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Abstract
Objective. Clinical outcomes from deep brain stimulation (DBS) can be highly variable, and two
critical factors underlying this variability are the location and type of stimulation. In this study we
quantified how robustly DBS activates a target region when taking into account a range of different
lead designs and realistic variations in placement. The objective of the study is to assess the
likelihood of achieving target activation. Approach.We performed finite element computational
modeling and established a metric of performance robustness to evaluate the ability of directional
and multi-lead configurations to activate target fiber pathways while taking into account location
variability. A more robust lead configuration produces less variability in activation across all
stimulation locations around the target.Main results. Directional leads demonstrated higher
overall performance robustness compared to axisymmetric leads, primarily 1–2 mm outside of the
target. Multi-lead configurations demonstrated higher levels of robustness compared to any single
lead due to distribution of electrodes in a broader region around the target. Significance.
Robustness measures can be used to evaluate the performance of existing DBS lead designs and aid
in the development of novel lead designs to better accommodate known variability in lead location
and orientation. This type of analysis may also be useful to understand how DBS clinical outcome
variability is influenced by lead location among groups of patients.

1. Introduction

Deep brain stimulation (DBS) is an established ther-
apy that delivers electrical stimulation to treat a
growing number of neurological and psychiatric dis-
orders. The efficacy of this surgical intervention was
first demonstrated for essential tremor (Benabid et al
1996) and Parkinson’s disease (Obeso et al 2001),
which has led to explorations of its use in other
conditions such as treatment-resistant depression
(Mayberg et al 2005), traumatic brain injury (Schiff
et al 2007), and Tourette syndrome (Vandewalle et al
1999). Historically, the initial surgical targets for
these disorders have been anatomical nuclei; however,
evidence suggests that therapeutic effects are elicited
through excitation of fiber pathways (Holsheimer
et al 2000, Hashimoto et al 2003, Mcintyre et al
2004a). Recently, direct targeting of white matter
pathways has been proposed for tremor (Schlaepfer

et al 2013), depression (Riva-Posse et al 2014, Coenen
et al 2018) and traumatic brain injury (Schiff 2012).

Although DBS therapy can provide substantial
improvement in symptoms and quality of life, out-
comes for patients can be highly variable. Standard
deviations in primary outcome measures are often
larger than the effect size, as shown in past clinical tri-
als (Weaver et al 2009, 2012, Odekerken et al 2013).
Two critical factors underlying this variability are
the location and type of stimulation (Machado et al
2006, Volkmann et al 2006, Johnson et al 2019). Des-
pite progress in imaging protocols and surgical tech-
niques, DBS lead placement can exhibit considerable
variability across patient cohorts, for which several
possible reasons have been proposed. Brain structures
can shift up to 4 mm when the cranium is opened
during surgery (Winkler et al 2005, Khan et al 2008,
Pallavaram et al 2010). Meta-analyses have reported
that over 45% of implants are off-target in patients
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who experience suboptimal therapeutic effects (Okun
et al 2005, Rolston et al 2016). Revisions to lead place-
ment with a second surgery or better titration of stim-
ulation parameters have been reported to improve
clinical outcomes in these patients (Ellis et al 2008,
Pourfar et al 2016).

Computational models of DBS have shown that
minor variations in lead location and the shape of the
stimulation field can influence the effects of activa-
tion on the target region (Butson and Mcintyre 2008,
Chaturvedi et al 2012, Lehto et al 2017, Anderson et al
2018). These findings demonstrate that the ability to
deliver stimulation to a target brain region is crucial
to provide therapeutic benefit, and therefore we need
to understand which lead designs and configurations
are less sensitive to lead location variability.

Over the past few years, new directional DBS elec-
trode geometries have been introduced, improving
upon the existing axisymmetric cylindrical electrodes
by providing the ability to steer stimulation around
the lead. The implementation of multi-lead designs,
i.e. multiple DBS leads close to one another, allows for
the stimulation field to be shaped across leads over a
broader region of brain tissue and has been demon-
strated to elicit improved effects compared to single
leads in both clinical (Oliveria et al 2017) and pre-
clinical studies (Baker et al 2016). Both directional
and multi-lead paradigms were developed to limit
the negative impact of lead location variability and
the resulting off-target side effects. The goal of these
approaches is to provide a more robust therapy that
is capable of providing therapeutic stimulation. How-
ever, no comprehensive study has evaluated how these
novel DBS devices reduce stimulation variability and
whatmeasurable improvements they provide over the
standard axisymmetric electrodes when considering
the uncertainty of lead or target locations. This know-
ledge could guide the development of new electrode
designs and targeting strategies to improve patient
outcomes.

