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(a) 16 Distributed Domains (15.3s/frame) (b) All 72 Distrib. Domains (15.6s/frame) (c) Segment Density Heatmap (max=28)

Fig. 1: Large-scale moment-based order-independent (MBOIT) distributed transparency rendering with the FUN3D Mars Lander
A/143M dataset, consisting of 72 subdomains and 798M elements. Figures (a) and (b) are rendered at 2560×2560 using TACC
Frontera Intel Xeon Platinum 8280 ("Cascade Lake") nodes with 192GB memory. (c) A heatmap of the per-pixel segment counts with a
range of [0, 28]. The segment lists must be individually sorted and blended in sort-last compositing due to the overlapping boundaries
of data on the ranks, resulting in large data transfers and bottlenecks. Our approach ensures a constant, fixed, and small amount of
communication for compositing arbitrary data distributions.

Abstract—The increasing demand for larger and higher fidelity simulations has made Adaptive Mesh Refinement (AMR) and
unstructured mesh techniques essential to focus compute effort and memory cost on just the areas of interest in the simulation domain.
The distribution of these meshes over the compute nodes is often determined by balancing compute, memory, and network costs,
leading to distributions with jagged nonconvex boundaries that fit together much like puzzle pieces. It is expensive, and sometimes
impossible, to re-partition the data posing a challenge for in situ and post hoc visualization as the data cannot be rendered using
standard sort-last compositing techniques that require a convex and disjoint data partitioning. We present a new distributed volume
rendering and compositing algorithm, Approximate Puzzlepiece Compositing, that enables fast and high-accuracy in-place rendering of
AMR and unstructured meshes. Our approach builds on Moment-Based Ordered-Independent Transparency to achieve a scalable,
order-independent compositing algorithm that requires little communication and does not impose requirements on the data partitioning.
We evaluate the image quality and scalability of our approach on synthetic data and two large-scale unstructured meshes on HPC
systems by comparing to state-of-the-art sort-last compositing techniques, highlighting our approach’s minimal overhead at higher
core counts. We demonstrate that Approximate Puzzlepiece Compositing provides a scalable, high-performance, and high-quality
distributed rendering approach applicable to the complex data distributions encountered in large-scale CFD simulations.

Index Terms—Volume Rendering, Distributed Rendering, Compositing, Order-Independent Transparency

1 INTRODUCTION

Volume visualization is a crucial part of the analysis pipeline, and
is used by domain scientists to analyze their data in fields ranging
from biology and medicine to engineering and geoscience. Although
continuing advances in data acquisition, simulation, and computation
power provide ever more accurate data this comes at the cost of single-
node computation and storage space. As scientists solve ever larger
and more complex problems, it becomes necessary to render the data
in situ because it can no longer be saved out frequently enough. High
performance computing systems offer massive amounts of computing
power for simulation and visualization; however, scalable distributed
volume rendering is non-trivial for simulations with non-convex data
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distributions. Such distributions are common in unstructured or octree
AMR mesh simulations, e.g., using fill-reducing partitioners such as
ParMETIS [13] or p4est’s [5] Morton index partitioning.

Although sort-last data-parallel rendering is a standard approach
for distributed volume rendering, it requires that the data partition on
each node be convex and disjoint to ensure each node can produce
a single depth-sortable partial image for compositing. This restric-
tion is typically not satisfied in distributed simulations on unstruc-
tured [1, 1, 8, 25, 26] or octree AMR [2, 5] grids. Elements in such
simulations are distributed to optimize compute and networking costs,
e.g., through fill reducting orderings [13], resulting in data partitions
with jagged boundaries where the bounding box of each rank’s partition
overlaps somewhat those of its neighbors (Figure 2b). The partial im-
ages from each rank can no longer be sorted since the jagged boundaries
cause them to overlap in depth along the view axis. Although sort-last
compositing could be extended to produce and blend individual frag-
ments for each nonoverlapping segment of the volume on each rank,
such an approach would be prohibitively expensive in both bandwidth
and computation costs.

We propose a novel, scalable compositing approach that works on
arbitrary data distributions, does not require sorting, and minimizes
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network communication to two parallel reductions. We achieve this by
adapting an order-independent transparency technique, Moment-Based
Order-Independent Transparency [23], to data-parallel compositing.
Our final compositing pipeline consists of two stages, a moments gen-
eration phase, where communication consists of a single all-reduce add,
and a final gather stage where the final image is produced through a
reduce add to the display rank. We describe our proposed Approximate
Puzzlepiece Compositing (APC) pipeline and evaluate its performance
on the NASA FUN3D Mars Lander datasets [1], the NASA Exajet
dataset [21], and a worst-case synthetic scaling test case on the TACC
Frontera HPC system. We compare our proposed method to sort-last
compositing on segments as the state of the art and demonstrate that
APC is fast, applicable to any large-scale volumetric data, and produces
accurate images. Our contributions are:

• A highly scalable two-stage distributed volume rendering method
that imposes no restrictions on the data distribution;

• Evaluation of the image quality of Moment-Based Order-
Independent Transparency for compositing distributed volumetric
data; and

• A thorough performance study on a worst-case synthetic test
volume and two real-world large-scale datasets, the FUN3D and
the Exajet, demonstrating our method’s minimal communication
costs and high scalability.

