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ABSTRACT

This research addresses node-level scalability, portability, and heterogeneous computing

challenges facing asynchronous many-task (AMT) runtime systems. These challenges

have arisen due to increasing socket/core/thread counts and diversity among supported

architectures on current and emerging high-performance computing (HPC) systems. This

places greater emphasis on thread scalability and simultaneous use of diverse architectures

to maximize node use and is complicated by architecture-specific programming models.

To reduce the exposure of application developers to such challenges, AMT programming

models have emerged to offer a runtime-based solution. These models overdecompose

a problem into many fine-grained tasks to be scheduled and executed by an underlying

runtime to improve node-level concurrency. However, task execution granularity challenges

remain, and it is unclear where and how shared memory programming models should be

used within an AMT model to improve node use. This research aims to ease these design

decisions with consideration for performance portability layers (PPLs), which provide a

single interface to multiple shared memory programming models.

The contribution of this research is the design of a task scheduling approach for

portably improving node use when extending AMT runtime systems to many-core and

heterogeneous HPC systems with shared memory programming models. The success of

this approach is shown through the portable adoption of a performance portability layer,

Kokkos, within Uintah, a representative AMT runtime system. The resulting task scheduler

enables the scheduling and execution of portable, fine-grained tasks across processors

and accelerators simultaneously with flexible control over task execution granularity.

A collection of experiments on current many-core and heterogeneous HPC systems are

used to validate this approach and inform design recommendations. Among resulting

recommendations are approaches for easing the adoption of a heterogeneous MPI+PPL task

scheduling approach in an asynchronous many-task runtime system and furthermore to

ease indirect adoption of a performance portability layer in large legacy codebases.
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CHAPTER 1

INTRODUCTION

The complexity of nodes anticipated in exascale systems poses new challenges for codes

emphasizing large-scale simulations. The key features contributing to these challenges are

deep memory hierarchies and increasing accelerator, core, and thread counts relative to

traditional high-performance computing (HPC) systems. Figure 1.1 shows a 2014 example

of what an exascale node may look like with anticipated nodes to be constructed similarly.

An example of such increases can be seen comparing the National Science Foundation

(NSF) Stampede systems. Stampede 1 compute nodes featured two 8-core Intel Sandy

Bridge processors with 2 threads per core and one 61-core Intel Knights Corner coprocessor

with 4 threads per core. Stampede 2 compute nodes feature either two 24-core Intel Skylake
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Memory
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Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
efficient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy efficiency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy efficiency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
efficient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Fig. 1.1: Abstract machine model of an exascale node architecture [3].
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processors with 2 threads per core or one 68-core Intel Knights Landing processor with 4

threads per core. Comparing node offerings, Intel Xeon core counts increased by 3x across

systems, with the Intel Xeon Phi offering a 2x increase in per-core thread counts and up to

3.8x increases in core counts over the respective Intel Xeon.

Another example can be seen comparing the Department of Energy (DOE) Titan and

DOE Summit systems. Titan compute nodes featured one 16-core AMD Opteron processor

with 1 thread per core and one NVIDIA Kepler GPU. Summit compute nodes feature two

22-core IBM POWER9 processors with 4 threads per core and six NVIDIA Tesla GPUs.

Comparing node offerings, core counts and per-core thread counts increased by 2.75x and

4x, respectively, across systems with a 6x increase in per-node accelerator counts.

In addition to understanding how to manage such increases, one must also understand

how to manage the increasing architectural diversity with additional consideration for novel

emerging architectures. For example, the four systems mentioned feature AMD-, IBM-,

Intel-, and NVIDIA-based architectures with exascale systems such as the DOE Aurora [5]

and DOE Frontier [84] to include novel Intel- and AMD-based GPUs, respectively. The

latter, however, complicates the preparation of codes for exascale systems as heterogeneous

systems on the Top 10 of June 2021’s Top500 list [109] are currently limited to NVIDIA-

based GPUs. Two promising solutions for addressing these challenges are asynchronous

many-task (AMT) runtime systems and performance portability layers (PPLs) [71].

1.1 Motivation
This dissertation is primarily motivated by the University of Utah’s participation in the

DOE / National Nuclear Security Administration (NNSA) Predictive Science Academic

Alliance Program (PSAAP) II initiative. For this project, the University of Utah’s Carbon

Capture Multidisciplinary Simulation Center (CCMSC) has been using large-scale simu-

lations to predict the performance of a commercial, 1200 MWe ultra-supercritical clean

coal boiler developed by Alstom (GE) Power. These predictions support the design and

evaluation of an existing boiler capable of providing power for nearly 1 million people.

Figure 1.2 shows an example of such a power plant, which is approximately 90 meters tall.

CCMSC predictive boiler simulations have been made possible through the use of the

reacting, large eddy simulation (LES)-based codes in the Uintah Computational Framework
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Fig. 1.2: GE Power’s 1200 MWe ultra-supercritical clean coal boiler.

[18] and large HPC systems such as the NSF Stampede, DOE Mira, and DOE Titan systems.

Intermediate simulations have used available HPC systems to simulate computational 

domains at lower resolutions for feasibility. Spatial and temporal requirements for target 

simulations produce problems 50 to 1,000 times larger than solved today and have been 

considered good exascale candidates. For example, approximately 9 trillion cells are needed 

to simulate such a boiler to 1-millimeter resolution.

The next phase of simulations aim to use the exascale DOE Aurora system through the 

Aurora Early Science Program. Aurora has been an early target system for the center, which 

was formed in 2014. Emphasis on performance portability is motivated by uncertainty sur-

rounding which of the already diverse petascale systems will be available for intermediate 

simulations and uncertainty surrounding Aurora itself. For example, Aurora was initially
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to feature the since discontinued Intel Xeon Phi and will now feature Intel Xe GPUs.

More broadly, this dissertation is motivated by the challenges reported [71] by the DOE’s

Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee for the Top

Ten Exascale Research Challenges:

1. Energy Efficiency: Creating more energy-efficient circuit, power, and cooling tech-

nologies.

2. Interconnect Technology: Increasing the performance and energy efficiency of data

movement.

3. Memory Technology: Integrating advanced memory technologies to improve both

capacity and bandwidth.

4. Scalable System Software: Developing scalable system software that is power- and

resilience-aware.

5. Programming Systems: Inventing new programming environments that express

massive parallelism, data locality, and resilience.

6. Data Management: Creating data management software that can handle the volume,

velocity and diversity of data that is anticipated.

7. Exascale Algorithms: Reformulating science problems and redesigning, or reinventing,

their solution algorithms for exascale systems.

8. Algorithms for Discovery, Design, and Decision: Facilitating mathematical opti-

mization and uncertainty quantification for exascale discovery, design, and decision

making.

9. Resilience and Correctness: Ensuring correct scientific computation in the face of

faults, reproducibility, and algorithm verification challenges.

10. Scientific Productivity: Increasing the productivity of computational scientists with

new software engineering tools and environments.

Specific challenges motivating the research contributing to this dissertation include: “5.

Programming Systems,” “7. Exascale Algorithms,” and “10. Scientific Productivity.”
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1.2 Target Architectures and Systems
The research contributing to this dissertation uses a variety of microarchitectures and

major HPC systems to demonstrate approaches for addressing the exascale challenges

related to increased concurrency, deep memory hierarchies, and architectural diversity. Mi-

croarchitectures examined include Intel Sandy Bridge, Intel Knights Corner, Intel Haswell,

NVIDIA Maxwell, Intel Skylake, Intel Knights Landing, IBM POWER9, NVIDIA Volta,

and Intel Cascade Lake. Systems examined include the NSF Stampede 1, NSF Stampede 2,

DOE Titan, DOE Lassen, DOE Summit, and NSF Frontera. Broadly, this research targets

microarchitectures comprising current and emerging major HPC systems with a future look

towards the proposed DOE Aurora, DOE Frontier, and DOE El Capitan exascale systems.

1.3 Target Exascale Benchmarks
The research contributing to this dissertation uses a variety of intermediate benchmarks

while working towards two exascale benchmarks that uniquely stress different portions of

three individually ported codes: (1) Uintah’s ARCHES turbulent combustion simulation

component [106], (2) Uintah’s standalone linear solver using Lawrence Livermore National

Laboratory’s hypre [34], and (3) Uintah’s standalone reverse Monte-Carlo ray tracing

(RMCRT) radiation model [54]. These codes are central to both CCMSC boiler simulations

and subsequent combustion research.

The first problem, a helium plume, demonstrates the newly portable interoperability of

(1) and (2) on a single-level structured grid. A key feature making this an essential problem

for validating Uintah’s heterogeneous MPI+Kokkos task scheduling approach is the large

number of unique portable loops and variables in flight during execution. This helps ensure

robustness due to the long and complex data dependency sequences generated by these

loops (e.g., variables computed on the host, modified on the device, and later required on

the host).

The second problem, a modified Burns and Christon benchmark [22], demonstrates

newly portable interoperability of (1), (2), and (3) on a 2-level structured adaptive mesh

refinement grid. A key feature making this an essential problem for validating Uintah’s

heterogeneous MPI+Kokkos task scheduling approach is the ability to simultaneously stress

interoperability of ARCHES, hypre, and RMCRT while also stressing Uintah’s adaptive
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mesh refinement support. This helps ensure robustness due to the complex hand-offs taking

place between these codes (e.g., shared data dependencies).

More details on both will be discussed in Section 3.5.1 and Section 3.5.4.

1.4 Thesis Statement
This research aims to demonstrate how a performance portability layer can be adopted in

a large asynchronous many-task runtime system to achieve scalable performance portability

for large-scale simulations on current and emerging HPC systems featuring diverse microar-

chitectures. This aim is achieved by indirectly adopting Kokkos, a performance portability

layer, in a representative asynchronous many-task runtime system, Uintah, and extending

Uintah’s heterogeneous MPI+X task scheduling capabilities to support heterogeneous

MPI+Kokkos task scheduling using Kokkos::OpenMP and Kokkos::CUDA on the host and

device, respectively. This dissertation shows that it is possible to combine these promising

solutions for exascale computing in a scalable manner for real-world applications with good

strong scaling achieved across a many-core Intel Knights Landing system, a multicore Intel

Cascade Lake system, and heterogeneous IBM POWER9 and NVIDIA Volta-based systems.

1.5 Dissertation Contributions
This research is believed to be helpful to others in the HPC community, for whom

portability and scalability are also challenges, given trends among current and emerging

HPC systems. In particular, this research will be of importance to those aiming to achieve

scalable performance portability and evaluating performance portability layers such as

Kokkos with lessons learned through this research helping to understand both adoption

techniques and what performance and scalability is achievable in real-world applications.

