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Abstract—Anatomy evaluation is crucial for understanding
the physiological state, diagnosing abnormalities, and guiding
medical interventions. Statistical shape modeling (SSM) is vital
in this process, particularly in medical image analysis and
computational anatomy. By enabling the extraction of quanti-
tative morphological shape descriptors from medical imaging
data such as MRI and CT scans, SSM provides comprehen-
sive descriptions of anatomical variations within a population.
However, the effectiveness of SSM in anatomy evaluation hinges
on the quality and robustness of the shape models, which
face challenges due to substantial nonlinear variability in hu-
man anatomy. While deep learning techniques show promise
in addressing these challenges by learning complex nonlinear
representations of shapes, existing models still have limitations
and often require pre-established shape models for training.
To overcome these issues, we propose Mesh2SSM++, a novel
approach that learns to estimate correspondences from meshes
in an unsupervised manner. This method leverages unsupervised,
permutation-invariant representation learning to estimate how
to deform a template point cloud into subject-specific meshes,
forming a correspondence-based shape model. Additionally, our
probabilistic formulation allows learning a population-specific
template, reducing potential biases associated with template
selection. A key feature of Mesh2SSM++ is its ability to quantify
aleatoric uncertainty, which captures inherent data variabil-
ity and is essential for ensuring reliable model predictions
and robust decision-making in clinical tasks, especially under
challenging imaging conditions. Through extensive validation
across diverse anatomies, evaluation metrics, and downstream
tasks, we demonstrate that Mesh2SSM++ outperforms existing
methods. Its ability to operate directly on meshes, combined
with computational efficiency and interpretability through its
probabilistic framework, makes it an attractive alternative to
traditional and deep learning-based SSM approaches. Github:
https://github.com/iyerkrithika21/Mesh2SSMJournal

Index Terms—Statistical Shape Modeling, Representation
Learning, Point Distribution Models, Surface Meshes, Probabilis-
tic Modeling, Deep Learning

I. INTRODUCTION

Anatomy evaluation is the systematic quantitative assess-
ment of the human body’s form and function, crucial for com-
prehending the medical condition, diagnosing abnormalities,
and guiding medical interventions [1]–[4]. Statistical shape
modeling (SSM) is essential for anatomy evaluation in medical
image analysis and computational anatomy. SSM facilitates
the discovery of quantitative morphological shape descriptors
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Fig. 1. Correspondences are sets of ordered points on different shapes
representing the same anatomical or geometric feature, thereby establishing
a consistent relationship between the shapes. The white highlighted points
represent predicted correspondences by Mesh2SSM++ in the right superior
pulmonary vein (RSPV) antrum region of the left atrium, consistently located
across all shapes. Matching colors across samples indicate additional corre-
sponding points.

that comprehensively describe anatomical variations within the
context of the population, aiding in diagnosis [5], [6], pathol-
ogy detection [7], [8], treatment planning [9], and enhancing
early intervention strategies [10]–[12].

SSM methods have traditionally relied on two primary
approaches for representing anatomical structures: implicit
representations (e.g., deformation fields [13] and level set
methods [14]) and explicit representations (e.g., Point Distri-
bution Models, or PDMs, which use ordered set of landmarks
or correspondence points). Figure 1 shows examples of PDM
for three different anatomies. The points highlighted in white
represent these correspondence points, and the matching colors
across samples indicate the established correspondences. Tra-
ditional SSM methods establish correspondences via (a) pair-
wise methods that map a shape subject to a pre-defined atlas
or template via fixed geometrical bases (SPHARM-PDM [15])
or diffeomorphic metric mapping (Deformetrica [16]), (b)
group-wise approaches that establish the correspondences by
considering the variability of the entire shape cohort (Particle-
based Shape Modeling [17], [18]). However, the effectiveness
of SSM in anatomy evaluation critically depends on the quality
and robustness of the models, which must accurately capture
real-world anatomical variability while handling noise and
incomplete data [19].

Despite their utility, traditional SSM approaches face several
significant limitations. They often rely on computationally ex-
pensive optimization frameworks and manually tuned param-
eters, making them non-scalable and inefficient for handling
large datasets. Their dependence on linearity assumptions
further restricts their ability to model non-linear anatomical
variations, leading to limited generalization. Moreover, tradi-
tional methods require full recomputation of the model for new
samples, rendering them impractical for real-time or large-
scale clinical applications. Deep learning-based approaches for
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SSM have emerged as a promising avenue for streamlining
SSM. Deep learning models can learn complex non-linear
representations of the shapes, which can be used to construct
shape models. Moreover, they can efficiently perform infer-
ence on new samples without computation overhead or re-
optimization. Unsupervised methods [20]–[26] have demon-
strated the ability to estimate population-level correspondences
from meshes, point clouds, and images while eliminating
the need to repeat the shape modeling pipeline for unseen
samples and maintaining computational efficiency at inference.
Specifically, Mesh2SSM [20] is an unsupervised deep learning
approach that generates statistical shape models directly from
surface meshes by deforming a template point cloud to subject-
specific meshes. It eliminates the bias arising from template
selection by incorporating a VAE [27] on the learned corre-
spondences that help learn the underlying manifold and enable
sampling a population-informed template.

However, Mesh2SSM has certain limitations. The incor-
poration of VAE complicates the training process as the
end-to-end training can be tricky as VAE requires careful
parameter tuning to avoid posterior collapse. Mesh2SSM uses
Chamfer distance to train the network such that the predicted
correspondences faithfully represent the underlying shape, but
this does not guarantee that the predicted particles will lie on
the surface of the mesh. Medical datasets pose additional chal-
lenges, including data limitations and the need for uncertainty
quantification to avoid overconfident predictions and provide
clinicians with insights into model limitations. Real-world
medical data often contains artifacts like noise and blurred
edges, creating ambiguity in estimating correspondence posi-
tions, particularly near sharp edges or in noisy regions. This
ambiguity necessitates accounting for aleatoric uncertainty,
stemming from inherent data variability. Addressing this is
essential for reliable outcomes in medical applications where
precise modeling is paramount. Mesh2SSM does not account
for these scenarios or provide any insights into the confidence
of the model predictions.

Therefore, we introduce Mesh2SSM++, an unsupervised
learning framework for constructing correspondence-based
probabilistic statistical shape models directly from surface
meshes. Building upon its predecessor, Mesh2SSM [20], the
proposed Mesh2SSM++ introduces several key improvements
to aid in effective anatomy evaluation. Our contributions are
summarized as follows:

1) Flow-enhanced latent space for probabilistic shape
modeling: Introduction of a continuous normalizing flow
[28], [29] in the latent space of the mesh autoencoder.
This enhancement streamlines the model architecture
while endowing the framework with powerful probabilis-
tic capabilities. The normalizing flow enables:
• High-quality sample generation, owing to the invert-

ibility of the transformations of the flows, facilitates a
more accurate representation of anatomical variability.

