
Accepted Article Preview: Published ahead of advance online publication

Automated Delineation of Dermal-Epidermal Junction In

Reflectance Confocal Microscopy Image Stacks Of Human

Skin

Sila Kurugol, Kivanc Kose, Brian Park, Jennifer G Dy, Dana
H Brooks, Milind Rajadhyaksha

Cite this article as: Sila Kurugol, Kivanc Kose, Brian Park, Jennifer G Dy, Dana

H Brooks, Milind Rajadhyaksha, Automated Delineation of Dermal-Epidermal

Junction In Reflectance Confocal Microscopy Image Stacks Of Human Skin,

Journal of Investigative Dermatology accepted article preview 3 September 2014;

doi: 10.1038/jid.2014.379.

This is a PDF file of an unedited peer-reviewed manuscript that has been accepted

for publication. NPG are providing this early version of the manuscript as a service

to our customers. The manuscript will undergo copyediting, typesetting and a proof

review before it is published in its final form. Please note that during the production

process errors may be discovered which could affect the content, and all legal

disclaimers apply.

Received 14 April 2014; revised 25 July 2014; accepted 7 August 2014; Accepted
article preview online 3 September 2014

© 2014 The Society for Investigative Dermatology



1 

Automated Delineation of Dermal-Epidermal Junction In 

Reflectance Confocal Microscopy Image Stacks Of Human 

Skin 

Sila Kurugol
a
,†, Kivanc Kose

b
,†*, Brian Park

c
, Jennifer G. Dy

d
,‡, Dana H. Brooks

d
,‡, Milind Rajadhyaksha

b
,‡   

a
 Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA  

b
Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY  

c
NYU School of Medicine and NYU Department of Radiology, New York, NY  

d
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA  

     

†equal contribution (shared first authorship) 

‡equal contribution (shared senior authorship) 

*corresponding author: Dermatology Service, Memorial Sloan Kettering Cancer Center, +1 212 6100831, 

kosek@mskcc.org 

 

 

 

 

 

 

 

 

© 2014 The Society for Investigative Dermatology



2 

Abstract 
 

Reflectance confocal microscopy (RCM) images skin non-invasively, with optical sectioning and nuclear-level 

resolution comparable to that of pathology. Based on assessment of the dermal-epidermal junction (DEJ) and 

morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. 

However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We 

hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and 

validation was performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal 

human skin. The test set was composed of 15 fair and 15 dark skin stacks (30 subjects) with expert labellings. In dark 

skin, in which the contrast is high due to melanin, the algorithm produced an average error of 7.9±6.4μm. In fair skin, 

the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8μm for the epidermis-to-transition 

zone boundary and 7.6±5.6μm for the transition zone-to-dermis. Our results suggest that automated algorithms may 

quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of 

such algorithms may guide assessment of abnormal morphological features at the DEJ.  

Key words: confocal microscopy, human skin, dermal-epidermal junction, image analysis, texture analysis, machine 

learning. 
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1  Introduction 

Reflectance confocal microscopy (RCM) is a non-invasive imaging technique used to examine skin. Its optical 

sectioning (1−3μm) and nuclear-level resolution (0.5−1.0μm) are comparable to that of pathology. Stacks of en-face 

images are routinely acquired to examine skin in depth (100−200μm), and mosaics near the dermal-epidermal junction 

(DEJ) to examine in lateral extent (10mm×10mm). Basal cell carcinomas have been diagnosed in vivo with 92−100% 

sensitivity and 97−85% specificity and melanomas with 92−88% sensitivity and 70−84% specificity (Guitera et al., 

2012; Nori et al., 2004). Initial implementation in academic clinical settings (Alarcon et al., 2013; Pellacani et al., 

2014) showed that RCM imaging combined with dermoscopy, reduced the number of unnecessary biopsies and thus 

also the economic burden associated with skin cancer management. This success has been achieved by a small cohort 

of “early adopter" clinicians, who, through working with the technology and performing the clinical studies, have 

become experts in reading RCM images. However, RCM images are more challenging to read than pathology. The 

imaging is in en face orientation (instead of orthogonal), and with only one source of contrast (reflectance), instead of 

two, as with hematoxylin and eosin. Consequently, the images appear in gray-scale contrast (instead of purple and pink 

colored). In addition, the contrast and signal-to-noise varies with pigmentation conditions and degrades with depth, 

especially below the DEJ. 

