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Current late gadolinium enhancement (LGE) imaging of left atrial (LA) scar or fibrosis is relatively slow and
requires 5–15 min to acquire an undersampled (R = 1.7) 3D navigated dataset. The GeneRalized
Autocalibrating Partially Parallel Acquisitions (GRAPPA) based parallel imaging method is the current
clinical standard for accelerating 3D LGE imaging of the LA and permits an acceleration factor ~R = 1.7.
Two compressed sensing (CS) methods have been developed to achieve higher acceleration factors: a
patch based collaborative filtering technique tested with acceleration factor R ~ 3, and a technique that
uses a 3D radial stack-of-stars acquisition pattern (R ~ 1.8) with a 3D total variation constraint. The long
reconstruction time of these CS methods makes them unwieldy to use, especially the patch based
collaborative filtering technique. In addition, the effect of CS techniques on the quantification of percentage
of scar/fibrosis is not known.
We sought to develop a practical compressed sensing method for imaging the LA at high
acceleration factors. In order to develop a clinically viable method with short reconstruction time, a
Split Bregman (SB) reconstruction method with 3D total variation (TV) constraints was developed
and implemented. The method was tested on 8 atrial fibrillation patients (4 pre-ablation and 4
post-ablation datasets). Blur metric, normalized mean squared error and peak signal to noise ratio were
used as metrics to analyze the quality of the reconstructed images, Quantification of the extent of LGE was
performed on the undersampled images and compared with the fully sampled images. Quantification of
scar from post-ablation datasets and quantification of fibrosis from pre-ablation datasets showed that
acceleration factors up to R ~ 3.5 gave good 3D LGE images of the LA wall, using a 3D TV constraint and
constrained SB methods. This corresponds to reducing the scan time by half, compared to currently used
GRAPPA methods. Reconstruction of 3D LGE images using the SB method was over 20 times faster than
standard gradient descent methods.
ke City, UT, USA.
ella).
© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Atrial fibrillation (AF) affects over 7 million people in Europe and
the US and is the most common cardiac arrhythmia. Acquisition of
Late Gadolinium Enhancement (LGE) images of the left atrium (LA)
is becoming a valuable tool for assessing the degree of fibrosis in the
left atrium before and after treatment. Radio frequency (RF) ablation
therapy is a promising procedure for treating AF and restoring sinus
rhythm. Pre-ablation images have been used to detect fibrosis and
are reported to be predictive of ablation outcome [1]. Post-ablation
images can be used to detect the degree of ablation-induced scar in
the LA wall [2,3]. While LGE images are very useful for non-invasive
assessment of the LA wall, the image acquisition is relatively slow.

Current LGE acquisition methods for the LA use a 3D Cartesian
inversion recovery pulse sequence with ECG gating and a respiratory
navigator. In every heartbeat, after an inversionpulsehas been applied,
segments of 3D k-space are acquired while the heart is in the diastolic
phase of the cardiac cycle and the diaphragm position is within a
window. This acquisition process is inherently slow. The high spatial
resolution required to assess the thin LA wall prolongs the acquisition
further. Currently, the relatively long acquisition time of the 3D LGE
sequence is a challenge to clinicalworkflow, particularly if an inversion
time is chosen that does not give good results or the scan has to be
repeated for other reasons such as patient motion.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mri.2016.03.002&domain=pdf
http://dx.doi.org/10.1016/j.mri.2016.03.002
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http://dx.doi.org/10.1016/j.mri.2016.03.002
http://www.sciencedirect.com/science/journal/0730725X
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Parallel imaging techniques like GRAPPA have been employed for
faster acquisition, though reported acceleration factors for imaging
the LA are less than R = 2 [2]. Advancements in compressed sensing
(CS) [4,5] have made it possible to reconstruct good quality images
from relatively few k-space samples by leveraging sparsity con-
straints. To the best of our knowledge, only two groups have looked
at faster 3D LGE imaging. A 3D radial stack of stars acquisition with
R ~ 1.8 (144 rays × 36 slab encodes) with a total variation (TV)
constraint was used in [6], and a collaborative filtering method
where the properties of similarity patches learned from the image
were used as constraints with R = 3 [7,8]. Both methods are
computationally intensive, especially the process of learning from
patches. The reconstruction time for the patch-based method was
reported as 98 min using a non-GPU based implementation [8].
These two CS reconstruction methods do not use rapid minimization
techniques and hence suffer from long reconstruction times. In
addition, the use of accelerated acquisitions could lead to loss of
information about the amount of scar or fibrosis in the LA wall. The
published CS techniques do not perform quantification of percentage
of scar/fibrosis to study the effect of CS techniques on the
quantification procedure.

