electromagnetic waves.

The approach adopted in Uintah is on using the RMCRT methods, as described

by [72]. This approach has the important advantage that by using the principle of

reciprocity in radiative transfer, rays are traced backwards from the computational

cell, thus eliminating the need to track ray bundles that never reach that cell [72]. In

RMCRT, rather than following a ray forward and calculating the energy it has lost,

the amount of incoming intensity from its path absorbed by the origin where the

ray was emitted is calculated. As Sun [92] points out, RMCRT is more amenable

to domain decomposition and thus parallel implementation due to the backward

nature of the process. Figure 7.1 shows the back path of a ray from S to the emitter

E, on a nine cell structured mesh patch. Each ith cell has its own temperature Ti,

Figure 7.1. Outline of Reverse Monte Carlo Ray Tracing



79

absorption coefficient κi, scattering coefficient σi, and appropriate path lengths li, j.

In each case, the incoming intensity is calculated, say in cell 4, and then traced back

through the other cells. The intensity is integrated along the ray path to compute

a divergence of the heat flux or a surface flux. When a ray hits a boundary (as on

surface 17 in the figure), it can be either reflected or absorbed depending on the

surface properties. Rays are terminated when their intensity is sufficiently small.

Despite the improved efficiency over forward RMCRT, there are considerable

challenges in the efficient implementation of RMCRT as it is an all-to-all method,

where all of the geometry information and property model information for the

entire computational domain must be present on each processor [92]. This nature

severely limits the size of the problem that can be computed due to memory

constraints, especially with large highly resolved physical domains. This challenge

is being addressed by using the multilevel mechanisms within Uintah to represent a

portion of the domain at a coarser resolution, thus lowering the memory usage [54].

The hybrid memory approach of Uintah also helps as only one copy of geometry is

needed per multicore node. In general, the data required by the RMCRT algorithm

are projected to all of the coarser levels, with each level spanning the entire domain.

For each fine level patch, data from the coarser levels are retrieved from the Uintah

data warehouse so it encompasses the patch in a stair step fashion.

CPU-only scalability studies of the RMCRT for the benchmark problem as

described by Burns and Christon [28] were run on a single level [54] with 2563

cells, using 25 & 100 rays per cell. Each scaling run was run for 10 timesteps,

1 patch per processor, and the mean time per timestep was computed. These

preliminary results show reasonable scaling up to 16K cores on Titan; above this,

the loss of scalability is perhaps due to increased communication costs and/or a

load imbalance. Nevertheless, these results provide a good proof of concept and

an excellent starting point for this work.

7.2 GPU Runtime System Design
This section describes a intermediate version of CPU-GPU scheduler which

then leads to the development of a Unified scheduler in Section 7.3. In the same



80

fashion that Uintah insulates the application developer from the parallelism its

infrastructure provides via the multithreaded CPU scheduler, the hybrid CPU-GPU

version also hides and carefully manages details related to GPU memory allocation

and transfer. Associated with each Uintah task is a C++ method which is used to

perform the actual computation. In the context of the hybrid CPU-GPU scheduler,

a GPU task is represented by an additional C++ method that is used for GPU kernel

setup and invocation. This design uses Nvidia CUDA C/C++ exclusively for both

the Uintah infrastructure and user GPU tasks.

Central to the master-slave design of the hybrid multithreaded/MPI CPU-GPU

scheduler [52] is the multistage queuing architecture for efficient scheduling of CPU

and GPU tasks. The CPU-GPU scheduler utilized four task queues: an internal

ready and external ready queue for CPU tasks and an additional pair of queues

for the GPU: one for initially ready GPU tasks, those that have their requisite

simulation variable data copies from host-to-device pending, and a second for the

corresponding device-to-host data copies pending completion. It should be noted

that both GPU task queues are priority queues and thus preserve a given task

priority algorithm established by the scheduler itself.

The CPU-GPU scheduler also maintains a set of queues for CUDA stream and

event handles (one per device representing separate CUDA contexts for each),

and assigns them to each simulation variable per timestep to overlap with other

host-to-device memory copies as well as kernel execution [52]. These stream and

event handles provide a mechanism to detect completion of asynchronous memory

copies without a busy wait, using cudaEventQuery(event). This allows querying

the status of all device work preceding the most recent CUDA 4.0 API call to

cudaEventRecord() [2]. On systems with multiple on-node GPUs, the hybrid

CPU-GPU scheduler additionally manages a CUDA calling context for each device.

First, if a task’s internal dependencies were satisfied, then that task is placed in

the CPU internal ready queue where it waits until all required MPI communication

has finished. In this same step, if the task is GPU-enabled, the task is then put

into the host-to-device copy queue for advancement toward execution. As long

as the CPU external queue is not empty, there are always tasks to run. Execution



81

of a task takes place on the first available CPU core or GPU and the scheduler

resides on a single, dedicated core per node. CPU tasks are dispatched by the

control thread to available CPU cores when they signal the need for work. GPU

tasks are assigned in a round-robin fashion to available GPUs on-node once their

asynchronous host-to-device data copies have completed. This design helps to

overlap MPI communication and asynchronous GPU data transfers with CPU and

GPU task execution, significantly reducing MPI wait times [52].

Ultimately, the GPU task goes to the pending device-to-host copies queue. A

GPU-enabled task in most cases has several computed Uintah variables to return

from the device to the host. The device-to-host copies queue is where tasks reside

while waiting for these operations to complete. Upon completion of these data

transfers, the task is marked as completed and its MPI sends are posted. Finally,

the GPU task is removed from the pending device-to-host copies queue, allowing

other dependent tasks to proceed.

7.3 Unified Runtime System Design
The natural design progression given the success of the original CPU-GPU

scheduler as presented in [52], and the generally superior performance and po-

tential of the decentralized model as in the previous chapter, was to extend the

decentralized CPU design to heterogeneous systems, allowing all threads to process

MPI sends and receives and to execute both CPU and GPU tasks concurrently

without a control thread. Through this design extension, a unified multithreaded

runtime system and approach to scheduling Uintah computational tasks has been

developed. The Unified Scheduler and runtime system, shown in Figure 7.2, is the

principal contribution in this work and allows Uintah to not only exploit current

heterogeneous architectures, but also plans for emerging and future many-core

designs. Much of this design path has been motivated by machines such as NSF

Keeneland and the DOE Titan and NSF Stampede systems. In order to adapt the

Uintah Computational Framework for hybrid CPU-GPU architectures, we elected

[52] to use Nvidia CUDA C/C++ for numerous reasons; namely, looking at the

upgrade path of the Jaguar XK6 system to Titan and also the Keeneland Initial



82

N
e

tw
o

rk

Data

Warehouse

Device

Data

Warehouse

CPU Task Queues

Task Graph

MPI Send

MPI Recv

MPI Send

MPI Recv

MPI Send

MPI Recv

Device Task Queues

H2D

Data

Copies

D2H

Data

Copies

CPU Core
Running Task

CPU Core
Running Task

Device Core
Running Task

PUT

GET

PUT

GET

PUT

GET

CPU Core
Running Task

Device Core
Running Task

PUT

GET

PUT

GET

Device Ready Tasks

Device

Threads

Host

CPU

Threads

Shared Scheduler Objects (host memory)

C
o

m
p

le
te

d
 T

a
sk

s

CPU Ready Tasks

MPI Data Ready

Device-enabled tasks

Internal ready tasks

Figure 7.2. Uintah Unified Scheduler



83

Delivery System (KIDS), we see a trend in the use or planned use of Nvidia GPUs.

7.3.1 Decentralized Model

Adding GPU capability to a decentralized multithreaded model presents several

notable challenges. As stated earlier, all threads in the decentralized multithreaded

model can directly pull tasks from task queues, not solely the control thread, thus

creating potential race conditions on all shared data structures in general, but

specifically in the task queues. Within the Unified scheduler and runtime system,

there are now four total task queues; two queues for staging CPU tasks and a

corresponding pair for GPU tasks, all of which must be thread-safe. Individual

access to the GPU queues is relatively infrequent, and more often a read than a

write, hence multiple reader, single writer synchronization primitives are used to

protect access and minimize lock overhead.

In the same way that access to CPU-only task data in the data warehouse must

be guaranteed to be thread-safe, access to the current data structures that track

corresponding GPU data must be similarly protected. As described in [52], before

a GPU task is placed into the GPU host-to-device copy queue, the Unified scheduler

initiates the device memory allocations and asynchronous host-to-device data

copies for the task’s simulation variables. To carry out these operations, the data

warehouse must be queried by the Unified scheduler for the location and size of

the data required for computation on the GPU. It is here that space in the data

warehouse for the result of the GPU computation is also allocated on the host.

These operations produce sets of pointers to device and host memory for both

a task’s requires(input) and computes(output) variables that must be managed.

Additionally, host memory pointers are registered by the Unified scheduler to be

copied to the GPU via DMA using a call to cudaHostRegister() combined with the

cudaHostRegisterPortable flag from the CUDA 4.1 API. This creates page-locked

memory from preallocated host memory that is considered page-locked by all

CUDA contexts and ultimately accelerates PCIe transfers and eliminates resetting

of CUDA contexts when referencing the registered host memory [52]. This

information must also be tracked in order to cleanly unregister the page-locked host



84

memory when a task has completed. All of this pointer information is kept in a set

of maps maintained by the Unified scheduler. Access to each of these maps must

also be guaranteed thread-safe. Here, access to these data structures is currently

infrequent as the overall number of GPU-enabled Uintah tasks is relatively low.

Hence access to the maps can be regulated by the same read-write locks used in

the task queues without significant overhead. However, as more Uintah tasks are

ported to the GPU, this could become a potential bottleneck. This issue is then

addressed through the creation of a GPU data warehouse in the following section

that encapsulates these maps and uses the similar data structures and algorithms

used in the current Uintah data warehouse to support concurrent lock-free queries

in the GPU task kernel.

In addition to computational tasks, the Uintah task graph also consists of global

tasks that require the result of MPI collective operations. Third party library tasks

that ”hijack” the Uintah framework to do their own MPI communication are also

global tasks. As the current MPI standard does not provide nonblocking collective

operations, these global tasks need to be scheduled at the same time to proceed

without a load imbalance. This load imbalance occurs when nodes choose different

paths before executing a global synchronization task, as they need to synchronize

at that particular global task. So if a particular node has completed more tasks

than another, the thread running the global task in the node with fewer completed

tasks stays idle, hence a load imbalance is observed. To solve this problem, tasks

are divided into different phases. Each phase contains only one global task and

this task is only scheduled if all other tasks in its phase have completed. In this

way, we can minimize the blocking time in global tasks and reduce synchronization

load imbalance. The addition of GPU tasks and the associated logic involved with

processing GPU tasks and task queues has introduced additional challenges with

regard to global Uintah tasks. Existing logic has been reorganized and further logic

has been added in the Unified scheduler to ensure scheduling of a given global

task remains delayed until both CPU and GPU tasks in its phase have completed.

The run method for each thread also exposes a potential performance bottleneck

in that the Unified scheduler contains a critical section that is protected by mutex, a



85

Pthread mutual exclusion primitive called the scheduler lock. This critical section

contains numerous choices for work that a particular thread may choose from. Thus

for any given thread, the duration between acquiring and releasing the scheduler

lock must be as short as possible or risk a serialization point. With the addition of

the GPU task queues, the number of places to poll for work in this section has now

increased. The Unified scheduler addresses this issue with the simple use of a set

of flags, one of which will be set for a thread that holds the scheduler lock, after

which the lock is promptly released. The set flag dictates what work the thread

will do concurrently with other threads beyond the critical section.

Preliminary results have confirmed that Uintah’s new Unified scheduler and

runtime system demonstrate an ability to effectively and efficiently utilize all

available computational resources on-node, even on heterogeneous systems, and

also outperforms the previous master-slave model. This design also proves a

promising direction for future many-core architectures with high core counts per

node and the prospect of diminishing amounts of memory per core.