Thus, the ability to analyze RCM images for diagnosis is currently confined to the early adopter clinicians. For the 

larger cohort of novice (interested in, but new to RCM) clinicians, the difficulty of reading images is a barrier against 

training and wider adoption of this technology. To address the need for training, machine learning-based image 

analysis is being investigated to provide quantitative and objective approaches for reading images. (Gareau et al., 

2010; Koller et al., 2011; Kurugol et al., 2011; Wiltgen et al., 2008) One of the first studies reported a method based on 

texture analysis for automated identification of diagnostically significant regions in RCM images of melanocytic 

lesions(Koller et al., 2011; Wiltgen et al., 2008). Another group of researchers developed a method to automatically 

quantify the spread of pagetoid melanocytes in epidermis and disarray at the DEJ level in order to detect superficial 

spreading melanomas (Gareau et al., 2010). Subsequently, our group carried out feasibility studies on a texture 

analysis approach to automatically delineate the DEJ, in terms of an epidermis-to-dermis transition zone, in RCM 

stacks of fair skin in vivo (Kurugol et al., 2011). The boundaries of the transition zone were localized with an average 

error, on a small set of four image stacks, of ∼8.5±6.8μm, with epidermis versus dermis classification rates above 85%. 

The rationale for addressing localization of DEJ is that this junction and its vicinity, in which the majority of 

diagnostically important features are found, is routinely examined in pathology. This was accomplished in most of the 

clinical studies by first localizing the DEJ in RCM stacks and then acquiring (and analyzing) RCM mosaics at, just 

above, and just below the junction (Alarcon et al., 2013; Gill et al., 2013; Pellacani et al., 2007). This approach is now 

standard practice for imaging on patients. When visually examining RCM stacks, expert readers typically use texture 

and contrast differences between layers of the epidermis and dermis, in order to locate the DEJ. For example, granular 

layers characteristically appear as honeycomb patterns formed by polygonal cells, with dark nuclei surrounded by 

bright grainy cytoplasm, whereas spinous and basal layers appear in a distinct cobblestone pattern. The papillary 

dermis appears different, as a dark band between the epidermis and the underlying relatively brighter reticular dermis, 

sometimes including dark lumen-like structures corresponding to capillary loops (occasionally containing bright blood 

cells). Furthermore, in dark skin, due to high concentration of melanin, the basal layer appears with distinctly bright 

contrast, which makes it possible to locate the DEJ more reliably than in fair skin. However, the current visual 

approach for delineation of the DEJ in RCM stacks is subjective and produces significant variability. We hypothesized 

that machine learning-based algorithms may provide a more quantitative, objective approach and performed an initial 

investigation in image analysis methods (Kurugol et al., 2011). 

In this article, we expand upon our previously reported approach, to include an algorithm for DEJ localization in 

dark skin (Section 4), and report the results of testing on an extended dataset, with validation against “ground truth" 

segmentation of epidermis versus dermis by expert readers (Section 2). 

2  Results 

In Table 1, a summary of the outcomes, showing the best, worst, and average results for DEJ delineation in dark and 

fair skin is presented. The complete table of results for all of the 15 stacks of dark and 15 of fair skin is included in the 

supplementary material. 

We report the mean and the standard deviation of the error, as well as the percentage of tiles that are within 15μm 

error, averaged across all 15 stacks for each type of skin, as well as for the best and the worst cases. The table also 

reports the classification accuracy, in the form of “confusion matrices", for the two layers (epidermis, dermis) in the 
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case of dark skin and three (epidermis, transition zone, dermis) in the case of fair skin. Specifically, in the confusion 

matrices, diagonal elements show percent correct classification, while the off-diagonal elements show the percentages 

that were misclassified. The table shows that, in dark skin, the epidermis was correctly classified in 89% of the tiles and 

the dermis in 87%. The epidermis-as-dermis misclassification was 11% and dermis-as-epidermis was 13%. In fair 

skin, the confusion matrix indicates that algorithm was correctly classified in 64%, 41%, and 75% of tiles for 

epidermis, transition region, and dermis, respectively. The dermis and epidermis were well distinguished from each 

other on the other hand, with small percentages of epidermis-dermis misclassification. 