The aim of this paper is to develop a rapid compressed sensing
method and evaluate the acceleration factors that can be achieved,
while maintaining good quality reconstructions and practical
reconstruction times. Recently, several optimization methods such
as the primal–dual algorithm [9], Split Bregman (SB) [10], and
Augmented Lagrangian (AL) [11] have been developed, which can
rapidly minimize compressed sensing objective functionals. Variable
splitting methods like SB involve decoupling of the L2 norm term
from the L1 norm term, which allows for rapid convergence of the
minimization problem. Variable splitting techniques have been used
to accelerate other compressed sensing methods for MRI. In [12], an
AL based approach was developed for dynamic multicoil recon-
struction with a Cartesian variable density sampling pattern. In [13],
AL was used to accelerate sparse SENSE reconstructions where
spatial TV and wavelets were used as sparsifying transform. Here we
focus on the use of the Split Bregman (SB) approach to reconstruct
LGE images of the LA with 3D TV, although the AL, dual algorithms
and Split Bregman techniques are closely related, as shown in [11].

2. Method

2.1. Data acquisition

2.1.1. Patient data
To study the reconstruction method on human data, 8 fully

sampled (4 post-ablation and 4 pre-ablation) datasets from atrial
fibrillation patients were acquired with a Siemens 3 T Verio scanner.
Acquisition parameters were TR = 3.8 ms, TE = 2.1 ms, TI = 300–
400 ms, 36–40 slice encodings, a slice thickness of 2.5 mm and flip
angle = 14° with 1.25 × 1.25 × 2.5 mm3 resolution. The TI was
chosen based on the nulling point of the myocardium. To reduce
respiratory motion ghosting, the phase encoding direction was
left–right. The size of the data matrix acquired from the scanner
was ~320 × 320 × (36–40), transaxial slices. 32 channel phased
array coils were used to acquire the data and a contrast agent dose
of 0.1 mmol/kg of Gd-BOPTA was used. The images were acquired
~20 min after injection. A respiratory navigator (trailing) was
used during the acquisition. It took ~10–15 min to acquire full
k-space data.

2.2. Undersampling pattern

To produce undersampled data from the fully sampled data, a
variable density sampling pattern was used, fully sampled along kx,
while directions ky, kz were undersampled using a bell shaped
polynomial variable density distribution given by P(y, z)=
(1−r(ky,kz))p, where r is the normalized distance from the center

of the samplingmask, given byrðky; kzÞ ¼ ð 2ffiffiffiffiffiffiffiffiffiffi
n2
1þn22

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
;−n1

2 bky ≤ n1
2

and−n2
2 bkz≤ n2

2.Heren1 andn2 are the sizes of themeasureddatamatrix
in the y and z directions, respectively. Points that are closer to the
center have a higher probability of being sampled while points further
away from the center have a lower probability of being sampled. The
polynomial order (p) controls how densely the center of k-space is
sampled. The higher the polynomial order, the smaller is the central
k-space region being sampled.

2.3. Reconstruction

The standard compressed sensing approach can be written in a
constrained form as:

arg min m ϕmk k1 s:t Em−kk k22bσ2 ð1Þ

Where k is the measured k-space data, σ is the noise or artifact
level in the measured k-space data, m is the (3D) image to be
minimized, ‖ ‖1 is the L1 norm, ‖ ‖2 is the L2 norm, and E is the
encoding matrix that includes the Fourier operator and an under-
sampling pattern. The symbolϕ is a sparsity-promoting transform. In
this paper, ϕ is the spatial gradient operator, which gives the total
variation (TV) constraint.