The objective of this study is to evaluate the abil-
ity of novel directional electrode designs and multi-
lead configurations to robustly activate target fiber
pathways to better understand how DBS technology
can be improved to handle lead location variability.
Our goal is to apply a robustness measure, defined
as the ability to perform consistently across a known
range of variability, to evaluate the performance of
DBS lead designs and configurations. In the context
of DBS, robustness is the ability to achieve activa-
tion of the target region despite variations in lead or
target location. We characterize the performance of
directional leads ormultiple lead configurations com-
pared to the current cylindrical electrode lead designs.
This analysis is impractical to implement in vivo
since lead location is fixed after surgery and can
be changed only with subsequent revision surgeries.
Therefore, we investigated a range of electrode pos-
itions in a computational model. These techniques

allow direct comparison of performance variabil-
ity across any existing DBS lead designs, including
multi-lead configurations, as well as the capabil-
ity to test novel electrode designs before they are
manufactured.

2. Methods

We define a measure of stimulation robustness and
use computational models to perform a quant-
itative evaluation of performance across several
lead designs and configurations. The computational
model includes a representation of neuronal axons as
a stimulation target alongside virtual representations
of various DBS electrode geometries. We evaluated
the ability of the lead configurations to stimulate a
target white matter fiber pathway across a represent-
ative range of lead placements.

2.1. Experimental model
2.1.1. Finite element computational model
A finite elementmodel (FEM)was created in SCIRUN
5.0 (SCI Institute, University of Utah, Salt Lake City,
UT) to solve the Poisson equation and compute the
voltage distribution in tissue surrounding active DBS
electrodes. We used a previously published simula-
tion pipeline that provides near real-time tetrahed-
ral mesh generation and bioelectric field simulation
(Janson and Butson 2018). This approach allowed us
to place different electrode geometries in the same
model and rapidly test new electrode configurations,
including multi-lead designs with leads in proximity
to one another. Each tetrahedral mesh generation and
simulations required about 10–20 s, which enabled
us to test many electrode placement locations around
the target region and explore the effects of multi-lead
spacing on neuronal stimulation.

We defined the target region in the experimental
setup as a 3 mm diameter cylindrical white matter
fiber bundle with parallel axonal projections. Axons
within the cylinder had internodal spacing of 0.5 mm
with a total length of 20 mm and were evenly spaced
0.1 mm apart. The avoidance region, representing
off-target stimulation, was defined using the same
horizontal axonal projections with a uniform spacing
of 0.25 mm increments outside the target cylinder
and up to 8 mm away from the center of the target
(figure 1(A)). Nodes from both the target and avoid-
ance axons were included in the construction of the
tetrahedral meshes to improve accuracy when solving
for the electric potential along the axon. Any axon that
intersected with the lead was removed from the sim-
ulation. All calculations for percent activation of the
target bundle were normalized by the total number of
axons. The outer boundary of the tetrahedral domain
was a 100× 100× 100 mm cube.

A uniform 3D grid with 0.25 mm spacing up to
5 mm away from the center of the target was cre-
ated to evaluate target activation across a realistic

2
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Figure 1. Simulation domain for robustness analysis and diagram of tested lead designs. (A) 3D visualization of a classic deep
brain stimulation (DBS) lead next to the target fiber bundle (red) and fibers in the avoidance region (blue) for both a
perpendicular and parallel approach to the target. (B) Diagram of the five tested lead designs in a perpendicular orientation to the
target fiber bundle (red): (1) a single Medtronic 3387 lead, (2) a single Abbott or Boston Scientific directional lead, (3) a single
Medtronic Sapiens directional lead, (4) two (Dual) Medtronic 3387 leads, and (5) three (Tri) Medtronic 3387 leads.

range of lead placements based on statistics from
human DBS studies (Mcclelland et al 2005, Ellis et al
2008, Lee et al 2018). Each point in the grid defined
a lead location to construct a new tetrahedral mesh
and solve for the bioelectric field at each electrode.
Both perpendicular and parallel electrode orient-
ations were tested (figure 1(A)), representing two
extremes of howDBS leads can approach a target fiber
bundle.

The Poisson equation, with Dirichlet boundary
conditions, was solved to calculate the extracellular
electric potential (Ve) at every node in the tetrahed-
ral mesh. The bioelectric field forward problem was
solved using a point source set to−1 V at the center of
the active electrode and the outer surface of the simu-
lation domain set to 0 V to represent a distant return
electrode. Only cathodic voltage-controlled stimula-
tion was used in this study. Isotropic conductivit-
ies were applied for the electrical electrodes at sigma
= 1 × 106 S m−1 (Miocinovic et al 2006), the shaft
segments at σ = 1 × 10−10 S m−1, and the avoid-
ance region brain tissue at σ = 0.2 S m−1. Aniso-
tropic conductivity tensors were applied to the tar-
get fiber bundle region at a ratio of 9:1, 0.9 S m−1

in the longitudinal direction and 0.1 S m−1 in the
transverse direction of the fibers (Nicholson 1965).
Although currently available implantable pulse gen-
erators are not capable of supporting independent
voltage sources, we chose this approach to provide
a consistent stimulation paradigm across all lead
designs and configurations.