To illustrate our results (Figs. 2-4), we show three-dimensional visualizations of example results from selected 

stacks comparing algorithmic and expert delineations. Orthogonal visualizations of en face, sagittal, and coronal slices 

are shown from example stacks of both dark (Fig.2) and fair (Fig. 3) skin. In both figures, the cross-hairs on the en-face 

views show the locations of the corresponding sagittal (red in dark, orange in fair skin stacks) and coronal (green in 

dark, and light blue in fair skin stacks) slices. Expert boundaries are shown with light blue lines and algorithm 

boundaries in orange on all slices. The sagittal and coronal views are analogous to the standard orientation of histology 

sections and illustrate the anisotropic resolution of the RCM imaging. Fig. 4 shows three-dimensional surface views of 

the boundaries in example stacks for both dark and fair skin. Fig. 4-a shows the algorithmic delineation of the DEJ in 

dark skin, with color mapped onto the surface to show the separation error between this boundary and the labeling of 

the experts. In Fig. 4-b, the surfaces show the algorithmic segmentation of the epidermis-to-transition boundary (in 

color in the upper portion) and the dermis-to-transition boundary (color in the lower portion) in fair skin. Again, error 

between the expert and algorithm is color mapped on the surfaces. 

3  Discussion 

Over 30 stacks, we achieved an average error of ≤8.5μm. Examination of results across all 15 dark skin stacks revealed 

that for 9 of them, the error was less than 15μm for 86% or better of the tiles. A small subset of those stacks had 

markedly worse performance; nonetheless the mean error was less than 15μm for all 15 stacks and only 5 stacks had 

mean error >8μm. The stacks with less accurate performance consistently had both higher mean error and higher 

standard deviations, suggesting that a subset of tiles in those stacks were particularly problematic. We found that, in 

those cases, brightness contrast from highly melanized basal cells was lacking in some locations. In fair skin, 11 of 

both boundaries met the <15μm accuracy criterion on 86% or more tiles. Although the worst case stack had mean 

boundary errors of ≈20 and ≈17μm, only 4 upper boundaries and 4 lower boundaries had mean errors greater than 8μm. 

When the method performed less accurately, it did so for both boundaries, and mean errors were higher than for dark 

skin, suggesting a more general breakdown of the method. Confusion matrix results confirmed that, in dark skin, we 

achieved accurate tile classification for both epidermis and dermis in almost 90% of the tiles across all stacks, with 

errors evenly distributed between dermis and epidermis. In fair skin, correct classification was lower, with dermis 

classified more accurately than epidermis and transition classified much less accurately, as confirmed by the 

off-diagonal matrix entries in Table 1.  

With average error comparable to the thickness of the basal cell layer, we believe that we achieved our goal of DEJ 

identification in dark skin. In fair skin, although average results were comparable to those is dark skin, in some stacks 

the accuracy was low in several tiles. We believe this may reflect a combination of intrinsic difficulty and 

insufficiently accurate labeling in both training and ground truth. Visual similarity in fair skin between lower epidermis 

and papillary dermis across rete ridges, and lack of texture around and at the basal layer, in part led to less successful 

delineation (e.g. mismatch of expert and algorithmic borders as seen in the coronal view in Fig. 3). In addition to the 

intrinsic challenges posed by that visual similarity, as noted in the next paragraph limitations of expert labeling 

accuracy and repeatability may themselves limit performance, since parameters (e.g. for the Locally Smooth Support 

Vector Machine (LS-SVM) classifier) were learned from stacks whose labeling was itself uncertain (see saggital and 

coronal views of Fig. 4, which show wide expert-labeled transition regions in places).  

Table 1 shows that epidermis/transition distinction is particularly difficult. Whereas the distinction was easy near 

dermal papillae, it was relatively more difficult near rete ridges due to loss of resolution and the resulting blurred 

appearance in the epidermal cellular patterns and the dermal collagen patterns. However, as our labelers gained 

experience, they reported better appreciation of subtle yet observable variations in the blurred texture between lower 

epidermis in the rete ridges and papillary dermis. When observed closely, the lower spinous cell layers appeared 

homogeneously blurred, while the underlying collagen appeared heterogeneously blurred with perceptible fibrous 

patterns. Therefore improved labeling may be possible, leading to improved supervised learning models, and thus to 

improved performance, through thinner transition boundary segmentations or, perhaps, by only identifying one (DEJ) 

boundary with no transition region. 