Using the Bregman iterations technique, Eq. (1) can be reduced to
a sequence of unconstrained optimization problems as shown in [14]

C1 ¼arg min m ϕmk k1 þ
μ
2

Em−kj
���

���2
2

ð2Þ

kjþ1 ¼ kj þ k0−Emjþ1 ð3Þ

Here μ is the weight that controls the tradeoff between sparsity of
the image (the L1 norm term) and closeness to the measured data
(the L2 norm term). Eq. (2) is a mixture of L1 and L2 norms, and using
traditional methods like gradient descent for minimizing (2) has a
slow rate of convergence. As shown in [10], (2) can be reduced to a
series of unconstrained problems by introducing an intermediary
variable d, such that ϕm = d so that Eq. (2) can be written as:

arg min m;d;b dk k1 þ
μ
2

Em−kj
���

���2
2
þ λ

2
d−ϕm−bk k22 ð4Þ

Where b comes from optimizing the Bregman distance [10]. The
Bregman distance based on a convex function E between any two
points u and v is given by, DE

p
(u,v)=E(u)−E(v)− bp ,u−vN, where

p is the subgradient of E at v.
Using the Split Bregman formulation, fast convergence for L1

regularized problems like those used in compressed sensing has
been shown [10]. The measured k-space data k0, which is updated as
kj+1=kj+k0−Emj+1 in Eq. (3), is equivalent to an “adding-
noise-back” iterative step [15]. The derivation for this “adding
noise back” step, based on Bregman distance and Bregman iterations
is shown in [14]. By minimizing (4) and updating k as in (3), the
constrained L1 problem in (1) can be minimized in fewer iterations
as compared to standard gradient descent based methods. Others
have shown for denoising and deblurring applications that this type
of “adding-noise-back” implementation produces images with less
error and with edges that are sharper as compared to TV without the
adding noise back step [15]. The SB method which includes “adding
noise back” has been called the constrained version of SB [10] and
the method that does not include “adding noise back” has been
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called the unconstrained version of SB. The “adding noise back” step
is a method to ensure that edges and fine textures that are lost due to
TV regularization are included in the reconstruction. This adding
noise back step can help improve the sharpness of edges in the
reconstructed images.

The equation used to implement 3D TV based image reconstruc-
tion using SB is given as

min
m;dx;dy;dz;bx;by;bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxð Þ2 þ dyð Þ2 þ dzð Þ2

q����
����
1
þ μ
2

Em−kj
���

���2
2

þ λ
2

dx−∇xm−bxk k22 þ
λ
2

dy−∇ym−by
���

���2
2
þ λ

2
dz−∇zm−bzk k22 ð5Þ

Here dx, dy and dz are the dummy variables introduced by the SB
technique to enforce dx=∇xm, dy=∇ym and dz=∇zm, for the three
directions x, y and z respectively. A minimum solution form is found
by alternatively minimizing m, dx, dy and dz. Algorithm 1 shows the
steps followed to minimize the different variables. When trying to
minimize m, the L1 term (first term in Eq. (5)) that does not contain
m is removed. By decoupling m from the L1 norm term, fast
convergence can be achieved. The update for m while dx, dy, and dz
are held fixed is given as:

miþ1¼min
m

μ
2

Em−kj
���

���2
2
þ λ

2
dxi−∇xm−bxi

���
���2
2

þ λ
2

dyi−∇ym−byi
���

���2
2
þ λ

2
dzi−∇zm−bzi

���
���2
2

ð6Þ

The terms dx, dy and dz can then beminimized quickly by using the
generalized shrinkageoperator [10]. Theminimizationof the surrogate
variables is performed in the inner loop of Algorithm 1 while the
“adding noise back” step is performed in the outer loop of Algorithm1.

2.4. Implementation of reconstruction

After undersampling the k-space data, coil compression with
principal component analysis [16,17] was performed on themeasured
k-space data and the data were compressed into 4 virtual coils. Each
coil was reconstructed separately and then the results combined with
the square root of sum of squares. As discussed in [16,17], coil
compression reduces the total number of coils required to reconstruct
the image and hence reduces the reconstruction time. Experiments
were performed to see how many virtual coils are necessary to
reconstruct images without any loss of image quality due to coil
compression. No loss of image quality was seen when 4 virtual coils
were used to reconstruct the images. For some datasets it was possible
to achieve good images with 3 virtual coils, but in order to maintain
uniformity, 4 virtual coils were used to reconstruct all of the datasets.