The broader impact of this research may ultimately include further adoption of Kokkos

as means of portably preparing one’s code for future architectures. Unique contributions

resulting from this dissertation’s research include:

1. Developing an MPI+PThreads task scheduling approach for many-core architectures

and identifying that such architectures require greater attention to run configuration

and domain decomposition as demonstrated by 10.1% performance differences across

run configurations on Intel Sandy Bridge compared to performance differences up to
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149.3% on Knights Corner [47].

2. Portably addressing domain decomposition challenges related to serial tasks by

implementing an intermediate performance portability layer and underlying portable

Kokkos-based data-parallel tasks. The resulting implementation achieved good strong

scaling characteristics to 65,536 threads across 256 Knights Landing processors with

node-level performance improvements up to 3.00x [48].

3. Portably addressing thread scalability challenges related to serial execution of portable

Kokkos-based data-parallel tasks within an MPI process by implementing a task

scheduler enabling parallel execution of portable tasks within an MPI process. The

resulting implementation achieved good strong scaling characteristics to 442,368

threads across 1,728 Knights Landing processors with performance improvements up

to 1.62x demonstrated at scale and little overhead added (< 0.2% per timestep) [49].

4. Detailed studies characterizing thread scalability on Intel and NVIDIA architectures

with node-level performance improvements up to 2.63x demonstrated when more

efficiently using a node with the newly implemented task scheduler [49].

5. Portably addressing heterogeneous execution challenges by implementing a task

scheduler enabling simultaneous use of Kokkos on both host and device. The resulting

implementation achieved good strong scaling characteristics to 8,192 IBM POWER9

processors and 24,576 NVIDIA V100 GPUs with performance improvements up to

4.4x when using this scheduler and the accompanying portable abstractions to port a

previously MPI-Only problem to use both host and device [51].

6. Developing an approach for indirectly adopting a performance portability in large

legacy codes [49] and a heterogeneous MPI+PPL task scheduling approach for asyn-

chronous many-task runtime systems [51].

7. Designing two representative Uintah workloads capable of stressing Uintah’s portable

infrastructure in meaningful manners and suitable for use as an exascale bench-

mark [51].
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1.6 Document Organization
The remainder of this dissertation is organized as follows: Chapter 2 provides an

overview of related solutions showing promise for addressing exascale challenges. Chapter

3 provides an overview of the Uintah Computational Framework and relevant components.

Chapter 4 describes Uintah’s MPI+PThreads task scheduling approach and presents single-

node and multi-node results. Chapter 5 describes Uintah’s MPI+Kokkos::OpenMP task

scheduling approach and presents single-node and multi-node results. Chapter 6 describes

an approach for indirectly adopting a performance portability layer in a large code and

presents single-node results. Chapter 7 describes a heterogeneous MPI+PPL task scheduling

approach for asynchronous many-task runtime systems and presents multi-node results.

Chapter 8 describes design guidelines for easing adoption of contributed approaches and

Chapter 9 concludes this dissertation.



CHAPTER 2

RELATED EXASCALE SOLUTIONS

This chapter surveys solutions related to Uintah, Kokkos, and, broadly, the approaches

discussed within this dissertation. Detailed overviews of Uintah and Kokkos can be found

in Chapter 3 and Chapter 5, respectively. Given the emphasis on exascale computing

challenges, related work is centered around software solutions from the Exascale Computing

Project (ECP). These solutions target platform portability across the DOE Summit, Aurora,

Frontier, and El Capitan systems in varying capacities. Details on software implementations

used by all ECP application codes can be found in a recent survey [33]. Additionally, this

chapter discusses related Uintah-specific efforts contributing to other dissertations.

2.1 Overview
Asynchronous many-task (AMT) runtime systems show promise for helping to manage

the increased concurrency, deep memory hierarchies, and heterogeneity anticipated with

exascale computing. This promise lies in their ability to increase node-level parallelism

by overdecomposing an application into many tasks while also easing the use of such

nodes by offloading low-level details for making use of the underlying hardware to the

runtime itself. Uintah is one of many such runtimes. Other examples include Charm++ [64],

DARMA [119], HPX [62], Legion [12], OCR [75], PaRSEC [20], STAPL [23], and StarPU [8].

Comparisons of these and other runtimes can be found in surveys [14, 68, 107] and recent

Uintah dissertations [57, 89].

Uintah is also commonly classified among block-structured adaptive mesh refinement

frameworks. Other examples include Athena++ [108], BoxLib [121] (superseded by AM-

ReX [124]), Cactus [37], Enzo [86], and FLASH [19]. Comparisons of these and other

frameworks can be found in a survey [30].

Hybrid parallelism approaches are commonly used by such codes emphasizing large-
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scale simulation and show promise for helping manage the increased concurrency and

deep memory hierarchies anticipated with exascale computing. Here, hybrid parallelism

refers to the MPI+X programming model, where MPI is used for distributed memory

parallelism and X (e.g., OpenMP) is used for shared memory parallelism. This promise lies

in their ability to ease load balancing by shifting work among cores with shared memory

rather than distributed memory and avoiding communication of data already on-node.

For many-core and multicore systems, OpenMP and PThreads are commonly used. For

GPU-based systems, CUDA and OpenCL are commonly used. Comparisons of these and

other programming models can be found in surveys [24, 31, 73].

Among newer options for the “X” in MPI+X are performance portability layers (PPLs).

Performance portability layers show promise for helping to manage the architectural

diversity anticipated with exascale computing. This promise lies in their ability to interact

with multiple underlying programming models (e.g., CUDA, HIP, OpenMP, etc.) through a

single interface while also easing the use of such nodes by offloading low-level details for

making efficient use of the underlying programming models to the layer itself. Kokkos [118]

is one of many such layers. Other examples include DPC++ [98], HEMI [44], OCCA [76],

RAJA [52], and SYCL [100]. Details on these and other layers can be found in a survey [61],

comparative studies [41, 42], and a recent Uintah dissertation [89].

Uintah is an early adopter of Kokkos with Uintah developers collaborating directly with

Kokkos developers as a part of the University of Utah’s participation in the DOE/NNSA’s

Predictive Science Academic Alliance Program (PSAAP) II initiative. This collaboration

has resulted in bi-directional development efforts with developers working in each other’s

codebases. At Sandia National Laboratories, Kokkos has been integrated in Trilinos [46]

and used in codes such as Albany [28], GenTen [95], HOMMEXX [15], LAMMPS [96], and

SPARTA [36]. Examples of other codes investigating and/or adopting Kokkos include

BabelStream [27], K-Athena [38], KARFS [97], NekMesh [32], and TeaLeaf [74]. A list of

applications using Kokkos can be found on the Kokkos GitHub [117].

The sections to follow discuss ECP-related solutions.
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2.2 AMReX
AMReX [122–124] is a C++ software framework that supports the development of

block-structured adaptive mesh refinement (AMR) algorithms for solving systems of

partial differential equations with complex boundary conditions on current and emerging

architectures. For the ECP, the framework is used for applications including accelerator

design, additive manufacturing, astrophysics, combustion, cosmology, multiphase flow,

and wind energy. The precursor to AMReX is BoxLib [121] for which more details can be

found in a block-structured AMR survey [30].

AMReX shares a similar design philosophy with Uintah in taking care to separate

the design of data structures and basic operations from the algorithms that use the data

structures. This split allows for flexibility in how application developers interact with

the various levels of abstraction that are available. A key difference from Uintah is that

abstractions are more compartmentalized and developers can choose, for example, to use

only the AMReX data containers and iterators without higher-level functionality such as

subcycling-in-time algorithms.

For performance portability, AMReX has implemented its own lightweight abstraction

layer [123] to hide architecture details much like the intermediate portability layer proposed

here. Rather than adopt Kokkos or RAJA, they’ve implemented their own ParallelFor

looping constructs that take a C++ lambda-based loop body. For GPU, their loops map

to CUDA, HIP, and DPC++ back-ends. For CPU, their loops map to C++ back-ends. A

key difference between their layer is how OpenMP is handled. OpenMP is only used for

vectorization inside of ParallelFor with parallelization over cells handled at the data iterator

level outside of ParallelFor.

2.3 HPX
HPX [26, 45, 62, 63] is a C++ standard library for concurrency and parallelism that aims

to achieve dynamic adaptive resource management and lightweight task scheduling in the

context of a global address space. HPX fully conforms to the C++ ISO standards and imple-

ments the standardized concurrency and parallelism facilities with extensions to support

distributed and data-flow programming cases. In doing so, it offers application developers

the means to naturally use key AMT features such as overlapping communication and
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computation and oversubscribing of execution resources.

The core of HPX’s runtime is the thread manager, which maps lightweight HPX threads

to kernel threads. As HPX threads don’t require kernel calls, their goal is to use millions of

threads per second on each core. This is paired with predefined scheduling policies and

work-stealing to determine optimal task scheduling. Current policies are static, thread-local,

and hierarchical. The static policy maintains one queue per core with no work-stealing.

The thread-local policy maintains one queue per core and allows work-stealing from

neighboring queues when cores run out of work. Lastly, the hierarchical policy allows for

trees of queues to be created for cooperative use of queues. This model differs from Uintah

in that Uintah targets few threads per core at most and uses per MPI process queues to

distribute work across cores with implicit work-stealing.

For performance portability, HPX has adopted Kokkos with contributions made to both

codebases. In Kokkos, an HPX back-end was created to offer Kokkos a well-established

way of synchronizing, sequencing, and overlapping tasks. In HPX, HPX-specific executors

and execution policies were created to dispatch parallel algorithms to Kokkos. The latter

incorporates what is referred to as an HPX-Kokkos interoperability layer [26] in HPX that is

similar to the intermediate portability layer proposed here. In the case of HPX, this layer is

used to extend Kokkos parallel patterns (e.g., to return futures) and provide custom HPX

parallel algorithms (e.g., hpx::for_loop) dispatched to Kokkos (Kokkos::parallel_for).

2.4 RAJA
RAJA [13,52,53] is a C++ library developed at Lawrence Livermore National Laboratory

for providing software abstractions that insulate application source code from hardware

architecture and programming model-specific implementation details. RAJA is similar to

Kokkos in that it is also loop-based and uses C++ templating to accommodate multiple,

interchangeable back-ends. Key concepts are (1) execution policies, (2) iteration spaces, and

(3) traversal templates. (1) is a C++ type that specifies how a loop kernel will execute. (2)

defines a set of loop indices for a kernel. (3) defines operations performed on a lambda loop

body based on execution policy specialization and an iteration space object.

