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Abstract—We present an efficient, flexible, adaptive-resolution
I/O framework that is suitable for both uniform and Adap-
tive Mesh Refinement (AMR) simulations. In an AMR setting,
current solutions typically represent each resolution level as an
independent grid which often results in inefficient storage and
performance. Our technique coalesces domain data into a unified,
multiresolution representation with fast, spatially aggregated I/O.
Furthermore, our framework easily extends to importance-driven
storage of uniform grids, for example, by storing regions of
interest at full resolution and nonessential regions at lower
resolution for visualization or analysis. Our framework, which is
an extension of the PIDX framework, achieves state of the art disk
usage and I/O performance regardless of resolution of the data,
regions of interest, and the number of processes that generated
the data. We demonstrate the scalability and efficiency of our
framework using the Uintah and S3D large-scale combustion
codes on the Mira and Edison supercomputers.

I. INTRODUCTION

As simulation sizes continue to grow rapidly, parallel I/O
remains an ever increasing problem. There is currently a
marked trend of simulations moving towards adaptive reso-
lution techniques, e.g., Adaptive Mesh Refinement (AMR), to
better manage multiple scales and couple detailed dynamics
with large scale behaviors. Most current high-end I/O frame-
works [1], [2] are optimized for uniform grids and, in fact,
adaptive resolution grids are often simply represented and
written as a collection of uniform grids at different resolutions.
Such representations can result in fragmented and thus inef-
ficient I/O. Furthermore, for convenience, many approaches
unnecessarily replicate data on multiple levels, increasing the
data footprint and decreasing I/O performance.

Uniform grid simulations are also growing in size, and
writing intermediate data often takes up a nontrivial percentage
of the total computation time. To reduce I/O time and disk
usage, simulation runs frequently output the current solution
only at certain iterations. A better approach is often to output
a subset of the data at more frequent intervals. Ideally, the
output data would be a region-of-interest (ROI), a reduced-
resolution version of the grid, or a combination of the two.
This technique would considerably reduce the disk usage and
the I/O time of a simulation.

In this paper, we present extensions to the IDX file for-
mat [3], [4] that enable efficient storage of adaptive-resolution
grids. The data is represented as a single adaptive grid,

avoiding unnecessary replication, and providing both spatial
and hierarchical locality. Our data format is agnostic to the
type of simulation used to generate the data, and is thus gen-
eral for both AMR-generated data and adaptive data derived
from uniform grid simulation results. A single, unified format
presents opportunities for re-use of I/O libraries regardless of
simulation strategy. We also present extensions to the Parallel
IDX (PIDX) I/O framework [5] that writes adaptive IDX
files efficiently and supports AMR simulations. We discuss
performance results of PIDX integrated into the Uintah block-
structured AMR simulation environment [6], [7], [8]. We also
show results using PIDX for data derived from S3D com-
bustion simulation [9]. Regions of interest are extracted from
the uniform grid data and written at higher resolution than
the remaining regions. We also study the tradeoffs between
performance and storage in both simulation environments and
show that tuning between datasets and target machines can be
done with a single parameter.

We have three specific contributions:

1) We extend the multiresolution IDX format to support
adaptive resolution I/O. We also extend the Parallel IDX
(PIDX) framework to support adaptive IDX in a parallel
setting.

2) Using PIDX, we write IDX files for AMR simula-
tions, which coalesces AMR levels into a single, space-
efficient format that shows excellent spatial and hier-
archical locality characteristics. We specifically demon-
strate improved I/O performance over the commonly-
used I/O format of Uintah.

3) We propose a novel, adaptive, region-of-interest (ROI)
storage methodology for dumps of uniform simulation
data. Using PIDX, we demonstrate this methodology to
be more efficient than current techniques that store data
in its entirety.

We discuss previous work in Section II. We then describe
the IDX format for adaptive data in Section III followed
by consideration of adaptive IDX for parallel applications
in Section IV. In Section V, we describe our experiment
platforms. We show experimental results of I/O throughput,
disk usage, and visualization experiments for AMR in Section
VI and for uniform simulations in Section VII.
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II. RELATED WORK

AMR and uniform grid simulations generally have different
I/O and storage requirements and thus methodologies tend to
focus on one or the other. We discuss each in turn. We ad-
ditionally directly compare our technique with the commonly
used parallel HDF5 [2] I/O library.

A. AMR

I/O in a block-structured AMR simulation environment is
a challenge with various existing approaches. One approach
is for each processor to write a single file, or N -N output,
where N is the number of processors. This is commonly called
file-per-process I/O. This approach is simple and efficient, but
data at different hierarchy levels is duplicated, there is no
mechanism for decoupling the data storage resolution from
AMR resolution, and a large number of files are produced,
causing a burden on downstream visualization and analysis
packages. An N -1 approach is one where all processors write
to a single file, such as the popular HDF5 format [2]. The
Chombo [10] and FLASH [11] multiphysics applications use
AMR for their simulation and these codes use HDF5 to
write their AMR data to storage. HDF5 is a self-describing
hierarchical representation with chunked storage and parallel
I/O using MPI-I/O. Yu et al. [12] target cell-based AMR rather
than block-based. Their algorithm bridges the gap between N -
1 and N -N by doing N -M where M is user-tunable number
of files, and it achieves spatial locality by using space-filling
curves.