The codewas implemented inMATLAB. Parallel toolbox aswell as
Jacket 2.3.0 (AccelerEyes, Atlanta, GA) was used to run the
reconstruction on GPU's. The code was run on an Nvidia Tesla
C2070 with a total dedicated memory of 6 GB. The value of p was
chosen as 1.6 and the weights for the reconstruction were chosen as
λ = 0.9 and μ = 0.6. These weights were chosen empirically to give
the best visual image quality. Different weights were tested on the 8
datasets. Changing the weights by ±50% did not cause any major
change in the visual quality of the image, though the convergence
was slower when μ b 0.45 was used. The set of weights chosen
allowed for fast convergence of the reconstructed images.

2.5. Comparison metrics

(a) Visual inspection

The images were visually inspected for overall quality and also for
sharpness and the ability to distinguish fine structures. The inverse
Fourier transform (IFT) of the fully sampled data from each coil
followed by square-root-of-sum-of-squares coil combination was
used as “truth” to compare the reconstruction quality of images for
different undersampling factors.

(b) Line profiles and difference images

To compare the sharpness of the LA wall in the reconstructed
images with the fully sampled image, plots of intensities of a line
across the LA were used. Image differences between the recon-
structed image and fully sampled imagewere also computed to see if
the residual difference image had any structures present or had a
noise like pattern, especially in the LA.

(c) Normalized mean squared error and peak signal to noise ratio
(PSNR)

The normalized mean squared error (NMSE) and PSNR give a
sense of how different the reconstructed images are from the fully
sampled image. Here NMSE was computed as NMSE(mFull,m)=
‖mFull−m‖22/‖mfull‖22, wheremfull is the fully sampled image, m is the
reconstructed image.

PSNRwas computed asPSNR ¼ 20 logðMaxmFullffiffiffiffiffiffiffi
MSE

p Þ, whereMaxmFull
is the

maximum intensity in the fully sampled image and mean squared
error (MSE) is defined asMSEðmFull;mÞ ¼ 1

ðDimX�Dimy�DimzÞ ðkmFull−mk22Þ,
where Dim represents the dimension/size of the image in x, y and
z directions.

(d) Blur metric:

The metrics described above use the fully sampled reference
image in order to compute the metric. In contrast, the blur metric
[18] is a reference image free metric that can be used to assess the
quality of an image. The variation of an image with respect to a low
pass filtered version of the same image can be used as an estimate for
the amount of blurring in the image. After the low pass filtering
process is performed, the difference is normalized to quantify the
blur. An image with sharp edges would have a large variation with
respect to the low pass filtered version while a smoother image
would have smaller variation. The range of the blur metric is from 0
to 1, and a larger blur metric corresponds to a blurrier image.

(e) Quantification of the extent of LGE in the LA

The two CS techniques published for accelerating 3D LGE imaging
do not perform quantification of the 3D LGE images to estimate the
percentage of scar or percentage of fibrosis, which is part of the
clinical procedure here and in some other locations. In order to study
the effects of undersampling on the quantification procedure, the
fully sampled images and the undersampled images were indepen-
dently quantified and the results were compared.

The entire quantification procedure for the LGE images was
performed by the Comprehensive Arrhythmia Research and Man-
agement (CARMA) center, University of Utah. The 3D LGE post-
ablation images were used to calculate the percentage of scar
present in the LA. The LA wall was first manually segmented. Manual
segmentation was a laborious process for the ~40 slices. In order to
make the process of quantification less laborious, comparisons were
only made between the fully sampled image and images recon-
structed using R = 3.5. Contours were manually drawn on the fully
sampled image and separately on images reconstructed using R =
3.5 and then the percentage of scar quantified for the four
post-ablation datasets. In order to estimate inter-observer variabil-
ity, two of the four fully sampled post-ablation datasets were
segmented by two users independently. An automated classification
software [19] developed at the CARMA center, took the segmented
images as input and calculated the percentage of scar in the
post-ablation datasets. This automatic classification algorithm,
based on clustering of voxels in the image, has been shown to
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have good correlation with manual scar classification by expert
observers [19].