Both Kokkos and RAJA are key performance portability layers used by ECP applica-

tions. For 2020-2023, the libraries are supported through the same ECP project, 2.3.1.18
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RAJA/Kokkos. A key goal of this project is to deliver back-end support for both the DOE

Aurora and DOE Frontier systems that can be shared between Kokkos and RAJA. As

of release 0.14.0, RAJA supports back-ends to Intel Threading Building Blocks, NVIDIA

CUDA, OpenMP, OpenMP Target, and AMD HIP. OpenMP target offloading is a key focus

for Aurora with efforts also underway to explore a SYCL back-end.

A key difference from Kokkos is that RAJA does not manage the placement of memory.

RAJA views are similar to unmanaged Kokkos views and wrap a pointer to a block of

memory. This was a key design decision to allow RAJA to focus on ease of expression

and reducing the impact on application code in an effort to be non-invasive. For users

looking to offload memory management, there are two associated libraries, Umpire [53]

and CHAI [53], which cater to memory. Umpire aims to decouple memory operations

such as copy and move from platform-specific memory spaces and offers portable memory

management functions. CHAI aims to ensure that data used in RAJA kernels are in the

proper memory space and provides a managed array abstraction to copy data as needed

between memory spaces.

2.5 SYCL/DPC++
SYCL [100] is a single-source heterogeneous programming model built on C++ whose

standard is maintained by Khronos Group. Similar to Kokkos and RAJA, SYCL offers a

parallel_for loop construct. A key difference between models is that SYCL does not offer

reduce or scan operations. Along similar lines, SYCL offers a buffer mechanism for memory

rather than views. Buffers are data containers that can be read/written by kernel code and

host code. SYCL automatically coordinates buffer data movement between host and device

using an accessor mechanism that developers use to indicate when data is read or written.

SYCL has a variety of implementations with the most relevant to this research and the

ECP being DPC++ [6, 98]. DPC++ is a SYCL implementation from Intel that uses Clang

and LLVM [70] and is a part of the oneAPI project. This implementation extends SYCL

functionality with new features such as unified shared memory, unnamed kernel lambdas,

in-order queues, and reductions. Long-term goals for DPC++ are similar to those of Kokkos

in that both aim to be a proving grounds for new functionality to be later incorporated into

standards. Whereas Kokkos developers target the C++ standards, DPC++ developers target
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the SYCL standard.

Of DPC++ extensions, unified shared memory and reductions bring DPC++ offerings

closer to those of Kokkos and RAJA. Unified shared memory offers a pointer-based

alternative to SYCL buffers that requires all devices to use a unified address space with

the host. Supported allocation types are device, host, and shared. A key advantage of

this offering over SYCL buffers is that shared allocations, which are accessible by both

host and device, are meant to migrate data where it is being used without developer

intervention. This eases the non-trivial effort of writing memory allocations to use SYCL’s

buffer mechanism.

The section to follow discusses related Uintah-specific efforts contributing to other

dissertations.

2.6 Uintah Collaborations
The highly collaborative nature of the University of Utah’s CCMSC has resulted in this

dissertation progressing alongside several other dissertations using Uintah. As a result,

this dissertation shares applications, experiments, and implementations with those of Alan

Humphrey [57], Brad Peterson [89], and Damodar Sahasrabudhe [101]. However, there are

distinctly different emphases and research directions in these theses.

Overlap with Alan Humphrey relates to the use of RMCRT to demonstrate how Uintah

can be adapted to scale well on current petascale systems and emerging exascale systems.

Humphrey’s efforts primarily relate to Uintah’s adaptive mesh refinement infrastructure

and the directed acyclic graph used to represent computation and related data dependencies

in RMCRT. This research differs in that it relates to Uintah’s task scheduling infrastructure

and extends the RMCRT implementations used to support portable execution through the

Kokkos performance portability library.

Overlap with Brad Peterson relates to GPU task portability and GPU task scheduling.

Specific overlap includes collaborative development efforts and experiments towards

Chapter 6. Peterson’s efforts primarily relate to individual task portability, Uintah’s GPU

task scheduling infrastructure, and adapting Kokkos’ execution model to Uintah’s execution

model. This research makes use of Peterson’s portable task infrastructure, Kokkos::CUDA

task scheduling capabilities, and custom Kokkos implementation. This research differs in



15

that it emphasizes portability across large numbers of unique portable tasks and extends

task scheduler capabilities to support, for example, read/write data and simultaneous use

of Kokkos::OpenMP and Kokkos::CUDA rather than PThreads and Kokkos::CUDA. Among

Chapter 6 results are select Maxwell-based results gathered by Peterson.

Overlap with Damodar Sahasrabudhe relates to heterogeneous task scheduling. Specific

overlap includes collaborative development efforts and experiments towards Chapter 7.

Sahasrabudhe’s efforts primarily relate to scheduling third-party library tasks and extending

Peterson’s GPU task scheduler to support large-scale portable ARCHES simulations. This

research makes use of the jointly developed GPU task scheduler as the foundation for

Kokkos::CUDA capabilities in the task scheduler shown here. This research differs in that

it emphasizes scheduling Uintah tasks and extends task scheduler capability to support

simultaneous use of Kokkos::OpenMP and Kokkos::CUDA rather than PThreads and

Kokkos::CUDA. Among Chapter 7 results are select Lassen, Summit, and Frontera results

gathered jointly with Sahasrabudhe.

Further distinctions between these different but complementary efforts are made as they

arise in individual chapters.



CHAPTER 3

THE UINTAH COMPUTATIONAL

FRAMEWORK

3.1 Overview
The Uintah Computational Framework is an open-source asynchronous many-task

(AMT) runtime system specializing in large-scale simulation of fluid-structure interac-

tion problems. These problems are modeled by solving partial differential equations on

structured adaptive mesh refinement grids. Uintah is based upon novel techniques for

understanding a broad set of fluid-structure interaction problems. [17]

Uintah was initially developed by the University of Utah’s Center for the Simulation

of Accidental Fires and Explosions (C-SAFE), which was started in 1997 through the

Department of Energy’s Advanced Simulation and Computing program. C-SAFE focused

on providing state-of-the-art, science-based tools for the numerical simulation of accidental

fires and explosions with emphasis on handling and storage of highly flammable materials.

The center’s goal was to provide a software system in which fundamental chemistry and

engineering physics are fully coupled with nonlinear solvers, optimization, computational

steering, visualization, and experimental data verification. The resulting system, Uintah,

was used to help evaluate the risks and safety issues associated with fires and explosions in

accidents involving both hydrocarbon and energetic materials. The target simulation for

this project was the heating of an explosive device placed in a large hydrocarbon pool fire

and the subsequent deflagration explosion and blast wave [87].

In addition to projects such as C-SAFE and PSAAP II, Uintah has also experienced

notable development as a part of student dissertations such as this one. Justin Luitjen’s

dissertation [72] research introduced adaptive mesh refinement support. Qingyu Meng’s

dissertation [82] research introduced dynamic task scheduling and several task schedulers.

Alan Humphrey’s dissertation [57] research introduced a scalable approach to radiation
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modeling. Brad Peterson’s dissertation [89] research introduced performant and portable

GPU support. Damodar Sahasrabudhe’s dissertation [101] research introduced a resiliency

component and other solutions aimed at addressing the exascale challenges motivating this

dissertation.

Uintah specializes in large-scale simulation and has been widely ported across a diverse

set of leadership-class HPC systems. For multicore systems, good scaling characteristics

have been demonstrated to 96K, 262K, 700K, and 700K cores on the NSF Stampede, DOE

Titan, DOE Mira, and NSF Blue Waters systems, respectively [17, 54, 80]. For GPU-based

systems, good strong scaling characteristics have been demonstrated to 16K GPUs [56] on

the DOE Titan system. For many-core systems, good strong scaling characteristics have been

demonstrated to 256 Knights Landing processors on the NSF Stampede system [48] using

Uintah’s preliminary MPI+Kokkos hybrid parallelism approach and 128 core groups on

the National Research Center of Parallel Computer Engineering and Technology (NRCPC)

Sunway TaihuLight system [120]. For standalone use of Kokkos::OpenMP in the task

scheduler resulting from this research, good strong scaling has been shown to 1,728 Intel

Knights Landing processors on the NSF Stampede 2 system [49]. For standalone use of

Kokkos::CUDA in the task scheduler resulting from this research, good strong scaling has

been shown to 64 NVIDIA K20X GPUs on the DOE Titan system [94] by Brad Peterson. For

heterogeneous use of Kokkos::OpenMP and Kokkos::CUDA in the task scheduler resulting

from this research, good strong scaling has been shown to 1,024 NVIDIA V100 GPUs and

512 IBM POWER9 processors on the DOE Lassen system [51].

Released in May of 2017, Uintah release 2.0.0 features four primary simulation compo-

nents:

• ARCHES: This component targets the simulation of turbulent reacting flows with

participating media radiation [106].

• ICE: This component targets the simulation of both low-speed and high-speed com-

pressible flows [65].

• MPM: This component targets the simulation of multi-material, particle-based struc-

tural mechanics [111].
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• MPM-ICE: This component corresponds to the combination of the ICE and MPM

components for the simulation of fluid-structure interactions [40, 43].

For its boiler simulations, the CCMSC used the ARCHES turbulent combustion simulation

component. ARCHES is a Large Eddy Simulation (LES) code described further in [106].

This code is second-order accurate in space and time and uses a low-Mach number, (M

<0.3), variable density formulation to model heat, mass, and momentum transport in

turbulent reacting flows. The LES algorithm used solves the filter, density-weighted,

time-dependent coupled conservation equations for mass, momentum, energy, and particle

moment equations.

A key idea maintained in Uintah is that application developers are isolated from

infrastructure code. This is accomplished using an AMT-based approach to overdecompose

application code into tasks and the computational domain into groups of individual cells,

which tasks iterate over, to increase node-level parallelism. This approach is used to simplify

development while easing the use of the underlying hardware for application developers.

For application developers, this divide allows them to focus on writing loop-based tasks

rather than building an understanding of low-level execution details (e.g., data access

patterns, load balancing, task scheduling). For infrastructure developers, this divide allows

for fine-tuning of such details to be managed in a central location, reducing the need for

far-reaching changes across application code.