• Streamlined data-informed template updates with sim-
plified end-to-end training of a probabilistic network.

• Efficient aleatoric uncertainty estimation for the corre-
spondence prediction task, providing crucial reliability

measures in medical applications.
2) Mesh-constrained correspondence prediction: We in-

troduce a new loss function to encourage predicted
correspondences to lie on the mesh surface, thereby
improving the quality and anatomical accuracy of the
correspondences.

3) Self-supervised training to increase robustness to
noisy data: We introduce vertex masking as an addi-
tional form of data augmentation, enhancing the model’s
robustness to noisy input and improving generalization.

4) Comprehensive evaluation: We conduct comprehensive
experimentation on multiple anatomical datasets, em-
ploying a wide range of evaluation metrics to assess
model performance thoroughly. Our rigorous benchmark-
ing against state-of-the-art (SOTA) mesh-based mod-
els demonstrates the effectiveness and advantages of
Mesh2SSM++ in medical shape analysis. We also show
the utility of Mesh2SSM++ by assessing its performance
for two downstream tasks.

Overall, Mesh2SSM++ enhances shape descriptor extrac-
tion, improves efficiency in correspondence generation, and
extends SSM applicability to diverse anatomical structures.
These advancements make Mesh2SSM++ a robust, scalable
solution for clinical applications requiring accurate and inter-
pretable shape models.

II. RELATED WORK

The increasing complexity of anatomical shapes and the vol-
ume of data in modern medical imaging have rendered manual
landmarks/correspondence annotation impractical. This has led
to a reliance on computational methods to establish anatom-
ical correspondences. Methods to establish correspondences
broadly include (a) registration-based landmark estimation
and (b) parametric and non-parametric correspondence opti-
mization. Registration-based methods involve manually an-
notating landmarks on a reference shape and warping these
landmarks to other shapes using registration techniques [30]–
[32]. Parametric methods use fixed geometrical bases to derive
correspondences [15], but they often struggle with complex
anatomical shapes due to limited flexibility. Non-parametric
approaches establish correspondences based on cohort-level
variability by optimizing objective functions [2], [18], [33].
A notable family of tools employs entropy-based objectives to
establish correspondences [17], [18], [33], [34] across a cohort
of shapes while ensuring faithful representation of each shape.
Particle-based Shape Modeling (PSM) has emerged as a state-
of-the-art method in this category.

However, conventional methods face multiple challenges.
Recent advancements in deep learning have significantly im-
proved SSM by enabling the efficient learning of non-linear
shape representations. Mesh-based and point cloud-based deep
learning methods have emerged as promising alternatives due
to their ability to model the structured representation of 3D
shapes. Recent advancements in point cloud-based SSM, such
as Point2SSM [21], Point2SSM++ [35], and other point cloud-
based approaches [36]–[38] have demonstrated the potential of
using raw point clouds for constructing shape models. These
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methods offer advantages in terms of reduced computational
burden and relaxed input requirements. However, they lack the
crucial connectivity information inherent in mesh-based ap-
proaches. Mesh-based SSM methods leverage this connectivity
to better capture local geometric relationships and preserve
fine anatomical details, which is particularly important for
accurately modeling complex structures. Therefore, despite the
progress in point cloud-based shape modeling, mesh-based
approaches remain essential for comprehensive and precise
statistical shape modeling in medical applications.

Early mesh-based networks, such as ShapeNet [39] and
3D-R2N2 [40], introduced volumetric grids and multi-view
projections for mesh classification and vertex segmentation
but faced challenges with high computational costs and res-
olution limitations. Mesh-specific neural networks, such as
GCNN [41], [42] and MeshCNN [43], extended convolution
operations to irregular graph-like structures, enabling effective
feature extraction while preserving geometric details. Spectral
methods like ChebNet [44] provided further advancements
by operating in the spectral domain, and dynamic graph
convolution networks (DGCNN) [37] introduced dynamic
edge connections to improve the capture of local geometric
relationships. Although ChebNet excels at modeling global
structures, DGCNN spatial adaptability makes it particularly
suitable for medical SSM applications that require localized
and flexible shape modeling.

Recent methods have addressed the challenges of shape ver-
tex matching using unsupervised learning approaches. Shape-
Flow [45] learns a deformation space for 3D shapes with large
intra-class variations, using neural networks to parameterize
continuous flow fields between a pair of meshes. FlowSSM
[22] extended the idea to model population variation using
neural networks to parameterize the deformations field be-
tween a cohort of shapes and a template in a low dimensional
latent space and rely on an encoder-free setup. However,
FlowSSM exhibits sensitivity to template selection and lacks
an encoder, requiring re-optimizing latent representations for
unseen shapes, increasing computational overhead [20]. Atlas-
R-ASMG [26] is an end-to-end deep learning generative
framework for refinable shape matching and generation us-
ing 3D surface mesh data. The framework jointly learns
high-quality refinable shape matching and generation while
constructing a population-derived atlas model, enabling the
generation of diverse and realistic anatomical shapes for virtual
populations. However, Atlas-R-ASMG still relies on vertex-
level correspondence by employing an attention mechanism
in latent space to measure the similarity between local vertex
embeddings between the atlas and the shapes. This approach,
while effective, may limit the framework’s flexibility in han-
dling highly variable anatomical structures or shapes with sig-
nificant topological differences. Addressing these limitations,
Mesh2SSM [20] introduces a novel approach by replacing
the encoder-free setup of FlowSSM with geodesic features
and an EdgeConv-based [37] mesh autoencoder. This method
overcomes the issues its predecessors face by eliminating
reliance on vertex-level correspondences. Instead, Mesh2SSM
produces a correspondence model with a fixed number of
landmarks determined by the initial template. This is typically

Fig. 2. Overview of Mesh2SSM++ Framework: (A) The generative
model leverages a decoupled representation and generation process. The
latent variable z is mapped from the generation space z0 ∼ p(z0) to the
representation space through the invertible mapping g−1

η (z0), while X ∼
pθ(X|z) represents data sampled in the data space. Inference is performed
via qϕ(z|X ), which maps the input mesh X to its latent representation z.
(B) The Mesh2SSM++pipeline. Input surface meshes Xi = (Vi, En) are
processed by the encoder qϕ(z|X ) to produce latent representations z. These
are combined with prior samples z0 ∼ N (0, I) for probabilistic sampling.
Based on the latent representation z, the implicit field decoder pθ(X|z) learns
how to deform the template point cloud into C such that it matches the
input shape surface while establishing correspondence by deforming the same
template for every input mesh.

smaller than the total number of vertices, resulting in a more
compact representation. Mesh2SSM also introduces a varia-
tional autoencoder [27] for learning a data-driven template
from the predicted correspondences. However, Mesh2SSM
cannot ensure predicted correspondences lie on the surface of
the mesh, does not include aleatoric uncertainty quantification
for predictions, and can have instabilities in training due to
the VAE used for analysis.