To quantify the pre-ablation datasets, a semi-automated classi-
fication software [20] was used. The images were segmented
manually as described above. After segmentation, classification of
voxels was performed by thresholding the intensities in the LA wall.
This thresholding was performed independently on each slice. A
threshold was temporarily chosen by the semi-automated software
by estimating the mean and standard deviation of non-fibrotic
tissue. A final threshold was thenmanually chosen by the user at two
to four standard deviations above themean of the non-fibrotic tissue.
Based on the extent of enhancement of the pre-ablation images, the
patient was then classified into four groups [21]: stage I, stage II,
stage III or stage IV. This type of classification can be used to help
select appropriate medical strategies. It is important that under-
sampling the images does not lead to a different classification.
3. Results

3.1. Reconstruction of human datasets

Fig. 1 shows a comparison between a fully sampled image and
undersampled versions of the data reconstructed with the uncon-
strained SB, which does not include “adding-noise-back”, for a
post-ablation dataset.When the “adding noise back” step is not used,
blurring is visible in the reconstructed images. This is especially
visible for higher acceleration factors of R = 3.5 and 4. In the
difference image shown in Fig. 1 (e)–(g), fine texture is visible. This
shows that sharp transitions in the reconstructed image have been
smoothed. The blur metric and NMSE further show that the
reconstructed images do not match the fully sampled image well.
In addition, when the unconstrained SB method is used on the
pre-ablation dataset, the loss of fine texture and smoothing of sharp
transitions is even more evident (not shown). This is because in
pre-ablation data, the relative enhancement in the LA wall is
typically less than in post-ablation datasets.
Fig. 1. (a) Cropped LA region in one slice from a fully sampled image. (b), (c) and (d) Recons
3, R=3.5, and R=4 respectively (only using Eq. (6)). The blur metric for the truth and the
image between the truth and the images reconstructed in (b), (c) and (d) respectively. The
wall was visible in these reconstructions that use the unconstrained SB method.
Reconstruction of the post-ablation dataset shown in Fig. 1 using
the constrained version of SB that uses “adding noise back” is shown
in Fig. 2. The LA wall is better visualized and fine textures are better
preserved in Fig. 2 than the images in Fig. 1. The lower NMSE and
lower blur metric show that images in Fig. 2 match the truth better.
For the post ablation datasets reconstructed using R = 3.5, the MSE
and standard deviation on average were (8.9 ± 4.5).

To compare the unconstrained SB and constrained SB reconstruc-
tions further, intensities of a vertical line across the LAwall are plotted in
Fig. 3 for the three reconstructions with undersampling factors R = 3,
3.5 and 4, to compare edge profiles with the truth. The location of this
vertical line is shownbya thin red line in Fig. 3 (a). In Fig. 3 (b), thepeaks
of the curves that correspond to the constrained SB formulation match
the truth well for the three acceleration factors R = 3, 3.5 and R = 4.
The curves that correspond to the unconstrained SB formulation in Fig. 3
(c) have lower peaks as compared to the truth. This shows that the
unconstrained SB formulation is not able to reconstruct the LA wall
faithfully and there is a loss of contrast. This is further confirmed by the
comparisonof thePSNR for the three acceleration factors in Fig. 3 (d). For
the unconstrained SB formulation,where the “adding noise back step” is
not used, the PSNR is lower than the constrained SB formulation for all
three acceleration factors.

The reconstructions from R = 3, 3.5 and 4 using the constrained
SB approach for a pre-ablation dataset are shown in Fig. 4. The
images show that the reconstructed images match the fully sampled
image well. At undersampling factors of R = 4 some minimal
smoothing is seen, though the enhancement in the LA wall is still
visible. For the pre-ablation datasets reconstructed using R = 3.5,
the MSE and standard deviation on average were (11.7 ± 5.5).