7.3.2 GPU Data Warehouse

We developed a set of new Uintah GPU task APIs to make the Uintah simulation

component developer easier to write GPU task kernel. As shown in Figure 7.3,

this new Uintah GPU interfaces included new and old GPU data warehouses
GPU Datawarehouse

Automatic on-demand variable movement via CUDA Memasync

<name, type, domid> addr

del_T LV 0 0xc

press CC 1 0xe

press CC 2 0x1a

u_vel FC 1 0x1f

… … .. …

<name, type, domid> addr

press CC 1 0xfe

press CC 2 0xf1a

u_vel FC 1 0xf1f

… … .. …

CPU

Task

GPU

Task

CPU

Task

Async D2H Copy

MPI Buffer

MPI Buffer
Hash

map

Flat

array

Host Device

dw.get()

dw.put()

Async H2D Copy

Figure 7.3. Uintah GPU Data Warehouse Implementation



86

which are similar to the CPU data warehouses and working as a variable memory

manger. The GPU data warehouse is a variable directory that maps a variable

name and patch or level id key pair to the variable’s GPU memory locations.

Once correct requires and computes are specified, the Uintah framework will do

the CudaMalloc/H2D/D2H memory copy asynchronously and automatically. In

this way, memory movement can overlap with GPU kernel execution, CPU task

execution, and MPI communications to hide latency. As each Uintah GPU task

uses one CUDA stream, a kernel will be launched when all its required variables

are ready in the device memory and multiple kernels and two-way memory copies

can be executed concurrently.

In a Uintah GPU tasks device code, the component developer can call get

function to query the preloaded variable location from the GPU data warehouse

by using the variable name, patch ID, and marital index key in device function.

As the device memory is now managed by the data warehouse, variables can now

exist beyond a task kernel execution and a timestep, when CUDA memcopy can be

skipped when variables already exist on GPU to reduce PCI-E memory bandwidth

usage. In addition, when there are multiple GPUs that exist in a single node, the

GPU data warehouse also knows the variables’ location across multiple devices so

GPUDirect could be used to avoid memory copies through the host CPU.

7.4 Experimental Results
In evaluating the relative performance improvements of the Unified scheduler,

several initial tests were performed. The first test looks at CPU only data from

a single 32-core Cray XE6 node and compares execution times of the CPU-only

master-slave model [68] to the new Unified scheduler. The second test looks at

data from a single 12-core, 3-GPU heterogeneous node, comparing execution times

of the hybrid CPU-GPU master-slave model [52] to the new Unified scheduler.

Lastly, we plot scaling data from runs on the DOE Jaguar system (CPU-only) and

compare Uintah’s MPI-only scheduler to its multithreaded schedulers (master-

slave model). These plots also include data from TitanDev, comparing GPU and

CPU implementations of the RMCRT problem from [52].



87

Table 7.1 shows a CPU-only performance comparison between the master-slave

and Unified models on a single Cray XE6 node (two 16-core AMD Opteron 6200

Series processors each with Interlagos cores @2.6GHz) for a combined MPMICE

problem using AMR. In this case, the Unified model outperforms the master-slave

model on all runs up to 32 cores. By monitoring the CPU utilization of each core, it

was confirmed that the Unified model solved the issue of load imbalance of the core

that runs the control thread and the cores running the worker threads. Furthermore,

when one master control thread with 1, 3, 7, 15, and 31 worker threads is used, the

CPU loads on the control thread increase linearly and are about 0.3%, 0.7%, 1.7%,

3.0%, and 6.9%, respectively. There is an increase in master control thread CPU

usage with increasing numbers of worker threads.

Table 7.2 shows a hybrid CPU-GPU performance comparison between the

master-slave and Unified models on a 12-core heterogeneous node (two Intel Xeon

X5650 processors each with Westmere 6-core @2.67GHz, 2 Nvidia Tesla C2070 GPUs

and 1 Nvidia GeForce 570 GTX GPU) for the GPU-enabled Reverse Monte Carlo

Ray Tracer (RMCRT) presented in [52] with 25 rays per cell and a problem size

of 413. This is the benchmark problem from [28]. In this case, the Unified model

outperforms the master-slave model on all runs up to 12 cores. These results also

confirm that the performance bottleneck found in the decentralized model is even

more pronounced in the presence of additional GPU tasks, with performance when

using 2 and 12 threads respectively being 16% to 37% faster for the Unified model

for this problem.

Table 7.1. Execution Time: CPU-only Master-Slave vs Unified

Number of Cores 2 4 8 16 32
Master-Slave 57.28 20.72 9.40 4.81 2.95

Unified 29.79 15.70 8.23 4.54 2.78

Table 7.2. Execution Time: CPU-GPU Master-Slave vs Unified

Number of Cores 2 4 6 8 10 12
Master-Slave 4.55 4.09 3.95 3.68 3.64 3.34

Unified 3.82 3.52 3.09 2.90 2.50 2.09



88

Figure 7.4 shows the Uintah strong scaling results when using MPI-only, mul-

tithreaded MPI and multithreaded MPI with GPU schedulers on two different

problems: AMR MPMICE and RMCRT Raytracing. In these results, the processing

unit baseline N for AMR MPMICE, Thread/MPI AMR MPMICE, Thread/MPI/GPU

RayTracing, and Thread/MPI/GPU RayTracing are 6144 CPU cores, 8192 CPU cores,

16 CPU cores, and 16 CPU cores with 1 GPU, respectively. For a large-scale

MPMICE AMR problem, Uintah originally scaled up to 96K CPU cores with MPI

only on the DOE Jaguar XK6 system. By using the multithreaded MPI scheduler

(decentralized), Uintah can achieve significantly better scalability, up to 256K CPU

cores on Jaguar. This simulation used 3.62 billion particles with three refinement

grid levels. For the GPU-enabled Reverse Monte Carlo Ray Tracer (RMCRT)

problem, 100 rays per cell were used with a problem size of 1283.

Figure 7.5 isolates the CPU vs GPU scaling results in an effort to better clarify

the scaling breakdown in the GPU implementation of the RMCRT problem. In

these results, the processing unit baseline N for Thread/MPI RayTracing and

Thread/MPI/GPU RayTracing are 16 CPU cores and 16 CPU cores with 1 GPU,

1N 2N 4N 8N 16N 32N 64N
1X

2X

4X

8X

16X

32X

Processing Units

S
pe

ed
up

 (t
im

es
)

 

 
MPI only, AMR MPMICE
Thread/MPI, AMR MPMICE
Thread/MPI, RayTracing
Thread/MPI/GPU, RayTracing
Ideal Scaling

Figure 7.4. Uintah Scalability Comparisons



89

1N 2N 4N 8N 16N 32N 64N
10−1

100

101

102

103

Processing Units

M
ea

n 
Ti

m
e 

pe
r T

im
es

te
p 

(s
)

 

 
Thread/MPI, RayTracing
Thread/MPI/GPU, RayTracing
Ideal Scaling

Figure 7.5. RMCRT Scalability with CPU/GPU

respectively. Although the mean time per timestep for the GPU implementation is

still considerably lower than the CPU implementation at this point (up to 64 GPUs),

ultimately there is insufficient work, and the GPU implementation is subject to the

same communication costs as the CPU implementation [52] due to the all-to-all

nature involved with radiation modeling.

7.5 Summary
We have shown that our Unified multithreaded scheduler design is capable of

utilizing all on-node computational resources on current and emerging multicore

and heterogeneous systems efficiently and automatically. This work has also

illustrated how our Unified design keeps the application developer insulated from

the multiple levels of parallelism inherent in heterogeneous systems by a separation

of the user implemented tasks from the Uintah runtime system. We have also

shown preliminary results that confirm the decentralized multithreaded design

used in the Unified scheduler not only outperforms previous designs, but is also

well positioned to efficiently exploit emerging and future many-core architectures.



90

Through the development of Unitah’s Unified scheduler, the data warehouse

lock was seen to be the largest single source of overhead based on timing results

on Uintah read-write locks, and in the way the data warehouse has been made

efficient with a lock-free implementation, we are also considering an efficient,

lock-free GPU data warehouse. Additionally, we would like to pursue designing

a mechanism for the Unified scheduler to decide at runtime whether to run a

particular task on a CPU core or on a GPU, with plans to extend Uintah’s scheduler

to support such coprocessor designs as well. And, with the eminent arrival of the

massive-scale heterogenous DOE Titan in late 2012, larger scaling runs to further

test our Unified scheduler and runtime design will also be performed. Given

that Titan will potentially have 18K or more Nvidia Kepler K20 GPUs, we will

also be leveraging the advanced features available through CUDA 5.0 and Kepler,

specifically Dynamic Parallelism to further improve GPU utilization by the Uintah

framework.



CHAPTER 8

UNIFIED SCHEDULER - MIC SUPPORT

In the previous chapter, we described how Uintah has been extended to run

on heterogenous CPU/GPU architectures while this is one solution to the fact that

individual processing units consisting solely of CPU’s are no longer increasing

in speed from generation to generation, while the demands on system architects

for increased density and power efficiency steadily increase. With these demands

in mind, traditional systems are now also augmented with an increasing number

of graphics processing units or coprocessors such as the Intel Xeon Phi. This

architectural trend is most notable in machines such as the XSEDE resources

Stampede1.

In this chapter, we detail our experiences moving Uintah onto the TACC

Stampede system with its Intel Xeon Phi coprocessors using the Uintah Unified

Scheduler and Runtime System to support, schedule, and execute both host CPU

and coprocessor tasks simultaneously. Throughout this chapter, we refer to the

Intel Xeon Phi Coprocessor (MIC Architecture) as Xeon Phi when referring to the

coprocessor in general, and MIC when we talk specifically about the architecture

of the Xeon Phi. We explore the various usage models provided by the Xeon Phi

with a key aim of understanding the portability of a general purpose framework

such as Uintah on such an architecture. Although the Xeon Phi symmetric model

is given focus in this work, as it best fits the current Uintah model, our work

here clearly illustrates that the Directed Acyclic Graph or DAG [23] approach

used by Uintah provides the ability to leverage all usage models provided by the

1Stampede is a Dell PowerEdge C8220 cluster, administered by TACC with 6,400+ Dell
PowerEdge server nodes, each with 32GB memory, 2 Intel Xeon E5 (8-core Sandy Bridge) processors,
and an Intel Xeon Phi Coprocessor (MIC Architecture) [8].



92

Xeon Phi. Ultimately, we provide results from computational experiments using

the host-only, native, and symmetric models using two challenging computational

simulations, one being an incompressible flow calculation (host only) and the other

a fluid-structure interaction problem (native and symmetric models) with adaptive

mesh refinement (AMR).

8.1 Xeon Phi Programming Models
Xeon Phi provides five programming models: Host-only, MIC native, offload,

reverse offload, and symmetric. Our focus will be on the four models in Figure 8.1,

and will not cover the reverse offload model, as it is not yet supported by the Intel

MPI implementation. In the host-only model, programs run only on host CPUs in

the system without any utilization of the Xeon Phi coprocessors. Host processors

between multiple nodes can communicate though MPI. This model is similar to

running on most other CPU-only clusters. The Xeon Phi native model uses only

the Xeon Phi coprocessors in the system, disregarding the host CPUs. On a Xeon

phi card, a very basic version of Linux is installed. After being compiled to MIC

binary, a program can then run on the Xeon Phi directly and can use using MPI

and OpenMP/Pthreads. The offload model is similar to using accelerators such as

MIC

MICMIC

MIC

Network

CPUCPU

CPU CPU

MPI

MPI

MPI MPI

(1) Host-only Model

MIC

MICMIC

MIC

Network

CPUCPU

CPU CPU

MPI

MPI

MPI MPI

(2) MIC Native Model

MIC

MICMIC

MIC

Network

CPUCPU

CPU CPU

MPI

MPI

MPI MPI

offloadoffload

offload offload

(3) Offload Model

MIC

MICMIC

MIC

Network

CPUCPU

CPU CPU

MPI

MPI

MPI MPI

(4) Symmetric Model

Figure 8.1. Xeon Phi Execution Models



93

a GPU (in conjunction with OpenACC [7]), where the program runs on host CPU

and uses offload directives to run certain parts of the computation on Xeon Phi.