Our work builds on recent progress, particularly
Mesh2SSM’s strengths while addressing its limitations.
We propose a method that introduces a probabilistic
framework with an end-to-end training strategy, improved
sample generation, aleatoric uncertainty estimation, and
enhanced correspondence quality across variable anatomical
structures.

III. METHODS

This section provides a brief overview of Mesh2SSM and
the proposed enhancements provided for Mesh2SSM++.

A. Notation

Consider a collection of N surface meshes, denoted as X =
{X1,X2, . . . ,XN}. Each mesh Xn is defined by K vertices
Vn = {v(k)

n }Kk=1 where v
(k)
n ∈ R3, and edge connectivity

En. Mesh2SSM aims to identify M correspondence points
Cn = {c(m)

n }Mm=1 where c
(m)
n ∈ R3 that accurately represent

the anatomy of Xn while maintaining anatomical consistency
across X . The number of correspondences M is typically less
than the number of vertices K because it allows for a more
compact and efficient representation of shape variability. By



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

focusing on key anatomical landmarks or regions of interest,
fewer correspondences can effectively capture the essential
shape features while reducing computational complexity and
improving statistical robustness across different mesh resolu-
tions.

B. Mesh2SSM

1) Architecture: Mesh2SSM is an unsupervised deep learn-
ing framework for generating statistical shape models directly
from surface meshes. The method comprises two primary
components: a correspondence generation module and an
analysis module, working in tandem to create accurate and
consistent shape representations.

• Correspondence generation module is designed to es-
tablish anatomically consistent correspondences across a
set of surface meshes X . This module comprises two
primary networks: a Mesh Autoencoder (M-AE) and an
Implicit Field Decoder (IM-NET). The M-AE, based on
the Dynamic Graph CNN (DGCNN) architecture [37],
employs EdgeConv blocks to capture local, permutation-
invariant geometric features of the input mesh. The first
EdgeConv block utilizes geodesic distance on the mesh
surface for feature calculation, enhancing its ability to
capture intrinsic surface properties. The M-AE learns a
low-dimensional representation zn ∈ RL for each mesh
Xn, effectively encoding the geometric characteristics
of the mesh. The learned representation zn is input
to the IM-NET [46], a neural network designed for
shape deformation. IM-NET employs a global shape
descriptor zn to learn how to deform a template point
cloud, adjusting each point’s location individually to
match the shape of each input sample. This process is
applied consistently across all samples using the same
initial point cloud, thereby implicitly establishing point-
to-point correspondences across all meshes in the dataset.
The module’s optimization is guided by a loss function
that combines point-set Chamfer distance (between pre-
dicted correspondences and ground truth vertices) and
vertex reconstruction loss (see Eq 1). This comprehensive
approach enables efficient parameterization of surface
meshes. Here, α and γ are hyperparameters and V̂n is
the reconstructed vertex locations.

LC =

N∑
n=1

[
LL2Chamfer(Vn,Cn)+

αLL1Chamfer(Vn,Cn) + γLMSE(Vn, V̂n)
]
(1)

• Analysis module incorporates a Shape Variation Autoen-
coder (SP-VAE) that operates directly on predicted cor-
respondences to capture non-linear shape variations from
the learned correspondences. This VAE [27] maps the
correspondence points to a latent space and reconstructs
them, allowing for the estimation of mean shape and
shape variations. It generates multiple samples from the
latent space, which are then averaged to create a data-
informed template. This template is periodically fed back

into the correspondence generation module during train-
ing, refining the model’s understanding of the underlying
shape distribution. SP-VAE maintains the exact ordering
of correspondences at input and output, ensuring consis-
tency, and is parameterized by an encoder ϕ, decoder θ,
and the prior p(z) = N (0, I). The SP-VAE is trained
using the following loss function:

L(θ, ϕ) = −Eqϕ(zn|Cn) [log pθ(Cn|zn)] +
KL[qϕ(zn|Cn)||p(zn)]

(2)

2) Training: The training process begins with a burn-
in phase that prioritizes training the correspondence gener-
ation module (Eq. 1), followed by alternating optimization
of correspondence (Eq. 1) and analysis (Eq. 2) modules. To
create a data-informed template, 500 instances from the prior
distribution p(z) are sampled and then decoded by the SP-
VAE to reconstruct the correspondence point set. The mean
template is derived from the average of these reconstructed
samples and is subsequently used in successive epochs as the
template point cloud input to the IM-NET. For inference with
unseen meshes, they are passed through the mesh encoder and
IM-NET to predict correspondences.

C. Mesh2SSM++: Mesh to Probabilistic Shape Model

Building upon the foundation of Mesh2SSM, we propose
Mesh2SSM++, a method that introduces significant improve-
ments to address existing limitations and enhance performance
in SSM. The key advancements are as follows:

1) Normalizing Flow in Latent Space: To enhance the prob-
abilistic modeling of shape distributions, we replace the
SP-VAE in our architecture with a normalizing flow (NF)
framework [28], [29]. This approach addresses limitations
of VAEs, such as mode collapse and complex hyperpa-
rameter tuning [47], while reducing the overall network
complexity and enabling efficient end-to-end training.
As shown in Figure 2.A, in the proposed inclusion of
NF divides the latent space into two complementary
components:
1. Representation Space (z): Encodes global, semantically
meaningful features of the input surface, derived using the
DGCNN encoder.
2. Sampling Space (z0): Defines a simpler latent space
with a standard Gaussian prior, p(z0) = N (0, I), en-
abling effective probabilistic sampling.
A bijective mapping gη is introduced to transform be-
tween these spaces. Specifically,

pη(z) = p(z0)

∣∣∣∣∂z0∂z

∣∣∣∣ = p(z0)

∣∣∣∣∂gη(z)∂z

∣∣∣∣ (3)

where η represents the network parameters of NF. The
NF transforms the Gaussian prior p(z0) into a more
expressive latent distribution pη(z) via the change-of-
variable formula:

log pη(z) = log p(z0) + log

∣∣∣∣det ∂gη(z)∂z

∣∣∣∣ , (4)

where the second term, the log-determinant of the
Jacobian of gη , is computed efficiently using continuous
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normalizing flows (CNFs) [48].