2 RELATED WORK

We review related work in distributed volume rendering and order-
independent rendering of transparent objects. Sort-last compositing is a
widely studied technique for distributed volume rendering (Section 2.1)
The problem of real-time rendering of complex transparent objects
is frequently encountered in real-time graphics and games, and has
been the subject of extensive study (Section 2.2). We further review
order-independent transparency methods and their potential application
to distributed volume rendering in Section 3.

2.1 Distributed Volume Rendering
A common way to render large volumes is to parallelize rendering over
a cluster of machines in image-, object-, or hybrid-order. Distributing
the rendering workload allows accelerating rendering or rendering data
sets that cannot fit on a single machine. Each machine now has just
a subpiece of the data, and independently produces a partial image
of whole dataset. The fundamental scaling challenge in distributed
rendering is combining these partial images into a final single image of
the entire dataset [4, 11, 12, 14, 19, 20, 27, 33, 35–37].

Based on the Porter and Duff over operation [31], Molnar et al.
[20] summarized a theoretical model of distributed rendering based
on where the sorting happens: sort-first, sort-middle, and sort-last.
Sort-last is a practical and scalable object-order approach used for
large volumes where the data is distributed and rendered fragments are
exchanged between each node [4, 11, 12, 14, 27, 33, 35, 36]. Hsu [12]
proposed segmented raycasting, where data is distributed and fragments
are sent to the node that owns a given pixel. Tree-based methods,
such as binary swap [14] and Radix-k [27], introduce more structured
and scalable fragment exchange patterns to improve parallelism. The
IceT library [22] provides practical implementations of a number of
sort-last algorithms and is widely used in the scientific visualization
community. OSPRay [34] provides a distributed rendering facility that
can integrate with IceT [35] or leverage its own scalable Distributed
FrameBuffer [33] to allow for more flexible data distributions. However,
these techniques are all based on sort-last compositing and require that
the partial image produced on each node can be uniquely ordered
in depth relative to other node’s partial images so that they can be
composited to produce the final image. This requirement does not hold
for the data distributions we consider in this paper.

Layer and deeper fragment buffer approaches have been proposed
to handle some level of depth order overlap. The A-buffer algorithm
enables unordered rendering by storing and sorting fragments after-
wards [6]. Then, to avoid sorting an arbitrarily long list, the k-buffer
allows merging extra pixel segments heuristically [3]. However, even
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Fig. 2: The FUN3D data. Note the uneven and jagged data boundary
of an individual subdomain’s data in (a). An illustration of the volume
boundaries of two subdomains is shown in (b).

though these layer-based approaches accumulate only a fixed number
of layers, the compositing pipeline still needs to be executed in order.

2.2 Order-Independent Transparency for Rendering
Enabling order-independent transparency (OIT) the need to sort frag-
ments to produce the final image, which is especially costly in modern
highly parallel renderers. The key is to find a reasonable heuristic
that balances approximation accuracy with any additional computa-
tional overhead. Developing such techniques has been the focus of a
substantial body of work in real-time rendering. Early OIT work on
depth peeling [10] utilized multiple rendering passes to render and peel
away layers of surfaces in depth order without explicitly sorting geom-
etry before rendering. Although depth peeling accurately resolves the
transparency of objects, its performance is highly dependent on scene
complexity, resulting in unpredictable compute and memory costs.

To reduce the impact of scene complexity, OIT works heuristically
merge or discard fragments [9, 15–18, 23, 32] to achieve fast, scene-
independent OIT, at the cost of image quality. However, OIT methods
are primarily targeted at real-time applications such as games, incor-
porating assumptions about limited depth-complexity and smoothness
that do not hold for visualization applications. Scenes with high depth
or color complexity, as can be common in visualization, break these
assumptions and are especially challenging for such methods. Sub-
sampling based approaches such as hybrid transparency [15], which
tries to pick the k most important colors, and stochastic transparency [9],
which stochastically discards fragments, can encounter missing sur-
faces. Single-layer heuristic techniques, such as phenomenological
transparency [17], sort-independent alpha blending [18], and weighted-
blended OIT [16] operate in a fixed memory budget can produce in-
correct occlusion and other visual artifacts. Although these methods
achieve fast and scene-independent OIT, the artifacts introduced can
make them less suited to visualization applications, where accuracy is
more important compared to real-time applications such as games.

In this work, we leverage Moment-Based Order-Independent-
Transparency (MBOIT) [23] as an off-the-shelf and efficient solution
for OIT that is well suited to use in a distributed visualization environ-
ment due to its low data requirements and high image quality. MBOIT
is based on moment-based shadow map approximation [28, 29], which
offers compact, filterable, closed-form representation that is able to cap-
ture sparse signals accurately. Similar to OIT through Fourier opacity
mapping, which views transmittance as a function of depth in loga-
rithmic space to enable an additive accumulation, this approximation
provides a more continuous and faithful representation of complex
transparent scenes [23]. MBOIT requires little data to be transferred,
does not require sorting or redistributing the mesh data, and provides
high image quality, making it well suited to scalable rendering of
unstructured and AMR datasets. Figure 3 compares rendering a syn-
thetic volume using MBOIT with Hybrid Transparency and Weighted
Blended OIT to illustrate MBOIT’s improved image quality.