B. Uniform simulations

Solutions from simulations that are uniformly gridded are
intuitively straightforward to store. Typical data storage tech-
niques range from a single shared file (N -1), as used in
PnetCDF [1] and HDF5 [2] to a file-per-process I/O (N -
N ). Single shared file approaches, such as PnetCDF, are
optimized for dense, regular datasets, and are inefficient for
ROI data in both performance and storage. File-per-process
methods can be efficient in storage, but do not scale well
on all parallel file systems. Subfiling [13] is a mechanism
between these two extremes wherein the data is written out
to a few files, N -M wherein M << N , to overcome the
locking and metadata overheads associated with the parallel
filesystem. Another popular library used to manage parallel
I/O for scientific applications is ADIOS [14]; it supports a
variety of back-end formats and plug-ins that can be selected
at run time. An important feature utilized by I/O libraries in
general is aggregation, which is a stage in the write pipeline
that passes data between nodes such that aggregator nodes can
do more efficient block-based writes. PIDX [5], [15], [16], [17]
is a parallel I/O API that stores data in the IDX format. PIDX
also uses aggregators, and recently added a restructuring phase
that increases efficiency on writes of data in grids that are not
powers of 2D in size.
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Fig. 1. Different index orderings. (a) Row-major ordering has poor spatial
locality. (b) Z ordering shows good spatial locality but has no concept
of hierarchy or resolution adaptivity. (c)-(e) HZ ordering has both spatial
and hierarchical locality. For an example of hierarchical locality, note that
obtaining a 1/22 resolution version of the grid requires a single disk read of
elements 0-15 (best seen in (d)).

C. Parallel HDF5

PIDX differs from HDF5 in terms of the storage format and
in the read and write techniques. Whereas IDX is a data format
naturally suited to multiresolution AMR datasets as well as
visualization and analysis, HDF5 is, in contrast, a container,
making data layout specification the application developer’s
responsibility. A well-designed HDF5 layout can be suitable,
but is not included in the HDF5 specification. Further, IDX
does not need to store metadata associated with AMR levels
or adaptive ROI; hierarchical and spatial layout characteristics
are implicit, whereas HDF5 requires metadata to describe data
layout and extents.

The read and write techniques of PIDX also contribute to
better performance. While HDF5 performs shared file I/O,
PIDX breaks data into multiple files. The number of files to
generate can be adjusted based on the file system. This ap-
proach extracts more performance out of parallel file systems,
and is customizable to specific file systems. Further, PIDX
utilizes a customized aggregation phase that spans all AMR
levels, leveraging concurrency and leading to more optimized
file access patterns.

This paper describes extensions to PIDX that not only make
it a viable option for parallel AMR simulation I/O, but also
enable region-of-interest (ROI) stores in a uniform setting.

III. ADAPTIVE RESOLUTION IDX

The IDX format [3], [4] was originally designed to support
fast, multiresolution reads of uniform grids [18], [19]. In
this section, we discuss the suitability of the IDX format to
adaptive data and also an extension to the IDX format to
support such datasets. The extension has little to no impact
on read performance. Section IV will discuss the necessary
extensions to the PIDX I/O framework to support fast writes
of adaptive data.
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Fig. 2. HZ encoding of resolution regions (RR). Elements are colored by hierarchy level (HZ level in parentheses): pink (0), blue (1-2), green (3-4), orange
(5-6). (a)-(c) Because of hierarchical locality, there is no wasted space when storing the entire domain at reduced resolution. (d) Storing an ROI smaller than
the domain introduces fragmentation that will be handled when writing to disk. Elements in white need not be written to disk.
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(a) Block size = 16; disk usage = 48; efficiency = 0.58
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(b) Block size = 8; disk usage = 32; efficiency = 0.88
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Fig. 3. Compaction of HZ-indexed elements. The single-dimensional array
(above) is divided into write blocks and skip blocks. Only write blocks are
stored on disk (below). Elements in the HZ-indexed array are shown colored
by HZ level, and elements in the disk array are colored blue for primary and
orange for secondary elements. Decreasing block size decreases disk space
usage and increases efficiency.

A. Balance of spatial and hierarchical locality

Structured data can be encoded into a single-dimensional
array for disk storage in a variety of ways (see Fig. 1). A
simple approach is to use row- or column-major ordering,
but spatial locality is reasonable along only one dimension
(the x-axis in the figure). Z (also known as Morton) ordering
[20] shows better spatial locality. The Z index is efficient
to compute – simply interleave the bits of the Cartesian
coordinates. Hierarchical Z (HZ) ordering extends Z ordering
by introducing hierarchy. The HZ index is also efficient to
compute using bit operations as described in [21].

The IDX storage format uses HZ ordering, which shows
good locality both spatially and hierarchically, as shown in
Fig. 2(a-c). Conceptually, the scheme acts as a storage pyramid
with each level of resolution (called HZ level) laid out in
Z-order. However, unlike traditional pyramids, IDX avoids
replicating samples, which not only reduces the storage re-
quirements but also organizes the data hierarchically. Fig. 2(a-
c) shows an example of a 4× 4 grid mapped to a linear index
using IDX. Fig. 2d shows an adaptively refined version of this
grid alongside the now partially occupied index space. Note
that even for this adaptively sampled grid, a lower resolution
version of the entire domain can be obtained by reading the
contiguous 0-15 block.