The topmost layer of Uintah, application code, consists of simulation components such

as ARCHES, which has been the focus of Uintah’s exascale computing goals. Application

code is decomposed into individual tasks that correspond to, for example, physics routines

that are executed on either the host or device. The resulting collection of tasks is compiled

into a task graph and dynamically executed by the bottommost layer, infrastructure

code, in an asynchronous out-of-order manner with implicit work-stealing using the

underlying runtime system. Execution is managed by the task scheduler, which interacts

with per-MPI process task queues to select and execute ready tasks (e.g., tasks with satisfied

data dependencies). This dissertation’s research focuses on both application code and

infrastructure code.
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3.2 Task Schedulers
In Uintah, the task scheduler component is responsible for computing task dependencies,

determining the order of task execution, and ensuring that the correct inter-process com-

munication is performed. The Uintah task scheduler compiles all of the tasks and variable

dependencies into a task graph. Dependency edges are added between tasks based on the

supplied variable dependencies. The computed dependency edges can be either internal or

external. Internal dependencies are between patches on the same processor, and external

dependencies are between patches on different processors. Thus internal dependencies

imply a necessary order where external dependencies specify required communication. The

compilation process also combines external dependencies from the same source or to the

same destination, thus coalescing messages [39].

Uintah has three primary task schedulers: (1) the MPI Scheduler, (2) the Dynamic MPI

Scheduler, and (3) the Unified Scheduler. The MPI Scheduler features static task ordering

and deterministic execution of tasks using MPI-only. The Dynamic MPI Scheduler features

dynamic task scheduling with non-deterministic, out-of-order execution of tasks using

MPI-only. The Unified Scheduler features dynamic task scheduling with non-deterministic,

out-of-order execution of tasks using MPI+PThreads and MPI+PThreads+CUDA for GPU

support. More details on Uintah’s task schedulers can be found in a scheduler survey [79].

It has been shown that there is a substantial increase in MPI communication time at larger

numbers of cores due to dependencies between computing tasks distributed to different

nodes and Uintah’s memory use associated with ghost cells and global meta-data [78]. This

increase in MPI communication time becomes a barrier to scalability beyondO(100K) cores.

Beyond these core counts, one has to employ Uintah’s Unified Scheduler, which moves to a

shared memory model on-node, to drastically reduce the memory footprint seen at high

core counts with an MPI-only approach [39,77,78]. With the exception of an early prototype

in Chapter 5, this dissertation’s research focuses on extending Uintah’s Unified Scheduler.

Figure 3.1 shows the basic per-MPI process infrastructure forming the Unified Scheduler.

The core of this infrastructure are the centrally located “CPU Core” and “GPU” ovals, which

correspond conceptually to individual task executors. A task executor corresponds to the

specific compute resources (e.g., cores) used to execute task executor logic responsible for

task scheduling and execution. Task executors interact with task queues, process MPI sends
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Fig. 3.1: Uintah’s multi-threaded MPI scheduler [48].

and recvs, and share infrastructure components (e.g., regridder, load balancer, task graph, 

and data warehouse) within an MPI process and with read/write access to each using 

efficient, lock-free data structures.

Uintah adopted an MPI+X hybrid parallelism approach using the MPI+PThreads task 

scheduler [78] to overcome memory footprint limitations on the NSF Kraken and DOE 

Jaguar systems. Iterative efforts since have targeted extensions in four key areas: (1) support 

for heterogeneous systems [51, 55, 56, 79, 90–92] (2) support for many-core systems [47, 81],

(3) portability of (1) and (2) [48–50, 93, 94, 113], and (4) support for third-party libraries

using their own hybrid parallelism approaches [102, 103]. The research contributing to 

this dissertation targets (1) [51], (2) [47], and (3) [48–50, 93]. The scope and non-trivial 

nature of this collective effort has resulted in the implementation of several standalone task 

schedulers through the years.

The standalone task schedulers arrived at as a result of these extensions and available 

in Uintah today include: (1) a production-grade heterogeneous MPI+PThreads+CUDA
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task scheduler, (2) an intermediate MPI+Kokkos::OpenMP task scheduler [48–50], (3) an

intermediate heterogeneous MPI+PThreads+Kokkos::CUDA task scheduler, and (4) the

heterogeneous MPI+Kokkos::OpenMP+Kokkos::CUDA task scheduler [51] demonstrated

here. Schedulers (2) and (4) form the basis of discussion for Chapters 5 and 7, respectively,

and are the focus of several of the author’s publications [48–51]. For (2), (3), and (4),

the production-grade task executor logic in (1) has been extended to support use of

Kokkos::parallel_for, Kokkos::parallel_reduce, Kokkos::View, Kokkos::Experimental::MasterLock,

and Kokkos_Random using the respective back-ends. Note, (2) and (3) have been strategically

maintained, despite being replaceable by (4), for their invaluable ability to reduce complexity

for development and debugging effort.

3.3 Simulation Domains
Uintah’s tasks are scheduled and executed across three-dimensional structured grids of

hexahedral cells configured by the user via an input file. Grids can consist of a single level

of resolution or multiple levels of resolution when using Uintah’s support for adaptive

mesh refinement (AMR) [16]. For the latter, AMR can, for example, be used to resolve a

region of interest at a finer resolution. In this case, a given level’s cells are subdivided into

smaller cells to generate the finer grid level.

At run-time, Uintah’s grid is decomposed into a collection of patches, which consist of

individual cells. Figure 3.2 provides an example of a patch. This patch consists primarily of

coarse cells with a fine cell region of interest included in the top right corner. Local tasks,

data variables, and particles reside on patches with four local tasks shown in the example.

Also shown in this example is the layer of cells from neighboring patches, referred to as

ghost cells, which are communicated via MPI for Uintah’s stencil calculations.

Patches make possible Uintah’s many-task model and are the primary unit of work in

simulations. Tasks reside on patches and compute results for individual cells belonging

to a given patch. Given this relationship, the number of patches in a simulation provides

means of controlling the granularity of tasks in a simulation. Typical patch sizes used for

production simulations include 103, 123, 163, and 323 [82]. As will be shown later in this

dissertation, larger patches are needed for individual tasks to scale well across compute

resources.
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Fig. 3.2: Uintah patch.

3.4 Hypre
At every time sub-step, an implicit pressure projection is used as part of the low-Mach 

pressure formulation used by ARCHES [106]. This projection is formulated as a linear 

system and solved with the help of standalone linear solver packages. Currently, Uintah 

supports both hypre [34] and PETSc [11] for solving such systems.

For CCMSC predictive boiler simulations, hypre has been chosen as the target solver for 

its scalability [9, 10]. Since, good scaling characteristics when using hypre in Uintah have 

been shown up to 512K cores [69, 104]. For this reason, significant effort has also been put 

into optimizing Uintah’s use of hypre for many-core- and GPU-based architectures [102,103] 

including extensions of hypre itself [101] to support the center’s exascale goals.

Hypre offers a collection of scalable linear solvers for the large-scale solution of linear 

systems of equations on major HPC systems. The library features parallel multigrid methods 

for both structured and unstructured grids with emphasis on algebraic multigrid. In
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preparation for heterogeneous and exascale computing, hypre has been ported to OpenMP,

CUDA, Kokkos, and RAJA [35]. Note, hypre use for this dissertation uses the Conjugate

Gradient method with the PFMG preconditioner based upon a Jacobi relaxation method for

the structured multigrid approach.

3.5 Target Applications
This research uses 4 applications to demonstrate this dissertation’s contributions. These

applications are (1) a novel Reverse Monte-Carlo Ray Tracing (RMCRT)-based radiation

model, (2) a char oxidation model, (3) a radiative particle property model, and (4) a helium

plume problem. These applications have been chosen for their relevance to an important

class of fluid-structure interaction and combustion problems such as the CCMSC target

boiler problem, code complexity, and ability to stress key portions of Uintah application

code and infrastructure code, including Uintah’s task schedulers and AMR infrastructure.

Summaries of these applications are provided in Sections 3.5.1 through 3.5.4.

3.5.1 Radiation Modeling

The CCMSC uses the ARCHES turbulent combustion simulation component for its

predictive boiler simulations. In these simulations, radiation is the dominant mode of heat

transfer and consumes a majority of compute time per timestep. At large scale, additional

simulation challenges are faced due to the global, all-to-all nature of radiation [54].

ARCHES was initially developed using the parallel discrete ordinates method [67]

and P1 approximation [66] to solve the radiative transport equation. Though scalable,

this approach resulted in the solution of the associated sparse linear systems being the

main computational cost for reacting flow simulations. To reduce this cost, attention

has been given to potentially more efficient reverse Monte-Carlo ray tracing (RMCRT)

methods [58, 112]. This has led to the development of a standalone RMCRT-based radiation

model suitable for use within Uintah’s simulation components [55].

With Monte-Carlo ray-tracing methods (forward or backward), two approaches are

considered to parallelize the computation for structured grids: (1) parallelize by patch-based

domain decomposition with local information only and pass ray information at patch

boundaries via MPI, and (2) parallelize by patch-based domain decomposition with global

information and reconstruct the domain for the quantities of interest on each node by
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passing domain information via MPI [54]. For the CCMSC’s predictive boiler simulations,

the first approach becomes intractable due to the ray counts used and MPI communication

costs required to pass ray information. These ray counts are orders of magnitude larger

than the ray counts used to produce results presented within this dissertation, which were

on the orders of 10s of millions to 10s of billions. In the second approach, the primary

difficulty is efficiently constructing the global information for millions of cells in a spatially

decomposed (patch-based) domain. With this approach, an all-to-all communication phase

is incurred for the radiative properties across the computational domain.

Uintah has adopted the second RMCRT parallelization approach, providing a global

reconstruction of the radiative properties on each node to enable local ray tracing. This

model has since been (i) extended to support adaptive mesh refinement (AMR) [54],

(ii) further adapted to run on GPUs at large-scale with this novel AMR approach [56],

(iii) used to explore the performance on the Intel Knights Corner coprocessor [47], (iv)

extended to support the Kokkos::OpenMP back-end and used to explore performance of

Uintah’s initial MPI+Kokkos hybrid parallelism approach at scale on the Intel Knights

Landing processor [48], and (v) extended to support the Kokkos::Cuda back-end [94] and

used to explore the performance of Uintah’s resulting MPI+Kokkos hybrid parallelism

approach [51]. Uintah offers multiple RMCRT-based radiation modeling approaches,

ranging from a single-level approach to the AMR approach used in [54] and [56].