(a) Synthetic
sphere

(b) Different
moments

(c) Moments
with bias

(d) MBOIT (e) APC (f) APC Rank 0 (g) APC Rank 1

(h) Sort-last (i) APC w/ Bias (j) HT (k) WBOIT
Fig. 3: A comparison of approximate OIT techniques on a synthetic
red and blue concentric circles example. This configuration produces
sharp changes in color, challenging approximate OIT methods. (b,c)
compare different MBOIT configurations with sort-last (green line): 4
power moments (red), 6 power moments (blue) and trigonometric mo-
ments (purple). We observe that APC achieves the same rendering
quality as single-node MBOIT, providing a high-quality approximation.
This is in contrast to the color artifacts of Hybrid Transparency (j)
or occlusion errors from Weight-blended OIT (k). Furthermore, with
4 power moments and a bias (c), the APC image closely approxi-
mates the ground truth sort-last. The respective image similarity mea-
surements are (h) vs (i): SSIM=0.99, MSE=38.18, PSNR=32.34 (h)
vs (j) SSIM=0.87, MSE=618.76, PSNR=20.24 (h) vs (k) SSIM=0.98,
MSE=21.55, PSNR=34.82

(a) Surface-Like Volume (b) Sort-last (c) APC

Fig. 4: A synthetic case where APC exhibits noticeable image quality loss.
With thin, near-opaque red structures in the middle of a blue volume, we
can see that MBOIT does not handle abrupt transmittance changes well
such that (c) looks more blended, i.e., more purple, than (b).

3 BACKGROUND

Scalable sort-last compositing algorithms require that the data be par-
titioned among the ranks in convex, nonoverlapping pieces, but this
requirement is typically not satisfied by unstructured [1, 1, 8, 25, 26]
or octree AMR [2, 5] simulations that use nonspatial data distribution
methods to accelerate the solver, e.g. ParMETIS for fill-reduction [13],
or Morton-order [5]. Such simulations are common in computational
fluid dynamics (CFD) [1, 8, 25, 26], medicine [24], and geoscience [2]

We evaluate our approach on two motivating CFD datasets that
represent these mesh configurations. The FUN3D [1] Mars Lander
uses an unstructured mesh, whereas the Exajet [7] uses a Cartesian
AMR mesh. The FUN3D data were generated on Summit at Oak Ridge
Leadership Computing Facility (OLCF) using a CFD code developed
at the NASA Langley Research Center. The mesh consists of a mix
of tetrahedra, pyramid, and prism cells, and were written in a total of
72 subdomains, each storing part of the mesh. In our benchmarks we
use the smaller version with 798M total elements that was run at Mach
2.4. Fun3D uses ParMETIS [13] for data decomposition, resulting in
mesh cells being distributed among ranks with nonuniform, jagged
boundaries that fit together much like puzzle pieces and served as the
initial motivation for our work (Figure 2).

MBOIT is a high-accuracy two-pass OIT solution that operates on
a moment-based representation of transparency. To avoid collecting

Algorithm 1 The RenderMBOIT algorithm that returns a pixel color
rendered with Moment-Based Order-Independent Transparency
1: function RENDERMBOIT(volume v, bias β )
2: col← (0,0,0,0), b← (0,0, ...0)
3: for each sample s in v do
4: GENERATEPOWERMOMENTS(b, s.depth,s.transmittance)
5: for each sample s in v do
6: col← col + GETTRANSMITTANCE(b, s.depth, β ) · s.col

7: return col

Algorithm 2 The GeneratePowerMoments function that computes the
moments at a given sample point
1: function GENERATEPOWERMOMENTS(moments b, depth d, transmittance t)
2: d← logDepthWarp(d) ▷ rescale logged depth value to [-1, 1]
3: absorbance←−log(transmittance) ▷ get logged absorbance
4: absorbance← MIN(absorbance, ABSORBANCE_MAX_VALUE)
5: for moment bi in b do
6: bi← bi + POW(s.depth, i) · absorbance ▷ store moments by powers of depth

Algorithm 3 The getTransmittance function that reconstructs the final
transmittance at a given depth by the moments
1: function GETTRANSMITTANCE(moments b, depth d, transmittance t)
2: m← len(b) ▷ get number of moments
3: d← logDepthWarp(d) ▷ rescale logged depth value to [-1, 1]
4: btmp ← (b1, ...bm)

5: btmp← MIX(btmp, β .bias_vector) ▷ bias input data to avoid artifacts
6: q← SOLVEMAT(btmp,d) ▷ compute Cholesky factorization of the Hankel matrix
7: z← SOLVEPOWEREQUATION(q,d) ▷ get roots of the power equation
8: weights0← β .overstimation ▷ adjust weight factors by overestimation
9: for i < m do

10: weightsi← (zi < z0)? 1.0 : 0.0

11: p← SOLVEPOLYNOMIAL(weights,z) ▷ solve for final absorbance vector
12: absorbance← p · vector(1.0,btmp) ▷ compute absorbance value
13: return CLAMP(exp(−b0 ·absorbance)) ▷ return transmittance in the original

depth range

transparency by alpha blending along the depth with the Porter and
Duff compositing operator, MBOIT looks into approximating the trans-
mittance as a function of depth by two order-independent operations:
one to construct the function, the other to recover the transmittance
value through the generated function. Defined by [z,z2,z3,z4] for a
4 moments implementation where z represents the depth, the power
moments serve as a collection of measures that record transmittance
behaviors when traversing through transparent layers. Converted to
logarithmic space operations, this representation can be additively con-
structed for global transmittance information, allowing for accurate,
order-independent approximation reconstruction of the transmittance
value given any depth. Therefore, the first rendering pass accumulates
per-pixel power moments that encode powers of transparency needed
to generate the function, and the second rendering pass uses the mo-
ments to solve for transmittance value along depth to produce final
colors that can also be additively blended. Two data summation phases
are required in image space, and thus the scene complexity does not
become the bottleneck of the rendering process.