a) Modified Architecture for Mesh2SSM++: As shown
in Figure 2.B, Mesh2SSM++ employs a Decoupled Prior
Variational Autoencoder (dpVAE) style architecture [49],
which combines a VAE with normalizing flows in the
latent space. The DGCNN encoder ϕ maps each input
surface Xn to its latent representation z. Specifically, the
encoder predicts the mean and standard deviation-µz, σz

of the variational posterior distribution qϕ(z|X) that
approximates the true posterior p(z|X). The latent
variable z is then sampled using the reparameterization
trick, defined as: z = µz + ϵ ⊙ σz where ϵ is a random
variable drawn from a standard normal distribution,
and ⊙ denotes element-wise multiplication. This
approach ensures differentiability, enabling efficient
backpropagation during training. The NF (gη) transforms
z into the sampling space z0, facilitating a structured
prior for probabilistic modeling. An IM-Net decoder (θ)
predicts correspondences C by using z to deform the
template to accurately represent the input shape X.

b) Training Objective of Mesh2SSM++: maximizes the
likelihood of the observed data using the dpVAE frame-
work:

L(θ, ϕ, η) = −Ez∼qϕ(z|X) [log pθ(C|z)] +
KL (qϕ(z|X)∥pη(z)) ,

(5)

where qϕ(z|X) is the approximate posterior from the
encoder, and pη(z0) is the prior distribution transformed
by the normalizing flow. The likelihood term quantifies
reconstruction accuracy using the Chamfer distance be-
tween the predicted correspondences Cn and the mesh
vertices Vn:

−Ez∼qϕ(z|X) [log pθ(C|z)] =
N∑

n=1

LChamfer(Vn,Cn)

(6)
c) Advantages of the Approach:

• Introducing a dpVAE-based framework of VAE with
NF enhances the model’s ability to capture high-
dimensional shape variations, creating a flexible yet
structured latent space.

• By replacing the SP-VAE, the framework eliminates
the need for complex hyperparameter tuning and mit-
igates issues like mode collapse, particularly in small
datasets. This refinement simplifies the training pro-
cess, enabling efficient end-to-end optimization while
ensuring robustness in capturing population-specific
shape characteristics.

• The probabilistic formulation of Mesh2SSM++ pro-
vides a low-dimensional latent space z that facilitates
efficient analysis of population statistics. Statistics can
be performed directly on z, replacing the SP-VAE
and streamlining the workflow. For generating new
samples, latent representations are drawn from the prior
p(z0), transformed via the inverse flow mapping g−1

η to
obtain z, and decoded to generate correspondences C.

This iterative sampling process ensures the generated
shapes are consistent with the learned shape distribu-
tion, and the mean of the generated samples is used as
a robust, data-informed template.

2) Surface Projection: Chamfer distance alone does not
ensure that predicted correspondences lie precisely on
the mesh surface. It only minimizes the average point-to-
point distances between predicted and ground truth point
clouds. This optimization can result in points that approx-
imate the overall shape but float off the actual surface,
especially in areas with complex geometry. Furthermore,
Chamfer distance’s focus on closest point matches may
lead to inaccurate surface representations, particularly
when dealing with unevenly distributed point clouds or
intricate surface details. Therefore, we introduce a surface
projection step to ensure the anatomical accuracy of
predicted correspondences. This step aligns the predicted
correspondences C precisely onto the surface of the input
mesh X, enabling end-to-end training. Given an input
mesh X = {V, E} with vertices V ∈ RK×3, and
predicted correspondences C ∈ RM×3, we define the
projection process as follows:
1. Compute pairwise distances: Calculate the Euclidean
distance between each correspondence point c ∈ C and
each mesh vertex v ∈ V:

Dij = ∥ci − vj∥2 (7)

where D ∈ RM×K is the resulting distance matrix.
2. Calculate softmin weights: To facilitate smooth projec-
tion, compute softmin weights for each correspondence
point with respect to the vertices:

Wij =
exp(−Dij/σ)∑K
k=1 exp(−Dik/σ)

(8)

where σ > 0 controls the softness of the projection.
3. Compute weighted displacements: Using the softmin
weights, calculate the displacement vector for each cor-
respondence point:

∆i =

K∑
j=1

Wij(vj − ci) (9)

4. Update correspondences: Compute the projected corre-
spondence locations by adding the displacement vectors
to the initial correspondences:

cproj
i = ci +∆i (10)

The updated correspondences cproj
i are then used in the

Chamfer distance calculation (Eq. 6).
3) Vertex Masking and Perturbation: Mesh2SSM++ em-

ploys vertex masking and perturbations as a self-
supervised learning approach for effective data augmenta-
tion. By randomly masking vertices and introducing small
perturbations, we challenge the model to reconstruct
complete, accurate shapes from partial or noisy inputs.
This process generates diverse training examples and
encourages the model to learn rich, meaningful shape
representations.
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4) Aleatoric Uncertainty Estimation: Mesh2SSM++ lever-
ages the probabilistic formulation of the modified M-AE
with NF to estimate aleatoric uncertainty in predicted
correspondences. Unlike epistemic uncertainty (which
stems from model limitations), aleatoric uncertainty arises
from inherent data noise or ambiguity. This estimation
is crucial for assessing the reliability of predictions in
different regions of the shape. The process quantifies
aleatoric uncertainty as the variance of the conditional
distribution p(Cn|zn). Mathematically, we:

a) For a given input mesh Xn, we sample multiple latent
encoding: z

(s)
n ∼ N (zn|µz, σz), and s = 1, . . . , S

represents the samples
b) Get the correspondences for all the samples: C

(s)
n =

fθ(z
(s)
n )

c) Fit a Gaussian distribution to the decoded predictions:
N (Cn|µ, σ)

The variance σ2 of this fitted Gaussian represents the
aleatoric uncertainty, highlighting regions of higher pre-
diction ambiguity or noise. This approach assumes that
the prediction distribution is approximately Gaussian,
which may not always hold. However, it provides a
computationally efficient way to estimate uncertainty,
enabling more informed decision-making in downstream
tasks such as shape analysis or reconstruction.

These enhancements collectively overcome the challenges
faced in Mesh2SSM, including the difficulties in training SP-
VAE and the complexities of the loss function. By integrating
a bidirectional flow, simplifying the loss calculation, and
adding a surface projection step, Mesh2SSM++ provides a
more robust, efficient, and anatomically accurate solution for
statistical shape modeling from meshes.

IV. EXPERIMENTS

This section presents a comprehensive evaluation of our
proposed Mesh2SSM++ method. We begin by detailing the
evaluation metrics used to assess the quality of the shape
models, covering surface sampling accuracy, correspondence
quality, and SSM performance. Following this, we describe
the diverse anatomical datasets employed in our experiments,
highlighting their unique characteristics and challenges. We
then introduce the comparison models, including SOTA meth-
ods in shape modeling and analysis.