© 2014 The Society for Investigative Dermatology
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Further improvement in the machine learning algorithm may be realized by using multiple stacks to train the 

LS-SVM fair skin model in a multi-level approach. Similarly textured RCM stacks would be grouped together to 

develop specialized templates and LS-SVMs. In classification, stacks could be compared to templates to determine 

their texture type, then classified with the appropriate LS-SVM model. Dark skin tiles with poor melanin contrast 

could also be identified automatically and fed into a multi-classifier algorithm. Finally, we have developed a prototype 

RCM “dark versus fair" skin classifier (not reported here); if verified on a larger dataset, it could allow unification of 

our two separate algorithms. 

Summarizing, our approach may suffice for many applications. For example, clinicians currently examine RCM 

image mosaics covering larger areas for diagnosis. Typical acquisition is of several mosaics positioned with respect to 

(i.e. at, above, and below) a putative average DEJ depth, in turn requiring identification of that “average DEJ depth" 

from one or more stacks in the mosaic region. This is currently done by visual assessment, and thus is subjective, with 

high inter-clinician variability. Our algorithms may allow standardized imaging for both research and clinical practice. 

Moreover, as our approach provides the 3D structure of the DEJ, it can also be utilized to quantify its microanatomy. 

Other limitations include consensus validation by only two experts. A larger study with several readers, accounting 

for inter-rater variability, would more precisely define our precision. Dividing stacks into fixed size tiles is somewhat 

arbitrary. Dependence on these divisions should be studied. Since skin morphology varies significantly across age and 

site, extensive further testing with larger datasets is essential. All skin imaged here was normal from healthy 

volunteers. Lesion abnormalities, in particular with disrupted DEJs (e.g. some types of malignant melanoma), are 

likely to provide additional challenges. We believe they can be addressed within our framework, but this topic remains 

to be studied.  

4  Materials & Methods 

Our algorithmic approach mimics key aspects of the visual approach used by expert readers. Due to the en face 

orientation of RCM images, dermal papillae and the DEJ are associated with the appearance of rings of basal cells (Fig. 

1). Therefore, rather than looking for a complete DEJ boundary across an entire RCM stack, readers search for 

ring-like patterns of basal cells. These patterns occupy small areas within each image. Thus, the size of these areas 

determines a spatial resolution that is employed by the readers’ visual perception during their search for the DEJ in 

each image. (Note that this visual resolution is entirely different and on a much larger scale than the μm-level optical 

resolution of the actual imaging, which is determined by the lens of the confocal microscope.) Similarly, the processing 

in our algorithms relies on spatial resolution implemented in the form of small square-shaped areas or “tiles" within 

each image. Each stack of RCM images is first divided into such tiles and then processed as a collection of 

non-overlapping “stacks of tiles" or “tile stacks". 

Another key aspect that we mimic is the use of contrast versus texture to locate the DEJ. In particular, since the 

significance and detectability of these features differ between dark and fair skin, we developed separate algorithms for 

each. In the case of dark skin (Types III to VI), the basal layer appears bright in RCM images due to the presence and 

high reflectivity of melanin (illustrated in Fig. 1(a)). Thus, the basal layer can be usually localized by scrolling up and 

down in a stack and looking for obvious changes in contrast (intensity brightness) due to rings of basal cells. The DEJ 

is then delineated as the inner boundary of the ring, being an en face image (this would correspond to the lower 

boundary of the basal layer in a conventional orthogonally oriented section of pathology). Since the rings have 

distinguishable contrast, the spatial resolution for image processing and analysis can be as small as the size of a basal 

cell. Therefore, the dark skin algorithm uses 16μm×16μm tiles, approximately the size of 1−2 basal cells. However, 

sometimes there can be several bright regions in multiple images within a stack, due to, for example, dermal collagen. 

In such cases, we also use other structural or textural features to distinguish the basal layer. These textural features are 

discussed in detail in section 4.1 and the supplementary technical document.  