We summarize the algorithm in Algorithm 1 and the two key com-
ponents in Algorithm 2 and Algorithm 3. For additional details on the
MBOIT computation, we refer to the paper by Münstermann et al. [23]
and a more detailed description in the preceding paper [29].

Compared to prior OIT methods, MBOIT has been shown to per-
form well for different signal frequencies, in that it is both truly order-
independent throughout the computation, and well approximates recon-
struction of the object occlusions in their true depth order. The key
steps of moments construction and moments-based transmittance recon-
struction, namely the summation loops with GeneratePowerMoments
and getTransmittance, can be executed in an arbitrary order, allowing
for an order-independent rendering pipeline. This characteristic sets
the foundation of our scalable distributed compositing method.



Fig. 5: An illustration of the APC pipeline. Stage one computes a local
moments vector per pixel on each rank, adding them up in the moments
AllReduce step to form the global moments. The global moments are
used in stage two on each rank to approximate transmittance when
rendering their local volume to produce final subimages. Finally, all
subimages are added using a Reduce onto the display rank.

(a) Local Object
Rank 0

(b) Local Object
Rank 1

(c) Local object
Rank 2

(d) Segment
Density

(e) APC
Rank 0

(f) APC
Rank 1

(g) APC
Rank 2

(h) APC
by (e) - (g)

Fig. 6: An example image produced from distributed rendering of a
sandwiched volume over three ranks. Each rank has two interleaved
slices of a cube. The occluded part has its opacity corrected with
MBOIT’s approximation, i.e., each rank here has its local objects
rendered with the "correct alpha" as it would appear in the final image,
which can thus be produced by a simple image space summation.

4 METHOD

Our rendering pipeline extends the single-node MBOIT pipline to a
distributed computing environment to enable highly scalable approxi-
mate order-independent compositing. Our Approximate Puzzlepiece
Compositing pipeline consists of two main stages: stage one renders
the local moments on each rank and computes global moments through
an MPI_Allreduce add (Section 4.1); stage two uses the global mo-
ments to approximate transmittance on each rank to render local partial
images (Section 4.1). The partial images are then combined to form
the final image through an MPI_Reduce add. The advantage of our
proposed method for distributed rendering is that each rank can inde-
pendently produce its part of the moments and final image, with global
results produced through single optimized MPI operations (AllReduce
and Reduce). An illustration of our pipeline is shown in Figure 5.

4.1 Stage One: Computing Local and Global Moments

The first step is the same as the first stage in Section 3. We must produce
a local moments image on each rank that we can combine to produce a
global moments image to use for representing absorbance. Each rank
traces rays through its local data; however, instead of rendering out
final colors as in a typical rendering pass, we compute the moment for

the pixel by summing up moments along the ray. These moments are
written out to an image to produce a local moments image on each rank.
After all ranks have computed their local moments image, we compute
the global moments image by performing an MPI_Allreduce add
on the local moments images. As moments in MBOIT are computed
through addition, which is commutative, it makes no difference whether
the addition occurs locally on a node or globally over MPI. Thus, the
moments computed in our distributed pipeline match those produced
by single-node rendering.

4.2 Stage Two: Using Moments to Approximate Transmit-
tance

After the Allreduce add, each rank has the same global moments image,
and we can now approximate the global transmittance along each ray
as we traverse the volume. In stage 2, each rank produces a local partial
image of its data by tracing rays through its local data again, using the
global moments image to approximate transmittance. Our rendering
algorithm is similar to standard ray-tracing; however, instead of getting
the standard RGBA at the voxel position, we drop alpha when blending
the sample into the final color and replace the transmittance value with
what we get from the MBOIT function. By combining the sampled
color and the approximated transparency, we are able to blend the pixel
segments in any order.

When all ranks have completed rendering their data using the ap-
proximate transmittance data, we have the local images ready with
the correct global transmittance. As discussed in Section 3, each lo-
cal image is completely order-independent because the reconstruction
function calculates the transmittance with correct occlusion. Therefore,
a MPI_Reduce add in image space will produce the result with the
correct object ordering.

A three-rank distributed rendering using this pipeline is shown in
Figure 6. Figures 6a to 6c are the subvolumes each local renderer
owns, rendered in traditional alpha blending. Each rank consists of two
interleaved slices that are occluded by either other rank’s subvolume
or partially by themselves. Figures 6e to 6g show the local render-
ing of our method after stage 2, where the global transmittance has
been approximated to render each rank’s local data with the global
transmittance. At the final image reduce step in our method, all that
needs to be done is to add all the local images together, whereas alpha
blending requires sorting for each pixel to determine a correct sequence
of operations to produce the final color.

4.3 Implementation
We implement our method within OSPRay [34] by modifying its dis-
tributed rendering framework [33] to take advantage of OSPRay’s
high-fidelity ray-tracing engine for fast volume rendering on modern
CPU architectures. To boost performance, we group pixels into tiles
for locality, exchange only nonempty tiles, and utilize ISPC [30] to
leverage SIMD hardware to accelerate moment computation and trans-
mittance estimation.