A. Evaluation Metrics

This section outlines the metrics used to evaluate the quality
of the shape models.

1) Surface sampling metrics to assess accuracy of surface
representation

• Chamfer Distance (CD) measures the average distance
between two point sets, calculated bidirectionally: from
each point in set Cj to its nearest neighbor in set Vj ,
and vice versa. This provides a comprehensive measure
of dissimilarity between the two point sets.

• Point-to-Mesh Distance (P2M) is determined by sum-
ming two components: the point-to-mesh face distance

and the face-to-point distance. This distance is calculated
between the predicted correspondences Cj and the mesh
defined by vertices Vj and edges Ej .

2) Correspondence metrics to assess ability to capture
population-level statistics:

• Surface-to-Surface Distance (S2S) is computed between
the original surface mesh and a generated mesh derived
from predicted correspondences. To obtain the recon-
structed mesh, correspondences are matched to the mean
shape, and the warp between the predicted correspon-
dences and the mean particles is applied to the mean mesh
to get the reconstructed surface. Smooth reconstruction
and low surface-to-surface distance indicate good quality
of correspondences.

3) SSM Metrics: evaluate the quality and performance of
the shape models, ensuring they accurately represent
the shape variations in a population while maintaining
the ability to describe new instances and generate valid
shapes.

• Compactness measures how efficiently a shape model
represents the variability in a population using as few
parameters as possible. It is quantified by the number
of principal components (PC) or shape modes needed to
explain a certain percentage of the total shape variance.
A more compact model requires fewer PCs to capture
the same variation. Mathematically, compactness can be
defined as the cumulative explained variance of the Mth
eigenmode obtained by the model’s covariance matrix
decomposition.

• Generalization assesses how well the shape model can
describe shapes that were not part of the training set.
It evaluates the model’s ability to represent new, unseen
instances of the shape class. This is typically measured
by the reconstruction error when the model attempts to
match new data. A lower reconstruction error indicates
better generalization.

• Specificity measures the model’s ability to generate valid
instances of the trained shape class. It quantifies how well
the shapes generated by the model resemble those in the
training set. This is often calculated as the average dis-
tance between randomly sampled model-generated shapes
and the nearest shapes in the training set. A lower average
distance indicates better specificity.

B. Dataset

We employ segmentation datasets (three public and two in-
house) comprising five distinct anatomies with varying cohort
sizes. All datasets undergo random partitioning into training,
validation, and testing sets using an 80%/10%/10% split.
Each dataset is described as follows:

• Femur (56 shapes): The femur dataset contains proximal
femur bones clipped under the lesser trochanter to focus
on the femoral head. Nine of the femurs have the cam-
FAI pathology characterized by an abnormal bone growth
lesion that causes hip osteoarthritis.
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• Spleen (40 shapes) [50]: The spleen organ dataset pro-
vides a limited data scenario with challenging shapes that
vary significantly in size and curvature.

• Pancreas (272 shapes) [50]: The pancreas dataset com-
prises of pancreas organs with tumors of varying sizes
from cancer patients, providing complex patient-specific
shape variability.

• Liver (834 shapes) [51]: The liver dataset provides an
organ dataset with nonlinear shape variation.

• Left Atrium (923): This dataset includes 3D late gadolin-
ium enhancement (LGE) and stacked cine cardiovascular
magnetic resonance (CMR). The dataset comprises 923
anonymized obtained from distinct patients and was man-
ually segmented by cardiovascular medicine experts at the
University of Utah Division of Cardiovascular Medicine;
the endocardium wall was used to cut off pulmonary
veins.

C. Comparison Models

• ShapeWorks (SW) [33] is a SOTA PSM tool that
establishes dense correspondences on complete surface
representations using a particle-based approach. It is
computationally efficient and widely adopted for shape
variability analysis. We use its open-source implemen-
tation to benchmark our method against standard SSM
metrics.

• Deformetrica [13], a large deformation diffeomor-
phic metric mapping (LDDMM) framework, is a well-
established method in the medical imaging domain and
serves as a baseline for state-of-the-art techniques. Unlike
data-driven approaches, LDDMM formulates shape align-
ment as a pairwise optimization problem. Its objective
is to minimize the varifold distance between the target
shape surface mesh and the template surface mesh. We
use the open-source implementation of Deformetrica, and
only the kernel width parameter was altered to gain better
results on each dataset; otherwise, we use the default
parameters.

• FlowSSM [22] operates directly on surface meshes and
uses neural networks to parameterize the deformations
field between two shapes in a low dimensional latent
space and rely on an encoder-free setup. The encoder-
free step randomly initializes the latent representations for
each sample, and the latent representations are optimized
to produce the optimal deformations.

• Mesh2SSM [20] model described in section III-B
• Mesh2SSM++ * autoencoder version without normal-

izing flows and simple template update as the average
of training correspondences. Abbreviated as M++AE for
readability.

• Mesh2SSM++ is the proposed model described in sec-
tion III-C and abbreviated as M++Flow for readability.

All models use the same median-shape template mesh to
avoid bias. Mesh2SSM++-based approaches periodically up-
date the template based on learned statistics. In the case
of the M++Flow model, the template is updated using the
sampling procedure described in section III-C. In contrast, for

Fig. 3. Distance Metrics: Boxplots show the error distribution across test
sets for each model in mm.

M++AE, the template is updated as the mean correspondence
of all the predicted training samples. All SW, Mesh2SSM,
and Mesh2SSM++ based methods use 1024 correspondence
points, whereas Deformetrica and FlowSSM establish vertex-
wise correspondences. Note that we attempted to replicate the
results of the FUSS [25] using the code and hyperparameters
provided by the authors. However, we were unable to achieve
the performance reported in their paper [25]. To ensure fair-
ness, we have excluded the FUSS model from our comparative
analysis.

V. RESULTS

A. Quantitative and Qualitative Analysis

Figure 3 compares five methods—Deformetrica, SW,
FlowSSM, Mesh2SSM, and the Mesh2SSM++ based models
(M++AE and M++Flow)—across five anatomical structures
using CD, P2M, and S2S distance metrics. SSM and De-
formetrica are included as reference points for these metrics.
Lower values across all metrics indicate better performance.

a) CD:: The femur and spleen, characterized by their
simple anatomical structures, direct optimization-based meth-
ods Deformetrica and SW achieve the lowest CD values, while
the Mesh2SSM++ based models closely follow, demonstrating
high reconstruction accuracy. For more complex anatomies,
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such as the liver and left atrium, the Mesh2SSM++ based
models perform comparably to traditional optimization meth-
ods, underscoring their ability to model intricate geometries
effectively. In contrast, FlowSSM and Mesh2SSM display
higher CD values, particularly for the pancreas and liver
datasets.

b) P2M: Consistent with the CD metric, Deformetrica,
SW, and the Mesh2SSM++ based models consistently achieve
accuracies close to 1 mm, outperforming Mesh2SSM and
FlowSSM. These results highlight the adaptability of the
Mesh2SSM++ based models in faithfully representing com-
plex shape surfaces.

c) S2S: M++Flow and M++AE exhibit lower S2S values
than other deep learning-based methods for all datasets and
achieve great performance with <= 1mm error, showcasing
their robustness in handling intricate surface details.