In fair skin (Types I to II), the ring-like pattern of basal cells that enclose the papillary dermis appear with weak 

contrast. Therefore, readers cannot reliably detect the location of the basal layer. Instead, they typically utilize local 

textural features to delineate the DEJ. Patterns of texture in this case are larger than the size of a basal cell, such that the 

relationship between any observed location and the neighboring area becomes more important. Thus, our algorithm for 

fair skin operates on larger tiles, 25μm×25μm, in order to more effectively incorporate information from texture 

characterization of neighboring areas. Due to the lack of contrast at the basal layer, our expert readers often cannot 

determine the exact location of the DEJ but rather tend to delineate a transition region between epidermis and dermis, 

(which would include the DEJ). Therefore, we designed the fair skin algorithm to also delineate a transition region, 

with two boundaries, an epidermis-transition boundary and a dermis-transition boundary. 

© 2014 The Society for Investigative Dermatology
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In the rest of this section, we first describe the data acquisition and the preprocessing stages that are common for 

both algorithms. Then we briefly describe the technical details of each algorithm, followed by the description of a 

common post-processing step. Finally, we describe the error metrics used in our study. 

4.1  Data Acquisition and Preprocessing 

Our RCM dataset consists of 15 stacks of fair and 15 of dark skin, acquired on the forearms of 30 subjects. The imaging 

was performed on volunteer subjects with their written consent under an IRB-approved protocol. Stacks were 

determined at the time of acquisition as being from either fair or dark skin by direct observation of the subjects’ skin 

type. The acquisition was performed with a commercial confocal microscope (Vivascope 1500, Caliber Imaging & 

Diagnostics, Rochester, New York), which has been routinely used in all reported clinical studies, e.g. (Alarcon et al., 

2013; Gill et al., 2013; Guitera et al., 2012; Nori et al., 2004). Each image has a field of view (FOV) of 0.5mm×0.5mm, 

with lateral resolution of ∼0.7μm and optical sectioning thickness of ∼3μm. The depth-spacing between images in 

each stack is ∼1μm.  

In each stack, the epidermis and dermis regions were manually labeled by consensus between at least two expert 

readers using an open source segmentation tool called Seg3D (CIBC, 2013). The expert labeling was used as the 

ground truth for testing accuracy. The fair skin algorithm obtained some of its parameters by training on expert 

labeling of an additional stack, the one used in our earlier study (Kurugol et al., 2011). This stack was used exclusively 

for training purposes here in this study, and was not used for any testing. 

Our automated processing starts by first registering the images in each stack in the lateral direction, , in order to 

correct for misalignment due to patient motion during imaging. This step is important because our algorithms rely on 

change in local tile-specific features with depth. Each stack was then processed tile by tile to calculate textural features. 

These textural features are mathematical representations of structure in epidermal and dermal layers, calculated for 

each pixel in the images using a set of its adjacent pixel values. We employed a large set of well-known textural 

features: graininess, co-occurrence matrix features, (Haralic, 1979) statistical moments,(Randen and Husoy, 1999) 

wavelet packet decomposition coefficients,(Laine and Fan, 1993; Randen and Husoy, 1999) log-Gabor filter 

features,(Field, 1987) and radial spectrum features.(Gonzales and Wood, 2002) 

This large feature set contained considerable redundancy, which we minimized through a fast filter method (Yu 

and Liu, 2004) based feature selection process to determine the least redundant and most discriminative subset of 

features. The method used the Fisher class separation distance measure to find the least mutually redundant subset of 

features. Our fast filter based analysis suggested that log-Gabor and wavelet features were the most discriminative. 

These features are sensitive to spatial frequency and highlight textural differences among the layers (e.g. blurry 

appearance of the collagen patterns in dermis compared to the relatively sharper appearance of cellular patterns in the 

epidermis). The mathematical and technical details of the feature extraction procedure, properties of individual 

features, and the feature selection process are described in our preliminary study (Kurugol et al., 2011) and the 

accompanied supplementary technical document. 

4.2  DEJ Delineation in RCM Stacks 

Dark Skin Algorithm: 

As stated, the basic motif of our dark skin algorithm is to detect intensity changes in each stack of tiles along the axial 

(depth) direction. Thus, we first computed the median intensity of each tile and constructed a median intensity profile 

as a function of depth. We smoothed the profile using a Gaussian filter (width parameter ∼5μm (5 images)). 

In most, but not all, tile stacks, we observed single peaks in the median intensity profile, which unequivocally 

corresponded to the locations of the basal cell layer. At these peaks, the textural features were calculated to construct a 

texture template for basal cells. For the remaining tile stacks, with multiple peaks, the peak of interest was found by 

comparing each against this texture template and selecting the one that was most similar. Finally, for both single and 

multiple peak profiles, the DEJ was located at the first inflection point below the selected peaks. 