In this model, all MPI messages are sent and received by host processor. Reverse

offload is similar though to offload mode in that the offload region simply runs

on host CPU while MPI ranks are run on the Xeon Phi. For the symmetric model,

programs can run on both the host CPU and the Xeon Phi coprocessor card natively.

MPI messages can be processed by host CPU and Xeon Phi directly.

There are two MPI libraries available on Stampede, Intel MPI and MVAPICH.

MVAPICH does not yet have a build for Xeon Phi, but host-only and offload models

are supported at this time. Intel MPI has both host and MIC builds and supports

four MPI communication modes besides host only:

1. within a single Xeon Phi coprocessor,

2. between the Xeon Phi coprocessor and the host CPU inside one node,

3. between multiple Xeon Phi coprocessors inside one node,

4. between the Xeon Phi coprocessors and the host CPUs between several nodes.

8.2 Native Model
As the Intel Xeon Phi is based on X86 technology, porting existing code to the

Xeon Phi is relatively easy. Most codes, including Uintah, can be compiled to run

on the Xeon Phi by simply adding the -mmic compiler flag. The Uintah framework

infrastructure code and most of its simulation components are written in C++, with

some legacy components written in Fortran. Both C++ and Fortran are supported

by the Intel compiler for the MIC architecture. The parallel programming libraries

used by Uintah, MPI, and Pthread are also supported natively. However, Uintah

depends on many third party libraries such as libxml2 and zlib. Those libraries are

not currently installed on the Xeon Phi and needed to be built. To get both Uintah

and the other libraries built, cross compiling is required, as the binaries compiled

with the -mmic compiler flag cannot run on the head nodes of Stampede. As Uintah

uses autotools for its build system, only minor changes were made to support cross

compiling. We were able to get a native Uintah build up and running on a single

Xeon Phi card within 24 hours of having access to the machine.



94

When running on a single Xeon Phi card, Uintah uses both MPI and Pthreads for

parallelization. When running with Pthreads on a shared memory node, Uintah

also uses lock-free data structures to allow concurrent access to shared objects

such as the data warehouse (a simulation variable repository) without using high-

level and typically high-overhead Pthread read-write locks. This lock-free data

warehouse uses built-in atomic operations that are supported in the gcc compiler

such as fetch and add and compare and swap. Those gcc built-ins are not supported

in earlier versions of the Intel compiler. However, this issue has been solved

by using equivalent atomic operations in older Intel compilers or by using the

newer Intel compiler. Figure 8.2 shows strong scaling results of the Uintah AMR

MPMICE simulation on a single Xeon Phi card comparing pure MPI, Pthreads with

read-write locks and Pthreads with lock-free data structures. Two MPI ranks or

Pthreads per Xeon Phi core are used for this benchmark. These results show that

Uintah performs and scales better when using a combination of MPI and Pthreads

as opposed to an MPI-only approach.

1 2 4 8 15 30 60 120
1

2

4

8

15

30

60

Xeon Phi Threads

S
p
e
e
d
u
p
 (

ti
m

e
s
)

MPI

Thread w/locking

Thread w/lockfree

Ideal Scaling

Figure 8.2. Uintah Scalability on MIC Native Model



95

8.3 Offload Model
Although the directive-based approach, using the Xeon Phi synchronous offload

model, seems the most attractive to use initially, we discovered this model is

more difficult to implement than we originally anticipated for a general purpose

framework like Uintah. In order to use this pragma-based offload model, all

functions called from the Xeon Phi must be defined with the offload attribute:

__target(mic)

Due to the complexity of the heavily templated Uintah code, we essentially need

to define almost everything with this attribute or rewrite a particular task with a

simple C/C++ structure, avoiding the complexities of the infrastructure code. For

Uintah to make effective use of this model, the Xeon Phi asynchronous offload

features must be used. These features include:

1. asynchronous data transfer,

2. asynchronous compute,

3. memory management without data transfer.

Using these asynchronous API offerings, PCIe latency can be hidden by over-

lapping MPI communication with computation on both the host CPU and the

Xeon Phi coprocessor. The key component in making this work is to implement a

mechanism to detect completion of the asynchronous data copies to-and-from the

coprocessor. This approach is nearly a perfect analog to the mechanism created

in [52] to orchestrate and manage asynchronous data copies to-and-from on-node

GPUs. In the context of the Xeon Phi asynchronous offload model, an offload

region can be executed asynchronously when a signal clause is included with the

directive. All asynchronously offloaded data and computation can be associated

with this signal clause. Detecting completion of this operation is achieved with

explicit API calls. For example, the API call:

_Offload_signaled(mic_no, &c)

tests whether the computation signaled with c has finished. This is a nonblocking

mechanism to check if offload has been completed.



96

Using the Xeon Phi asynchronous offload features, we simply generalize the

existing GPU task queues to become device task queues and add the associated

logic to the Unified Scheduler and Runtime System from [69] to become what was

shown in Figure 7.2. This implementation is currently underway and testing it is

part of our future work.

Uintah’s DAG-based runtime system allows full utilization of all available cores

on the host CPU and Xeon Phi coprocessors easily through the symmetric program-

ming model. The simulation grid in Uintah is partitioned into hexahedral patches

by a highly scalable regridder and assigned to nodes by a measurement-based

load-balancer [22]. In each MPI process, the Uintah runtime system will schedule

tasks on local patches by using a local task graph and data warehouse. The task

graph is a DAG [23] which is compiled by making connections on task’s required

and computed variables. The Uintah scheduler uses the task graph to determine

the order of execution, assign tasks to local computing resources, and ensure that

the correct interprocess communication is performed. Uintah uses Pthreads for

intranode task scheduling. Each core directly pulls tasks from multistage ready

task queues without any intranode communications taking place. This runtime

system is shown to fully use all available cores on-node, regardless of the number

of cores.

When running with the Xeon Phi symmetric model, two binaries are required,

one for host CPU(s) and one for Xeon Phi coprocessor. Since the Xeon Phi has

significantly more cores than the host CPU, more threads are created in MPI ranks

running on the Xeon Phi than MPI ranks running on the host CPU. In a typical

Uintah run, we create 120 threads per Xeon Phi and 16 threads (one per core) for

the host CPU(s). For example, to run symmetric mode, we used the following

command line:

mpirun.hydra -n 4 ./sus -nthreads 16 input.ups;

-n 4 ./sus-mic -nthreads 120 input.ups

This will run Uintah on 4 CPU hosts with 16 threads per host and 4 Xeon Phi cards

with 120 threads per card at the same time.



97

8.4 Symmetric Model
With some MPI ranks running on one architecture while other MPI ranks run

on a different architecture, it is important to make sure that all ranks execute

in a consistent way. Errors may happen when control logic-based results differ

between the Xeon Phi and host CPU, such as MPI messages based on floating point

calculations. In Uintah, a common operation when running with AMR is to find

cells in a finer level based on a point that is computed from coarser level, which

are then sent from the finer level cells to coarser level. Figure 8.3 shows a real

AMR example in Uintah, in which a point is computed by the division of two

double precision numbers that are known globally to all MPI ranks. The algorithm

guaranteed that all ranks should compute this point as the same value such that

the sending side will pick the same interval of cells as the receiving side (left side:

host-only model). However, while the algorithm is consistent, when one rank

runs on the Xeon Phi, the computed value may be inconsistent. In this example,

the CPU side receiver picks intervals beginning with 162; however, the Xeon Phi

sender picks interval beginning with 161. Hence, an MPI buffer mismatch error

occurs due to a floating point operation that is not consistent between the Xeon Phi

p=0.421874999999999944488848768742172978818416595458984375 

c=0.0026041666666666665221063770019327421323396265506744384765625 

b=p/c 

b=162

161           162            163          164 

b=162 

161           162            163          164 

Rank0: CPU 

b=162 

161           162            163          164 

Rank1: CPU 

161           162            163          164 

Host-only  

Model 

Symmetric  

Model 

MPI Size 

Mismatch 

b=161.99999999999999 

MPI OK Rank0: CPU 

Rank1: MIC 

Figure 8.3. MPI Error from a Floating Point Inconsistency



98

coprocessor and host CPU (right side: symmetric model). To fix this error, a higher

precision compiler flag was used at the cost of lower performance for this method.

Figure 8.4 shows preliminary scaling results on Stampede with multiple Xeon

Phi cards and host nodes using the symmetric model. Using this model, Uintah can

strong scale up to 16 Xeon Phi cards (the current Stampede MIC development queue

limit); however, the scaling efficiency is limited due to load imbalance between the

host CPU and Xeon Phi. The reason being that the Uintah load balancer currently

assigns host MPI ranks and Xeon Phi ranks the same workload. We detected a load

imbalance up to 60% for this benchmark. The workload ratio of CPU to Xeon Phi

should be computed based on profiling. We will develop a new load balancer to

profile and predict the work load on the host CPU and Xeon Phi card separately to

solve this problem.

8.5 Summary
We have described our preliminary experiences with Stampede using the Uintah

Computational Framework with an emphasis on understanding the performance

1 2 4 8 16
0

5

10

15

20

25

30

35

Xeon Phi Cards

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
o
n
d
s
)

Figure 8.4. Uintah Scalability on MIC Symmetric Model



99

implications of the new Intel Xeon Phi Coprocessor (MIC Architecture). Using

only the host CPUs for computations, Stampede is nearly 3X faster than Kraken for

a complex reacting flow CFD calculation. The Uintah architecture has a runtime

environment which has been shown to be highly adaptable to the heterogeneous

architectures that are emerging in the high performance computing world [52, 69].

This adaptability has allowed Uintah to utilize the range of usage models provided

by the Xeon Phi. Of these usage models, we found the symmetric model to best fit

Uintah, and required only very small modifications to the Uintah runtime system

to use both the host CPUs and Xeon Phi together. Using the Xeon Phi symmetric

model yielded good strong scaling characteristics up to 16 Xeon Phi cards (the

Stampede MIC development queue limit at the time).

Due to different performance characteristics between the host CPU and the

Xeon Phi, our scaling efficiency was limited. This will require us to develop an

improved load balancer as part of our future work on Stampede to make efficient

use of the Xeon Phi symmetric model. Specifically, the load balancer needs to be

updated to distribute a given workload according to which processing unit an MPI

process is running on. This will expand the current forecast method to profile the

host CPU and Xeon Phi separately, as the Xeon Phi and host CPU have different

levels of concurrency. For the Xeon Phi, finer patch sizes should be used to keep

the many available threads busy and for the host CPU, larger patches are needed

to better utilize the larger cache. This change will require the Uintah regridder to

be able to generate different patch sizes based on the target processing unit.

To efficiently use the Xeon Phi asynchronous offload model, work is now

underway within the Uintah runtime system to generalize its existing GPU task

queues to become device task queues with associated logic. Using this design,

we hope to provide the Uintah framework with an additional way to achieve high

performance from the Xeon Phi coprocessor. We have also discovered the necessity

in making use of the long vector units available on the Xeon Phi, and will so

investigate explicitly using its 512-bit vector instructions as the C++ iterator loops

currently used throughout Uintah cannot be easily be optimized automatically by

the compiler.



CHAPTER 9

PORTABILITY AND SCALABILITY

The aim in this chapter is to illustrate that this combination of portability

and scalability can be demonstrated with the Uintah software on three of the

seven fastest computers as measured by the top 500 list of November 2012 [4],

DOE’s Titan and Mira and NSF’s Stampede, [5, 8, 10]. These machines make

uses of three very different processors and networks and will be discussed in

this chapter. Two of the machines, Titan and Stampede, have GPU accelerators and

Intel Xeon Phi coprocessors, respectively. The approach used here will be to take

three representative and challenging Uintah applications codes and to examine

their scalability and performance on these very different machines. The three

applications are:

1. Fluid-structure interaction with adaptive mesh refinement in an example

used by [67] and an explosive array simulation in [18];

2. Radiation modeling through raytracing with significant amounts of global

communication as used by [52] on a variety of GPU accelerators and CPUs;

and

3. Turbulent combustion on a fixed-mesh requiring large-scale linear solves with

the Hypre iterative solver [84].