RMCRT uses random walks to model radiative heat transfer by tracing rays in reverse,

towards their origin [58, 112]. During traversal, the amount of incoming radiative intensity

absorbed by the emitter is computed to aid in solving the radiative transport equation.

Figure 3.3 shows how a ray is traced backwards from S to the emitter, E, for single-level

RMCRT in a structured grid. Figure 3.4 shows how ray traversal might be accomplished

using a 3-level mesh coarsening scheme. Algorithm 3.1 and Algorithm 3.2 describe this

process in pseudocode.

RMCRT lends itself to scalable parallelism by allowing multiple rays to be traced

simultaneously at any given cell and/or timestep. Additionally, RMCRT eliminates the

need to trace rays that may never reach an origin. However, RMCRT does not eliminate

the global, all-to-all nature of radiation. Within Uintah, RMCRT has been parallelized by

spatially decomposing the computational domain into patches and tracing rays within a
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Fig. 3.3: Two-dimensional outline of reverse Monte-Carlo ray tracing for the single-level
approach. [55].

Fig. 3.4: Two-dimensional outline of reverse Monte-Carlo ray tracing for a 3-level mesh
refinement approach, illustrating how rays from a fine-level patch (right) may be traced
across a coarsened domain (left) [54].

given patch to termination.

RMCRT’s communication, characterized in [54], grows quadratically as O(n2) with

respect to the problem size, where n corresponds to the number of communicating MPI

processes. This is due to the all-to-all nature of radiation and each MPI process needing

information about radiative properties across the entire domain for ray tracing. For non-

fixed size problems, weak scaling is possible through the use of aggressive mesh refinement

to reduce communication requirements as shown in past studies [57, 69, 104].
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1: for all cells in a mesh patch do
2: intensity_sum = 0;
3: for all rays in a cell do
4: find_ray_direction()
5: find_ray_location()
6: update_intensity_sum()
7: compute divergence of heat flux

Algorithm 3.1: Ray Marching Pseudocode

1: initialize all ray marching variables
2: while intensity > threshold do
3: while ray in domain do
4: obtain per-cell coefficients
5: march current ray to next cell
6: update ray marching variables
7: update ray location
8: in_domain=cellType[curr]==-1
9: compute optical thickness

10: compute contribution of current cell to sumI
11: compute wall emissivity
12: compute intensity
13: compute sumI

Algorithm 3.2: Radiation Intensity Summation Pseudocode (update_intensity_sum())

A simple analysis of the two-level scheme of [59] has been given in [80] and breaks the

method down into the following steps:

1. Replicate the geometry (once) and coarsen mesh solution of temperature and ab-

sorption coefficients (every timestep) on all the nodes using allgather; This has a

complexity of α log(p) + β
p−1

p (N/r)3 for p cores with N3 elements per mesh patch

on a core are coarsened by a factor of r, where α is the latency and β the transmission

cost per element [116].

2. Carry out the computationally very intensive ray-tracing operation locally. Suppose

that we have ra rays per cell, then each ray has to be followed through as many as λNG

coarse mesh cells, where NG ≈ Np/r, or a multiple of this if there is reflection and

where 0 ≤ λ ≤
√

3N. The total work is thus the sum of the fine mesh on each node

contribution and the contribution from all the coarse mesh cells: (λN4 + λN4
G)Wray,

where Wray is the work per ray per cell.
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3. Distribute the resulting divergences of heat fluxes back to all the other nodes, again

this cost is α log(p) + β
p−1

p (N/r)3.

The relative costs of computation vs. communication are then given: λN4(1+(p/r)4)Wrayra

vs. 2(α log(p) + β
p−1

p (N/r)3). Thus for enough rays ra with enough refinement by a factor

of r on the coarse radiation mesh, it looks likely that computation will dominate. A key

challenge is that storage of O(N3
G) will be required on a multicore node and so only coarse

and AMR mesh representations will be possible in a final production code at very large

core counts [80].

This research uses RMCRT to solve the Burns and Christon benchmark problem de-

scribed in [22]. This problem exercises the radiation physics needed for predictive boiler

simulations and the main features of Uintah’s AMR support. Specifically, this problem

calculates the radiative-flux divergence for each cell within the computational domain. An

accuracy analysis verifying Uintah’s RMCRT-based radiation model against the Burns and

Christon benchmark problem can be found in [59]. More details on Uintah’s RMCRT-based

radiation model can be found in [54].

The results presented throughout this dissertation use a variety of RMCRT implementa-

tions solving the Burns and Christon benchmark:

• Single-Level RMCRT:CPU: This is the original implementation of single-level RMCRT

written to use serial tasks.

• Single-Level RMCRT:Kokkos: This is a portable implementation of single-level RMCRT

written for this research to use Kokkos-based data-parallel tasks.

• 2-Level RMCRT:CPU: This is the original implementation of 2-level RMCRT written to

use serial tasks.

• 2-Level RMCRT:GPU: This is the original implementation of 2-level RMCRT written to

use NVIDIA CUDA-based data-parallel tasks.

• 2-Level RMCRT:Kokkos: This is a portable implementation of 2-level RMCRT written

for this research to use Kokkos-based data-parallel tasks.
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• 2-Level ARCHES:RMCRT:Kokkos: This is a portable implementation of 2-level RMCRT

written for this research to use Kokkos-based data-parallel tasks that also ties into key

components of the ARCHES algorithm.

The most complex of these is ARCHES:RMCRT:Kokkos, which is used for experiments

in Chapter 7 and modifies the ARCHES’ Burns and Christon benchmark problem to

incorporate a pressure solve, requiring the use of hypre. The resulting problem consists of

19 unique portable loops individually using up to 28 variables with complex interconnect-

edness. Underlying Kokkos functionality used among loops includes Kokkos::parallel_for,

Kokkos::parallel_reduce, Kokkos::View, and Kokkos_Random. A key feature making

this an important problem for validating Uintah’s portable infrastructure is the ability to

simultaneously stress interoperability of ARCHES, hypre, and RMCRT while also stressing

Uintah’s adaptive mesh refinement support. This is helpful for ensuring robustness due to

the complex hand-offs taking place between these codes (e.g., shared data dependencies).

3.5.2 Char Oxidation Modeling

The char oxidation of a coal particle involves a complex set of physics. This set of physics

includes mass transport of oxidizers from the bulk gas phase to the surface of the particle,

diffusion of oxidizers into the pores of the particle, reaction of solid fuel with local oxidizers,

and mass transport of the gas products back to the gas phase. As implemented within

ARCHES, the char rate computes the rate of chemical conversion of solid carbon to gas

products, the rate of heat produced by the reactions, and the rate of reduction of particle

size [2]. These rates are used in the Direct Quadrature Method of Moments (DQMOM) [88],

which subsequently affect the size, temperature, and fuel content of the particle field. For

each snapshot of time simulated, an assumption of steady-state is made that produces a

nonlinear set of coupled equations. This set of coupled equations is then solved pointwise at

each cell within the computational domain using a Newton algorithm. The char model is the

most expensive model evaluated during the time integration of physics within ARCHES.

Algorithm 3.3 provides an overview of the char oxidation model loop structure. The

core loop refactored to use the Kokkos::OpenMP and Kokkos::Cuda back-ends is the for

loop beginning at Line 3 of Algorithm 3.3. This loop features approximately 350 lines of

code with a number of interior loops and Newton iterations within. Outside of the core loop,
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1: for all mesh patches do
2: for all Gaussian quadrature nodes do
3: for all cells in a mesh patch do . Core loop ported to Kokkos
4: loop over reactions with an inner loop over reactions
5: multiple loops over reactions
6: loop over species
7: loop over reactions with an inner loop over species
8: for all Newton iterations do
9: multiple loops over reactions

10: multiple loops over reactions with inner loops over reactions
11: loop over reactions

Algorithm 3.3: ARCHES Char Oxidation Model Loop Structure

there is a multiplier incurred by the number of Gaussian quadrature nodes, which results

from the DQMOM approximation to the number density function. Inside of the core loop,

there are a variety of multipliers incurred by the number of reactions and species computed.

Additional complexity is introduced among these multipliers by the per-cell Newton

iterations beginning at Line 8 of Algorithm 3.3. For example, the top bottleneck within

the core loop has a multiplier of GaussianQuadratureNodes ∗NewtonIterations ∗ Reactions2

per cell.

3.5.3 Radiative Particle Property Modeling

Algorithm 3.4 provides an overview of the radiative particle property model loop

structure. This loop features 3 lines of code and is one of the more representative loops in

ARCHES. The resulting weighted properties are used to compute global radiative heat flux

(e.g., to help understand heat flux profiles in large coal boilers).

3.5.4 Helium Plume Problems

The Taylor-Green vortex [21] is a well-known benchmark for validating CFD codes

such as ARCHES. Though a simple incompressible flow problem, the Taylor-Green vortex

1: for all mesh patches do
2: for all cells in a mesh patch do
3: apply a weight to a particle’s absorption coefficient
4: store the weighted coefficient for flow cells
5: store a zero for non-flow cells

Algorithm 3.4: ARCHES Radiative Particle Property Model Loop Structure
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neglects the effect of density variation, which is key for combustion applications. Helium

plume problems are another incompressible flow problem helpful for validating CFD codes

that account for density variations.

The helium plume has characteristics representative of a real fire and serves as an

important ARCHES validation problem for the CCMSC’s predictive boiler simulations. The

validation of ARCHES using helium plumes is based on experimental data collected by

O’Hern et al. [85] at Sandia National Laboratory’s FLAME facility in Albuquerque, NM.

Their solution exercises major components of the overall ARCHES algorithm, including the

modeling of small, sub-grid turbulence scales. Additionally, the coupled problem combines

the effects of fluid flow and turbulent scalar mixing for a full spectrum of length and time

scales without introducing the complications of combustion reactions.

This problem requires the solution of the Navier-Stokes equations where the Navier-

Stokes equations describe the spatio-temporal motion of a fluid and are given by

∂ρ

∂t
+∇ · ρu = 0 (3.1)

∂ρu
∂t

= F−∇p; F ≡ −∇ · ρuu + ν∇2u + ρg (3.2)

Here, u = (ux, uy, uz) is the velocity vector describing the speed of fluid particles in three

orthogonal directions, ν is the kinematic viscosity - a fluid property that reflects its resistance

to shearing forces, ρ is the fluid density, and p is the pressure.