The difference images in Figs. 2 and 4 show few fine structures, as
the reconstructions closely matched the truth. The blur metrics
calculated on the reconstructed images for the 3 acceleration factors
are close to the blur metric calculated on fully sampled image. This
shows that the sharpness of the edges in the reconstructed images
matched the sharpness of the fully sampled image well and that
there was not much increase in smoothing beyond that present in
the fully sampled image.
tructions using the unconstrained SBmethodwith no “adding noise back” term for R=
reconstructed images are reported along with the images. (e), (f) and (g) Difference
MSD of the individual slice is shown alongwith the difference image. Blurring of the LA



Fig. 2. (a) Cropped LA region in one slice from a fully sampled image; the arrows point to the enhancement in the LA wall. (b), (c) and (d) Reconstruction using the proposed
method with “adding noise back” for R = 3, R = 3.5 and R = 4 respectively (using Eqs. (6) and (3)). The blur metric for the truth and the reconstructed images is reported along
with the images. (e), (f) and (g) Difference image between the truth and the images reconstructed in (b), (c) and (d) respectively. The MSE of the individual slice is shown along
with the difference image.

Fig. 3. A comparison of the constrained SB formulation (with “adding noise back” step) with the unconstrained SB formulation (without “adding noise back” step). (b) Plot of
a line across of the LA wall for the images in Fig. 2 that correspond to the constrained SB formulation; the location is shown by the thin red vertical line in (a). For all of the
three acceleration factors, the peaks of the curves from the reconstructed images match the truth. (c) Plot of a line across the LA wall for the images in Fig. 1 that correspond to
the unconstrained SB formulation. For all of the three acceleration factors, the peaks of the curves from the reconstructed images are lower than the truth. (d) The comparison of
PSNR for the unconstrained SB images in Fig. 1 and constrained SB images in Fig. 2. The PSNR with constrained SB formulation is higher than the unconstrained SB formulation for
all three acceleration factors. These results show that the constrained SB formulation that uses the “adding noise back” step can reconstruct images with better contrast and
sharper edges.
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g. 4. (a) A slice from a fully sampled image from a pre-ablation dataset. (b), (c) and (d) Reconstruction using the proposed constrained SBmethod for R = 3, R = 3.5 and R = 4
spectively. The blur metric for the truth and the reconstructed images is reported along with the images. (e), (f) and (g) Difference image between the truth and the images
constructed in (b), (c) and (d) respectively. (h) Bar chart comparing the PSNR of images reconstructed using R = 3, R = 3.5 and R = 4.
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3.2. Quantification of enhancement

3.2.1. Quantification of ablation on post-ablation datasets

3.2.1.1. Study of inter-user variability. The result of the two fully
sampled post-ablation images quantified by two independent users
is shown in Table 1. The difference between the two observers was
~2.5% on average. While the number of datasets used was small, the
inter-user variability seen here was similar to the inter-user and
intra-user variability of about ±3% reported in [1], where a much
larger number of datasets was used. When 3D rendering [2] of the
Table 1
Comparison of percentage fibrosis calculated from the fully sampled images for two
post-ablation datasets which were independently segmented by two users. The
percentage fibrosis calculated by the two users matched well. The small variation in
the percentage of scar calculated by the two users is mostly due to the intra-use
variability in the segmentation process.

User 1 User 2

15.9% 18.5%
9.8% 12.2%
r

segmented images was performed, it was seen that there was a small
change in shape, location and degree of scarring detected by the two
users. This gave an estimate of the inter-user variability in both
the estimation of percentage of scar and locations where scarred
tissue is detected.

3.2.1.2. Quantification of percentage of scar from R = 3.5 images. A
comparison of quantification of the fully sampled image and the
images reconstructed using R = 3.5 for the four post-ablation
datasets is shown in Fig. 5. It was found that the difference between
the values calculated was ~2% on average. When 3D rendering of the
fully sampled image and the image reconstructed using R = 3.5 was
performed after segmentation, the percentage scarring and location
of scar estimated from the fully sampled images and the R = 3.5
images were similar.