MBOIT can also be customized by using different sets of moments,
which require slightly different mathematical operations for Gener-
atePowerMoments and GetTranmittance, enabling finer adjustments
of local rendering computation, memory overheads, and numeric pre-
cision. However, the pipeline we describe here remains the same
regardless of particular moments of choice. Figure 3 shows a sample
sphere volume and comparisons between different configurations. The
distributed computation with APC produces a faithful image of the
single-node computation quality due to the order-independent nature of
MBOIT. Compared to popular alternatives, the MBOIT images provide
a more faithful depth perception, presenting a smooth transition for low-
frequency volume intervals while preserving high-frequency occlusion
details, whereas the method still suffers from inaccurate blending when
facing surface-like, extremely thin structures in volume rendering as
in Figure 4. A closer look at image-quality evaluation with real-world
datasets will be presented in Section 5.2.

As shown in the transmittance curves, the MBOIT method is able
to provide an accurate and smooth approximation to the sort-last tech-
niques but tends to overestimate the current transmittance, resulting



Fig. 7: Illustration of the weak-scaling stress-test volume, which repre-
sents a worst-case “gear teeth” boundary. Each rank owns four 512×512
hexahedra layers, interleaved with n− 1 layers from other ranks in be-
tween. Traditional sort-last rendering would require producing and blend-
ing individual color fragments for each slice to produce a correct image.
Images are captured around a sphere camera orbit in our benchmarks.

Dataset Num of
Subdomains Num of Cells Cell Type(s)

Synthetic 64 8388608 hexahedra

FUN3D 72 788841511 tetrahedra,
pyramids, prisms

Exajet 128 656444884 hexahedra

Table 1: All unstructured mesh datasets used in the evaluation, with total
number of subdomains and total cell numbers and cell types. For the
performance experiments, each subdomain is assigned to one MPI rank
run by a single compute node.

in slightly brighter pixels in higher-density regions. Different from
mainstream compositing techniques, the MBOIT method is not guaran-
teed to be energy conserving, which is compensated for by additional
renormalization operations and bias vectors, as described in section 3 in
the original paper [23]. Thus, a constant bias parameter β (as shown in
Algorithm 1) is set in the implementation to offset the overestimation,
allowing more convincing rendering outcomes. Under this adjusted
configuration, the choice of moments functions does not introduce sig-
nificant image difference as seen in Figure 3c. Therefore, we adopt the
most compact representation, i.e., the 4 power moments computation,
for maximum performance.

5 EVALUATION

We evaluate our method’s image quality and rendering performance
through distributed rendering benchmarks performed on the TACC
Frontera HPC system, with 56 cores and 192 GB of memory on each
Intel Xeon Platinum 8280 compute node. We perform runs on up to
128 ranks with one rank per compute node. For the MBOIT renderer
implementation, we use 4 power moments with an overestimation bias
β = 0.3. All images are rendered at a 2560×2560 resolution.

We note that aggregating the entire dataset to a single node dur-
ing in situ rendering is sometimes not possible due to the memory
restriction on the compute nodes, or the heavy data transfer that is
order-of-magnitude slower than the rendering. To compare our work
to the state-of-the-art sort-last distributed rendering algorithm, we im-
plemented a segment layer-based distributed rendering method, which
alpha blends the fragments on every continuous sample interval into
a single segment. The local render will thus render into order-based
layers, leading to less total data transfer traffic and a reduced sort-
ing workload compared to working with all fragments as in the full
individual segment pipeline.

We present all used datasets and the corresponding settings in Sec-
tion 5.1. The image quality and performance results are shown in
Section 5.2 and Section 5.3. In addition, we perform an algorithmic
level comparison of communication scaling against standard sort-last
compositing methods adapted to support these jigsaw puzzlepiece data
boundaries in Sec. 5.4.

5.1 Evaluation Datasets
The synthetic volume dataset is created based on the worst-case sce-
nario where the camera looks through a zigzagging boundary between

(a) The FUN3D Mars Lander

(b) n=4 (c) n=16

(d) n=32 (e) n=72

Fig. 8: The FUN3D from partial domain to full domain. Resulting from
a CFD simulation, the subdomains are spatially sparse and consist of
nonuniform boundaries, as mentioned before in Figure 2. (b-e) The
dataset rendered with 4, 16, 32, and 72 (all) subdomains combined.
Even though the number of cells in each subvolume stays roughly the
same, the shapes and spatial locations can be unpredictable.

(a) The Exajet

(b) n=16 (c) n=64

(d) n=96 (e) n=128
Fig. 9: The Exajet. (a) A bottom-up view of the semi-span Exajet data
with the half-plane model on the symmetric side of the axis. (b-e) show
Exajet rendered with 16, 64, 96, and 128 (all) subdomains. The data are
distributed by splitting the simulation into equal numbers of cells on each
rank. The Exajet has a more irregular spatial distribution and complex
boundaries than the FUN3D.

different ranks’ distributions. This situation produces an extreme case
of segment overlap, where each rank generates four local volume slices
of 512×512×2, which are separated by n−1 slices from other ranks
in between. As seen in Figure 7, the result is a scene where each
rank’s local data segments overlap all other ranks in-depth, posing a
severe challenge to traditional sort-last compositors. Without an order-
independent transparency method, a traditional sort-last compositor will
need to exchange and sort 4n segments (i.e., RGBA color fragments)
per pixel to produce a correct image. Note that although the memory
requirement can be arbitrarily large for a real-world dataset to store all
rendered fragments, we deliberately construct this synthetic where the
number of per-pixel fragments grows linearly with the number of nodes
for the purpose of scaling pattern comparisons.