To understand the impact of the partially occupied index

space, we define a resolution region RRi at HZ level i to be a
(spatial) region in the domain stored at resolution i (see Fig. 2).
The region may be of any shape and need not be connected.
Since IDX does not replicate samples, each element e of an
arbitrary resolution grid with HZ index HZ(e) has a uniquely
defined HZ level, HZLevel(e), and can potentially be part of
all RRis with HZLevel(e) ≤ i. Due to the fragmentation
of the index space and the disk blocking discussed in the
next section, files may contain some “samples” not part of
the original grid. In the discussion, we call these secondary
samples, whereas samples that are part of the original grid are
referred to as primary samples (see Figs. 3).

Consider again Fig. 2d: RR4 covers the entire domain and
RR6 only the top-right corner. Even with the good spatial
locality of the HZ order, RR6 gets split into two blocks
of memory with indices 28-31 and 56-63, respectively. The
number of secondary samples can vary based on the block
size. We define the (storage) efficiency of a particular scheme
as:

E =
P

P + S
(1)

with P the number of primary and S the number of secondary
elements. Note that any lower resolution write will always
have perfect efficiency as long as it covers the entire domain.
Furthermore, if there exists a RRi that does not cover the
domain, adding lower resolution data actually improves the
efficiency.

B. IDX blocks

Similar to most other large scale file formats, IDX does not
store the entire data in a single chunk but instead breaks the
array into blocks that are written to (and read from) disk. In
the case of adaptive IDX files, each block that contains at least
one primary sample is written and all other blocks are skipped.
Fig. 3 shows the blocking and the resulting data on disk for
different block sizes for the example of Fig. 2d. Note that, as
the block size decreases, the efficiency increases.

The IDX format supports missing blocks. Many downstream
tools such as ViSUS [22], [23] and VisIt [24] are block-
aware and thus can simply ignore missing blocks. Dealing
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Fig. 4. Spatial and disk level layouts of ROI and reduced-resolution grids.
The top row shows spatial grids with different write patterns. The lower grids
show the element layout on disk. For disk-level storage, a block size of 8
is used for (a) and (c), and 16 for (b). Blue elements are primary elements;
orange elements are secondary elements, or elements that are written as a by-
product. Only primary and secondary elements are actually written to disk –
blank elements are not written. (a) ROI write. Efficiency is 0.73. (b) Reduced-
resolution write. Data on disk is not fragmented for reduced resolution writes,
so efficiency is 1 irrespective of block size. (c) Adaptive ROI, combining
ROI and reduced-resolution. Secondary elements for the ROI overlap with
primary elements of the reduced-resolution write, so data is less fragmented,
for efficiency of 0.97.

with secondary samples is slightly more involved. One option
is to upsample secondary elements from primary elements at
lower resolutions. This option is attractive because it does
not require a change to the IDX format. However, it may
require expensive interprocess communication to obtain lower-
resolution primary element values. Furthermore, the visualiza-
tion or analysis tool reading the data has no way of knowing
if a value was interpolated or if it was generated by the
simulation. The preferred solution is to store a bitmask for
each written block that indicates which elements are valid.
This uses a small amount of additional storage and requires a
change to the IDX format, but it is general and suitable for all
scenarios. Addition of the bitmask is the only extension we
make to the IDX format in order to support adaptive data.

IV. PARALLEL IDX

The PIDX framework has previously been applied only
to uniform data [5]. We describe the fundamental PIDX
principles of HZ encoding and aggregation, and then discuss
extensions that must be made for adaptive resolution datasets
(AMR and ROI I/O).

A. HZ encoding and aggregation

HZ encoding is the process of copying elements into single-
dimensional arrays in HZ order. Each node computes the min
and max HZ indices of its elements, allocates an array of size
max − min + 1, and copies each element into the HZ array.
Depending on resolution and spatial bounds of the node, the
HZ-encoded array may have dummy values for elements not
contained in the node’s spatial domain (see Fig. 2d). Because
this fragmentation can cause I/O inefficiencies due to multiple

writes, we adopt the aggregation strategy of Kumar et al. [5],
which we briefly describe here.

The first step is to set up the aggregation buffers. A set of
nodes, or aggregators, allocate buffers such that each buffer
stores a unique, HZ-contiguous section of elements. Each
processing node sends elements to the appropriate aggrega-
tors. Using aggregation has been shown to reduce I/O times
significantly [16], since each aggregator can perform a single,
contiguous disk write.

B. AMR simulations

We present two I/O algorithms for use in AMR simulations
that write data in IDX format. Given an AMR level l, define
HZLevel(l) to be the highest HZ level of an element in l.

Algorithm Store1
1: hzprev ← 0
2: for Each AMR level l ∈ {0, . . . , n} do
3: Determine write blocks
4: HZ encoding
5: Initialize aggregation buffers
6: hzl ← HZLevel(l)
7: for Each HZ level hz ∈ {hzprev + 1, . . . , hzl} do
8: Aggregation
9: end for

10: Write aggregated data to disk
11: for Each HZ level hz ∈ {0, . . . , hzprev} do
12: Write primary elements in hz to disk
13: end for
14: hzprev ← hzl
15: end for

The Store1 algorithm (Fig. 5a) writes each AMR level
l in turn. After HZ encoding, all elements e for which
HZLevel(e) > hzprev are aggregated and written. Writing
secondary elements is safe because HZ ordering guarantees
that, for elements a and b, HZ(a) < HZ(b) if HZLevel(a) <
HZLevel(b). We bypass aggregation and write directly to disk
all primary elements e for which HZLevel(e) ≤ hzprev to
avoid overwriting existing primary elements with secondary
elements.