Fair Skin Algorithm: 

In fair skin, as mentioned earlier, intensity contrast by itself is not enough for reliable delineation of the DEJ, or even of 

a transition zone. To localize the transition zone boundaries, epidermis-to-transition-zone and transition 

zone-to-dermis, we developed a two step algorithm(Kurugol et al., 2011). We briefly summarize the algorithm here for 

completeness; details can be found in our previous report (Kurugol et al., 2011) and accompanied supplementary 

technical document. 

© 2014 The Society for Investigative Dermatology
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Due to the loss of resolution with depth and the speckle noise in RCM images (resulting from the complex structure 

of skin), classification based purely on textural features from individual tiles was not robust. For example, the texture 

of lower epidermis in rete ridges and that of the papillary dermis below is particularly difficult to distinguish. By 

comparison, textural differences between epidermis above dermal papillae and the underlying dermis is easy to 

distinguish. However, the textures in any sequence of neighboring tiles in the depth direction are highly correlated 

within a skin layer (i.e.,when the sequence is entirely in either the epidermis or dermis). Thus, in our first step, 

consecutive tiles in each tile stack with similar texture appearance were grouped into intervals along the axial (depth) 

direction, and then fed into two binary classifiers: epidermis versus non-epidermis and dermis versus non-dermis. 

To implement this grouping, we developed a sequential segmentation (SS) algorithm, which divided each tile stack 

into shorter sub-stacks of consecutive tiles represented with an affine model of features. The number of such sub-stacks 

as well as their boundary locations were determined using dynamic programming (Cormen et al., 2001). The resulting 

boundaries between sub-stacks of tiles were then used in the second stage of the fair skin algorithm. 

In the second stage, we used the sub-stack borders as the candidates for epidermis-transition and transition-dermis 

decision boundaries. We first classified each tile as epidermis (dermis) vs. non-epidermis (non-dermis) using a support 

vector machines (SVM)(Cortes and Vapnik, 1995) based supervised learning method. In supervised learning, a 

machine learning model is trained on samples from a labeled set (“training set"). Then the data to be classified is fed 

into the trained machine learning model. We used SVM because it is one of most effective and widely used machine 

learning methods and, furthermore, allowed us to take advantage of a variant, called locally smooth SVM 

(LS-SVM).(Vural et al., 2009) LS-SVM takes into account the expected resemblance between neighboring tiles within 

images to increase robustness. Here, this corresponds to the expert readers’ visual process of looking at local context 

by examining the area around each location of interest when determining the transition boundaries. 

To localize the two boundaries of the transition zone, we trained two LS-SVM models. The first one classified 

epidermis vs. non-epidermis and operated in a top-to-bottom (epidermis-to-dermis) direction. The second classified 

dermis vs. non-dermis and operated bottom-to-top (dermis-to-epidermis). We fed textural features from each tile into 

the trained LS-SVM models to obtain probability values of belonging to either epidermis or dermis. The mean 

probabilities for each sub-stack of tiles (which were determined from the SS algorithm in the first stage) were 

calculated, based on the boundaries. Groups of tiles whose probability of belonging to the epidermis class was lower 

than a threshold (here, set to 0.4) were classified as non-epidermis. Non-dermis sub-stacks were determined in a 

similar way. The intersection of non-epidermis and non-dermis regions was taken as the transition zone. The DEJ was 

assumed to be within this zone, between the upper and lower transition boundaries. 

4.3  Postprocessing: Final Boundary Localization 

The result of the processing was the delineation of either the DEJ in dark skin or the transition zone in fair skin with a 

prescribed visual spatial resolution defined by the size of tiles used in the processing. For visualization purposes, we 

applied a Gaussian smoothing filter (support set 5×5, standard deviation 0.75, in units of tiles) to the discontinuous 

estimated boundary, followed by cubic spline interpolation to interpolate the boundaries from tiles to individual pixels. 