We then examine the efficiency of our method on the driving dataset,
the FUN3D Mars Lander. This dataset comprises spatially dispersed
subvolumes from the simulation, resulting in an uneven distribution
across nodes and unpredictable boundaries. Our performance analysis
involves loading one subvolume per node up to all 72 subdomains.
The performance evaluation is conducted by varying the number of
computational ranks. Figure 8 displays the sets of FUN3D subvolumes
loaded at different rank counts for the benchmark.

Furthermore, to demonstrate the generality of our method, we in-
clude another real-world unstructured CDF dataset, NASA’s Exajet,
which describes a half-span model of a large civilian transport aircraft
consisting of 656 million cell-centered cubic hexahedra. Different from
the FUN3D dataset distribution, the Exajet mesh is generated as a sin-
gle file outputted by the simulation solver. The original Exajet dataset
comprises two components: the geometry file detailing the positions
of all hexahedra and the value file encoding the velocity magnitude
per cell. To create the distributed version of this dataset, we segment



the global files into 128 subfiles, each containing an equal number
of elements in the original sequence. As displayed in Figure 9, the
resulting boundaries reflect a blend of the native simulation layouts,
such as the clustering of turbulence structures from airplane engines,
and artificial boundaries introduced by enforcing a consistent element
count per rank. This nonuniform distribution intensifies the imbalance
in segment overlap across compute nodes.

5.2 Image Quality
To evaluate the rendering quality of APC, we perform an image quality
comparison with the single-node MBOIT and single-node sort-last
results. As the entire dataset will not fit into a regular Frontera compute
node, for the single node rendering each dataset is aggregated to run
on one large memory Intel Xeon Platinum 8280M node with 2.1TB
of Optane memory. We compare the images with the two real-world
datasets in Figure 10.

Due to its more uniform element distribution, the FUN3D dataset
is rendered in a smoother and more transparent manner to showcase
the internal composition. In contrast, the Exajet has more significant
cell size variation, becoming extremely dense near the fuselage and
wing, but sparse further from the object. Thus, this dataset is rendered
in a more opaque setting for higher visibility of the smaller features.
Note that we are able to capture the thin structures close to the landing
gear (Figure 10a) and the air turbulence at the bottom of the wings
(Figure 10i) with correct object occlusions.

The APC rendered images showcase the capabilities of our method
in ensuring smooth volume rendering while capturing finer grain details
within AMR meshes, producing high-quality transmittance approxi-
mation similar to sort-last’s results. We further note that both APC
and single-node MBOIT produce identical images for both datasets,
demonstrating that APC does not introduce artifacts to the MBOIT
computation and that it is able to provide high-fidelity details in various
rendering settings.

The inherent image difference between the MBOIT method and sort-
last is visually more prominent at higher density, transparent regions
like the Exajet wings areas, where a slight overestimation in the trans-
mittance curve accumulates faster by including more samples before
termination. As a result, a near-opaque pixel rendered from a tight
cluster of transparent elements tends to appear brighter in the final im-
age. Nevertheless, the approximation results still resemble the sort-last
images in that the overall color difference is small, and they succeed in
preserving important occlusion clues to avoid inaccurate depth percep-
tion. Furthermore, since some accuracy loss is expected from using an
approximation method, an overall minor overestimation configuration
is preferable in practice as an underestimated transmittance curve could
lead to structural changes such as surface loss.

5.3 Compositing Performance
As we are primarily interested in supporting in situ rendering of large-
scale datasets, we focus our performance evaluation on weak-scaling
benchmarks for the synthetic sandwich stress test case (Figures 6 and 7),
and the incremental subdomain loading benchmarks for the FUN3D
dataset (Figure 8) and the Exajet dataset (Figure 9).

For the synthetic data, we record performance over a four-camera
position orbit (illustrated on the synthetic data in Figure 7); on the
FUN3D data, we measure performance over a five-camera position
orbit performed at three distances from the dataset; and we use a
three-camera position orbit on the Exajet dataset. We further note that
the performance of traditional sort-last compositors is affected by the
camera position as it dictates the projected area of each rank’s local data
and the sorting. The compositing steps in our pipeline are viewpoint
oblivious since only two reductions over the image are needed.

Figure 11 displays overall rendering performance results on the syn-
thetic dataset benchmark on up to 64 ranks. We find that APC closely
follows the ideal weak-scaling trend of a flat trend line with both the ren-
dering and the compositing, displaying a clear performance advantage
over the sort-last method. When breaking down performance to inspect
the stages of our proposed Approximate Puzzlepiece Compositing algo-
rithm (Figure 11), we notice that the data rendering stages are similar

for both methods since data-parallel rendering is trivially parallel (Fig-
ure 11c), allowing for good local scaling. With the same fixed step
size sampling, the slight variation of the performance curves is caused
by respective data structure overheads, which are more prominent on
the chart in this experiment due to a smaller local rendering load. We
also break out compositing alone in Figure 11d, which consists of data
communication and final image blending. For APC this part includes
the moments transfer and the final image reduction, and for sort-last,
it includes segment layers transfer and alpha blend with sorting. APC
shows a near-constant scaling and outperforms the sort-last algorithm,
which is quickly dominated by communication cost.