Algorithm Store2
1: for Each AMR level l ∈ {0, . . . , n} do
2: Determine write blocks
3: end for
4: Initialize aggregation buffers
5: for Each AMR level l ∈ {0, . . . , n} do
6: HZ encoding
7: Aggregation
8: end for
9: Disk write

The Store2 algorithm (Fig. 5b) sets up aggregation buffers
for all AMR levels and then aggregates the entire dataset be-
fore performing the disk write. Store2 requires more memory,
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Fig. 5. Store algorithms. Elements are colored by their processing node,
which is denoted Pi, or are colored white if they need not be written to disk.
We label aggregation nodes as Aj. Elements that are overwritten either on
disk (Store1) or in memory (Store2) are marked with a yellow diamond.

as the aggregation buffers store elements of all AMR levels
at once, but gains performance advantages because it avoids
the multiple fragmented disk writes of primary elements at
HZ levels hz ≤ hzprev, and instead makes fragmented data
transfers from processing nodes to aggregation nodes. Store2
is the default algorithm used by PIDX.

We compared the two algorithms with an experiment on
Edison (see Section V) with a coarse AMR level with 253

elements per core and a refined level at a refinement ratio of
2. Store2 performed I/O roughly an order of magnitude faster
in all cases. With 32/64/128 cores, Store1 took 4/8/12 seconds,
and Store2 took 0.6/1/2 seconds.

In both the Store1 and Store2 algorithms, the order of
iteration through AMR levels is important. Levels must be
processed from low resolution to high resolution so that more
refined data overwrites coarser approximations rather than vice
versa.

C. ROI I/O and Uniform simulations

Writing reduced-resolution or ROI data in a uniform simu-
lation setting is more straighforward than AMR simulations.
Reduced-resolution stores simply restrict HZ levels to a spec-
ified maximum and then use the PIDX algorithm published
previously [5]. ROI stores also use the PIDX algorithm, but
restrict HZ indices when setting up the aggregator buffers.
Details of the PIDX algorithm are described by Kumar et al
[5].

One step common to both AMR I/O and ROI I/O is
identification of IDX blocks that need to be written to disk and
accordingly perform aggregation and disk I/O. For uniform
resolution datasets, there are no secondary elements, hence, all
blocks gets written to the disk. As a result, the write-load by
default gets equally balanced amongst the aggregators. This
is not true with adaptive resolution data (AMR and ROI),
where blocks have to be skipped from being written to the
disk (see Figs. 3 and 4). Hence, for adaptive resolution data,
before performing aggregation and actual disk writes, it is

essential to identify the blocks that need to be written (first
step in both Store1 and Store2) and then uniformly send the
data corresponding to these write-blocks to the aggregators.
To this end we label the blocks as a write or a skip block: We
first allocate a buffer to act as a bitmask for which blocks to
write. The size of the buffer is determined by the highest HZ
level. For a given processor P , let h be the highest HZ level
represented by an element. P then iterates through all blocks
in all HZ levels ≤ h. If a block B intersects the spatial region
covered by P , then B is marked as a write block. With the
write-blocks identified, the information is used to set up the
aggregation buffers for the aggregation step. With this step we
are able to avoid any unnecessary I/O (for skip-blocks), and
achieve load balance.

V. RESULTS OVERVIEW AND EXPERIMENT PLATFORM

We report results of experiments in both AMR and uniform
grid settings. The AMR experiment (Section VI) demonstrates
weak scaling performance of PIDX within the Uintah sim-
ulation framework. Uniform grid experiments (Section VII)
include a study of time and storage efficiencies of various
layouts of regions of interest; data and weak scaling results
on reduced-resolution writes; and time and disk usage results
from combined ROI and reduced resolution writes of combus-
tion simulation output using S3D.

The experiments presented in this work were performed on
Edison at the National Energy Research Scientific Computing
(NERSC) Center and Mira at the Argonne Leadership Com-
puting Facility (ALCF). Edison is a Cray XC30 with a peak
performance of 2.39 petaflops, 124, 608 compute cores, 332
TiB of RAM, and 7.5 PiB of online disk storage. We used
Edison Lustre file system (168 GiB/s, 24 I/O servers and 4
Object Storage Targets). Default striping was used with the
Lustre file system. Mira system contains 48 racks and 768K
cores, and has a theoretical peak performance of 10 petaflops.
Each node has 16 cores, with 16 GB of RAM per node. I/O and
interprocessor communication travels on a 5D torus network.
Every 128 compute nodes has two 2 GB/s bandwidth links to
two different I/O nodes, making 4 GB/s bandwidth for I/O at
most. I/O nodes are connected to file servers through QDR
IB. Mira uses a GPFS file system with 24 PB of capacity and
240 GB/s bandwidth.

VI. AMR SIMULATIONS

Our AMR experiments are done within the Uintah simula-
tion environment. While Uintah is a block-structure code [25],
the IDX format is suitable for any hierarchical structured data,
including octree and overlapping grids.