The numerical solution of the Navier-Stokes equations requires evaluation of the

pressure field while enforcing the continuity constraint given by (3.1). One standard

approach for deriving an explicit equation for the pressure is to take the divergence of (3.2)

and make use of (3.1) to act as the constraint. At the outset, one obtains a Poisson equation

for the pressure.

∇2 p = ∇ · F +
∂2ρ

∂t2 ≡ R (3.3)

Equation (3.3) is known as the pressure-Poisson-equation (PPE). Its solution requires the

use of a solver such as hypre for large sparse systems of equations.

The computational scenario used for validating ARCHES consists of a 3m3 domain

with a 1m opening that introduces the helium into a quiescent atmosphere of air with a

co-flow of air. Velocity and density conditions are known at boundaries. The sides and

top of the computational cube are modeled using pressure and outlet boundary conditions,
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respectively. The outlet boundary condition allows the flow to leave the domain while the

pressure conditions make it possible for airflow to enter (as driven by the buoyancy forces)

through the side of the domain. Both the outlet and pressure conditions are driven by the

resulting pressure field solution.

The problem used for this dissertation consists of 125 unique portable loops individ-

ually using up to 17 variables with complex interconnectedness. Underlying Kokkos

functionality used among loops includes Kokkos::parallel_for, Kokkos::parallel_reduce, and

Kokkos::View. A key feature making this an important problem for validating Uintah’s

portable infrastructure is the large number of unique portable loops and variables in flight

during execution. This is helpful for ensuring robustness due to the long and complex

data dependency sequences generated by these loops (e.g., variables computed on the host,

modified on the device, and later required on the host).



CHAPTER 4

UINTAH’S MPI+PTHREADS TASK

SCHEDULING APPROACH

4.1 Overview
From the center’s start in 2014, the CCMSC has targeted the proposed DOE Aurora

system for exascale boiler simulations as it was originally planned to be the United States’

first exascale system. Early proposed versions of Aurora were to feature many-core

architectures rather than the currently anticipated GPUs. Many-core architectures differ

from multicore architectures in that they offer higher degrees of parallelism at the expense

of, for example, slower clock speeds and single-thread performance. Examples include the

Intel Xeon Phi and the Sunway SW26010. For this reason, such architectures have been

examined as part of work contributing to several Uintah dissertations, including by Qingyu

Meng [80, 81], Damodar Sahasrabudhe [120], and the author [47]. This chapter examines

Intel Xeon Phi performance in the context of Uintah’s MPI+PThreads task scheduling

approach. In doing so, this chapter captures work from a book chapter [47] by the author.

The Intel Xeon Phi is a many-core device based on Intel’s Many Integrated Core (MIC)

Architecture [60, 99]. This architecture delivers high degrees of parallelism by offering up

to 72 out-of-order cores featuring 4-way hyperthreading, 512-bit SIMD instructions, and

sub-2 GHz clock speeds. The first-generation Xeon Phi coprocessor, Knights Corner, is

a PCIe-based accelerator that requires cross-compilation and offers up to 61 cores. The

second-generation Xeon Phi processor, Knights Landing, is a socket-based processor that is

binary compatible with past generations of Intel processors and offers up to 72 cores.

Though easy to start using, the Xeon Phi poses new challenges for Uintah and others by

requiring greater attention to data movement, thread scalability, and vectorization to achieve

performance. Early studies exploring Uintah’s performance on first-generation Xeon Phi

coprocessors, Knights Corner, have helped demonstrate some of these challenges [80, 81].
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This chapter continues our evaluation of the Intel Knights Corner and explores the suitability

of Uintah’s MPI+PThreads task scheduling approach for the large per-node core counts

found on many-core systems. This evaluation explores two key challenges relating to thread

placement.

The first challenge relates to thread affinity patterns and less conventional thread

management techniques for developers using the PThreads threading model. OpenMP

eases thread placement by offering great control over where and how threads execute.

Examples include Intel Compiler’s KMP_AFFINITY flag to place threads and OpenMP

loop scheduling parameters to determine how per-loop work is scheduled and executed.

Uintah’s Unified Scheduler, however, does not support OpenMP and implements an

MPI+PThreads-based hybrid parallelism model requiring manual management of thread

placement.

The second challenge relates to the Knights Corner’s reserved core. On the 61-core

Knights Corner coprocessor, the last-most physical core contains logical cores 241, 242, 243,

and 0. Though /proc/cpuinfo core id: 60 in practice, this physical core is commonly referred

to as the 61st core. The 61st core is unique in that logical core 0 is reserved for the Xeon

Phi operating system. Additionally, the 61st core is also reserved for the offload daemon.

While it is reportedly safe to use all 244 threads for native execution, it is unclear how to

effectively manage the 61st core when executing natively.

This chapter describes experiments evaluating several thread placement strategies with

special attention to the 61st core. These experiments have helped establish valuable baselines

for future Uintah efforts. Perhaps more important, they have also provided valuable insight

regarding eventual challenges and areas to address as we strive to achieve performance

with the Xeon Phi. Specifically, single-node experiments have shown that the Intel Knights

Corner requires greater attention to run configuration and domain decomposition as

demonstrated by single-node results showing 10.1% performance differences across run

configurations on Intel Sandy Bridge compared to performance differences up to 149.3% on

Knights Corner. Multi-node experiments have shown that the Unified Scheduler’s need

to decompose a simulation domain into more, yet smaller, patches to support additional

threads is not conducive to scalability, especially when problem sizes are limited by the

Knights Corner memory footprint. When considering these results, it is important to
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remember that we have examined native execution exclusively. When operating in offload

mode, Intel’s guidance is to refrain from using the reserved core as it actively supports

offloading.

4.2 Scheduler Improvements
To support these evaluations, Uintah’s Unified Scheduler was used as a foundation

for implementing several thread affinity patterns. This dynamic scheduler features non-

deterministic, out-of-order task execution at runtime. This is facilitated using a master

thread and nThreads-1 task execution threads, where nThreads equals the number of threads

launched at runtime. As-is, this scheduler manually binds threads from 0 to nThreads-1.

Note, the master thread is also capable of executing tasks.

Patterns implemented for these experiments are itemized below:

• Compact: This pattern binds task execution threads incrementally across logical cores

1 through nt in a given physical core first and then across physical cores 1 through 61.

This pattern is modeled after OpenMP’s KMP_AFFINITY = compact with values of

61c,2t, 61c,3t, and 61c,4t for the KMP_PLACE_THREADS environment variable.

• None: This pattern allows both the control and task execution threads to run anywhere

among all 244 logical cores.

• Scatter: This pattern binds task execution threads incrementally across physical cores 1

through 60 first and then across logical cores 1 through nt in a given physical core. This

pattern is modeled after OpenMP’s KMP_AFFINITY = scatter with values of 60c,2t,

60c,3t, and 60c,4t for the KMP_PLACE_THREADS environment variable. Note that,

threads are spread across physical cores 1 through 60 only to support our exploration

of the 61st core.

• Selective: This affinity pattern binds the master thread to either logical core 240, 241,

242, 243, or 0 depending upon the values of nt and nThreads. Task execution threads

are allowed to run anywhere among the logical cores preceding the control thread.

Note, nt corresponds to the number of threads per physical core.

Unlike the other patterns, the scatter affinity pattern requires more effort to implement.

Figure 4.1 shows how to implement the scatter affinity pattern with PThreads. This example
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void scatterAffinity( i n t threadID ) {

i n t scatterPhysCores = 61;
i n t logCoresPerPhysCore = 4;
i n t logCoreIndex = 0;
i n t physCoreIndex = 0;
i n t overallIndex = 0;

/ / Determine whether the t hr e a d w i l l be bound t o the 1 s t , 2nd ,
/ / 3 rd , or 4 th l o g i c a l c o r e in a given p h y s i c a l c o r e
logCoreIndex = floor(( threadID -1 ) / scatterPhysCores ) + 1;

/ / Determine which p h y s i c a l c o r e the t h r e a d w i l l be bound t o
physCoreIndex = ( threadID - (( logCoreIndex -1 ) * scatterPhysCores ));

/ / Determine the s p e c i f i c l o g i c a l c o r e the t h r e a d w i l l be bound t o
overallIndex = logCoreIndex + ( physCoreIndex -1 ) * logCoresPerPhysCore;

/ / Bind the t h r e a d t o i t s corresponding l o g i c a l c o r e
cpu_set_t mask;
unsigned i n t len = s i z e o f ( mask );
CPU_ZERO( &mask );
CPU_SET( overallIndex , &mask );
sched_setaffinity( 0, len , &mask );

}

Fig. 4.1: PThreads-based implementation of the scatter affinity pattern.

assumes that each thread is uniquely identified by a threadID and calls scatterAffinity() to 

denote which logical core it is eligible to run on. Note, Figure 4.1 supports values of 0 

through 243 for threadID, where threadID = 0 is mapped to logical core 0.

To enable exploration of the 61st core with the Compact, Scatter, and Selective affinity 

patterns, multiple values of nThreads are used to increment the number of logical cores used 

on the 61st core from 0 to nt. For example, a run configuration featuring nThreads = 180 and 

nt = 3 uses 0 logical cores on the 61st core. With this in mind, the control thread is bound to 

the last logical core used by a given pattern. For example, a run configuration featuring 

nThreads = 180 and nt = 3 binds the control thread to logical core 240.

4.3 Single-Node Studies
The single-node experiments presented within this section solve the Burns and Christon 

benchmark problem described in [22] using single-level RMCRT:CPU and used for CPU-

and GPU-based studies in [54] and [56], respectively. This problem exercises the radiation 

physics needed for predictive boiler simulations. Specifically, this problem calculates the 

radiative-flux divergence for each cell within the computational domain. An accuracy 

analysis verifying Uintah’s RMCRT-based radiation model against the Burns and Christon
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benchmark problem can be found in [59]. More details on Uintah’s RMCRT-based radiation

model can be found in Section 3.5.1 and [54].

These experiments were performed on a single-node machine using one MPI process

and double-precision floating-point numbers. Host-side simulations were launched with

32 threads distributed among 16 physical cores. This was accomplished using two 8-core

Intel Xeon E5-2680 processors in a dual-socket configuration. Coprocessor-side simulations

were launched with as many as 244 threads distributed among 61 physical cores. This was

accomplished using one 61-core 16 GB Intel Xeon Phi 7110P coprocessor.

Below are key parameters explored on the coprocessor-side:

• 3 physical core usage levels (2, 3, and 4 hardware threads per physical core)

– For 2 hardware threads per physical core, 3 thread counts were used to allot 0-2

threads for the 61st core (120-122 threads).