2.1.2. DBS lead designs
Three classifications of lead designs, or configura-
tions, were modeled in this study: (1) axisymmet-
ric leads such as the Medtronic 3387 or 3389, (2)
directional leads such as the Abbott Infinity, Boston
Scientific, and Medtronic Sapiens, and (3) multi-
lead designs with two or three axisymmetric leads
close to one another. The Medtronic 3387 consists
of four electrical contacts along a cylindrical shaft,
each 1.5 mm in height and 1.27 mm in diameter with
1.5 mm spacing between each electrode. The Abbott
Infinity and Boston Scientific directional leads have
electrode geometries similar to that of the Medtronic
3387, except the two middle electrodes are split into
three directional electrodes instead of one axisym-
metric cylindrical electrode. Only the Abbott 6172
directional lead was modeled in this study because
the geometric differences are minimal compared to
the Boston Scientific lead. TheMedtronic Sapiens dir-
ectional lead uses rows of four circular electrodes at
90◦ increments around the lead. The multi-electrode
designs were modeled with two and three Medtronic
3387 leads close to one another. The distance between
two leads is measured from center to center and the
tri-lead design is created from the dual-lead design by
placing a third lead to create an equilateral triangle.
The distance between the leads was determined by
identifying the spacing at which the two leads were
no longer able tomaximally activate the target despite
being centered on the target. This spacing remained
fixed for all subsequent simulations.

3
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Figure 2. Performance variability evaluation across a single lead configuration. Left: a cross-section of a single Medtronic 3387
lead and target fiber bundle with the corresponding percentage of fiber bundle activation (red) and performance variability
calculation (blue) as a function of distance from the target. The shaded regions represent variance resulting from changes in the
vertical depth (up/down movement) of the lead. Right: the corresponding violin plot and box plot of overall performance
variability with a perpendicular trajectory for the single lead design that encompasses variability scores across all simulated lead
locations. Overall performance throughout the entire simulation space is depicted with both a box plot to show median
performance (white circle) with quartiles and a violin plot to depict a continuous distribution of performance scores.

2.2. Simulation and analysis
2.2.1. Simulation overview
Several steps were taken to generate a performance
metric that could be used to evaluate the overall
robustness of each lead design. The steps to evaluate
one lead design are summarized below and each step
is explained in greater detail throughout the methods
sections.

(a) Generate new finite element mesh (FEM) for a
given lead location (section 2.1.1).

(b) Solve the bioelectric field for each electrode
in the lead during monopolar stimulation
(section 2.1.1).

(c) Run the optimization algorithm to determine
stimulation amplitudes (section 2.2.2).

(d) Calculate target activation and performance
metric values (section 2.2.3).

(e) Move the lead to a new location and repeat the
process.

Figure 2 demonstrates how each step contributes
to an overall robustness evaluation by averaging the
performancemetric across all tested lead locations for
a single Medtronic 3387 lead. The figure illustrates
both the percent fiber activation and resultant per-
formance variation calculation as the leadmoves over
a range of representative positions. The violin plot for
the 3387 lead illustrates that although the normalized
performance metric has both a median and mean in
the middle of the range, most of the data values are
skewed toward the maximum and minimum of the
scale which is not evident from a box plot alone.

2.2.2. Stimulation optimization
To compare the performance of lead designs with
respect to variable lead positions around the target,

we computed multiple bioelectric field solutions at
each location on the 3D grid and determined voltage
amplitudes for each electrode that maximally activ-
ated the target. We adapted a previously published
method of automated DBS programming to provide
a fast and objective way to optimize stimulation amp-
litudes for any lead design at any location in space
around our target region (Anderson et al 2018). The
optimization algorithm works by individually adjust-
ing the voltage amplitude at each electrode to provide
maximal stimulation to the defined target region
while minimizing stimulation to any specified areas
of avoidance. We calculated n number of extracel-
lular potential solutions for each lead, where n is
the number of electrodes in the lead configuration
(equation (1)). We utilized the superposition prin-
ciple for optimized configurations to includemultiple
active electrodes. The voltage solution for each elec-
trode was first multiplied by its optimized amplitude
and then each electrode solution was linearly com-
bined to compute the overall voltage solution gen-
erated by the optimized configuration. The activat-
ing function (AF), the second spatial derivative of
extracellular potentials (Ve), was then calculated at
each node x along each axonal projection from its
neighboring nodes x − 1 and x + 1 with an inter-
node spacing of ∆x (equation (2)). Neuronal activa-
tion, as a result of extracellular electrical stimulation,
can be approximated by thresholding the activating
function (Rattay 1986, 1999). As previously reported
(Anderson et al 2018), the threshold values of
the AF were established by comparison to multi-
compartment cable model simulations and set to
15 mV, which is within the range of 5–30 mV estab-
lished in other studies (Rattay 1986, Mcintyre et al
2004b, Martens et al 2011).