A. Uintah simulation and I/O framework

The Uintah framework uses a structured adaptive mesh
refinement (SAMR) grid to execute the solution of partial
differential equations (PDEs). The component developer typi-
cally uses either a finite difference or finite volume algorithm
to discretize the PDEs on the grid. The grid can be thought
of as a container of AMR levels. Each level is described



Fig. 6. Progression of an AMR Uintah simulation of a 2-level problem
in time. Data was written to disk using PIDX and visualized with ViSUS.
The experiment was run on Edison with a coarse grid domain of size
200×200×200. The figure demonstrates regridding of the finer AMR level,
leading to an increasing number of patches. Each rectangle corresponds to
a single patch. Note that the last timestep corresponds to two disconnected
regions: center and ring of the fine AMR level.

by a collection of patches that are distributed to individual
processors/cores via a load balancing algorithm in the runtime
system. See Fig. 6. Each patch can be thought of as the
fundamental unit of work that contains a region of cells at
a given resolution.

In the existing I/O framework of Uintah, every process
writes data belonging to a patch into a separate file. This
form of I/O is an extension to the file-per process style of
I/O commonly adopted by many simulations. Each MPI rank
collects all of the patches that it is assigned. The simulation
variable data for each patch is written out into a separate file
along with its associated metadata file. The metadata file stores
type, extents, and bounds of all the variables. For AMR with
multiple levels, a directory structure is created. For relatively
small numbers of patches (< 2K) and core counts, the I/O
framework works well. However, I/O performance degrades
significantly for typical simulations with several hundreds of
thousands of patches/processors. The overwhelmingly large
number of small files causes both writes and reads to become
extremely expensive.

Including metadata files, the total number of files created
every timestep is twice the total number of patches across
all AMR levels. The number of patches usually exceeds the
product of cores and AMR levels, leading to an allocation of
multiple patches per AMR level for every process. Creation
of such a large number of files leads to a big overhead in
metadata management. The problem intensifies as a simulation
progresses, leading to generation of newer patches at finer
AMR resolutions (see Fig. 6). Note that it is structurally not
possible to coalesce patches into a bigger buffer to obtain
better disk access patterns and fewer files. This is because
patches within an AMR level are not guaranteed to be spatially
close to each other, and further, may form irregular shapes (see
Fig. 6).

We have integrated PIDX I/O library with Uintah, enabling
the simulation code to write AMR data directly in the IDX
format. IDX/PIDX fills the need for both an efficient file
format and a parallel I/O library.

B. Performance results in Uintah

In this section, we evaluate the weak scaling performance
of PIDX when writing AMR data with two levels of re-
finement from Uintah simulations on both Mira and Edison.
The simulation used a refinement ratio of 2, i.e., each voxel
in the coarse level was refined into 8 voxels at the finer
refinement level. In each run, Uintah wrote out 15 timesteps
consisting of 4 variables: pressure, temperature, density and
mixture fraction. The simulation dumps data at every 10th
time-step. The patch size for the coarse refinement level is
253, and the patch size for the finer refinement level is 123.
All the processes uniformly span the coarse-level grid, hence
writing one coarse-level patch of size 253. For this particular
simulation, the number of fine-level patches at the start of
the run is approximately equal to the number of cores, but as
the simulation progresses the number gradually increases with
regridding of the fine level.

We performed experiments on Edison and Mira. On Edison,
we varied the number of processes from 1024 to 8192 and
used a block size of 214. On Mira, processes ranged from
128 to 1024 with a block size of 217. The weak scaling
results comparing Uintah with PIDX I/O and Uintah with the
traditional file-per-patch on Mira and Edison can be seen in
Figs. 7a and 7b, respectively.

On Mira, it can be seen in Fig. 7a that at all core counts,
Uintah with PIDX I/O performs better than the traditional file-
per-patch mechanism. At 1024 cores, the file-per-patch scheme
takes approximately 35 seconds compared to 15 seconds by
PIDX I/O. Broadly, there are two reasons for this performance
behavior. 1) Metadata congestion in creating the hierarchy
of files for the file-per-patch method leads to degraded non-
scalable performance. 2) Fewer file creations along with the
custom Store2 algorithm used in PIDX lead to a better disk
access pattern and improved scalibility.

It can be seen in Fig. 7b that PIDX I/O trails in performance
on Edison at core counts of 1024 and 2048. This is primarily
because the Lustre filesystem of Edison is more adept at
handling large numbers of files compared to the GPFS file
system of Mira. Hence, for lower-core counts the number of
files generated by file-per-patch approach is within reasonable
limits, but as the number of cores increases, the number of files
generated reaches a limit that starts to saturate the metadata
server. Hence, there is an observed degradaton in performance
at 4096 core counts. PIDX, on the other hand, generates
roughly two orders of magnitude fewer files than file-per-patch
I/O schemes (see Table 7c) and this ratio remains steady even
as the number of cores increases. The improved performance
with PIDX can again be attributed to the custom aggregation
phase that assures favorable disk access patterns.



(a) Mira (b) Edison

Total processes Avg patch count File count
L0 + L1 PIDX File-per-patch

1024 1024 + 1412 24 4872
2048 2048 + 3201 44 10498
4096 4096 + 5835 88 19682
8192 8192 + 10857 156 38098

(c)

Fig. 7. (a) Mira results for weak scaling of Uintah with PIDX I/O, and
traditional file-per-patch I/O using a two-level AMR simulation. We do not
report numbers to 8192 cores on Mira because the default Uintah I/O scheme
fails at higher core counts (Uintah’s file-per-patch approach overwhelms the
I/O nodes). This problem is currently being addressed by Uintah developers.
(b) Edison results for weak scaling of Uintah with PIDX I/O, and traditional
file-per-patch I/O using a two-level AMR simulation (c) Table showing the
number of patches generated for Edison runs, and corresponding number of
files generated with PIDX I/O and file-per-patch I/O approach. With the latter
approach, there is a metadata file for every patch taking the file count tally
to twice the total number of patches. With PIDX, there are fewer number of
files controlled by parameters block size and blocks per file, which are set as
32768 and 128, respectively.