3.2.2. Quantification of pre-ablation data
The percent enhancement estimated by the quantification proce-

dure using R = 3.5 closely matched those estimated from the fully
sampled image for the four pre-ablation datasets. For all of the four
datasets, the classification of the patient based on the quantification of
enhancement was the same for the fully sampled image and for R =
3.5 images. The results for the fourdatasets are shown in Table 2.When
3D rendering of the segmented images was performed, the location of



Fig. 5. The comparison of percentage scarring calculated from the fully sampled image
and the images reconstructed from R = 3.5. The difference between the value
calculated from the fully sampled image and the images reconstructed from R = 3.5
is within the expected inter and intra-user variability.

Table 2
Comparison of percentage fibrosis calculated from the fully sampled image and the
image reconstructed from R = 3.5 for four pre-ablation datasets. The percentage
fibrosis calculated from the fully sample data matches that calculated from R = 3.5
well. The classification of patients based on the percentage fibrosis calculated from
R = 3.5 matches the classification from the fully sampled data.

Full Image Classification R = 3.5 Classification

Dataset Pre-1 14.3% Utah II 17.9% Utah II
Dataset Pre-2 7.2% Utah I 6.2% Utah I
Dataset Pre-3 8.4% Utah I 6.4% Utah I
Dataset Pre-4 15.5% Utah II 15.4% Utah II
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enhancement and the percentage fibrosis detected matched well
between the fully sampled image and R = 3.5 images.

3.3. Convergence and reconstruction time

For all of the datasets the number of iterations for the inner loop
in Algorithm 1was fixed to 10 iterations. It was necessary to perform
the outer loop for updating k only 4–8 times to reach convergence,
assuming a convergence criterion of kmiþ1−mik

kmiþ1k ≤5� 10−3 . Similar
findings were reported in [10]. To be conservative, 10 iterations
were used for both the inner and outer loops; a total of 100
iterations were performed to reconstruct each dataset. The average
reconstruction time for the SB method to reconstruct a 3D dataset
with 44 slices was 8 s on a Linux platform, 16 CPU cores (Intel Xeon
CPU E5620 @ 2.40 GHz), 2 GPU cards (NVIDIA Tesla C2070) and
96 GB RAM. This was much faster compared with the gradient
descent method, which on average took about 170 s to reconstruct
the images on the same platform. This corresponds to a speedup of
over 20 using SB.

4. Discussion

We developed a rapid SB 3D total variation reconstruction
method for fast acquisition of 3D LGE images of the LA that
outperformed gradient descent basedmethods. The gradient descent
based implementation used a smooth approximation of the L1 norm
by adding a small positive constant to avoid singularities that occur
when the magnitude of the gradient is close to zero. This smooth
approximation caused smoothing of edges in the reconstructed
image. When the SB method without the “adding noise back” step
was considered, it performed slightly better at edge locations
compared to the gradient descent based implementation of the
same minimization problem, though the overall image quality was
similar. The use of soft thresholding to minimize the L1 norm in SB
based implementations performs better than the smooth approxi-
mation used while implementing the L1 norm in gradient descent
based implementation. When compared to the unconstrained SB
method that does not use the “adding noise back” step, the
constrained SB method with “adding noise back” helped reconstruct
good quality images that matched the fully sampled image better.

The constrained SB method that uses the “adding noise back”
step has an equivalent AL version that can be shown to also have
this “adding noise back” step; the near equivalence between
SB and AL is shown in [11,14]. “Noise” which is added back also
contains information about edges and other sharp transitions
in the image. By infusion of this information back into the
reconstruction algorithm, better quality reconstructions are
achieved. Some of the published methods that utilize AL or SB
do not use this “adding noise back” step [12,13,22]. Our
experiments show that the addition of this step improved image
quality beyond that achieved by the unconstrained SB formulation.
Similar findings were reported in [15] for image denoising and
deblurring applications.

In general, acceleration factors could not be increased beyond
R = 4 for the resolution acquired here without causing loss of
contrast and sharpness of edges, especially in the LA. As good
visualization of the LA wall is essential, 3D SB TV at R = 4 is the
maximum acceleration factor that could be achieved without much
loss of structure and edge sharpness in the LA. At high acceleration
factors of R = 4.5 and above, the reconstructed images have less
edge sharpness and relatively poor quality; an example is shown in
Fig. 6.