4



J. Neural Eng. 17 (2020) 026012 A P Janson et al

The AF calculated along each axonal projection
in both the target and avoidance regions served as
the input to the optimization algorithm, utilizing the
CVX package in MATLAB for solving linear convex
optimization problems (Grant and Boyd 2008). The
maximum AF value found along each axonal pro-
jection is then extracted to provide a single value to
represent the excitability of each axon in response
to stimulation for each electrode in the lead con-
figuration. This algorithm maximizes the objective
function (equation (3)), which optimizes the cath-
odic voltage amplitude at each electrical contact (ci)
that maximizes the average AF value for each axon
(AFi,Target) in the target region (ΩTarget), while min-
imizing the squared average AF value for each axon
(AFi,Avoid) in the avoidance region (ΩAvoid). A pen-
alty weighting of s for the avoidance region was set
to a value of 8 for all simulations. The variable s is a
free parameter in the optimization algorithm and will
vary based upon the shape and size of the avoidance
region. Adjustments to s will affect stimulation amp-
litudes but active electrode configurationswill be con-
served (Anderson et al 2018). The other constraint
implemented in the optimization algorithm was a
maximum charge density of 30 µC cm−2 (Mccreery
et al 1990, Shannon 1992) for each electrode design.
After the stimulation amplitudes were optimized, we
thresholded the AF along each axon to determine the
total number of activated axons in the target region
and the percentage of total fiber bundle activation
for the given lead position. Avoidance region activa-
tion was implemented as a constraint in the objective
function of optimization algorithm and therefore was
not directly included in the performance metrics.

∇·σ∇Ve =−I (1)

A.F.=
Ve(x−1) − 2Ve(x) +Ve(x+1)

∆x2
(2)

fv,Ω(x,c) =
i=1∑
n

ci∣∣ΩTarget

∣∣max
(
AFi,Target (x)

)
− s

ci
|ΩAvoid|

max(AFi,Avoid (x))
2 (3)

2.2.3. Robustness metric analysis
We defined maximal performance as the ability to
achieve total activation of the target fiber bundle, and
our parameter variation is the lead location around
the target. Realistically, each lead design or config-
uration should be able to provide maximal (100%)
activation during ideal placement, i.e. when the lead
is placed directly on target. Our goal was to quantify
variations in performance as a function of lead loc-
ation relative to the target. Therefore, the robustness
metric (R), which is a measure of performance vari-
ability (Pv) over the entire simulation domain, was

calculated as a quadratic loss function (equation (4))
and averaged across all lead locations (equation (5)).
The quadratic loss function penalizes larger drops
in percent activation more than minor deviations.
In DBS therapy applications, it is unknown whether
100% activation of the target is necessary to evoke a
therapeutic response; however, the robustness metric
characterizes the ability to do so, and admits a wide
range of other penalty functions. Decreases in percent
activation at a given location (Al) are predominantly
controlled by the optimization algorithm limiting the
stimulation of the avoidance region as the lead is
placed farther off-target. Although the percent activ-
ation calculation is influenced by several parameter
choices in the optimization algorithm, all lead designs
were exposed to the same constraints to allow for the
relative comparisons between them to be consistent.
A lead design is determined to be more robust if the
R metric is higher than other lead designs, meaning
it is more likely to achieve target activation across the
range of simulated lead locations.

Pv (l,C) = (1− Al,C)
2 (4)

R(C) = 1− 1

L

L∑
l=1

Pv (l,C) (5)

Al =%Activationper location

C= Leadconfiguration

3. Results

3.1. Single lead target activation robustness
Robustness analysis was first investigated for the
axisymmetric Medtronic 3387 lead. We observed that
the 3387 lead was able to achieve maximal activa-
tion of the target fiber bundle when positioned at the
center of the target. However, activation performance
quickly dropped as the lead was moved off target and
was effectively zero once the lead reached a distance
of 3.75 mm.