VII. UNIFORM SIMULATION AND ADAPTIVE ROI I/O

With uniform grid simulations increasing in size and com-
plexity, it is difficult for the I/O and storage systems to keep
pace with the increasing amount of data that scientists need
to store. Here we present an I/O strategy incorporating ROI
and reduced resolution writes that we call Adaptive ROI I/O,
which is an attractive alternative to traditional raw file dumps,
especially for analysis and visualization. Many simulations
are heavily padded to avoid boundary artifacts and often the
phenomena of interest, e.g., ignition, extinction, etc., are con-
fined to a comparatively small part of the domain. Therefore,
writing distinct analysis or visualization snapshots that either
only store the regions of interest or grade the saved resolution
according to some importance measure may significantly re-
duce the overall datasize without impacting the results. Here
we use simple range thresholding to identify ROIs but more
sophisticated techniques such as merge or contour trees [26],
entropy-driven classification [27], or wavelets [28] could be
adapted as well. We focus our discussion in this section on
uniform resolution grids but the same principles can be applied
to more aggressively subset AMR meshes as well.

The primary technical challenge of Adaptive ROI I/O is to
attain a high throughput even though the data is distributed un-
evenly and potentially consists of many small isolated regions,
which can lead to fragmented accesses to both memory and
disk. Here we demonstrate how using different block sizes and
the on-the-fly aggregation capabilities of PIDX reduces these
problems and leads to high throughput I/O. We report results
from experiments done on both Mira and Edison.

For analysis purposes, we break down Adaptive ROI I/O

(a) Clustered; E = 0.80. (b) Scattered; E = 0.63.

(a)

(b)

Fig. 8. Effect of scattering of processes on efficiency. If regions of interest
are located apart from each other, then efficiency goes down as potential
secondary elements from one ROI are less likely to correspond to primary
elements of another ROI. 32 × 32 grid; 8 × 8 regions; block size = 16.
Efficiency is denoted as E.

into two orthogonal capabilities: first, full resolution ROI I/O,
where a subset of the domain is written at the native resolution;
and second, reduced-resolution I/O, where the entire domain
is written at reduced resolution. Both stress different parts of
the storage layout as shown in Figs. 4a and 4b. While the
former relies on using blocks and Z-order locality to attain
storage efficiency, the latter exploits the hierarchial nature of
the file format. Both components are equally influenced by the
aggregation phase. Adaptive ROI storage, i.e., storing varying
resolutions according to some importance measure, can be
seen as a combination of both components. Nevertheless, even
separately there exist valid use cases such as writing data only
around features of interest and storing the entire domain at low
resolution for exploratory visualization.

A. Region-of-interest I/O

This section provides empirical analysis of full resolution
ROI writes, with the goal of understanding the tradeoffs
between storage efficiency and performance. For most of the
experiments conducted in this section, the amount of data
written is varied between 1%, 5%, 10%, 20%, 40%, 60%, and
80% of the entire data volume. This is achieved by making
the given percentage of processes generate and write data,
whereas others remain idle. The IDX block size is varied
among 214, 215, 216, 217, and 218. Recall that smaller block
size leads to better storage efficiency (see Fig. 3). Furthermore,
we identify two scenarios for the distribution of processes in
the global domain: clustered, where processes generating data
are spatially close to each other (see Fig. 8a), and scattered,
where processes generating data are spatially far from each
other (see Fig. 8b).

For a given percentage of data to write, the clustered layout
improves the storage efficiency. This is due to the existence
of fewer number of secondary elements across all processes,
because most of the secondary elements of a process are
primary elements of an adjacent process (see Fig. 8a). Recall
from section III-B that secondary elements are an artifact of
usage of blocks. Similarly, the scattered case leads to poor
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Fig. 9. Uniform simulation / ROI-based output. (a) Performance evaluation
(time) and storage efficiency on Edison with varying block sizes for writing
1% of scattered layout data using 4096 cores. (b) Performance evaluation
(time) and storage efficiency on Mira with varying block sizes for writing 1%
of scattered layout data using 4096 cores.

storage efficiency, due to the presence of large numbers of
secondary elements across all processes (see Fig. 8b). Storage
efficiency improves with reduced block sizes for both layouts.

1) Storage and performance tradeoffs: In the first set of ex-
periments we measure the tradeoffs between storage efficiency
and performance for writing ROI data as a result of variation
in block size. For this purpose, we use the scattered layout
and fix the amount of data written at 1%. This configuration
in particular is interesting. It can be treated as the worst case
ROI I/O scenario: a small percent of data is being written,
and storage efficiency is low because the writing processes
are spatially scattered. Block size is exponentially varied from
214 to 218.