The published CS methods do not study the effect of
regularization on quantification of percentage scar from post-
ablation and quantification of percentage of fibrosis from pre-
ablation images. We found that when the images were segmented
and the quantification procedure was performed, the percentage of
scar/fibrosis from the undersampled images matched those
estimated from the fully sampled images. The small difference
seen in the estimates were not considered significant as they were
within the reported intra-user and inter-user variability [1]. To
study the inter-user variability for our data, 2 out of the 4 fully
sampled post-ablation images were quantified by two indepen-
dent users. There was 2.5% difference on average between the
estimates of the two users. It appears as though one of the users is
consistently underestimating the percentage of scar, or this
variation could be due to the inter-user variability in the
segmentation process.

4.1. Resolution

There is a difference in resolution between the data used here and
the data used in [7]. The data acquired here had a resolution of
1.25 × 1.25 × 2.5 mm3, while the resolution in [7] was
1.4 × 1.4 × 1.4 mm3. Having high resolution in the x–y dimension
is necessary to accurately detect and analyze the thin LA wall;
especially if segmentation has to be performed to quantify the
images for the percentage of RF ablation induced scar or percentage
of fibrosis.

4.2. Limitations and future improvements

The comparisons made in this preliminary study were based on
retrospectively undersampled data. For future study it is necessary to
acquire undersampled data on the scanner directly, and to acquire a
large number of such prospectively undersampled datasets — the
number of datasets here was limited and designed to give an initial
evaluation of the approach. This work is a preliminary study to show
that is possible to achieve good quality images from data acquired
with acceleration factors greater than R = 3 and also show that a 3D



Fig. 6. An example where the acceleration factors are too high and the reconstruction algorithm fails to reconstruct images with good quality. (a) A slice from a fully sampled
post-ablation dataset. (b) and (c) Images reconstructed using R = 4.5 and R = 5 respectively. Significant blurring is seen in the LA wall and there is also an overall loss in
contrast. The MSE, blur metric and PSNR are reported on the images.
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TV constraint is useful for this type of data. This work is the first to
study the effect of CS based reconstruction techniques on the
quantification of fibrosis/scar. Adding other constraints like the
wavelet transform, low rank constraints [23] or data reordering
constraints [24] could help in increasing the acceleration factors
further. The downside of including additional constraints would be
an increase in reconstruction time. The use of multicoil TV
reconstructions, instead of the coil-by-coil reconstructions used
here, could also help improve the image quality and achieve higher
acceleration factors. If a multicoil TV formulation is used, the SB
formulation would have to be modified as the SB framework used
here cannot be directly applied to multicoil reconstructions. The
existing CS techniques developed for accelerating LGE imaging of the
LA [6,7] do not use a multicoil reconstruction formulation.
5. Conclusions

An SB total variation reconstruction method was developed
and implemented for application to 3D LGE images of the LA. This
study showed that it was possible to accelerate 3D LGE
acquisitions beyond R = 3 while achieving high quality recon-
structions within a short reconstruction time. The short recon-
struction time of the SB approach is advantageous and might
permit the method to be used in the routine clinical setting. This
study showed the effectiveness of the “adding noise back” step in
improving the reconstructed image quality beyond the uncon-
strained SB formulation.

We also analyzed the effect of accelerated acquisitions on the
quantification of percentage of scar/fibrosis. The results showed
that the percentage of scar or percentage of fibrosis estimated from
the undersampled images matched those estimated from fully
sampled data and the small variation seenwaswithin the intra-user
and inter-user variability. This implies that compared to the current
3D LGE method with GRAPPA and R = 1.7 [2,21], the data can be
acquired in half of the time, which could significantly increase the
usage of such LA imaging. Alternatively, higher resolution could be
obtained with the current acquisition time. While further testing is
needed, 3D TV with SB is a promising approach to rapidly
reconstruct good quality images from undersampled (R ~ 3.5) 3D
LGE LA scans.
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Appendix

Algorithm 1. The algorithm above shows the steps to reconstruct
the 3D LGE images using a 3D TV constraint with Split Bregman.
Derivation of these steps and implementation details are given in [10].

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.mri.2016.03.002.
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