These three applications have very different communications requirements and

work patterns. The approach used here will be to run these three applications

at large scale on each of the target machines and to demonstrate how the Uintah

runtime manages to achieve scalability through adaptive execution of its task graph

and in the context of three different communications patterns for each of the three

applications. The salient features of three target architectures and the porting of the

Uintah code from the Titan architecture to the other two architectures are described



101

in Section 9.1. Section 9.2 will describe the simulation components of the Uintah

used to solve problems and analysis of the components’ example communications

and task execution patterns on the three machines. In Section 9.3, the scalability

and performance results obtained will be given with an analysis of the different

cases to show how the task graph execution pattern adaptively varies to achieve

scalability. Overall we will show that with these applications, we are able to

achieve good scalability on machines like Mira and Stampede when coming from

our starting point of scalability on Titan [67]. Moreover, such scalability comes

without significant porting effort.

9.1 Target Architectures
The three machines considered here illustrate some of the architectural dif-

ferences in processor and network performance that may give rise to portability

challenges. Two of these machines, Titan and Stampede, have been introduced

briefly and used for benchmark in previous chapters. In this section, we compare

those three machines together in details. The main architectural features of these

machines are summarized in Table 9.1.

9.1.1 Titan

Titan is currently the fastest machine of the Top 500 list from November 2012 [4]

with a theoretical peak of 27 petaflops and ranked third on the Green 500 list

for energy efficiency. Each heterogeneous Cray XK7 node is equipped with a

16-core AMD Opteron 6274 processor running at 2.2 GHz, 32 gigabytes of DDR3

Table 9.1. System Specifications: Titan, Stampede, and Mira

SYSTEM Titan Stampede Mira
Vendor / Type Cray XK7 Dell Zeus C8220z IBM Blue Gene/Q

CPU AMD Opteron 6200 Intel Xeon E5-2680 PowerPC A2
Intel Xeon Phi SE10P

Cores 299,008 102,400 (host) 786,432
390,400 (phi)

Accel / Co-proc Nvidia Tesla K20 Intel Xeon Phi none
Mem per node 32GB 32GB 16GB
Interconnect Gemini InfiniBand 5D Torus



102

memory, and a single Nvidia Tesla K20 GPU with 6 GB GDDR5 ECC memory.

The entire machine offers 299,008 CPU cores and 18,688 GPUs (1 per node) and

over 710 TB of RAM. Even though the GPUs have a slower clock speed (732

MHz versus 2.2 GHz) than the CPUs, each GPU contains 2,688 CUDA cores. The

overall system design was to use the CPU cores to allocate tasks to the GPUs rather

than directly processing the data as in conventional supercomputers. Titan’s Cray

Gemini network is a 3D Torus with a latency of about 1.4 µseconds, with a peak of

over 20 GB/second of injection bandwidth per node and a memory bandwidth of

up to 52 GB/second per node.

From a software development perspective, Titan offers perhaps the greatest

portability challenge for computational scientists to efficiently run on both host

CPU and GPU. The Uintah Framework has been extended to incorporate a new

task scheduler which offers three different ways of scheduling tasks to include

MPI, threads, and GPUs. To harness the computational power of the GPU, a new

GPU kernel must be developed for each task. However, the Uintah framework

infrastructure provides a seamless way of using the CPUs to allocate tasks and

move data back and forth to the GPU without explicit calls from the computational

stack.

9.1.2 Stampede

The NSF Stampede machine is ranked seventh in the top 500 [4] and provides

an interesting alternative to Titan as it contains Intel’s new coprocessor technology,

the Xeon Phi. Each of the 6400 Stampede nodes has two eight core Xeon E5-

2680 operating at 2.7GHz with a 61 core Intel Xeon Phi coprocessor with cores

operating at 1.0GHz. The system interconnect is via a fat-tree FDR InfiniBand (IB)

interconnect, [9], with a bandwidth of 56GB/second.

Stampede provides five programming models: Host-only, MIC native, offload,

reverse offload, and symmetric. Uintah currently only uses the host-only, native,

and symmetric models, as these were the fastest and most portable options, as

described in [70]. A Uintah MIC offload model scheduler is under development.

In the host-only model, programs run only on host CPUs in the system without

any utilization of the Xeon Phi coprocessors. Host processors between multiple



103

nodes can communicate though MPI. This model is similar to running on most

other CPU-only clusters. For the symmetric model, programs can run on both

the host CPU and the Xeon Phi coprocessor card natively. MPI messages can be

processed by host CPU and Xeon Phi directly. Minor modifications were made

to the Uintah Framework to incorporate the hybrid scheduler which can schedule

tasks on Xeon Phi in the same manner as for the host. The advantage of the Xeon

Phi coprocessor over the Titan GPU is that computational tasks running on the

Xeon Phi do not have to be developed from scratch, which is what is required for

tasks running on Titan’s GPUs.

9.1.3 Mira

The Mira system is a new DOE open science 10-petaflop IBM Blue Gene/Q

system installed at Argonne National Laboratory. Mira is designed to solve large-

scale problems and has low power requirements and was ranked the fourth fastest

supercomputer in the world as recorded by top500.org in November 2012 [4]. Each

Mira compute node is equipped with 16 PowerPC A2 core processors running

at 1.6GHz and 16 GB of SDRAM-DDR3 memory. The simple, low-power Blue

Gene /Q cores support 4 hardware threads per core. With in-order execution, there

is no instruction-level parallelism, so the key goal is to use multiple threads per

core to maximize instruction throughput. The challenge in using Mira is that the

lower floating point performance of the cores requires the use of a larger core

count which in turn has the potential to stress a communications network that is

very different from those of the other two machines considered here. With the Blue

Gene/Q software stack including standard runtime libraries for C, C++ and Fortran,

Uintah was able to run on Mira without modification. Only minor changes to the

Uintah build system were necessary to recognize Blue Gene/Q-specific installation

locations for MPI and compiler wrappers.

As Mira’s power PC cores run at only 1.6GHz with a much simplified instruction

set as compared to the Intel processors or AMD processors as used in Titan or

Stampede, there are substantial differences in performance. The communications

network on Mira is an integrated 5D torus with hardware assistance for collective



104

and barrier functions and 2GB/sec bandwidth on all 10 links per node. The latency

of the network varies between 80 nanoseconds and 3 microseconds at the farthest

edges of the system. The interprocessor bandwidth per flop is close to 0.2, which

is higher than many existing machines. This performance is offset by having only

1GB of memory per core, which can be problematic for certain applications, as we

will see in the scaling results. Thus Mira has perhaps the best communications

bandwidth per node relative to its computational power, and Stampede perhaps

the (relatively) weakest of the three, while Titan is perhaps in between unless

substantial use is made of its GPU cards.

9.2 Simulation Components
The three representative problems cover a broad range of typical Uintah appli-

cations ranging from fluid-structure interaction to turbulent combustion. In order

to add a deliberate contrast to these cases, we have also included the modeling

of radiation using raytracing. A massively parallel implementation of this last

problem involves severe challenges in that there is a substantial amount of global

communication.

9.2.1 MPMICE

As noted in Chapter 6, fluid-structure-interaction problems represent an im-

portant and computationally demanding class of problems that have been part of

the landscape for which Uintah was originally conceived. Broadly speaking, fluid-

structure-interaction problems require the solution of the general multimaterial

computational fluid dynamics (CFD) formulation coupled to a solid mechanics

computation. The MPMICE component uses the algorithm [47] to solve the

governing multimaterial formulation for the Navier-Stokes equations coupled

to the MPM Lagrangian particle method for discretizing the solid mechanics.

Additional subcomponents are implemented such as various equations of state,

constitutive models, and solids→gas reaction models.

The challenges with the scalability of this problem arise with the complex

combination of solids, fluids, and mesh refinement; see [67] for a full description

of the changes to the runtime system needed in order to achieve scalability on this



105

problem and others like it. Given the difficulty of achieving scalability, it is by no

means clear that it will be possible to achieve scalability on all three of the target

machines.

Figure 9.1 shows the send and receive volume time distribution of commu-

nications for the case of three sample timesteps as three separate lines. The top

three subfigures show the data volumes sent over time by a Titan, Stampede, and

Mira node while the bottom three subfigures show the data received by a Titan,

Stampede, and Mira node. In each timestep, the wall clock time is normalized

and divided into 30 equal intervals. The MPI message volume for each interval

is plotted as the y axis. The initial peak of data sent at the left of the top three

subfigures shows the transmission of the data that was computed at the end of the

last timestep. For example, as soon as current timestep starts, all the ghost cell data

from old data warehouse can be sent out immediately. Most of this initial data sent

involves local communication and can be posted immediately.

However, due to the network latency and bandwidth limitations, those mes-

sages continue to be received over several of the 30 time intervals shown. The

relative delay in receiving these initial sends on Stampede is longer than on the

other two machines. For Stampede, the send and receives use the Sandy Bridge

5 10 15 20 25 30
0

5

10

15
x 106

Time Interval (Normalized)

C
om

m
. V

ol
um

e 
(B

yt
es

)

Titan Send

5 10 15 20 25 30
0

5

10

15
x 106 Stampede Send

5 10 15 20 25 30
0

0.5

1

1.5

2
x 107 Mira Send

5 10 15 20 25 30
0

0.5

1

1.5

2
x 107 Titan Recv

5 10 15 20 25 30
0

0.5

1

1.5

2
x 107 Stampede Recv

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
x 107 Mira Recv

Figure 9.1. Communication Measurement of AMR MPMICE



106

nodes via IB. The top three subfigures show several later peaks of data sent after the

initial sends. All those later peaks are due to the requirement to send ghost-cell data

on newly computed variables by later tasks in the same timestep. By observing

the receive side, we can see the receiving delays for the later peaks vary both

from machine to machine and from timestep to timestep. Those changes may be

related to many possible situations, e.g., network bandwidth usage of other users

in the same machine which is hard to predict by using traditional static analysis of

DAG’s critical path. Uintah uses dynamic task scheduling that can automatically

pick ready tasks to overlap those unpredictable communication delays.

This overlapping is done by the Uintah task scheduler moving later tasks to

execute earlier than would otherwise be the case. Figure 9.2 shows the real

scheduling task order in the y direction and its ordinal designed task order in

the x direction. The solid line represents how tasks will be executed when static

scheduling is used. The scatter points (x) show the task execution order when the

multiqueue scheduler is used. All tasks below the solid diagonal line are executed

earlier than they would be if static execution is used. All tasks above the solid

diagonal line are executed later than they would have been if static execution had

been used.

The MPMICE scheduling results show that many tasks are moved to a region

close to x-axis. For example, some task originally designed to be execute as in

between the 1300th and 1400th tasks are moved to approximately the first 100 tasks

to be run. In this way, the time that would be spent waiting for initial MPI sends

to arrive is hidden. We also see that for Stampede, more tasks are moved to be

executed earlier than on Titan and Mira; for example, see tasks numbered from

500− 700 for static execution. This observation matches the comment that some

messages are delayed in Stampede, so the scheduler can move tasks to overlap this

delay accordingly. Overall, this shows how the task execution order depends on a

combination of the core clock speeds and the communications performance.