All experiments are conducted at fixed core count of 4096
using the S3D I/O simulator. The S3D I/O extracts just the
portion of S3D combustion simulation code concerned with
restart dumps, allowing us to focus exclusively on I/O charac-
teristics. For our evaluation, we used an S3D I/O configuration
wherein each of the 40 processes (1% of 4096) produced a
643 sub-volume of double precision floating point data. This
configuration produced 32MB of data within each of the 40
processes. The number of blocks per file was fixed to 256
for all runs, implying fewer files with a large block size and
vice versa. Results for both Mira and Edison can be seen in
Fig. 9. Performance measured as time taken to perform the I/O
operation (red trendline) is shown on the primary Y-axis (left),
and the corresponding storage efficiency (black trendline) is
plotted on the secondary Y-axis. A key insight is that storage
efficiency improves with a smaller block count no matter
what machine is used. Hence, the black trendline for storage
efficiency shows an inclining trend with decreasing block
size for both Mira and Edison. Interestingly the performance
(time to write) improves with storage efficiency on Edison,
as opposed to a decline on Mira. This is largely due to the
metadata contention associated with writing large numbers of
files on Mira. For example, a block size of 214 writes 256 files
as opposed to writing only 16 files for 218 block size.

2) Storage efficiency vs. performance with varied percent
writes: In this section we evaluate the efficacy of PIDX when
performing full resolution ROI writes with varying region
sizes. We again used the S3D I/O simulator to carry out all the

(a) Clustered (b) Scattered

Fig. 10. Uniform simulation / ROI-based output. (a) Performance and storage
measured with varying percent write for block size 215 and 217 using the
clustered layout. (b) Performance and storage measured with varying percent
write for block size 215 and 217 using the scattered layout.

experiments. The number of core counts was fixed to 4096,
but we varied the percent of processes performing I/O to be
1%, 5%, 10%, 20%, 40%, 80%, and 100%. For each of these
cases, the processes generating data each contributed a 643

block of double-precision data (32MB). On Mira, block sizes
of 215 and 217 were used that correspond to relatively lower
and higher storage efficiency, respectively. For both Mira and
Edison, we used the scattered and clustered layout for each
percentage of data written. The results for Edison and Mira
can be seen in Figs. 10 and 11, respectively. For Mira results,
the brown and green histograms correspond to I/O time for
blocks of size 215 and 217, respectively, and are shown on the
primary Y-axis (left). Similarly, the green and brown trendlines
correspond to the storage efficiency for the blocks sizes 217

and 215 shown on the secondary Y-axis. The black trendline
corresponds to ideal time showing the ideal, linear decrease
in time with decreasing write percentage.

For Mira with decreasing write volumes, the percent reduc-
tion in time for the clustered layout is better compared to the
scattered layout. This stems from the fact that the clustered
layout has a better storage efficiency. Another observation is
that for the clustered layout, performance for writes up to
40% of the entire volume is comparable to the ideal time.
Performance starts to decrease for smaller write percents,
mainly due to lack of workload. Comparing the performance
pattern across block sizes with similar storage efficiencies (i.e.,
the workload is similar for both layouts), it can be seen that
with the clustered layout, larger block size (217) results in
slightly better performance compared to block size 215. This
again can be attributed to less metadata contention associated
with creating fewer files with block size 217. The scattered
layout, on the other hand, presents slightly different behavior
for the two block sizes. Due to a large difference in the storage
efficiency of the two block sizes, the I/O performance is
dominated by the total load involved. Hence, for percent writes
of 60%, 40%, and 20%, the smaller block size with better
storage efficiency and relatively lesser work load shows better
performance. The trend again starts to reverse around 10%
writes, when the overall work load becomes small (smaller
write %), resulting in better performance for block size of 215



(a) Clustered (b) Scattered

Fig. 11. Uniform simulation / ROI-based output. (a) Edison results for
performance and storage efficiency measured with varying percent write for
block size 215 and 217 using the clustered layout. (b) Edison results for
performance and storage measured with varying percent write for block size
215 and 217 using the scattered layout.

compared to 217.
Edison results can be seen in Fig. 11. Block size of 215

was used for all the experiments. Similar to Mira, greater per-
formance degradation is observed for smaller percent writes.
Also, the rate of degradation in performance for the scattered
layout is observed to be slightly more than the clustered layout.

Overall, our ROI experiments demonstrate that excellent
storage and performance results can be obtained by adjusting
a single parameter (block size) to tune for the specific target
system, ROI size, and ROI layout.

B. Reduced resolution I/O

Storing simulation results at reduced resolution can be used
for fast exploratory visualization. In addition, this capability
can also allow simulations to dump more frequent visualiza-
tion checkpoints. The majority of simulations perform I/O
dumps at intervals of several hundred timesteps, partially
due to the expense incurred in parallel I/O. With PIDX,
we can effectively have several reduced resolution dumps
inserted between any two full resolution dumps. The more
frequent dumps can lead to better tracking and monitoring of
the simulation. Fig. 15 shows the lifted ethylene jet dataset
stored at full (top) and 1/64 (bottom) resolutions. The lower
resolution image is more efficient to store and requires less
disk space, and still can give a general idea of how the
simulation is progressing.

The layout of data in IDX format makes it inherently
efficient for performing parallel I/O at reduced resolution.
Data is laid out in increasing resolution, so access up to
a given resolution level does not encounter any secondary
elements, which leads to contiguous access of data (see Figs. 2
and 4b). Absence of any secondary element also ensures
storage efficiency is ideal. In the following we evaluate the
performance of reduced resolution writes.

1) Data scaling: In this section, we evaluate the efficacy
of PIDX writes at varying resolutions. Similar to ROI, exper-
iments in this section were also carried out using the S3D
I/O simulator. Twenty timesteps were written for each run.
We fixed the number of cores at 4096, while each process
contributed a 643 block of double-precision data (32MB at
full resolution). Resolution level was exponentially decreased

Fig. 12. Slice rendering of the temperature field of the lifted ethylene jet.
(Top) Full resolution data; (Bottom) Data at 1/64 resolution level.