These findings underscore the importance of selecting ap-
propriate shape modeling methods based on the complexity
of the target anatomy. The proposed methods, M++Flow
and M++AE, demonstrate clear advantages, mainly as they
learn to represent shapes using a minimal number of cor-
respondences—often fewer than the number of vertices. In
contrast, Deformetrica and FlowSSM require vertex-wise cor-
respondences, complicating the training and inference process.
Additionally, the ability of the Mesh2SSM++ based models to
update the template, perform surface projections, and incor-
porate data augmentation steps during training helps mitigate
overfitting, a common issue observed in other deep learning
approaches.

d) SSM Metrics: Figure 4 illustrates the SSM metrics
(described in section IV-A) plotted as a function of PCA mode
count. Deformetrica was excluded from the SSM metrics plots
due to its high computational demands, particularly for large
datasets like the left atrium and liver. Its reliance on LDDMM
[16] ensures high-quality shape representations, but this comes
at the cost of significant computational resources [52], making
it less practical for large-scale comparisons. Deformetrica was
not included in these plots to maintain uniformity and focus
on scalable methods. The figure demonstrates that the perfor-
mance of the Mesh2SSM++ based models matches or exceeds
that of the traditional PSM optimization method ShapeWorks
on SSM metrics. In most cases, the Mesh2SSM++ based
models achieve similar or better compactness and better gen-
eralization and specificity. While Mesh2SSM and FlowSSM
may exhibit lower generalization and specificity and higher
compactness in some instances, SSM metrics alone do not
provide a complete assessment of model quality. It is essential
to consider the distance metrics from Figure 3 alongside the
SSM metrics in Figure 4.

This observation is further supported by the qualitative
results in Figure 5, which display the predicted correspon-
dences for test samples across all methods and datasets.
Models prone to overfitting often yield good reconstruction
for training samples, resulting in favorable SSM metrics, but
their distance-based metrics on test samples reveal poorer
performance. Specifically, overfitting in the case of FlowSSM
may be influenced by the complexity and sensitivity of its
hyperparameters and the encoder-free setup, which requires

Fig. 4. SSM Metrics: A compactness plot displays the cumulative variance
ratio as a function of PCA mode count. Generalization and specificity
reconstruction error plotted as a function of PCA mode count. For all datasets,
a maximum of 30 modes that account for at least 99% of the total variation
are shown.

the inference-time optimization of the latent encoding, making
them more challenging to tune for diverse datasets. SW and
Mesh2SSM++ based methods produce high-quality correspon-
dences uniformly distributed across the surface of the ground
truth meshes. Although Mesh2SSM also generates well-
distributed correspondences, these do not always align with
the surface of the mesh. This limitation has been addressed
in the proposed Mesh2SSM++ through the incorporation of
surface projection, as detailed in Section III-C.

B. Aleatoric Uncertainty and Error Correlations

Figure 6.B presents the correlation between aleatoric uncer-
tainty and CD and P2M distance errors across five datasets.
The spatial correlation between uncertainty and error heatmaps
underscores the utility of probabilistic frameworks in assessing
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TABLE I
STATISTICAL CORRELATIONS: PEARSON AND SPEARMAN CORRELATION WITH P-VALUES BETWEEN ALEATORIC UNCERTAINTY AND CD/P2M FOR

ALL DATASETS. STATISTICALLY SIGNIFICANT CORRELATIONS (p < 0.05) ARE HIGHLIGHTED IN BOLD.

Quantity Metric Spleen Femur Liver Pancreas Left Atrium

CD Pearson 0.9692 (0.0064) 0.6816 (0.1359) 0.4260 (4.8e-5) 0.6379 (1.97e-4) 0.3859 (1.33e-4)
Spearman 0.9000 (0.0374) 0.7143 (0.1108) 0.2817 (0.0090) 0.7187 (1.13e-5) 0.3708 (2.53e-4)

P2M Pearson -0.8700 (0.0552) -0.4223 (0.4042) 0.3935 (1.95e-4) 0.3767 (0.0440) 0.5687 (2.73e-9)
Spearman -0.9000 (0.0374) -0.4286 (0.3965) 0.3071 (0.0043) 0.2463 (0.1977) 0.5184 (1.02e-7)

Fig. 5. Correspondence Quality: Predicted correspondence point for test
meshes are overlaid over ground truth meshes for all methods and datasets.

Fig. 6. (A) Comparison of Group Differences Identified by ShapeWorks
vs. Mesh2SSM++: The figure illustrates the mean shapes of the control group.
Color mapping indicates the distance between the control and CAM FAI mean.
Both ShapeWorks and Mesh2SSM++successfully capture the characteristic
widening of the femoral neck associated with the CAM FAI pathology. (B)
Uncertainty Calibration: Heatmaps on a representative mesh display average
P2M error and aleatoric uncertainty, highlighting spatial correlation.

prediction reliability. Regions with higher uncertainty values
correspond to areas where predicted points exhibit greater
deviation from the true surface. Table I quantifies the sample-
wise and particle-wise correlations using Pearson and Spear-
man coefficients.

The spleen dataset demonstrates the strongest correlation,
particularly for CD (Pearson: 0.9692, p = 0.0064), high-
lighting that uncertainty effectively captures surface devia-
tions, as visualized in Figure 6.B. Although the spleen is a
relatively simple shape, the cohort exhibits high variability,
and the small dataset size further emphasizes the importance
of accurate uncertainty quantification. Conversely, the femur
dataset shows weak and statistically insignificant correlations
(p > 0.05), likely due to its simpler geometry and smaller
surface deviations and uncertainty variations. The liver dataset
reveals significant correlations for CD and P2M, suggesting
that uncertainty estimation is well-calibrated. Similarly, the
pancreas and left atrium datasets exhibit significant positive
correlations, with higher uncertainty corresponding to larger
errors, particularly for P2M distances, as corroborated by
Figure 6.B.

These results indicate that aleatoric uncertainty is well-
calibrated in most datasets, particularly regions with more
significant surface deviations. The spatial correlation between
uncertainty and error maps underscores the critical role of
probabilistic frameworks in evaluating model reliability. This
is especially valuable for complex or irregular shapes, high-
lighting the potential of such frameworks to enhance ro-
bustness in clinical applications where reliable uncertainty
estimation supports informed decision-making.