9.2.2 ARCHES

The ARCHES component is a multiphysics Large Eddy Simulation (LES) numer-

ical algorithm used to solve for the reacting flow field and heat transfer arising in



107

0 500 1000 1500
0

500

1000

1500

Statically Scheduled Order

R
ea

l E
xe

cu
tio

n 
O

rd
er

Titan RMCRT

0 500 1000 1500
0

500

1000

1500

Stampede RMCRT

0 500 1000 1500
0

500

1000

1500

Mira RMCRT

0 500 1000
0

500

1000

Titan MPMICE

0 500 1000
0

500

1000

Stampede MPMICE

0 500 1000
0

500

1000

Mira MPMICE

0 10 20 30 40 50
0

10

20

30

40

50
Titan ARCHES w/ Hypre

0 10 20 30 40
0

10

20

30

40

Stampede ARCHES w/ Hypre

0 10 20 30
0

10

20

30
Mira ARCHES w/ Hypre

Figure 9.2. Task Scheduling Result



108

a number of computationally demanding simulations such as oxy-coal fired boiler

simulations, oil recovery, and complicated pipe mixing. In addition to solving the

multimaterial Navier-Stokes equations, subgrid models are used to describe the

complicated turbulence of momentum and species transport.

The ARCHES component solves the coupled Navier-Stokes equations for mass,

momentum, and energy conservation equations. The algorithm uses a staggered

finite-volume mesh for gas and solid phase combustion applications [38, 76, 77].

The discretized equations are integrated in time using an explicit strong-stability

preserving third-order Runge-Kutta method [42]. Spatial discretization is handled

with central differencing where appropriate for energy conservation or flux limiters

(e.g., scalar mixture fractions) to maintain realizability. In contrast to the explicit

formulation of ICE, ARCHES uses the low-mach, pressure formulation which

requires a solution of an implicit pressure projection at every timestep using the

Hypre linear solver package [39].

For momentum and species transport equations, a dynamic, large eddy tur-

bulence closure model is used to account for subgrid velocity and species fluctu-

ations [79]. The gas phase chemistry for coal combustion is represented using a

chemical equilibrium model parameterized by the coal gas and secondary oxidizer

stream mixture fractions [88]. The energy balance includes the effect of radiative

heat-loss/gains in the IR spectra by solving the radiative intensity equation using a

discrete-ordinance solver [61]. The solution procedure solves the intensity equation

over a discrete set of ordinances which is formulated as a linear system similar to

the pressure projection equation and is solved using Hypre [39]. The gas phase

chemistry is parameterized by the two mixture fractions and heat-loss terms and

preprocessed in a tabular form for dynamic table look-up during the course of the

LES simulation.

The challenging nature of this problem lies in the complex physics and variety

of numerical techniques used. Good scalability has been achieved with the Taylor

Green Vortex Problem described in [84]. This involved a careful use of both data

structures and options in the Hypre code so it is far from clear that the same

scalability will transfer from Titan to the other two machines.



109

Figure 9.3 also shows the send and receive volume time distribution as the

similar way to that of MPMICE. Again the initial peak of the data sent also

distributes the data that are computed from the last timestep and these messages can

be sent out immediately. Unlike MPMICE, ARCHES is not continually receiving

data. The reason is that the ARCHES component calls Hypre to do a number of

iterative linear solves. During those linear solution phases, the MPI communicator

is passed to the Hypre library. In particular, when Hypre is running, we can see

there are several intervals when there are no receives seen by ARCHES, as Uintah

is not able trace any communications conducted within the Hypre library. This

effectively means that data cannot be passed to a Uintah task unless all processors

have finished that specific Hypre task. MPI Irecv for all tasks after this Hypre solve

(essentially a global synchronization) can only be posted after Hypre has finished,

thus resulting in several peaks in the data received.

Although Hypre now supports the use of a hybrid OpenMP/MPI parallel

approach, we have so far been unable to make use of this in a way that is consistent

with the Uintah multithreaded approach on a multicore node and so used our

MPI only scheduler for this problem. Therefore, there are far less tasks per MPI

node for ARCHES as we can see from its task execution order plots in Figure 9.2.

5 10 15 20 25 30
0

2

4

6

8
x 106

Time Interval (Normalized)

C
om

m
. V

ol
um

e 
(B

yt
es

)

Titan Send

5 10 15 20 25 30
0

2

4

6

8
x 106 Stampede Send

5 10 15 20 25 30
0

1

2

3

4
x 106 Mira Send

5 10 15 20 25 30
0

1

2

3

4

5

6
x 106 Titan Recv

5 10 15 20 25 30
0

1

2

3

4

5

6
x 106 Stampede Recv

5 10 15 20 25 30
0

1

2

3

4

5
x 106 Mira Recv

Figure 9.3. Communication Measurement of ARCHES



110

The multiple global synchronization points further limited the task scheduler’s

ability to migrate Uintah tasks, as the scheduler only allows tasks to be moved

before a global synchronization point, and not after to avoid scheduling deadlock.

However, we can still see that some tasks are moved to be executed early to overlap

the initial sends.

9.2.3 RMCRT

Scalable modeling of radiation is important in a number of multiple applications

areas such as heat transfer in combustion [87], neutron transport modeling [30]

in nuclear reactors, and astrophysics modeling [100] and is currently one of the

most challenging problems in present-day large-scale computational science and

engineering, due to the global nature of radiation. An approach using Reverse

Monte Carlo Ray Tracing (RMCRT) is used here for radiation modeling in which

rays are followed back from the source to the various origins. While this is efficient

in that it does not follow rays that do not reach the source, the computational and

communications complexity is still potentially prohibitive on a modern heteroge-

nous machine even though rays may be traced independently on a single GPU

accelerator at high speed.

The solution often adopted and used here is that multiple length scales are

used to ensure that the amount of communication and computation is reduced

in a way that is consistent with achieving accuracy. This may be illustrated by

Figure 9.4. This figure shows a dense computational fluids mesh and for two of

the computational fluids cells shows the radiation mesh. The radiation mesh may

be coarsened rapidly away from the particular cell in which the (reverse) rays

originate. The number of rays is kept constant per cell, as are the heat fluxes that

are calculated.

The approach used by [52, 53, 92, 93] is to store the entire geometry on each

single multicore node and to calculate the partial heat fluxes on the boundaries due

to the radiation originating locally. Suppose that there are Ntotal fine mesh cells.

The algorithm then involves a broadcast of all the data associated with every cell to

every other cell on all the other processors. This involves a multiple of N2
total in terms

of total communication. The volume of communication in this case may overwhelm



111

4-Level Data Onion

CFD Level

A B

RMCRT Comm Requirements

Patch-A

RMCRT Comm Requirements

Patch-B

Figure 9.4. RMCRT Mesh Coarsening Scheme

the system for large problems in our experience. The alternative is to use coarser

resolutions as shown in Figure 9.4 in which a fine mesh is only used close to

each point and a coarse mesh used further away. The use of adaptive meshes

in the context of radiation is well understood with more traditional approaches

[30, 81, 100], such as the Discrete Ordinates (DO) method used in the ARCHES

combustion component of the Uintah code, [56]. However, the DO approach as

used with ARCHES is costly and may consume as much as 60-70% of the calculation

time. In applications where such high accuracy is important, RMCRT can become

more efficient than DO approaches. In particular, RMCRT can potentially reduce

the cost on shared memory machines [51,92,93] and on distributed memory [52,53],

with GPU accelerators [69]. A simple analysis of the two level scheme of [53] breaks

the method down into the following steps:

1. Replicate the geometry (once) and coarsen mesh solution of temperature and

absorption coefficients (every timestep) on all the nodes using allgather; This

has a complexity of αlog(p)+β
p−1

p (N/r)3 for p cores with N3 elements per mesh

patch on a core are coarsened by a factor of r, where α is the latency and β the

transmission cost per element [95].

2. Carry out the computationally very intensive ray-tracing operation locally.

Suppose that we have ra rays per cell, then each ray has to be followed through



112

as many as λNG coarse mesh cells, where NG ≈ Np/r, or a multiple of this if

there is reflection and where 0 ≤ λ ≤
√

3N. The total work is thus the sum

of the fine mesh on each node contribution and the contribution from all the

coarse mesh cells: (λN4 +λN4
G)Wray, where Wray is the work per ray per cell.

3. Distribute the resulting divergences of heat fluxes back to all the other nodes,

again this cost is αlog(p) +β
p−1

p (N/r)3.

The relative costs of computation vs. communication are then given:

λN4(1 + (p/r)4)Wrayra vs 2(αlog(p) +β
p−1

p
(N/r)3).

Thus for enough rays ra with enough refinement by a factor of r on the coarse

radiation mesh, it looks likely that computation will dominate. A key challenge is

that storage of O(N3
G) will be required on a multicore node and so only coarse and

AMR mesh representations will be possible in a final production code at very large

core counts. Although preliminary, this analysis can be extended to fully adaptive

meshes, rather than the two level case considered here.

The send and receive volume time distribution for RMCRT, shown in Figure 9.5,

indicates that the volume of initial data sent dominates. As we discussed above,

RMCRT is a relatively simple algorithm in that most of requisite data is only

required from the last timestep and can be sent out once the current timestep

starts. However, unlike the AMR MPMICE component for which most messages

are local, RMCRT requires an all-to-all data transfer and the data transfer time is

limited by the global bandwidth. From the bottom of Figure 9.5, it is seen that

some MPI messages on Titan are delayed. We can also see large periods of time in

which no data are being read, as RMCRT is computationally expensive and has a

relatively simple variable exchange data pattern when compared to the complexity

and frequency of communications in the multiphysics AMR MPMICE component.

Figure 9.2 shows that in order to overlap the huge initial send of data, the

scheduler moved tasks as much as possible to be executed early (close to the x-axis).

In other words, some tasks that should be statically scheduled for execution near

the end of a timestep are moved to the beginning of the timestep. Furthermore,

the MPI message delay on Titan is addressed by the scheduler moving tasks more

aggressively than for Mira and Stampede.



113

5 10 15 20 25 30
0

1

2

3

4
x 107

Time Interval (Normalized)

C
om

m
. V

ol
um

e 
(B

yt
es

)

Titan Send

5 10 15 20 25 30
0

1

2

3

4
x 107 Stampede Send

5 10 15 20 25 30
0

1

2

3

4
x 107 Mira Send

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
x 107 Titan Recv

5 10 15 20 25 30
0

1

2

3

4
x 107 Stampede Recv

5 10 15 20 25 30
0

1

2

3

4
x 107 Mira Recv

Figure 9.5. Communication Measurement of RMCRT

9.3 Scaling Results
In this section, we will show the scalability results for AMR MPMICE, ARCHES,

and RMCRT on the three target machines described above: Titan, Stampede,

and Mira. We also include preliminary GPU scaling results for RMCRT here.

Coprocessor scaling results are covered in [70]. We define strong scaling as a

decrease in execution time when a fixed size problem is solved on more cores,

while weak scaling should result in constant execution time when more cores are

used to solve a correspondingly larger problem. AMR MPMICE scaling results

from the newly commissioned Blue Water1 machine are also presented.

9.3.1 Strong Scaling of MPMICE

Perhaps the most satisfactory result from this study is shown in Figure 9.6

which displays the strong scaling results from three AMR MPMICE problems. The

AMR MPMICE problems exercise all of the main features of AMR, ICE, and MPM

and also include a model for the deflagration of the explosive and the material

damage model ViscoSCRAM [67]. The simulation grid utilized three refinement

1Blue Water is a Cray cluster, administered by NCSA with 22,640 XE6 and 4,224 XK7 nodes, the
XE6 nodes have 64 GB memory per node and the XK7s have 32 GB memory per node. [11].



114

8K 16K 32K 64K 128K 256K 512K 768K

10
0

10
1

Processing Units (Cores)

M
e
a

n
 T

im
e

 P
e
r 

T
im

e
s
te

p
(s

e
c
o
n
d
)

Titan(MPMICE large+)

Mira(MPMICE large+)

Mira(MPMICE large++)

BlueWater(MPMICE large++)

Mira(Explosive Array)

Ideal Scaling

Figure 9.6. AMR MPMICE Strong Scaling

levels with each level being a factor of four more refined than the previous level.