We repeated the analysis with the Abbott and
Medtronic Sapiens directional leads (figure 3(B)).
The Abbott lead provided better performance than
the 3387 lead at all distances until both configura-
tions failed to provide any activation of the target
fiber bundle. Although the Medtronic Sapiens lead
experienced a drop in performance earlier than the
other two leads, the slope of decay was lower and
eventually outperformed the Abbott lead at more
distant off-target locations. Both of the directional
leads were not able to produce any target activation
at a distance of 3.75 mm, similar to the Medtronic
3387 lead. For all distances beyond 2.5 mm, all
three lead designs demonstrated a similar decay in
performance. The overall performance across all sim-
ulated lead locations for the three single lead designs

5
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Figure 3. Performance variability evaluation across each single lead configuration. (A) Violin plot and box plot of overall
performance variability for a perpendicular trajectory for each of the three single lead designs. (B) Comparison of performance
variability as a function of distance from target for each of the three single lead designs: Medtronic 3387 (blue), Abbott 6172
(orange), Medtronic Sapiens (green). The shaded regions represent variance resulting from changes in the vertical depth
(up/down movement) of the lead.

is summarized in violin plots in figure 3(A), with the
median performance and interquartile range (IQR)
of the Medtronic 3387, Abbott, and Medtronic Sapi-
ens leads found to be 0.63 (IQR = 0.89), 0.45
(IQR = 0.94), and 0.44 (IQR = 0.86), respectively.
The corresponding robustness metrics for the three
leads were: 0.46, 0.49, and 0.48, respectively.

3.2. Multi-lead optimal spacing
The goal of using multiple leads in proximity is to
move each of them away from the direct center of the
target to provide stimulation over a broader region
while maintaining the ability to activate the target
maximally. However, the spacing between the leads
cannot be so far apart that they are no longer able
to activate the center of the target. A diagram of the

multi-lead configuration with two Medtronic 3387
leads is shown in figure 4. The midpoint of the leads
determines the distance to target for multi-lead con-
figurations.

The interlead spacing was held constant dur-
ing the robustness analysis to reduce the parameter
space for multi-lead configurations. Therefore, we
need to determine the optimal lead spacing that can
provide stimulation to the largest region possible
while also maintaining the ability to activate fibers
at the midpoint of the two leads. For this experi-
ment, the midpoint of the two leads was held con-
stant at the center of the target fiber bundle, and the
two leads then moved horizontally away from one
another in 0.25 mm increments. The percentage of
fiber activation and resulting robustness metric was

6
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Figure 4. Evaluation of optimal dual lead spacing to provide maximum stimulation coverage of the target region. Percent fiber
bundle activation (red) and performance variability (blue) as a function of inter-lead spacing with a cut-off at 3.25 mm to be used
in subsequent robustness analyses. The shaded regions represent variance resulting from changes in the vertical depth (up/down
movement) of the lead.

calculated for each interlead spacing distance, shown
in figure 4(B). The optimal interlead spacing was
identified by the distance just before maximal activ-
ation of the target started to decline. If the leads were
separated any farther apart, maximal activation of the
target would not be possible under the ideal scenario,
which is the midpoint of the leads positioned dir-
ectly on the target. The optimal spacing was determ-
ined to be 3.25 mm center-to-center spacing of the
two 3387 leads. With this multi-lead configuration,
each lead is positioned 1.625 mm off-target; how-
ever, stimulation through the combination of both
leads is still able to provide maximal activation of the
target fiber bundle. As a reference from our previ-
ous result, a single Medtronic 3387 lead positioned
1.625 mm off-target was able to provide approxim-
ately 50% activation.

3.3. Multi-lead rotational dependence
Theuse of two leads, each offset from the target, intro-
duces an asymmetry to the lead configuration that
is dependent on its orientation relative to the fiber
bundle. For a perpendicular approach to the fiber
bundle, the leads themselves can be oriented perpen-
dicular (90◦), parallel (0◦), or somewhere in between,
as shown in figure 5. We found that for a perpen-
dicular approach to the target (blue violin plots in
figure 5), the orientation of the two leads had a drastic
effect on the robustness of the system and its abil-
ity to activate the target over the range of all stim-
ulation locations. An orientation of 90◦ produced
the best performance, median = 0.08, whereas an
orientation of 0◦ performed marginally better than
a single Medtronic 3387 lead, median = 0.63. This
asymmetry does not exist for parallel approaches
to the target fiber bundle (orange violin plots in
figure 5), which showed no difference as a function
of orientation and outperformed all perpendicular
approaches, median= 0.01.