C. Outlier Detection

Figure 7.C presents scatter plots of aleatoric uncertainty
against CD, illustrating the utility of uncertainty quantification
in identifying out-of-distribution (OOD) samples. For instance,
the scatter plot highlights two outliers from each dataset with
a high CD and aleatoric uncertainty, marked in red and visual-
ized in Figure 7.C. These outliers exhibit irregular shapes and
significant variability compared to inliers, with lower uncer-
tainties and errors. In the pancreas dataset, the original shapes
are derived from manually segmented CT scans, as described
in [50]. The ambiguity in labeling this small organ often
results in poor-quality surface meshes. Aleatoric uncertainty
calibration effectively identifies such outliers, characterized
by unusually thin structures and high variability. Similarly, in
the left atrium dataset, aleatoric uncertainty highlights shapes
with thin, less ellipsoid-like structures compared to the more
uniform morphology of inliers. These variations may indicate
structural remodeling or atrophy associated with different
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Fig. 7. A. Group Difference Statistical Significance: The p-values of
the group differences overlayed over the mean mesh. The color showcases
statistical significance. (B). LDA Map Shape mapping to linear discrimination
of variation between population means for the groups of patients and controls.
(C) Aleatoric Uncertainty for Outlier Detection: Calibrated aleatoric
uncertainty scatter plots against sample-wise CD. Detected outliers with the
highest aleatoric uncertainties and CD are indicated in red. The two inlier
samples with the lowest aleatoric uncertainties and the identified outliers are
compared.

diseases [53]. In the liver dataset, the identified outliers display
an elongated, thinning left lobe, which could suggest chronic
liver damage, such as cirrhosis or fibrosis [54]. The ability
of aleatoric uncertainty to flag such morphologically distinct
outliers demonstrates its value in detecting anomalies that may
have clinical significance.

D. Modes of Variations

Figure 8 depicts the top two PCA modes of variation for all
datasets identified by the Mesh2SSM++ based models. Both
models identify similar modes of variation, suggesting that
the addition of normalizing flows does not compromise the
quality of the correspondences. By incorporating a normalizing
flow in the latent space of the M++Flow model, we can
generate new samples and utilize an additional representation
space—beyond the correspondences—for statistical analysis.
To explore this further, we performed PCA on the learned
latent representations of the pancreas, liver, and left atrium
datasets. The top two modes of variation in the latent space
are shown in Figure 9.

For the pancreas dataset, the first mode represents the
curvature of the anatomy, while the second mode reflects the
overall size of the pancreas and the roundness of its head.
The pancreas dataset contains samples from pancreatic cancer
patients, typically present in the head of the pancreas. The
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Fig. 8. Modes of Variation: The first two modes were identified by
performing PCA on the predicted correspondences.

Fig. 9. Modes of Variation in Latent Space: The first two modes were
identified by performing PCA in the latent space of the M++Flow model for
the liver, left atrium, and pancreas datasets.

PCA modes in Figure 8 and Figure 9 effectively capture these
population-level variations. In the liver dataset, the first mode
of variation, derived from the latent space and correspondence-
based representations, highlights the thinning of the liver’s left
lobe—a well-documented population-level variation in liver
morphology. Similarly, for the left atrium dataset, the modes
of variation identify the roundness of the organ and the length
of the pulmonary veins as key contributors to anatomical
diversity.

E. Downstream Task Analysis

a) Group Differences: The femur dataset consists of
nine subjects with CAM pathology, a condition characterized
by aberrant bone development on the femoral neck that re-
stricts motion and is associated with hip osteoarthritis, and
47 healthy/control subjects. Figure 6.A presents the group
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Fig. 10. Lumbar Vertebra: The first row represents the examples of
the lumbar vertebra. The second row represents the mean predictions from
the Mesh2SSM++ model for each vertebrae. Color denotes correspondence.
The next two rows represent the PCA modes of variations identified by
Mesh2SSM++that encompasses all five categories of the lumbar vertebra.

differences analysis using the predicted correspondences. The
Mesh2SSM++ based model captures the distinction between
CAM pathology and control subjects and is comparable to
the conventional PSM technique SW. The color map rep-
resents the distance between the mean shapes of the con-
trols and the pathology group. This experiment demonstrates
how Mesh2SSM++ can be used for pathology localization.
Additionally, we evaluated the statistical significance of the
estimated group differences using the Hotelling metric with
a nonparametric permutation test and false discovery rate
(FDR) correction [17] for multiple comparisons. This approach
enables the identification and visualization of localized regions
with significant shape differences. The null hypothesis asserts
that the distributions of corresponding sample points are
identical across groups. Lower p-values (< 0.05) indicate
rejection of the null hypothesis, suggesting that the observed
group differences are significant and not derived from the
same distribution. Figure 7.A overlays p-values on the mean
shape, with blue regions at the head-neck junction of the femur
indicating statistically significant differences. These findings
align with the regional group difference analysis shown in
Figure 6.A, further validating the utility of Mesh2SSM++for
detecting and quantifying meaningful group-level morpholog-
ical variations.

b) Linear Discriminant Analysis (LDA): We employed
Linear Discriminant Analysis (LDA) to investigate shape vari-
ations between patients with and without CAM impingement
and to analyze the distribution of individual shapes within
these groups. The mean shape of the CAM impingement
group (calculated as the average particle correspondence lo-
cations) was compared to the mean shape of the non-CAM
group. The linear discriminant vector was defined as the
difference between the mean shape vectors. Each subject’s
shape was mapped onto this discriminant vector by computing
the dot product between the subject-specific shape represen-
tation (particle correspondences) and the difference vector.

This projection produced a scalar ”shape-based score” that
positioned each subject’s anatomy along the group-derived
shape difference. To improve interpretability, the mappings of
the mean shapes were normalized to -1 (for patients with CAM
impingement) and 1 (for controls without CAM impingement).
Individual subject mappings were scaled relative to these
values, providing a distribution of shape scores across the
population, with members clustering near the mean shapes of
their respective groups. A univariate Gaussian distribution was
fitted to the normalized mappings for each group to define
the probability density function of shape scores. Figure 7.B
displays the LDA mappings for controls and CAM pathology
samples, showing two distinct distributions. The overlap in
these distributions can be attributed to the limited sample size,
suggesting that this analysis could be further refined with a
larger dataset.

c) Multi-Anatomy Modeling and Downstream Classifica-
tion: A shape model was developed using publicly available,
labeled, and segmented data from the vertebral segmentation
challenge (VerSe) [55]. Specifically, lumbar vertebrae data
were used, including L1 (118 samples), L2 (60 samples), L3
(128 samples), L4 (40 samples), and L5 (119 samples). These
samples were split into training, testing, and validation subsets.
The Mesh2SSM++ was trained using all lumbar vertebrae,
with the medoid of the dataset serving as the template. The
multi-anatomy setup did not update the template to maintain
global anatomical consistency and preserve structural relation-
ships. As the most central shape, the medoid template provided
a suitable reference without further refinement. Figure 10
illustrates the mean shapes produced by Mesh2SSM++ for
each subgroup. These mean shapes correctly characterize the
anatomical distinctions among the vertebrae: L1, the smallest
lumbar vertebra, has a compact structure; L2 exhibits a slightly
larger body with stronger processes; L3, situated at the mid-
point of the lumbar region, has a broader and thicker body
for enhanced support; L4 is larger still; and L5, the largest
vertebra, features a wedge-shaped body thicker anteriorly.