For large+ problems, a total of 3.62 billion particles and 160 million cells are created

on three AMR levels. These tests were run on Titan and Mira with up to 512K cores

and with 16 threads per MPI node. For large++ problems, a total of 29.0 billion

particles and 3.8 billion cells are created on three AMR levels. These tests were

run on Mira with up to 756K cores and with 16 threads per MPI node and on Blue

Water with up to 704K cores and with 32 threads per MPI node. The explosive

array problem [18] is designed to resolve the underlying physics of a highway

accident in which detonation occurred during the transportation of about 35000 lbs

of seismic boosters on Highway 6 in Utah. In this simulation, 7.7 billion particles

and 1.3 billion cells are created in three AMR levels. The benchmark results come

from runs on Mira with up to 512K cores with 16 threads per core.

In order to get excellent scaling results, we tested and found out that the optimal

patch configuration for AMR MPMICE problems should fit the following two

requirements. 1) The number of patches on each level should be tuned as close as



115

possible but not more than the number of cores on the largest run. 2) The patch

size should be at least 8x8x8. The second requirement overrides the first one, that

is, even though there is not enough patch in a particular level for all CPU cores,

we cannot divided the patch further into a smaller size that is less than size 8x8x8.

The reason is that when patch size is smaller than 8x8x8, the cost of a patch’s MPI

messages will be too high comparing to the cost of its computation for runtime

system to overlap this cost. This lower bound of patch size should be considered

as machine dependent, and could change on further machines. In addition to

choosing a good patch size for different levels, it is also important to line up the

patch boundaries in finer level to patch boundaries in coarse level. An easy way

to achieve this is to choose finer level patch size that can divide coarser level patch

size in each dimension without a reminder. For example, when coarse level patch

size is 8x8x8, it is better to have finer level patch size set up as 16x16x8 rather than

12x12x12. We observed that the later choice of patch size will lead to higher MPI

communication imbalance.

In this benchmark problem, the simulation grid changes once per every 40 to

50 timesteps, the same as reported on [65]. The grid changes once its finest level

patches cannot hold all the particles in them. The overhead of this regridding

process, including creating new grid, compiling new task graph, and moving old

grid data to new grid, is less than 3 percent of overall execution time. This is

a result of many improvements that have been made to reduce the cost of the

regridding process for MPMICE AMR runs, including removal of topological sort

in task graph compiling algorithm, looping through only neighbours instead of all

processers when assigning cores to once-per-proc task, and computing the refine

patch sets in parallel.

9.3.2 Weak Scaling of MPMICE and ARCHES

Figure 9.7 shows the weak scaling results from the AMR MPMICE problem. This

problem is the same type of problem with three refinement levels shown previously

for strong scaling, but with different resolutions on each run. The average numbers

of particles and cells per node are set as close as possible. In the same number of



116

256 2K 16K 128K
0

2

4

6

8

10

12

14

16

18

20

Processing Units (Cores)

M
e

a
n

 T
im

e
 P

e
r 

T
im

e
s
te

p
(s

e
c
o

n
d

)
M

T
S

M

T
S

M

T

M

T

Task Execution

MPI P2P
MPI Pack

MPI Reduction

Figure 9.7. AMR MPMICE Weak Scaling

cores group, from left to right are results from Mira, Titan, and Stampede, denoted

by M, T, and S, respectively. The times for task execution, message passing, and

packing are shown in different colors. The weak scaling for all three machines for

this example is almost perfect with higher than 95% efficiency.

The weak scalability of the ARCHES component is shown in Figure 9.8 with each

core group from left to right representing the results for Mira, Titan, and Stampede,

denoted by M, T, and S, respectively. For Mira and Titan, core counts ranged from

2K to 128K, and for Stampede, the core counts ranged from 2K to 64K. The problem

uses a fixed resolution (423 cells per patch) with a single patch per core. Each

timestep was broken down into linear solver time (Hypre Time) and Uintah time.

For each timestep, the solution to a large (74,000 unknowns per core), sparse system

of equations (Pressure-Poisson equation) is solved. The Hypre solver parameters

used included the following: conjugate gradient method with the PFMG multigrid

preconditioner and a red-black Gauss-Seidel relaxer. The weak scaling efficiency

is 88% on Mira at 128K cores, 79% on Titan at 128K cores, and 56% on Stampede at



117

2K 4K 8K 16K 32K 64K 128K 256K
0

1

2

3

4

5

6

Processing Units (Cores)

M
ea

n 
Ti

m
e 

P
er

 T
im

es
te

p(
se

co
nd

)

 

 

M

T

S

M

T

S

M

T

S

M

T
S

M

T

S

M

T

S

M

T T

Uintah Time
Hypre Time

Figure 9.8. ARCHES with Hypre Weak Scaling

64K cores. However, we can see that in most cases, the Uintah scaling component

is better than the Hypre component. The efficiency losses come mostly from the

Hypre solving phase which has a log(P) term, where P is the number of cores [84].

The relatively slower Mira cores (compared to Titan and Stampede) contributes to

the significantly slower mean time/timestep. However, the network topology of

Mira is well balanced and shows excellent weak scalability out to 128K cores. In

contrast to Mira, the faster cores of Stampede and Titan magnify any slight timing

variabilities as core counts were increased. The variabilities for Stampede were

especially pronounced for 16K and 32K cores. The variability in timing may be

due in part to system loads and network traffic impacting the Uintah simulation.

We encountered issues with Mira when attempting to scale beyond 128K cores

with an out of memory condition, which may be due to the limited memory per

core. Future work will include using a newer version of the Hypre library with

additional threading support along with Uintah’s threaded task scheduler. It is



118

anticipated that this combination will reduce the memory requirements for the

larger core count simulations.

9.3.3 Strong Scaling of RMCRT

Although solving the radiative transport equation using methods such as the

parallel Discrete Ordinates Method (DOM) has been shown to scale [85] through

the use of Hypre [39], the cost is significant due to the large number of systems of

linear equations required by this method. RMCRT has been shown to significantly

reduce this cost. However, RMCRT is an all-to-all method, where all geometry

information and property model information for the entire computational domain

must be present on each processor. This presently limits the size of the problem

that can be computed due to memory constraints.

For the RMCRT problem, a two-level coarsening scheme with a refinement ratio

of 2 was used. The finer, CFD level used a resolution of 2563 with one patch per

core in each case and the coarse, RMCRT level used a resolution of 643 with a single

patch. 10 rays per cell were used in the RMCRT portion of the calculation and the

mean time per timestep was averaged over 10 timesteps. Figure 9.9 shows strong

scaling results from the RMCRT benchmark case detailed in Section 9.2 to 16k

cores. These results are significant in that other adaptive mesh codes using similar

approaches in radiative shock hydrodynamics, astrophysics, and cosmology; e.g.,

Crash and Enzo [98, 100] report scaling to a maximum of near 1000 cores. The

hybrid memory approach used by Uintah has also contributed to our results, as

only one copy of the geometry is needed per multicore node.

The results in Figure 9.9 also show that in this case, Titan outperforms Stampede

(host native mode) and Mira. In the case of the AMR MPMICE problem, Stampede

and Titan perform similarly. The difference in these two cases would appear to

be better network performance of Titan for the very large amounts of all-to-all

communication required by the RMCRT problem.

Strong scaling results for a single-level, GPU-enabled RMCRT problem are

shown by [52] for a prototype Uintah testbed component with a resolution of 1283

on the TitanDev system. This Uintah component executes an extension of the

RMCRT benchmark problem described by Burns and Christon in [28]. In moving



119

256 512 1K 2K 4K 8K 16K

10
2

10
3

Processing Units (Cores)

M
e

a
n

 T
im

e
 P

e
r 

T
im

e
s
te

p
(s

e
c
o

n
d

)

Titan

Stampede

Mira

Ideal Scaling

Figure 9.9. RMCRT Strong Scaling

to the full Titan system with its new Nvidia K20 GPUs, we found scaling results

consistent to those in [52]. The only significant difference was that the Kepler GPUs

were nearly three times faster than their Fermi predecessor.

Although we were able to run successfully on Titan beyond 256 nodes, utilizing

the on-node GPUs, the GPU implementation quickly runs out of work and strong

scaling begins breaking down. The all-to-all nature of this problem severely limits

the size of the problem that can be computed, and hence does not scale well due to

memory constraints involved with large highly resolved physical domains [52]. To

address this scalability issue and as part of future work, we will modify our RMCRT

GPU implementation to leverage the multilevel coarsening scheme discussed in

Section 9.2.

9.4 Summary
The porting requirements of Uintah can vary depending on the nature of the

heterogeneous platform, and the dominant changes that must occur are focused



120

primarily in the runtime system. For machines which require vendor-specific

extensions such as Nvidia CUDA, the component code does require changes

to make use of these extensions. However, the runtime system does provide

mechanisms to minimize changes in the component code. Porting Uintah to

new heterogenous systems only requires changes to the runtime system such as

schedulers and data warehouse, with little to no changes to infrastructure code.

Porting Uintah task code can vary depending on the nature of the heterogeneous

platform; however, the Uintah runtime system does provide convenient mech-

anisms to port any subset of task code. We have also shown that weak and

strong scalability is achieved when the runtime environment is allowed to flexibly

schedule the execution order of computational tasks to overlap computation with

communication. It is the combination of the DAG representation of tasks with a

runtime environment that can schedule tasks based on a precompiled dependency

analysis in a preferred order that yields scalability on a variety of problems with

widely different communication requirements, and on systems with very different

architectures. A major remaining challenge is to extend Uintah to move beyond

being able to use accelerators and coprocessors to achieve scalability across the

whole of machines like Titan, Mira, and Stampede for very broad problem classes

including components such as radiation.



CHAPTER 10

CONCLUSION AND FUTURE WORK

In this dissertation, I have covered the history and evolution of Uintah in the con-

text of its task schedulers and runtime systems, all leading up to the development

of the Unified heterogeneous task scheduler and runtime system described in this

work. Our conclusion is that the adaptive DAG-based approach provides a very

powerful abstraction for solving challenging multiscale multiphysics engineering

problems on some of the largest and most powerful computers available today.

There are several potential research topics to extend this research further. The

runtime system could be improved by implementing an auto-tuning mechanism

to select patch size from profiling results and runtime information. This approach

could lead to a better cache reuse if an optimized patch size is chosen. Moreover,

when Uintah is run on different computing units, such as multicore CPUs, GPUs,

or MICs, different patch size may be required to get better performance. Commu-

nication, on the other hand, may also have different granularity requirements for

better overlapping the computations. It could be hard to find a universal patch

size to satisfy all these requirements. If the runtime system can group patches

together dynamically for CPU processing, GPU/MIC processing, or communica-

tions, we could then have a good cache reuse, GPU occupancy, and communication

performance at the same time.

During this research, many challenges come from debugging and managing

complexity on the large scale. Most of petascale machines no longer provide

back end access or core dump files to user. Large-scale commercial debugger’s

debugging session caused racks of the machine to crash and can be resolved only by

the creation of a special build of debugger itself. These restrictions make Uintah’s

development and performance analysis on petascale much more difficult. By



122

manually looking up the address pointers print-out and then mapping them to the

code offline, we extracted limited but useful information for debugging. Another

technique is to reproduce the target issue in a small scale so that common debugging

tools can be used. To identify key performance and scalability issues of Uintah,

we have employed Uintah’s built-in monitoring functions to locate components

needing improvement. Third-party profiling tools were then used to localize the

exact code, consuming the most CPU time. We also utilized manually inserted

timers to confirm profiling results and to verify the improvement once changes

were made. In order to provide an easier way to overcome those challenges,

systematic debugging and performance monitoring approaches may be required

for future Uintah development.

Using directed acyclic graphs to represent computational tasks combined with

an asynchronous and dynamic runtime system provides an effective way to achieve

scalable systems on disparate heterogenous and homogenous high performance

computer systems. High efficiency is achieved when the runtime environment is

allowed to flexibly schedule the execution order of the various computational tasks.

This approach leads to scalability on a variety of problems with widely different

communication requirements, and on systems with very different architectures. To

extend Uintah to being able to use accelerators and coprocessors more efficiency

with hardware’s new abilities to solve new challenging scientific and engineering

problems requires additional and continue work on the runtime system.