4.4  Performance Metrics and Error Analysis 

Three metrics were used to assess the performance of the algorithm. The first was the error, in terms of the separation 

between the expert-labeled and algorithm-delineated boundaries, summarized as the mean and standard deviation of 

the error distribution for all stacks. The second was percentage of tiles for which the algorithm-delineated DEJ was 

within 15μm from the expert-labeled boundary. We chose 15μm as the threshold because it is approximately the 

thickness of a basal cell. The third was classification/mis-classification accuracy, calculated for the epidermal and 

dermal layers for both dark and fair skin. To visually demonstrate the agreement between the algorithmic- and 

expert-segmented DEJ, we’ve also included several images of slices from both expert and algorithmic segmentations. 
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Table 1: Numerical results for presented DEJ delineation algorithms. Top: DEJ delineation 

errors, in terms of mean (μ) ± standard deviation(σ) across single stacks, as well as percentage of 

tiles with error <15μm. The results are shown as the average across all stacks, as well as best and 

worst case for both dark and fair skin. Bottom: Confusion matrices, showing percent 

classification/misclassification rates across all 15 dark and all 15 fair skin stacks. Note that the dark 

skin algorithm generates two regions with one boundary while the fair skin algorithm generates 

three regions with two boundaries. 

DARK SKIN FAIR SKIN 

               Epidermis - Dermis Epidermis-Transition Transition-Dermis 

Stack Errorµ±σ(µm) Error<15µm    Errorµ±σ(µm) Error<15µm    Errorµ±σ(µm) Error<15µm    

Average 7.9 ± 6.4 71% 8.3 ± 5.8 68% 7.6 ± 5.6 75% 

Best 3.0 ± 2.6 99% 3.7 ± 2.9 100% 2.2 ± 1.8 100% 

Worst 13.2 ± 11.6 42% 20.0 ± 9.7 35% 17.2 ± 8.8 51% 

CONFUSION MATRICES 

                                          DARK SKIN FAIR SKIN  

                    Algorithm 

Epidermis Dermis Epidermis Transition Dermis 

E
x
p
er

t Epidermis 89% 11% 64% 29% 13% 

Transition   33% 41% 26% 

Dermis 13% 87% 6% 20% 75% 
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FIGURE LEGENDS 

Figure 1. Example images from RCM stacks of (a) dark and (b) fair skin. In the images of dark skin, basal cells 

(red arrows), the ring-like patterns of basal cells on dermal papillae (yellow ellipse) and enclosed papillary dermis 

(green arrows) can be easily distinguished. On the other hand, in fair skin, the contrast is not as strong between the 

ring-like patterns of basal cells (enclosed by yellow ellipses) and papillary dermis (green ellipse). The patterns can 

however be distinguished using textural appearance. 

 

Figure 2. Example images from an RCM stack of 40 images (1μm depth spacing) of dark skin, showing layers 

from lower epidermis, DEJ and papillary dermis. The topmost row shows images in depth (axial views), from left 

to right, collected at 0μm (epidermis), 16μm (DEJ), and 26μm (papillary dermis), with respect to the initial imaging 

level at the stratum corneum-granular layer boundary. Sagittal and coronal sections, oriented perpendicular to the plane 

of this page and located at the red and green lines in axial views, are shown in the second and third row, respectively. In 

all the views, DEJ boundary drawn by expert clinicians and the algorithmic delineation are shown in light blue and 

orange lines, respectively. Scale bars in sagittal and coronal views show 12.5μm. 

 

Figure 3. Example images from an RCM stack of 60 images (1μm depth spacing) of fair skin. En-face images at 

depths of 7μm (epidermis), 23μm (DEJ), and 51μm (papillary dermis), from initial imaging level are presented in the 

top two rows of the figure. In these views, dermatoglyphics appear as dark bands with epidermis on both sides (shown 

by yellow arrows). Coronal and sagittal sections, located at the blue and orange lines in the en-face views, are shown at 

the bottom rows. In all views the expert and algorithmically delineated boundaries are shown by red and yellow lines 

respectively. In these views, dermatoglyphics appear as cavities or dark bands in the vertical direction (shown by 

yellow arrows). Scale bars in sagittal and coronal views show 12.5μm.  
 

Figure 4. Delineated DEJ represented as a 3D surface. The error between expert and algorithmic segmentation 

boundaries is color mapped onto the surfaces. Panel (a) shows the DEJ delineated in a dark skin stack, while panel (b) 

shows two boundary surfaces generated in a fair skin stack. The upper figure on the right shows the upper 

epidermis-to-transition region boundary in color, with the lower surface as translucent gray. The lower figure shows 

the lower transition-to-dermis region boundary in color, while the upper surface is translucent gray. 
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