To explore the utility of SSMs for shape classification, we
trained a classifier using the SSM predictions from each con-
struction technique. Correspondences for training and testing
samples were first obtained from each model. A multilayer
perceptron (MLP) with 100 neurons was trained using five-
fold cross-validation, ensuring a fair analysis by repeating the
experiment with different train/test splits. The results, summa-
rized in Table II, indicate that all SSMs correctly classified at
least 80% of cases. The low performance of FlowSSM could
also be attributed to the model’s ability to over-fit, which could
lead to sub-optimal correspondences in the test and validation
set, thereby reducing the overall classification accuracy of the
shape model. On the contrary, Mesh2SSM++ based models
and SW achieved the highest accuracy at 98%. These findings
highlight that Mesh2SSM++ provides SSMs capable of captur-
ing nuanced morphological differences indicative of subtypes,
even when shapes are highly similar.

VI. LIMITATIONS AND FUTURE WORK

The current model assumes that the cohort of shapes is
roughly aligned, which may limit its applicability to di-
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TABLE II
LUMBAR VERTEBRA CLASSIFICATION PERFORMANCE: OVERALL
ACCURACY AND F1 SCORE MEAN AND STANDARD DEVIATION ALONG

WITH THE CLASS-SPECIFIC F1 SCORES USING FIVE-FOLD
CROSS-VALIDATION.

Class F1 Score
Method Accuracy F1-Score L1 L2 L3 L4 L5
M++AE 0.98 ± 0.02 0.97 ± 0.03 1.00 0.98 0.96 0.95 0.97

M++Flow 0.98 ± 0.02 0.97 ± 0.03 1.00 0.98 0.96 0.95 0.97
Mesh2SSM 0.98 ± 0.01 0.98 ± 0.01 0.99 0.98 0.98 0.97 0.97
FlowSSM 0.81 ± 0.03 0.82 ± 0.03 0.73 0.85 0.86 0.83 0.82

ShapeWorks 0.98 ± 0.00 0.98 ± 0.00 1.00 0.98 0.98 0.95 0.93

verse datasets and clinical scenarios. Addressing this lim-
itation by developing robust alignment algorithms or ex-
ploring alignment-free approaches could significantly expand
the usability of Mesh2SSM++ across various applications.
Furthermore, improving the robustness and computational
efficiency of mesh feature extraction methods would eliminate
the reliance on geodesic distance calculations, which are
often computationally intensive. Instead, leveraging alterna-
tive representations that preserve the structural knowledge of
meshes—such as topological features, intrinsic coordinates,
or spectral embeddings—can balance efficiency and fidelity
to the mesh’s geometric properties. These approaches enable
the model to capture critical shape characteristics without the
overhead of geodesic distance computation, paving the way
for scalable and robust feature extraction in complex datasets.

While the CD effectively ensures that predicted corre-
spondences are near the ground truth surface, it does not
guarantee that they lie exactly on it. Our model addresses this
limitation by incorporating a surface projection step, which
aligns predicted correspondences directly with the input mesh
surface. However, CD may face challenges when the input
mesh contains missing regions, spurious surfaces, or signif-
icant noise, potentially leading to suboptimal or inaccurate
results [56].

Alternative approaches, such as Neural Implicit Functions
[57], that leverage self-supervised construction of Signed
Distance Fields (SDFs) for surface reconstruction accurately
define the underlying surface using the zero-level set. Initially
developed for point cloud scenarios, Neural Implicit Functions
can be adapted to address mesh irregularities effectively.
This extension could improve generalization, handle noisy
or incomplete data, and achieve superior results, thereby
enhancing the robustness and versatility of shape modeling
methodologies.

VII. CONCLUSION

This study establishes the effectiveness of Mesh2SSM++-
based approaches in shape modeling for diverse anatomical
datasets, highlighting their strengths in accuracy, adaptabil-
ity, and uncertainty quantification. The proposed methods,
M++Flow and M++AE, demonstrate superior or comparable
performance to traditional optimization-based techniques such
as ShapeWorks across key metrics, including compactness,
generalization, specificity, and distance-based evaluations. No-
tably, the proposed models achieve high fidelity in repre-
senting both simple structures, like the femur, and complex

geometries, such as the liver, pancreas, and left atrium, and
display reduced computational complexity at inference while
maintaining robust performance.

The calibration of aleatoric uncertainty proves to be a
significant advantage in evaluating model reliability and iden-
tifying outliers. The spatial correlation between uncertainty
and prediction errors is particularly evident in datasets with
complex or irregular geometries, such as the pancreas and
liver. The sample-wise uncertainties are particularly powerful
in identifying outliers with more prevalent structural anomalies
or segmentation ambiguities. Identifying outliers and quan-
tifying prediction confidence has profound implications for
clinical applications, enabling more reliable decision-making
and improved model interpretability.

The multi-anatomy modeling experiments further validate
the capability of Mesh2SSM++ in capturing subtle morpho-
logical differences across highly similar structures, as demon-
strated by the lumbar vertebrae dataset. The results emphasize
the model’s precision in distinguishing structural variations.
Moreover, the modes of variation analysis align well with
known population-level anatomical differences, underscoring
the utility of Mesh2SSM++ in statistical shape analysis and
downstream tasks such as disease localization and group
difference analysis.

Overall, integrating deep learning with probabilistic model-
ing in Mesh2SSM++ provides a comprehensive framework for
shape modeling. The methods are highly adaptable, efficient,
and reliable, making them well-suited for diverse biomedical
applications. By addressing challenges like correspondence
efficiency, uncertainty quantification, and multi-anatomy mod-
eling, Mesh2SSM++ sets a new benchmark for shape analysis
tools in clinical and research settings.
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APPENDIX A
MODES OF VARIATION

Fig. 11. Modes of Variation: The first two modes were identified by
performing PCA on the predicted correspondences.
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