APPENDIX

PUBLICATIONS

• Q. Meng, J. Luitjens, and M. Berzins. “Dynamic Task Scheduling for the

Uintah Framework”. In Proceedings of the 3rd IEEE Workshop on Many-Task

Computing on Grids and Supercomputers (MTAGS10), IEEE 2010

• Q. Meng, M. Berzins, and J. Schmidt. “Using Hybrid Parallelism to Improve

Memory Use in the Uintah Framework.” In Proceedings of the 2011 TeraGrid

Conference (TG11), Salt Lake City, Utah, ACM, 2011.

• Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins. “Preliminary Experiences

with the Uintah Framework on Intel Xeon Phi and Stampede.” In Proceedings

of the 2nd Conference of the Extreme Science and Engineering Discovery Environ-

ment (XSEDE 2013), ACM, 2013.

• Q. Meng, A. Humphrey, and M. Berzins. “The Uintah Framework: A Unified

Heterogeneous Task Scheduling and Runtime System”. In Digital Proceed-

ings of the Workshop on Domain-Specific Languages and High-Level Frameworks

for High Performance Computing (WOLFHPC12), IEEE, 2012.

• Q. Meng and M. Berzins. “Scalable Large-scale Fluid-structure Interaction

Solvers in the Uintah Framework via Hybrid Task-based Parallelism Algo-

rithms.” Concurrency and Computation: Practice and Experience, John Wiley &

Sons, Ltd., 2013

• Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins, “Investigating Applica-

tions Portability with the Uintah DAG-based Runtime System on PetaScale

Supercomputers”, In Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis(SC’13), ACM/IEEE 2013



124

• M. Berzins, J. Luitjens, Q. Meng, T. Harman, C.A. Wight, and J.R. Peterson.

“Uintah - A Scalable Framework for Hazard Analysis.” In Proceedings of the

2010 TeraGrid Conference (TG’10), 2010, ACM.

• A. Humphrey, Q. Meng, M. Berzins, and T. Harman. “Radiation Modeling

Using the Uintah Heterogeneous CPU/GPU Runtime System.” In Proceedings

of the 1st Conference of the Extreme Science and Engineering Discovery Environment

(XSEDE 2012), 2012, ACM.

• M. Berzins, Q. Meng, J. Schmidt, and J. Sutherland. “DAG-based Software

Frameworks for PDEs.” In the Proceedings of the Workshop on Algorithms

and Programming Tools for Next-Generation High-Performance Scientific Software,

Lecture Notes in Computer Science (LNCS), Springer, 2013

• M. Berzins, J. Schmidt, Q. Meng, A. Humphrey. “Past, Present, and Future

Scalability of the Uintah Software”, In Proceedings of the Extreme Scaling

Workshop, ACM, 2012

• J. Beckvermit, J.R. Peterson, T. Harman, S. Bardenhagen, C.A. Wight, Q. Meng,

M. Berzins. “Multiscale Modeling of Accidental Explosions and Detonations”

Computing in Science and Engineering Volume 15, Issue 4, pp. 76-86, IEEE/AIP,

2013



REFERENCES

[1] BoxLib user’s guide, 2011. https://ccse.lbl.gov/BoxLib.

[2] Nvidia Developer Zone Web Page, 2012. http://developer.nvidia.com/nvidia-
gpu-computing-documentation.

[3] The Center for the Simulation of Accidental Fires and Explosions Uintah Web
Page, 2012. http://www.uintah.utah.edu/.

[4] Top500 Web Page, 2012. http://www.top500.org/list/2012/11/.

[5] Argonne Leadership Computing Facility Mira Web Page, 2013.
https://www.alcf.anl.gov/mira.

[6] FLASH user’s guide, 2013. http://flash.uchicago.edu/.

[7] OpenACC member companies and CAPS Enterprise and CRAY Inc and
The Portland Group Inc (PGI) and NVIDIA, OpenACC Web Page, 2013.
http://www.openacc-standard.org/.

[8] Texas Advanced Computing Center Stampede User Guide, 2013.
http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide.

[9] Texas Advanced Computing Center Stampede Web Page, 2013.
http://www.tacc.utexas.edu/resources/hpc/stampede.

[10] U.S. Department of Energy Oak Ridge National Laboratory and
Oak Ridge Leadership Computing Facility Titan Web Page, 2013.
http://www.olcf.ornl.gov/titan/.

[11] National Center for Supercomputing Applications BlueWater User Guide,
2014. https://bluewaters.ncsa.illinois.edu/blue-waters.

[12] Akhter, S., and Roberts, J. Multi-core Programming. Intel Press, 2006.

[13] Amarasinghe, S., Campbell, D., Carlson, W., Chien, A., Dally, W., Elno-
hazy, E., Hall, M., Harrison, R., Harrod, W., Hill, K., et al. Exascale
software study: Software challenges in extreme scale systems. Tech. rep.,
2009.

[14] Amarasinghe, S., Campbell, D., Carlson, W., Chien, A., Dally, W., Elno-
hazy, E., Hall, M., Harrison, R., Harrod, W., K.Hill, Hiller, J., Karp,
S., Koelbel, C., D.Koester, Kogge, P., J.Levesque, Reed, D., Sarkar, V.,
R.Schreiber, Richards, M., Scarpelli, A., J.Shalf, A.Snavely, and Sterling,
T. Exascale computing study: Technology challenges in achieving exascale



126

systems. Tech. Rep. ECSS Report 101909, Georgia Institute of Technology,
2009.

[15] Anshu Dubey, Ann Almgrena, J. B. M. B. S. B. A survey of high level
frameworks in block-structured adaptive mesh renement packages.

[16] Attaway, S., Heinstein, M., and Swegle, J. Coupling of smooth particle
hydrodynamics with the finite element method. Nuclear engineering and
design 150, 2 (1994), 199–205.

[17] Attaway, S. A., Barragy, E. J., Brown, K. H., Gardner, D. R., Hendrickson,
B. A., Plimpton, S. J., and Vaughan, C. T. Transient solid dynamics simu-
lations on the sandia/intel teraflop computer. In Supercomputing, ACM/IEEE
1997 Conference (1997), IEEE, pp. 58–58.

[18] Beckvermit, J., Peterson, J., Harman, T., Bardenhagen, S., Wight, C., Meng,
Q., and Berzins, M. Multiscale modeling of accidental explosions and
detonations. Computing in Science and Engineering 15, 4 (2013), 76–86.

[19] Bennett, J. G., Haberman, K. S., Johnson, J. N., andAsay, B. W. A constitutive
model for the non-shock ignition and mechanical response of high explosives.
Journal of the Mechanics and Physics of Solids 46, 12 (1998), 2303–2322.

[20] Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau,
M., Franzon, P., Harrod, W., Hiller, J., Karp, S., (Editor, P. K.,nd S. Keckler,
S. L., Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely,
A., Sterling, T., Williams, R. S., and Yelick, K. Exascale computing study:
Technology challenges in achieving exascale systems. Tech. Rep. TR-2008-13,
Department of Computer Science, Notre Dame University, 2008.

[21] Berzins, M. Status of release of the uintah computational framework. SCI
Technical Report UUSCI-2012-001, SCI Institute, University of Utah, 2012.

[22] Berzins, M., Luitjens, J., Meng, Q., Harman, T., Wight, C., and Peterson, J.
Uintah - a scalable framework for hazard analysis. In TG ’10: Proc. of 2010
TeraGrid Conference (2010), ACM.

[23] Berzins, M., Meng, Q., Schmidt, J., and Sutherland, J. Dag-based software
frameworks for pdes. In Proceedings of HPSS 2011 (Europar, Bordeaux August,
2011) (2012).

[24] Blazewicz, M., Hinder, I., Koppelman, D. M., Brandt, S. R., Ciznicki, M.,
Kierzynka, M., Löffler, F., Schnetter, E., and Tao, J. From physics model
to results: An optimizing framework for cross-architecture code generation.
Scientific Programming.

[25] Brackbill, J., and Ruppel, H. Flip: A method for adaptively zoned, particle-
in-cell calculations of fluid flows in two dimensions. Journal of Computational
Physics 65, 2 (1986), 314–343.

[26] Brackbill, J. U. Particle methods. International Journal for Numerical Methods
in Fluids 47, 8-9 (2005), 693–705.



127

[27] Bungartz, H.-J., Benk, J., Gatzhammer, B., Mehl, M., and Neckel, T.
Partitioned simulation of fluid-structure interaction on cartesian grids. In
Fluid Structure Interaction II. Springer, 2010, pp. 255–284.

[28] Burns, S. P., and Christen, M. A. Spatial domain-based parallelism in large-
scale, participating-media, radiative transport applications. Numerical Heat
Transfer, Part B: Fundamentals 31, 4 (1997), 401–421.

[29] Buttari, A., Langou, J., Kurzak, J., andDongarra, J. A class of parallel tiled
linear algebra algorithms for multicore architectures. Parallel Computing 35,
1 (2009), 38 – 53.

[30] Clouse, C. Parallel deterministic neutron transport with amr. In Com-
putational Methods in Transport, F. Graziani, Ed., vol. 48 of Lecture Notes
in Computational Science and Engineering. Springer Berlin Heidelberg, 2006,
pp. 499–512.

[31] Colella, P., Bell, J., Keen, N., Ligocki, T., Lijewski, M., and van Straalen,
B. Performance and scaling of locally-structured grid methods for partial
differential equations. Journal of Physics: Conference Series 78 (2007), 012013.

[32] Colella, P., Graves, D., Ligocki, T., Martin, D., Modiano, D., Serafini,
D., and Straalen, B. V. Chombo software package for AMR applications:
design document.

[33] Davison, J., Germain, S., Mccorquodale, J., Parker, S. G., and Johnson, C. R.
Uintah: A massively parallel problem solving environment. In Proc. of the 9th
IEEE Intl. Symposium on High Performance and Distributed Computing (2000).

[34] de St. Germain, J. D., McCorquodale, J., Parker, S. G., and Johnson, C. R.
Uintah: A massively parallel problem solving environment. In Ninth IEEE
International Symposium on High Performance and Distributed Computing (nov.
2000), IEEE, Piscataway, NJ, pp. 33–41.

[35] Dinan, J., Krishnamoorthy, S., Brian, L., Nieplocha, J., and Sadayappan, P.
Scioto: A framework for global-view task parallelism. In Parallel Processing,
2008. ICPP ’08. 37th International Conference on (9-12 2008), pp. 586 –593.

[36] Dostál, Z., Vondrák, V., Horák, D., Farhat, C., and Avery, P. Scalable
feti algorithms for frictionless contact problems. In Domain Decomposition
Methods in Science and Engineering XVII. Springer, 2008, pp. 263–270.

[37] Enzo astrophysical AMR code, 2013. http://enzo-project.org/.

[38] Faghri, M., and Senden, S., Eds. Heat Transfer to Objects in Pool Fires, vol. 20.
Wit Press, 2008.

[39] Falgout, R., Jones, J., and Yang, U. Numerical Solution of Partial Differential
Equations on Parallel Computers, vol. UCRL-JRNL-205459. Springer-Verlag,
51, 2006, ch. The Design and Implementation of Hypre, a Library of Parallel
High Performance Preconditioners, pp. 267–294.



128

[40] Fraser, K. Practical lock-freedom. PhD thesis, PhD thesis, Cambridge
University Computer Laboratory, 2003. Also available as Technical Report
UCAM-CL-TR-579, 2004.

[41] Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q.,
MacNeice, P., Rosner, R., Truran, J. W., and Tufo, H. Flash: An adap-
tive mesh hydrodynamics code for modeling astrophysical thermonuclear
flashes. Astrophysical Journal, Supplement 131 (2000), 273–334.

[42] Gottlieb, S., Shu, C., and Tadmor, W. Strong stability-preserving high-order
time discretization methods. Siam Review 43, 1 (2001), 89–112.

[43] Götz, J., Iglberger, K., Stürmer, M., and Rüde, U. Direct numerical
simulation of particulate flows on 294912 processor cores. In Proceedings
of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (2010), IEEE Computer Society, pp. 1–11.