To match the in situ analysis process of the distributed dataset de-
rived from the simulation, where each rank handles its own local data,
the FUN3D experiments are conducted by loading one subvolume per
rank and run up to 72 ranks. The benchmarks on FUN3D are run at
three orbit radii, with five camera positions in each orbit. This nonuni-
form distribution with jagged boundaries results in local ranks’ data
bounds overlapping, posing a challenge to standard sort-last composit-
ing methods.

Figure 12b shows rendering performance on the five camera posi-
tions, and Figure 12a shows performance over the different camera
distances. Again, we find that our method does not introduce significant
performance overhead at higher core counts overall camera positions
and distances. In Figure 13 we break down rendering costs into the lo-
cal rendering and compositing stages. As in Figure 12, both algorithms’
compositing communication costs (Figure 13c) exhibit similar patterns
as in the synthetic case, with APC achieving relatively constant cost
and outperforming the sort-last method as the full domain is loaded.
The crossover of the two performance curves happens at around half of
the domain, as seen in Figure 13a. Thus, we find that our sorting and
redistribution-free approach is well suited to low overhead rendering
of large-scale distributed unstructured meshes. We also note jumps in
rendering times as more mesh partitions are added due to the uneven
rendering workload each partition incurs.

The Exajet experiment is run with three camera positions around
an orbit, and the results are shown in Figure 14. Again, for the real-
world data benchmark, we vary the number of loaded subdomains with
each rank handling its own data. Despite being affected by the more
unbalanced rendering loads, the rendering curves for both methods
show similar behaviors as in the FUN3D case. As shown in Figure 14’s
break down, APC suffers from a second rendering stage but has a near-
constant communication curve, whereas sort-last’s communication
costs grow rapidly with the number of ranks. Furthermore, due to the
relatively smaller rendering load and more complex boundaries on each
rank, communication dominates the overall performance starting from
very low core counts.

With three datasets of various data distribution scenarios, we have
shown that APC is resistant to communication overheads at high core
counts for unstructured meshes with unassuming boundary shapes. In
particular, when using 4 power moments, the memory requirement is
reduced to 16 bytes per pixel to store transmittance information in the
first pass and colors for additively blending to a final image. This is
in contrast to sort-last segment compositing, which would require 16
bytes×#segments per-pixel. MBOIT was originally implemented for
GPU rendering [23], and thus our method can be easily ported to a GPU
use case requiring only 4-8 single-precision values per pixel depending
on the moments variant used. By trading off a second local rendering
stage, our method provides a more scalable solution to large-scale AMR
meshes of unpredictable data distributions.

5.4 Algorithmic Analysis
Finally, we perform an algorithmic comparison against standard com-
positing algorithms to evaluate how traditional sort-last compositing
techniques may scale when adapted to support per-segment sorting and
compositing. Traditional sort-last methods, e.g., Binary Swap [14], rely
on constructing a global sort over the ranks’ individual partial images.
When ranks’ local data overlaps, it is no longer possible to construct
this order. To support such data distributions, one could consider ex-
tending sort-last compositing to support multiple color segments per



(a) 72 Nodes APC (b) Single-node MBOIT (c) Single-node sort-last (d) Diff (a) and (c), brightness ×3

(e) 72 Nodes APC (f) Single-node MBOIT (g) Single-node sort-last (h) Diff (e) and (g), brightness ×3

(i) 128 Nodes APC (j) Single-node MBOIT (k) Single-node sort-last (l) Diff (i) and (k)

(m) 128 Nodes APC (n) Single-node MBOIT (o) Single-node sort-last (p) Diff (m) and (o)

Fig. 10: Image comparison with real-world datasets. The first two rows show an overview and a closeup of the FUN3D dataset with distributed APC,
single node MBOIT rendering, single node sort-last rendering and the difference image with brightness scaled by 3 for visibility. The following two
rows show corresponding images for the Exajet. The FUN3D dataset is rendered with a cold-warm transfer function for its smooth overall structure.
The Exajet dataset is rendered with a more opaque rainbow transfer function for a distinct view of the scattered turbulence elements. The respective
image similarity measurements for the renderings (a, e, i, m) vs. ground truth images (c, g, k, o) are (a) SSIM=0.88, MSE=19.86, PSNR=35.18 (e)
SSIM=0.96, MSE=28.5, PSNR=33.6045 (i) SSIM=0.97, MSE=63.4532, PSNR=30.1402 (m) SSIM=0.82, MSE=315.405, PSNR=23.1761. We can
see that by faithfully representing the MBOIT rendering results, APC enables smooth volume rendering while preserving precise high-frequency
details, and the rendered images exhibit a close resemblance to sort-last results with the color differences more noticeable at higher-density regions.
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Fig. 11: Synthetic example. (a) APC results remain consistent over
different views. (b) The overall APC outperforms and scales better than
sort-last. (c) Both the sort-last and APC scale well in local rendering, with
APC’s second pass doubling the local rendering runtime, as expected.
(d) The compositing step (moments transfer and image sum for APC,
and segment transfer and alpha-blend for sort-last) is the dominating
cost in sort-last, whereas APC’s compositing cost remains small and
near constant.

rank instead of a single partial image per rank. Each rank would then
produce a color segment for each continuous ray-volume interval, and
pass this set of segments to the compositing pipeline. Essentially, each
rank is treated as multiple virtual ranks per pixel, with one virtual rank
per segment.