We then implemented a multi-lead configuration
of three leads with 3.25 mm equilateral spacing in an
attempt to eliminate this observed rotational depend-
ence. The performance of this electrode configura-
tion was tested under the same rotational conditions
for both perpendicular and parallel approaches, as
was done with the dual-lead configuration. We found
that the tri-lead configuration performed the same,
median = 0.08, as the dual-lead at an orientation of
90◦. The performance of the tri-lead configuration
improved or remained the same for 45◦ and 0◦ ori-
entations, demonstrating that three leads are suffi-
cient to eliminate the rotational dependence of ori-
entation relative to the target pathway. Again, there
was no rotational dependence, and overall robustness
performance increased for parallel approaches to the
target.

3.4. Overall robustness comparison
All possible locations and orientations relative to
the target were combined for each lead configura-
tion and are summarized in figure 6(A), with violin
plots for perpendicular (blue) and parallel (orange)
lead orientations relative to the target axons. A clear
stratification emerges among the three configura-
tion paradigms (axisymmetric, directional, multi-
lead), with each increasing overall performance. The
robustness metrics for the dual- and tri-lead con-
figurations were 0.66 and 0.81, respectively. The tri-
lead configuration produced an overall median value
of 0 (IQR = 0.27), meaning it was able to provide
maximal activation of the target in over half of the
tested lead locations. The tri-lead configuration also
producedminimal differences in overall performance
between perpendicular and parallel approaches to
the target compared to the dual-lead configuration,
which, from the previous result, depended on orient-
ation for perpendicular approaches.

7
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Figure 5. Dependence of multi-lead configurations on rotational orientation with respect to the target. Violin and box plots of
overall performance variability across the simulation domain for perpendicular (blue) and parallel (orange) approaches to the
target with multi-lead configurations. The dual Medtronic 3387 performance is dependent on rotational orientation with respect
to the target for perpendicular approaches to the target producing better performance with leads oriented across the target fiber
bundle versus leads oriented along the same direction as the target fiber bundle, while the tri 3387 configuration demonstrates no
major dependence on orientation.

The performance of each electrode configuration
as a function of distance from the target for per-
pendicular and parallel lead orientations is shown
in figures 6(B) and (C), respectively. These panels
show how the two multi-lead configurations com-
pare to the single lead configurations. Bothmulti-lead
configurations maintain higher levels of performance
over all distances, and the tri-lead configuration does
not show a considerable drop in performance until
2.5 mm off target with a perpendicular approach and
approximately 3.5 mmwith a parallel approach. Both
directional leads demonstrate clear separation in per-
formance compared to the Medtronic 3387 when the
leads are located entirely outside of the target region
beginning 1.5 mm from center. The dual lead con-
figuration shows high variance in the perpendicular
approach due to orientation dependence, but the per-
formance is nearly identical to the tri-lead configura-
tion when the leads are parallel to the target.

4. Discussion

Despite the success of DBS as a therapy to treat
numerous neurological disorders, not all patients
receive the same benefit, in part, due to variable lead
locations. Newmethods of objectively evaluating lead
designs and targeting schemes are needed to guide
future device designs that are less sensitive to this

variability. The goal of this computational study was
to establish the concept of robustness to compare the
ability of modern DBS lead designs to activate thera-
peutic targets and investigate potential new configur-
ations that can perform well across a range of loc-
ations around the target. We found that directional
and multi-lead designs provide more robust control
over activation of fiber pathways when accounting for
variability in lead placement than cylindrical leads,
and that multi-lead designs were more effective at
robust target activation than directional leads.

We chose the metric of robustness to objectively
evaluate the performance of one lead design versus
another over a range of possible lead locations that
could feasibly occur across a patient cohort. The
rationale behind the design of the new directional
leads was to reduce off-target, stimulation-induced
side effects, but a quantitative evaluation of those
lead designs, as reported in this manuscript, was not
done before clinical testing. Our approach may be
able to guide future lead designs during develop-
ment and prior to adoption. Other robustness met-
rics may be useful during this process, such as the
inclusion of power consumption or variable weight-
ing of one or more avoidance region. Our current
analysis process could include these constraints inside
of the optimization algorithm, but it is also possible
to optimize stimulation settings for target activation
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Figure 6. Performance variability for all lead configurations. (A) Violin plots for perpendicular (blue) and parallel (orange)
trajectories with box plots of both trajectories combined for each of the five tested lead configurations. Each of the directional
leads demonstrated performance improvements (lower variability scores) compared to the non-directional Medtronic 3387 lead.
The multi-lead designs demonstrate markedly better performance over the directional leads. (B) Performance variability as a
function of distance with a perpendicular angle of approach to target for each of the five lead configurations shows the greatest
variability for the dual-lead configuration. The shaded regions represent variance resulting from changes in the vertical depth
(up/down movement) of the lead. (C) Performance variability as a function of distance with a parallel angle of approach to target
for each of the five lead configurations. In (B) and (C), the multi-lead configurations maintain performance robustness farther
than any of the single lead configurations.

and then add these variables into the performance
calculations which will allow us to analyze howmuch
stimulation spreads into these avoidance regions.