[44] Graham, R., Lawler, E., Lenstra, J., and Kan, A. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics 5 (1979), 287–326.

[45] Grinberg, I., and Wiseman, Y. Scalable parallel simulator for vehicular
collision detection. International Journal of Vehicle Systems Modelling and Testing
8, 2 (2013), 119–144.

[46] Guilkey, J., and Weiss, J. Implicit time integration for the material point
method: Quantitative and algorithmic comparisons with the finite element
method. International Journal for Numerical Methods in Engineering 57, 9 (2003),
1323–1338.

[47] Guilkey, J. E., Harman, T. B., and Banerjee, B. An eulerian-lagrangian
approach for simulating explosions of energetic devices. Computers and
Structures 85 (2007), 660–674.

[48] Guilkey, J. E., Harman, T. B., Xia, A., Kashiwa, B. A., and McMurtry,
P. A. An Eulerian-Lagrangian approach for large deformation fluid-structure
interaction problems, part 1: Algorithm development. In Fluid Structure
Interaction II (2003), WIT Press.

[49] Harlow, F. H., and Amsden, A. A. Numerical calculation of almost incom-
pressible flow. Journal of Computational Physics 3, 1 (1968), 80–93.

[50] Harman, T. B., Guilkey, J. E., Kashiwa, B. A., Schmidt, J., and McMurtry,
P. A. An eulerian-lagrangian approach for large deformationfluid-structure
interaction problems, part 1:multi-physics simulations within a modern
computationalframework. In Fluid Structure Interaction II (2003), WIT Press.

[51] Howell, J. R. The monte carlo in radiative heat transfer. Journal of Heat
Transfer 120, 3 (1998), 547–560.



129

[52] Humphrey, A., Meng, Q., Berzins, M., and Harman, T. Radiation Modeling
Using the Uintah Heterogeneous CPU/GPU Runtime System. In Proceedings
of the 1st Conference of the Extreme Science and Engineering Discovery Environ-
ment (XSEDE 2012) (2012), ACM.

[53] Hunsaker, I., Harman, T., Thornock, J., and Smith, P. Efficient Paral-
lelization of RMCRT for Large Scale LES Combustion Simulations. Paper
AIAA-2011-3770. 41st AIAA Fluid Dynamics Conference and Exhibit, 2011.

[54] Hunsaker, I., Harman, T., Thornock, J., and Smith, P. J. Efficient Paralleliza-
tion of RMCRT for Large Scale LES Combustion Simulations. No. 2011-3770
in Volume 1, pp. 2714–2724.

[55] Jessee, J. P., Fiveland, W. A., Howell, L. H., Colella, P., and Pember, R. B.
An adaptive mesh refinement algorithm for the radiative transport equation.
Journal of Computational Physics 139, 2 (1998), 380–398.

[56] J.Spinti, Thornock, J., Eddings, E., Smith, P., and Sarofim, A. Heat transfer to
objects in pool fires, in transport phenomena in fires. In Transport Phenomena
in Fires (2008), WIT Press.

[57] Kale, L. V., and Krishnan, S. Charm++: Parallel Programming with
Message-Driven Objects. In Parallel Programming using C++, G. V. Wilson
and P. Lu, Eds. MIT Press, 1996, pp. 175–213.

[58] Kashiwa, B., and Gaffney., E. Design basis for cfdlib. Tech. Rep. LA-UR-03-
1295, Los Alamos National Laboratory, 2003.

[59] Kashiwa, B., Lewis, M., andWilson, T. Fluid-structure interaction modeling.
Tech. Rep. LA-13111-PR, Los Alamos National Laboratory, 1996.

[60] Kashiwa, B. A., and Rauenzahn, R. M. A cell-centered ICE method for mul-
tiphase flow simulations. Tech. Rep. LA-UR-93-3922, Los Alamos National
Laboratory, 1994.

[61] Krishnamoorthy, G. Predicting Radiative Heat Transfer in Parallel Computations
of Combustion. PhD thesis, University of Utah, December 2005.

[62] Luitjens, J., and Berzins, M. Improving the performance of Uintah: A
large-scale adaptive meshing computational framework. In Proc. of the 24th
IEEE Int. Parallel and Distributed Processing Symposium (IPDPS10) (2010).

[63] Luitjens, J., and Berzins, M. Scalable parallel regridding algorithms for
block-structured adaptive mesh refinement. Concurrency and Computation:
Practice and Experience 23, 13 (2011), 1522–1537.

[64] Luitjens, J., Worthen, B., Berzins, M., and Henderson, T. Scalable parallel
amr for the uintah multiphysics code. In Petascale Computing Algorithms and
Applications, D. Bader, Ed. Chapman and Hall/CRC, 2007.

[65] Luitjens, J. P. The Scalability of Parallel Adaptive Mesh Refinement Within Uintah.
PhD thesis, The University of Utah, 2011.



130

[66] MacNeice, P., Olson, K., Mobarry, C., de Fainchtein, R., and Packer,
C. PARAMESH: A parallel adaptive mesh refinement community toolkit.
Computer Physics Communications 126, 3 (2000), 330–354.

[67] Meng, Q., and Berzins, M. Scalable large-scale fluid-structure interaction
solvers in the Uintah framework via hybrid task-based parallelism algo-
rithms. Concurrency and Computation: Practice and Experience (2013).

[68] Meng, Q., Berzins, M., and Schmidt, J. Using Hybrid Parallelism to Improve
Memory Use in the Uintah Framework. In Proc. of the 2011 TeraGrid Conference
(TG11) (2011).

[69] Meng, Q., Humphrey, A., andBerzins, M. The Uintah Framework: A Unified
Heterogeneous Task Scheduling and Runtime System. In Digital Proceedings
of Supercomputing 12 - WOLFHPC Workshop (2012), IEEE.

[70] Meng, Q., Humphrey, A., Schmidt, J., and Berzins, M. Preliminary
Experiences with the Uintah Framework on Intel Xeon Phi and Stampede. In
The 2nd Conference of the Extreme Science and Engineering Discovery Environment
(XSEDE 2013) (2013), ACM.

[71] Meng, Q., Luitjens, J., and Berzins, M. Dynamic task scheduling for the
uintah framework. In Proceedings of the 3rd IEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS10) (2010).

[72] Modest, M. F. Backward Monte Carlo Simulations in Radiative Heat Transfer.
Journal of Heat Transfer 125, 1 (2003), 57–62.

[73] Parker, S. G. C-safe uses linux hpcc in fire research. Technology for Higher
Education, Syllabus 16 (2003).

[74] Parker, S. G. A component-based architecture for parallel multi-physics pde
simulation. Future Generation Computing System 22, 1 (2006), 204–216.

[75] Parker, S. G., Guilkey, J., and Harman, T. A component-based parallel
infrastructure for the simulation of fluid structure interaction. Engineering
with Computers 22, 3 (2006).

[76] Pedel, J., Thornock, J., and Smith, P. Ignition of co-axial oxy-coal jet flames:
data collaboration of experiments and simulations. Combustion and Flame
Accepted for publication (2012).

[77] Pedel, J., Thornock, J., and Smith, P. Large simulation of pulverized coal jet
flame ignition using the direct quadrature method of moments. Energy and
Fuels Accepted for publication (2012).

[78] Pernice, M., and Philip, B. Solution of equilibrium radiation diffusion
problems using implicit adaptive mesh refinement. SIAM J. Sci. Comput.
27, 5 (2005), 1709–1726.

[79] Pope, S. B. Turbulent Flows. Cambridge Press, 2000.



131

[80] Q. Meng, A. Humphrey, J. S., and Berzins, M. Investigating Applications
Portability with the Uintah DAG-based Runtime System on PetaScale Su-
percomputers. In the International Conference for High Performance Computing,
Networking, Storage and Analysis(SC’13) (2013), IEEE/ACM.

[81] Rijkhorst, E.-J., Plewa, T., Dubey, A., and Mellema, G. Hybrid char-
acteristics: 3d radiative transfer for parallel adaptive mesh refinement
hydrodynamics. Astronomy and Astrophysics 452, 3 (2006), 907–920.

[82] Sadeghirad, A., Brannon, R., and Burghardt, J. A convected particle
domain interpolation technique to extend applicability of the material point
method for problems involving massive deformations. International Journal
for Numerical Methods in Engineering 86, 12 (2011), 1435–1456.

[83] Sarkar, V. Partitioning and scheduling parallel programs for execution on
multiprocessors. PhD thesis, 1987. UMI Order No. GAX87-23080.

[84] Schmidt, J., Berzins, M., Thornock, J., Saad, T., and Sutherland, J. Large
Scale Parallel Solution of Incompressible Flow Problems using Uintah and
hypre. In Proceedings of CCGrid 2013 (2013), IEEE/ACM.

[85] Schmidt, J., Thornock, J., Sutherland, J., and Berzins, M. Large Scale
Parallel Solution of Incompressible Flow Problems using Uintah and Hypre.
Tech. Rep. UUSCI-2012-002, Scientific Computing and Imaging Institute,
2012.

[86] Sinnen, O. Task scheduling for parallel systems, vol. 60. Wiley. com, 2007.

[87] Smith, P. J., R.Rawat, Spinti, J., Kumar, S., Borodai, S., and Violi, A. Large
eddy simulation of accidental fires using massively parallel computers. In
18th AIAA Computational Fluid Dynamics Conference (June 2003).

[88] Smoot, L., and Smith, P. Coal Combustion and Gasification. Plenum Press,
1985.

[89] Steffen, M., Kirby, R. M., and Berzins, M. Decoupling and balancing of
space and time errors in the material point method (mpm). International
journal for numerical methods in engineering 82, 10 (2010), 1207–1243.

[90] Sulsky, D., Chen, Z., and Schreyer, H. A particle method for history-
dependent materials. Computer Methods in Applied Mechanics and Engineering
118, 1-2 (1994), 179–196.

[91] Sulsky, D., Zhou, S., and Schreyer, H. L. Application of a particle-in-cell
method to solid mechanics. Computer Physics Communications 87 (1995), 236–
252.

[92] Sun, X. Reverse Monte Carlo ray-tracing for radiative heat transfer in combustion
systems. PhD thesis, Dept. of Chemical Engineering, University of Utah, 2009.



132

[93] Sun, X., and Smith, P. J. A parametric case study in radiative heat transfer
using the reverse monte-carlo ray-tracing with full-spectrum k-distribution
method. Journal of Heat Transfer 132, 2 (2010).

[94] Tao, J., Allen, G., Hinder, I., Schnetter, E., and Zlochower, Y.
XIREL:standard benchmarks for numericla relativity codes using Cactus
and Carpet. Tech. Rep. CCT-TR-2008-5, Center for Computationa and
Technology, Louisiana State University, 2008.

[95] Thakur, R., Rabenseifner, R., and Gropp, W. D. Optimization of collective
communication operations in mpich. International Journal of High Performance
Computing Applications 19, 1 (2005), 49–66.

[96] Tran, L., and Berzins, M. Impice method for compressible flow problems in
uintah. International Journal for Numerical Methods in Fluids, Note: Published
online 20 (2011).

[97] Tran, L., Kim, J., and Berzins, M. Solving time-dependent pdes using the
material point method, a case study from gas dynamics. International journal
for numerical methods in fluids 62, 7 (2010), 709–732.

[98] van der Holst, B., Toth, G., Sokolov, I., Powell, K., Holloway, J., et al.
Crash: A Block-Adaptive-Mesh Code for Radiative Shock Hydrodynamics -
Implementation and Verification. Astrophys.J.Suppl. 194 (2011), 23.

[99] Wallstedt, P., and Guilkey, J. An evaluation of explicit time integration
schemes for use with the generalized interpolation material point method.
Journal of Computational Physics 227, 22 (2008), 9628–9642.

[100] Wise, J. H., and Abel, T. enzo+moray: radiation hydrodynamics adaptive
mesh refinement simulations with adaptive ray tracing. Monthly Notices of
the Royal Astronomical Society 414, 4 (2011), 3458–3491.