Given n ranks and m total segments, APC’s communication cost
scales with O(n); however, Direct send compositing and binary swap
would scale with O(m). A traditional sort-last rendering case would
have m = n, i.e., each rank produces a single segment per pixel for
its local brick of data. However, for large-scale unstructured datasets
there would be many segments produced on each rank due to the jagged
boundaries, and we would expect m >> n. Thus, the linear scaling
with n of APC would lead to better overall performance in practice.

To evaluate the compositing in a real-world scenario, we compute
the number of segments per pixel for the middle distance view of the
FUN3D on 64 ranks (Table 2). This configuration has a maximum of
32 segments per pixel. We find that, overall, a large number of pixels
produce a single segment for this configuration, resulting in good data
transfer costs for direct send and binary swap. APC’s communication
costs, on the other hand, are fixed, using just an all-reduce and a reduce.

Besides sorting the entire list, direct send does not consider load-
balancing in image space whereas our method ensures an even workload
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(a) Average time for each distance over all cameras.
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(b) Average time for each camera over all distances.

Fig. 12: FUN3D rendering performance on various camera settings. (a)
The results from different camera angles. (b) Results from different
camera distances. We see that our method performs consistently to
different viewing configurations.
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Fig. 13: FUN3D rendering stage performances. Again, for APC both
the overall rendering performance and the compositing scale almost
constantly. Even though the double rendering pass penalizes overall
cost at lower core counts, sort-last becomes disadvantaged with its poor
communication scalability. The crossover shown in (a) occurs at about
half of the full domain.

for all pixels with a single image-add operation, and the constant-size
reduce/all-reduce communication is well optimized by MPI libraries.
Binary swap provides better scaling than direct-send but requires a
large number of pair-wise image swaps and leads to underutilization
at the higher levels of the swap tree. Whereas sort-last methods are
unbounded in potential data transfer costs to support such overlapping
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Fig. 14: Exajet rendering stage performances up to 128 core counts.
(a) Varying cameras. (b) The overall weak-scaling of APC remains flat
compared to sort-last. (c, d) show pipeline timing breakdowns. We see
similar patterns in local rendering on both methods with divergence in
communication scaling, leading to faster end-to-end performance for
APC, especially at high core counts.

distributions, our method is bounded by a constant message size, i.e.,
the number of ranks, regardless of scene complexity. The main scaling
limitation of our approach is the performance of MPI Allreduce and
Reduce, which are highly optimized operations in MPI libraries.

6 CONCLUSION AND LIMITATIONS

We have presented a technique for compositing large-scale unstructured
mesh data for in situ rendering. By adopting an order-independent
blending technique, our APC pipeline eliminates the need for sorting
or ordering partial images across ranks. Our performance evaluations
across synthetic and real-world datasets demonstrate APC’s scalability
and effectiveness under diverse data boundary conditions.

The compositing performance is discussed in further detail with com-
parison to the traditional sort-last compositing techniques, and APC
shows superior scalability, leading to potentially better overall perfor-
mance, especially at higher core counts. Even though APC introduced
a second local rendering overhead, the message communication steps
can both be achieved in small constant sizes through single MPI calls
that are optimized by the library. We also examine the output images by
comparing to both single-node MBOIT and single-node sort-last render-
ing, validating that APC delivers high-precision results. Our technique

(a) Overview (b) Heatmap

(c) Closeup (d) Heatmap
Fig. 15: Segment heatmap with max number of segments = 28 and 32,
grayscale image scaled for visibility. Segment density, within or across
ranks, is heavy in certain regions, requiring large amounts of data to be
transferred in sort-last compositing.

Method Average Upper Bound

Ours 11.7531 128
Direct Send 6.9848 ∞

Binary Swap 18.4772 ∞

Table 2: Average number of segments transferred per nonempty pixel on
FUN3D overview with n=64, Figure 15 (a). The number of ranks (n=64)
is chosen as a power of two for fair comparison with binary swap. Our
method guarantees an upper bound of twice the number of ranks, which
is 128 in this case.

enables efficient parallel distributed visualization with a high-quality
transparency approximation for rendering complex data distributions
that are not suited to traditional sort-last compositing techniques.

The main limitations of our proposed method come from using order-
independent transparency techniques to eliminate the need for sorting,
at the cost of per-sample transmittance accuracy. As MBOIT is an
estimation in the end, APC inherently produces images that are slightly
different from those of sort-last alpha blending. We note that this would
be the case for any order-independent transparency method, as all form
an approximation of the transparency term in some form. Eventually,
the sort-last technique itself is also one way to approximate real-world
light behavior with the advantage of strict fragment ordering. Thus, we
believe that an exact color match to the traditional rendering results is
not the ultimate goal. The sort-last images are used more as a reference
to ground truth in terms of depth perception. The approximated result
effectively preserves object ordering, with the cost of being not entirely
energy-conserving and thus may need additional bias adjustments. The
reconstruction method also requires that there is no volume overlapping,
as the opacity is not well defined in this case. Although the requirement
that the data be rendered twice for MBOIT incurs an additional cost, we
note that this workload is entirely local to each rank and thus achieves
good scaling by itself.
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