Our model constrained the stimulation amp-
litude to limit the spread of activation to regions out-
side the target. The use of the optimization algorithm
developed in Anderson et al (2018) provided an
objective way to compute the optimal stimula-
tion amplitudes across every simulated lead location
and each lead design. Establishing the performance
robustness metric allowed us to directly compare cur-
rent designs as well as develop novel lead placement
strategies that may provide more reliable therapeutic
stimulation.

We summarized the performance of a single
Medtronic lead across a range of lead locations since

minimal computational research has been done to
comprehensively quantify target activation as a func-
tion of lead placement (Chaturvedi et al 2012, Keane
et al 2012, Hartmann et al 2015).Most previous stud-
ies that have explored any formof performance versus
lead placement location have tested only a few, some-
times only two, lead locations due to computational
limitations.

The performance benefits of the two directional
lead designs were explored under the same condi-
tions as the Medtronic 3387. We found no major dif-
ferences in the performance of the two directional
leads, but both performed better than the Medtronic
3387 lead. The difference in performance might not
be as considerable as expected because our avoid-
ance of off-target effects might be too punishing.

9
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Directional leads are thought to show their greatest
efficacywhen less than 1mmoutside the target, which
is also where our results show the greatest separation
between directional and axisymmetric leads. In some
clinical cases, theremight be a gap between target and
off-target sites that does not produce any harm,which
could produce a slightly greater functional distance
at which these directional electrodes can activate the
target. We also observe little variability with regards
to depth placement compared to lateral placement, as
long as the target falls within the span of the electrodes
on the lead. Given that electrodes span 8–10 mm
along the lead shaft, with minimal gaps in-between,
we expected minimal performance variation with
shifts in the vertical lead position. Further testing is
needed to explore how the spacing between electrodes
on a single lead would affect activation performance
if the target falls between two electrodes, especially
since the directional leads studied have much smaller
electrode spacing that the Medtronic 3387 lead. We
also found that rotating the directional leads about
their axis had no significant impact on performance
variability (data not shown). Pena et al (2018) repor-
ted similar findings in their study of optimization
algorithms for directional leads. With a constant con-
figuration of active electrodes they observed less than
10% variation in activation across a 360◦ rotation of
the lead about its axis. We allowed for the configura-
tion to change as the lead rotated, which most likely
contributes to why we observed even less variation in
activation.

Although the directional leads demonstrated
increased performance compared to axisymmetric
leads, the main limitation to activating nearby tar-
gets is that the stimulation field can be shaped around
only a single lead. All the single lead designs showed
similar decreases in performance as a function of dis-
tance from the target and similar maximum distances
at which they were no longer able to activate the tar-
get. Therefore, we explored the use of multiple leads
in proximity that enabled independent sources across
leads. The electric potential can be shaped across a
broader tissue region and can provide more select-
ive activation within this region. In the simplest cases,
much of the multi-lead performance can be attrib-
uted to increasing the odds that a lead is closer to
the target compared to single lead implantations.
Although this concept may be self-evident, the added
dimension of placing additional electrodes around
the target rather than segmenting a single lead has
not been thoroughly explored. Extending the field
of stimulation could be enough to reduce variability
when factoring in the uncertainty of target identifica-
tion and lead placement. The use ofmultiple leads has
been demonstrated in a human clinical case (Oliveria
et al 2017) that explored expanding the stimulation
field to target both the ventralis intermedius (VIM)
and the ventralis oralis (VO) nuclei in the thalamus

for the treatment of multiple sclerosis tremor. Mul-
tiple leads have also been used in non-human primate
research (Baker et al 2016) to target the central lateral
nucleus and passing fibers in the central thalamus to
control arousal regulation. The non-human primate
stimulation found that bipolar shaping of the stim-
ulation field across the two leads was more effective
than any single lead stimulation which our study did
not explore. Further studies are needed to compare
the steering capabilities of directional versus multi-
lead designs.

For perpendicular lead orientations relative to the
target, with the dual-lead configuration, a rotational
asymmetry quickly becomes apparent. Our simula-
tions showed a strong performance dependency on
rotational orientation with respect to the target. Pla-
cing two leads along the same direction as the tar-
get did not perform better than a single lead. How-
ever, enabling the use of bipolar configurations in
the optimization algorithm might reduce the effect
of rotational asymmetry for the dual-lead config-
uration. Multiple leads positioned across the target,
demonstrated an increase in performance compared
to any of the single lead configurations. A third lead
was added to form an equilateral triangle under the
assumption that this configuration would reduce the
geometric asymmetry and enhance performance. The
tri-lead configuration, although not wholly eliminat-
ing rotational dependence, drastically improved per-
formance across all other orientations compared to
the dual-lead configuration. For parallel approaches
to the target, the dual-lead configuration performs as
well as the tri-lead configuration, because no asym-
metry exists. The improved performance of themulti-
lead configurations can be mostly accounted for by
always having a lead closer to the target than the
single leads.