– For 3 hardware threads per physical core, 4 thread counts were used to allot 0-3

threads for the 61st core (180-183 threads).

– For 4 hardware threads per physical core, 5 thread counts were used to allot 0-4

threads for the 61st core (240-244 threads).

• 4 affinity patterns (Compact, None, Scatter, and Selective affinity)

• 4 mesh patch counts (facilitating ratios of 1, 2, 4, and 8 patches per thread)

Below are notes on simulation configuration:

• Simulation meshes are decomposed into mesh patches consisting of individual cells.

• Tasks are executed by threads, which are bound to logical cores.

• Tasks reside on mesh patches, which are computed serially using a single thread.

• Different threads may be used to compute tasks resident to a particular mesh patch.

• Tasks are assigned to idle threads without regard to the spatial locality of the mesh

patch data that they access.

• Simulations were performed using a single-level 1283 simulation mesh as this was the

largest supported by the coprocessor.
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• Radiation modeling calculations were performed over 10 consecutive timesteps.

• At each compute timestep, the simulation mesh was sampled using 100 rays per cell.

• Host-side simulations explored the use of 32 threads with the aforementioned affinity

patterns and mesh patch counts.

4.3.1 Coprocessor-Side Results

     Figure 4.2 visualizes results from the 192 simulations performed on the coprocessor-side.

Below are notes on the figure for coprocessor-side results:

• Marks correspond to the average elapsed execution time per compute timestep (in

seconds).

• Threads per core (TPC) corresponds to the number of hardware threads used per

physical core.

• Patches per thread (PPT) corresponds to the ratio of mesh patches to threads. Note,

each thread is not guaranteed to compute this number of mesh patches.

• Over 10 identical coprocessor-side simulations, there existed no more than a 4.29%

difference in performance between two identical runs.

TPC PPT

300 350 400 450 500 550 600 650
Avg. Elapsed Time per Timestep (s)

2 1

2

4

8

3 1

2

4

8

4 1

2

4

8

Fig. 4.2: Coprocessor-side results for single-level RMCRT:CPU
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• At 2, 3, and 4 hardware threads per physical core, there existed 30.14%, 42.60%, and

149.33% differences in performance, respectively, between the fastest and slowest run

configurations.

Note, a more in-depth analysis of the data examining reserved core use and thread affinity

patterns can be found in the book chapter [47]. Such analysis is not included here as both

thread affinity pattern and reserved core use had little impact on execution time during

native execution. This is a result of Uintah’s implicit work-stealing across threads and lack

of regard to data locality when selecting work. Note, Intel guidance is to refrain from using

the reserved core as it actively supports offloading.

4.3.2 Host-Side Results

Figure 4.3 visualizes results from the 16 simulations performed on the host-side. Below

are notes on the figure for host-side results:

• Marks correspond to the average elapsed execution time per compute timestep (in

seconds).

• Patches per thread (PPT) corresponds to the ratio of mesh patches to threads. Note,

each thread is not guaranteed to compute this number of mesh patches.

• Over 10 identical host-side simulations, there existed no more than a 3.35% difference

in performance between two identical runs.

Fig. 4.3: Host-side results for single-level RMCRT:CPU using each affinity pattern.
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• There existed a 10.14% difference in performance between the fastest and slowest run

configurations.

4.3.3 Further Analysis

Addressing comparisons between architectures first, the two Xeon processors outper-

formed the single Xeon Phi coprocessor. Specifically, there existed a 39.43% difference

in performance between the fastest run configurations for each architecture. Regarding

accuracy, simulation results computed by each architecture were identical to one another

up to a relative tolerance of 1E-15.

Given that this has been a naive port of our CPU-based algorithm, these results are en-

couraging as they leave ample opportunity to shift performance in favor of the coprocessor.

Having not yet adequately pursued such optimizations, effective memory management and

vectorization are believed to be the factors attributing to these differences. Supporting this

conclusion, version 15.0 compiler optimization reports and experimentation with simpler

vectorization approaches (e.g., SIMD directives) suggest that little, if any, vectorization

is being achieved. Further, predominantly 100% core usage during compute timesteps

suggests that thread-level parallelism is sufficient.

Turning to observations, performance disparities among coprocessor-based results

deserve attention. As more hardware threads per physical core were utilized, the difference

in performance between fastest and slowest run configurations increased. This is likely

attributed to the sharing of the 512 KB per core L2 cache among four hardware threads.

Though it offered better run times, the use of more hardware threads per physical core

further divided the amount of L2 cache available to a given thread. This resulted in

increased sensitivity to simulation mesh decomposition.

Returning to the question motivating this chapter, our fastest run configurations utilized

the 61st core. Further, performance was not profoundly impacted when explicitly oversub-

scribing the coprocessor operating system thread. For similar algorithms, this suggests that

the use of the 61st core may be both forgiving and capable of offering modest performance

improvements. Lastly, the overarching takeaway from these native execution-based ex-

periments is that no one thread placement strategy dominated performance. For similar

algorithms, this suggests that time may be best spent by first pursuing more favorable areas
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of optimization.

4.4 Multi-Node Studies
The strong scaling studies presented within this section also include solution of the Burns

and Christon benchmark problem using single-level RMCRT:CPU. Aside from domain

decomposition subtleties to be discussed, experiments have been run as in [54] and [56] with

results averaged over 7 consecutive timesteps. The absorption coefficient was initialized

per [22] with a uniform temperature field. For each thread count, 100 rays were used to

compute the radiative-flux divergence for each cell.

These results have been gathered on the NSF Stampede system [114]. This system

featured two 8-core Xeon E5-2680 Sandy Bridge processors and one Intel Xeon Phi SE10P

Knights Corner coprocessor on a PCIe card connected to its Sandy Bridge host. With this

in mind, each problem size explored fits within the 8 GB memory footprint of the Knights

Corner.

These studies emphasize strong scaling due to the fixed target problem that the CCMSC

aims to simulate at exascale. As such, weak scaling is not addressed due to the nature of

communication growth for this problem, which has been characterized in [54]. Specifically,

communication grows quadratically as O(n2) with respect to the problem size, where n

corresponds to the number of communicating MPI processes. This is due to the all-to-all

nature of radiation and each MPI process needing information about the entire domain to

trace rays throughout the domain. For non-fixed size problems, weak scaling is possible

through the use of aggressive mesh refinement to reduce communication requirements as

shown in past studies [57, 69, 104].

Here, strong scaling refers to the subdivision of a fixed size problem to support increasing

node counts. A fixed number of patches was maintained per node and their size reduced to

create additional patches for additional nodes. Patches were sized to enforce 1 patch per

hardware thread.

As a whole, simulations were launched using 1 MPI process per Knights Corner

node. Within an MPI process, threads were launched in multiples of 60 to ease domain

decomposition. PThreads were launched without thread affinity.

Figure 4.4 shows strong scaling of single-level RMCRT:CPU. This implementation
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features parallel execution of serial tasks within an MPI process. This figure presents results

for three thread counts (60, 120, and 240 threads per MPI process to utilize 1, 2, and 4

hardware threads per core, respectively). For each thread count, a problem size of 963 cells

was utilized.

4.4.1 Further Analysis

These results demonstrate that it is difficult for Uintah’s RMCRT-based radiation model

to scale across Stampede’s Knight Corner coprocessors. This is attributed to the Unified

Scheduler’s use of serial tasks and the coprocessor’s 8GB memory footprint limitation. To

run with more threads per core, patch sizes must be halved to accommodate each doubling

of the total threads used. However, this is not conducive to scalability as patch sizes for 1

thread per core experiments already struggle to hide communication.

To help overcome this scalability barrier, Uintah’s task scheduling approach needs

to shift from using serial tasks to data-parallel tasks. Data-parallel tasks eliminate the

need to use more, yet smaller, patches to accommodate more compute resources (e.g.,

cores, threads). Such tasks allow users to use more compute resources per patch to avoid

potentially unwanted reductions in patch size. This is desirable for architectures featuring

shared per-core resources as it allows tasks to make cooperative use of such resources (e.g.,

caches).

4.5 Summary
This work has helped improve our understanding of how to run well with Uintah on

many-core devices such as the Intel Xeon Phi. Specifically, it has evaluated suitability of

Uintah’s MPI+PThreads task scheduling approach for the large per-node core counts found

on many-core systems. This evaluation explored two key challenges: (1) thread placement

when using the PThreads threading model, and (2) how to manage use of the reserved core.

This evaluation has been made possible by implementing several thread affinity patterns

modeled after OpenMP thread affinity patterns. Uintah’s capabilities have been shown

for a challenging radiation problem using these thread affinity patterns to execute a

workload central to CCMSC predictive boiler simulations. Single-node experiments have

shown that the Intel Knights Corner requires greater attention to run configuration and

domain decomposition as demonstrated by single-node results showing 10.1% performance
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differences across run configurations on Intel Sandy Bridge compared to performance

differences up to 149.3% on Knights Corner. Multi-node experiments have shown that the

Unified Scheduler’s need to decompose a simulation domain into more, yet smaller, patches

to support additional threads is not conducive to scalability, especially when problem sizes

are limited by the Knights Corner memory footprint.

The understanding of performance established here helps define an appropriate direc-

tion as we prepare Uintah for many-core systems. Next steps include extending Uintah’s

MPI+X task scheduling approach to support data-parallel tasks in a portable manner

using the Kokkos C++ library to adopt OpenMP. For Uintah’s Aurora Early Science

Program efforts, this will allow for cooperative use of shared per-core resources and address

scalability barriers exposed by this work. For Uintah’s emphasis on maintaining broad

support for major HPC systems, this will adopt OpenMP in a portable manner to avoid

code bifurcation when porting Uintah to other systems requiring potentially different

programming models. As a part of this, emphasis will be placed on evaluating Kokkos for

widespread adoption through Uintah.



CHAPTER 5

AN MPI+KOKKOS::OPENMP TASK

SCHEDULING APPROACH

5.1 Overview
The DOE Aurora system was initially to feature upwards of 50,000 nodes based on

Intel’s since canceled third-generation Xeon Phi processor, Knights Hill. For this reason, the

CCMSC placed heavy emphasis on understanding how to run well and scale on second-

generation Intel Xeon Phi-based systems such as the DOE Cori [83], NSF Stampede 2 [115],

and DOE Theta [4] systems before the discontinuation of the product line. Cori is a 30

petaflop system featuring 9,688 Intel Knights Landing Xeon Phi nodes and 2,388 Intel

Haswell Xeon Haswell nodes. Stampede 2 is an 18 petaflop system featuring 4,200 Intel

Knights Landing Xeon Phi nodes and 1,736 Intel Skylake Xeon nodes. Theta is an 11.7

petaflop system featuring 4,392 Intel Knights Landing Xeon Phi nodes. This chapter explores

the adoption of OpenMP [25] through a performance portability layer to support such

systems and address serial task limitations described in Chapter 4. In doing so, this chapter

captures work from a conference paper [48], technical report [50], and workshop paper by

the author [49].