(a) Mira (b) Edison

Fig. 13. Reduced resolution I/O. The histogram corresponds to the time
recorded to write the dataset at varying resolution levels. The trendline
corresponding to ideal time shows the ideal, linear decrease in time with
decreasing resolution, and is calculated by dividing the recorded time for full
resolution writes by two for every resolution level. (a) With 4096 cores on
Mira, the plot shows reduced resolution write timings where each core has 643
elements. (b) With 4096 cores on Edison, the plot shows reduced resolution
write timings where each core has 643 elements.

from 1 to 1/64. At full resolution, each process dumps 643

elements; at 1/64 resolution each process dumps 163 elements.
The experimental results for Mira and Edison are shown in
Fig. 13. Except for the last two refinements of 1/32 an 1/64, it
can be seen that for Mira, write time is cut almost in half with
each resolution level, demonstrating near perfect efficiency. On
the other hand, with Edison, while write time does reduce with
resolution, the improvement is not as high as that of Mira.
This difference in behavior of the two machines can largely
be attributed to the presence of dedicated I/O nodes on Mira,
as opposed to shared I/O channel on Edison.

2) Weak scaling: In this section, we evaluate the weak
scaling performance of PIDX when writing S3D datasets at
reduced resolution on both Mira and Edison. In each run, S3D
writes out 20 timesteps. With Edison, each process contributes
a 643 block of double-precision data and for Mira, a process
contributes a 323 block of double-precision data. On Edison,
we varied the number of processes from 1024 to 32768, thus
varying the amount of data generated per timestep from 32GB
to 1 TB. On Mira, we varied the number of processes from
1024 to 16384, thus varying the amount of data generated
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Fig. 14. Reduced resolution I/O. (a) Weak scaling on Mira. The number of
cores increases from 1024 to 32768, while keeping the per process load fixed
at 643, and varying the resolution as 1, 1/8 and 1/64. (b) Weak scaling on
Edison. The number of cores increases from 1024 to 16384, while keeping
the per process load fixed at 323, and varying the resolution as 1, 1/8, and
1/64.

per timestep from 4 GB to 128 GB. Weak scaling runs are
conducted for three resolution levels: full resolution, 1/8 and
1/64 . The results for Mira and Edison can be seen in
Fig. 14. Two key trends can be observed in these results.
First, parallel I/O performance scales with all resolution writes,
and second, decline in throughput for 1/8 resolution writes is
much more prominent than the decline in throughput of 1/64.
This behavior can be attributed to the lack of enough load to
leverage the benefits of the optimizations of the PIDX API.

Our weak scaling experiments show that dumps at reduced
resolution are scalable, and our data scaling experiments
indicate that runtime performance gains can be achieved for
varying loads. When combined with the fact that disk usage
has ideal efficiency, reduced resolution writes become a com-
pelling option for simulation monitoring and other applications
where a full data dump is not necessary.

C. Adaptive ROI I/O

The primary usefulness of ROI and reduced-resolution
I/O is when they are combined into Adaptive ROI I/O. To
demonstrate Adaptive ROI, we use the lifted ethylene jet, one
of the largest combustion simulations performed by S3D (see
Fig. 15). In particular, we use the temperature field as an initial
test case. We use two different thresholds to define regions
of high, medium, and low temperature and save these at full,
1/64, and 1/512 resolution, respectively. This results in a very
complex arrangement well-suited to stress the system. The
two flame sheets most easily distinguished on the left side of
Fig. 15 burn very hot and thus get preserved at full resolution.
The outside coflow on the top and bottom is heated by the
central flame and thus resides in the medium temperature
region. Finally, the channel in between the sheets contains
the relatively cool fuel stream which gets classified as low
temperature. Together, this configuration creates many sharp
resolution drops and isolated regions as well as a significantly
uneven data distribution. The resulting adaptive resolution IDX
output takes only 39% of the full resolution output time, while
writing 30% of the 12.8 GB of full resolution data. As shown
in the middle of Fig. 15, the resulting volume rendering (using
up-sampling to create a uniform resolution grid) preserves

Fig. 15. Volume rendering of the temperature field of the lifted ethylene
jet. (top) Full resolution data; (middle) Adaptively sampled data, up-sampled
to create a uniform image; and (bottom) Adaptively sampled data without
up-sampling to highlight the data distribution.

the ROI almost perfectly while showing the expected artifacts
especially in the center of the flame. The bottom of Fig. 15
shows the same adaptive data without up-sampling to highlight
the block distribution.

VIII. CONCLUSIONS

Motivated by the growing need for data formats and
I/O frameworks that support massive, adaptive datasets in a
parallel setting, we have demonstrated IDX to be a viable
format and PIDX to be an effective framework for data
I/O in both AMR and uniform grid simulation environ-
ments. Our experiments show that IDX is storage-efficient,
amenable to I/O optimizations, and scalable. Because of its
previously-demonstrated spatial and hierarchical locality, reads
are resolution-progressive and cache-efficient, and it is thus
an excellent choice for visualization, analysis, and monitoring
applications.

We have presented algorithms that build on existing ag-
gregation methodologies for efficient writes, and shown that
our extensions to the PIDX framework are viable for adaptive
data. Further, we have shown PIDX to be an effective tool in
adaptive ROI dumps of uniform data.
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