Combining simulation results for both approach
angles and all possible orientations allowed us to
compare the overall performance across each elec-
trode configuration. Each increase in electrode con-
figuration complexity, from single lead to direc-
tional lead to multiple leads, produced considerable
increases in target activation performance. Direc-
tional leads were able to provide more robust activ-
ation of the target at a wider range of locations
because they could steer current to one side of the
lead and avoid most of the off-target region com-
pared to the axisymmetric lead. Multi-lead designs
were more robust than directional leads due to their
ability to control stimulation over a broader spatial
region, making their lead placementmuch less sensit-
ive to off-target placements. In the best case scenarios,
multi-lead designsmaintained high levels of perform-
ance up to 3 mm off target, whereas all the single lead
designs could not maintain performance past 1.5 mm
and then exhibited a steeper decline in performance at
greater distances.
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A direct extension of this study would be to per-
form a robustness analysis for a specific clinical target
that includes an accurate representation of the target
itself and surrounding avoidance regions. Retrospect-
ive lead location data from previous patients could
then be used to evaluate activation with realistic posi-
tions around the target instead of the uniform spacing
used in this study. This study outlines an approach to
evaluate how DBS lead choice affects the activation
of both the therapeutic target and nearby regions of
avoidance while accounting for plausible lead place-
ments. This analysis could guide patient-specific clin-
ical decisions about lead designs and trajectories to
provide the greatest therapeutic benefit. The results
generated in this study provide a baseline intuition
about how different lead geometries activate a generic
fiber pathway across a range of probable lead loca-
tions.We expect this analysis to produce different res-
ults for each specific clinical target based on its exact
geometry and the surrounding side-effect regions.

4.1. Limitations
All computational models require several assump-
tions about the generation of the bioelectric field
solution from the DBS lead and how to quantify
neuronal activation. First, the activation predictions
from thresholding the AF used in this study con-
sidered only the amplitude of the stimulation wave-
form, not pulse width, frequency, or overall shape
of the waveform. Also, we explored only cathodic
stimulation when optimizing electrode configura-
tions that maximize activation of the target region.
Thresholding the AF eliminated the computational
bottleneck of running NEURONmodels and allowed
us to simulate thousands of lead locations over five
lead designs and configurations. The automated pro-
gramming algorithm used in this study, developed by
Anderson et al (2018), uses the AF to optimize stim-
ulation amplitudes and validated thresholds against
multi-compartment NEURON models. Second, all
axons in both the target and off-target regions were
modeled as parallel axons, which other computa-
tional studies have shown is the most excitable sub-
unit of a neuron (Mcintyre and Grill 1999). We used
a generic fiber tract target with an approximate size
to compare the relative differences of fiber activa-
tion across lead designs and variable positioning, but
the specific relationship of activation with respect to
fiber bundle diameter was not investigated. Overall,
bundle diameter would influence percent activation
and lead distance values, but the general relationships
and trends established in this study would not sub-
stantially differ from what we have reported.

The use of a generic, straight, fiber bundle tar-
get and surrounding avoidance region also influ-
enced the calculation of overall robustness perform-
ance. Modeling the exact geometry of the target
and avoidance regions for each anatomical target
will produce different results, possibly shifting the

performance differences we observed between each
lead design. All tested lead locations and approaches
were equally weighted when calculating the overall
robustness of performance. Similarly, all off-target
stimulation penalties were equally weighted in the
optimization algorithm, regardless of position and
distance from the target region. This initial study is
not meant to mimic any one clinical DBS target but
instead to establish a framework to understand the
possible variations in target activations due to lead
location, lead design, and multi-lead configurations.

5. Conclusions

The framework developed in this study can facilit-
ate the development of novel lead designs to determ-
ine optimal electrode spacing and geometries with
simulations before the leads are manufactured. The
concept of robustness can also be applied directly
to clinical DBS use cases to determine which avail-
able lead design would perform best, given patient-
specific constraints such as target location and prob-
able lead trajectories. For cohort-level analysis of DBS
outcomes, robustness analysis can be used to quantify
the variability in target activation based upon each
patient’s lead location and stimulation settings. These
data would provide knowledge about howmuch out-
come variability can be attributed to lead location
when investigating the efficacy ofDBS as a therapeutic
intervention.
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