OpenMP is commonly recommended to achieve the high levels of parallelism needed to

make performant use of the large core and thread counts offered by the Intel Xeon Phi [60,99].

For this reason and ease of use mentioned in Chapter 4, OpenMP was chosen as the

target programming model used to port Uintah to many-core systems. Adopting OpenMP

itself, however, is problematic for Uintah’s 1-2 million line codebase due to emphasis on

maintaining broad support for major HPC systems. Such adoption would require multiple

implementations of a given task to support both many-core and heterogeneous systems for

which NVIDIA CUDA-based data-parallel tasks have already been introduced in Uintah at

small-scale [55, 56].
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With this in mind, the portability of a codebase is becoming more important due to

the variety of architectures being introduced in current and emerging high-performance

computing (HPC) systems. The Top 10 of November 2021’s Top500 list [110] includes

ARM-based systems, heterogeneous systems with NVIDIA-based GPUs, Sunway-based

systems, Intel Xeon-based systems, and Intel Xeon Phi-based systems. Further, the proposed

DOE Aurora, DOE Frontier, and DOE El Capitan exascale systems are to feature Intel

and AMD GPUs. Such variety complicates programming model selection for codebases

looking to maintain long-term portability across major HPC systems when adopting a new

programming model. Such is the case for Uintah when using shared memory programming

models to transition from serial tasks to data-parallel tasks.

Programming model selection is simplified using a performance portability layer (PPL).

Such layers provide abstractions (e.g., parallel loop statements) that allow developers

to use a single interface to interact with multiple underlying programming models (e.g.,

CUDA, OpenCL, OpenMP, etc.) through PPL-specific back-ends. This approach eases the

adoption of multiple programming models by reducing the amount of duplicated code

and the knowledge required of underlying programming models by offloading low-level

implementation details to the performance portability layer. Such an approach is desirable

for Uintah to avoid multiple programming model adoption efforts, as adopting one alone

requires a substantial investment.

This chapter addresses the challenge of programming model selection when converting

Uintah’s serial tasks to data-parallel tasks using the Kokkos [31,118] performance portability

layer. Here, Kokkos is adopted directly in application code as a part of early prototypes

evaluating the layer’s suitability for porting Uintah to many-core systems. Within an MPI

process, the underlying Kokkos back-ends allow data-parallel tasks to run on multicore-,

many-core-, and GPU-based architectures for tasks with portable code. For many-core

systems, this adoption has helped overcome the scalability barrier identified in Chapter

4 and relating to strict domain decomposition requirements. When using a single level

of OpenMP-based parallelism within an MPI process, this has allowed for good strong

scaling to 256 Knights Landing processors for a challenging radiation problem. When using

two levels of OpenMP-based parallelism within an MPI process, this has allowed for good

strong scaling to 442,368 threads across 1,728 Knights Landing processors to be achieved
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for a challenging radiation problem with performance improvements up to 1.62x and little

overhead added (< 0.2% per timestep).

5.2 The Kokkos C++ Library
The Kokkos C++ library [31, 118] is an open-source C++ programming model initially

developed at Sandia National Laboratories for writing portable, thread-scalable code

optimized for a diverse set of architectures supported in major HPC systems. This program-

ming model is part of the Kokkos C++ Performance Portability Programming EcoSystem,

which additionally provides developers with Kokkos-aware algorithms, math kernels, and

tools. Kokkos is one of many programming models offering a single interface to multiple

underlying programming models (e.g., CUDA, OpenCL, OpenMP, etc.). Examples of similar

programming models include DPC++ [98], OCCA [76], RAJA [52], and SYCL [100].

A key idea among performance portability layers is the use of back-ends to manage

execution and memory in a portable manner. In the case of Kokkos, these back-ends are

mapped to abstractions providing developers with portable parallel execution patterns (e.g.

parallel_for, parallel_reduce, parallel_scan) and related data structures (e.g., Kokkos Views).

These fundamental abstractions allow Kokkos to manage both where and how: (1) patterns

are executed, and (2) data is stored and accessed. Note, Kokkos back-ends to OpenMP and

CUDA are referred to throughout this dissertation as Kokkos::OpenMP and Kokkos::CUDA,

respectively.

Figure 5.1 shows an example of a Kokkos parallel pattern. The high-level idea is that

developers write functors or lambda expressions to be placed inside a parallel pattern.

These are customizable with additional parameters capable of tuning the number of threads

used, execution patterns, and scheduling policies. Behind the scenes, C++ templating and

compile-time conditional branching is used to avoid run-time branching and compile loops

for the target back-end(s) specified by the user.

parallel_for( n, KOKKOS_LAMBDA( i n t i )
BODY
);

Fig. 5.1: Simplified syntax for Kokkos parallel pattern from Figure 5 in a recent evalua-
tion [42].
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Parallel patterns are supplemented by Kokkos Views, which are arrays of zero or more

dimensions. In a similar way to parallel patterns, C++ templating is used to manage how

Views are stored. For example, View layouts can be column-major, row-major, strided,

tiled, etc. Further, Views can be either managed, where Kokkos handles reference counting

and automatic deallocation, or unmanaged, where raw pointers are wrapped. In Uintah,

unmanaged Kokkos Views are used as Uintah manages its own memory.

Uintah has adopted Kokkos to extend its codebase in a portable manner to multicore-,

many-core-, and GPU-based systems. Specifically, to: (1) avoid code bifurcation when

extending Uintah to accelerators and many-core devices with CUDA and OpenMP, re-

spectively, (2) use a single interface to interact with multiple underlying programming

models, and (3) offload low-level implementation details to Kokkos. This adoption has also

allowed for a reduction in the gap between development time and our ability to run on

newly introduced systems. For these advantages, Kokkos is believed to play a critical role

in preparing Uintah for future HPC systems.

Uintah is an early adopter of Kokkos with Uintah developers collaborating directly with

Kokkos developers as a part of the University of Utah’s participation in the DOE/NNSA’s

Predictive Science Academic Alliance Program (PSAAP) II initiative. This collaboration

has resulted in bi-directional development efforts with developers working in each other’s

codebases. At Sandia National Laboratories, Kokkos has been integrated in Trilinos [46]

and used in codes such as Albany [28], GenTen [95], HOMMEXX [15], LAMMPS [96], and

SPARTA [36]. Examples of other codes investigating and/or adopting Kokkos include

BabelStream [27], K-Athena [38], KARFS [97], NekMesh [32], and TeaLeaf [74]. A list of

applications using Kokkos can be found on the Kokkos GitHub [117].

5.3 Scheduler Improvements
To support this evaluation, Uintah task schedulers were modified in two phases. The

first phase used Uintah’s Dynamic MPI Scheduler as a foundation. The resulting scheduler

adopted Kokkos in a manner using a single level of OpenMP-based parallelism to execute

Kokkos-based data-parallel tasks. This approach adds parallelism inside tasks but not

across multiple tasks. That is, this scheduler is limited to executing a single Kokkos parallel

pattern using nThreads at a time within an MPI process. In this case, the key challenge
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for adoption related to identifying where and when to initialize and finalize Kokkos with

respect to per-process task execution. Figure 5.2 shows an example of what this task

execution model looks like in the context of Uintah’s multi-threaded MPI scheduler and

Intel Knights Landing. Here, 1 data-parallel task (i.e., Task 1 in blue) is executed at a time

using 64 threads.

The second phase used Uintah’s Unified Scheduler as a foundation and, ultimately,

established the OpenMP-based host-side capabilities of the heterogeneous MPI+Kokkos task

scheduling approach to be discussed in Chapter 7. The resulting scheduler adopted Kokkos

in a manner using two levels of OpenMP-based parallelism to execute Kokkos-based data

parallel tasks. This approach adds parallelism inside tasks and across multiple tasks. That

is, this scheduler is capable of executing from 1 to nThreads Kokkos parallel patterns using

nThreads to 1 thread, respectively, at a time within an MPI process. In this case, Kokkos

adoption was less intuitive and required new Kokkos functionality (Kokkos partitioning)

to support Uintah’s use case. Here, the key challenge was understanding how to replace
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Uintah’s hundreds of lines of PThreads-based thread pool management code with Kokkos

partitioning. The former implemented a master-slave thread driver that manually manages

thread state (e.g., active, exit, inactive), thread affinity, and coordinates serial task executors.

The latter will be described in further detail in Section 5.3.1. Figure 5.3 shows an example of

what this task execution model looks like in the context of Uintah’s multi-threaded MPI

scheduler and Intel Knights Landing. Here, 4 data-parallel tasks (i.e., Task 1, 2, 3, and 4 in

blue, green, red, and yellow, respectively) are executed at a time using 16 threads each. Note,

run configurations are flexible and able to accommodate any variation of simultaneously

executing tasks (e.g., 2 data-parallel tasks at a time using 32 threads each).

5.3.1 Kokkos Partitioning

Uintah’s use of two levels of OpenMP-based parallelism has been made possible by

partitioning functionality added to Kokkos via partition_master. This functionality allows

a Kokkos execution space instance to be subdivided into multiple instances. Multiple
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execution space instances allow for multiple Kokkos parallel patterns to be run simultane-

ously in parallel with one another. In the context of Uintah, an execution space instance

corresponds to a task executor (i.e., the specific compute resources (e.g., cores) used to

execute task executor logic responsible for task scheduling and execution and described

further in Section 3.2). Similar to CUDA support for GPU asynchrony [94], the introduction

of partition_master marks another instance of Uintah’s needs as an AMT runtime system

helping drive Kokkos development.

Uintah’s adoption of partition_master required only a few lines of new code once

the existing PThreads-based infrastructure was removed. Among infrastructure that

partition_master replaced is a master-slave thread driver that manually manages thread

state (e.g., active, exit, inactive), thread affinity, and coordinates serial task executors.

Figure 5.4 shows how partition_master has been used within Uintah. This code is called

on a per-timestep basis and has replaced hundreds of lines of thread pool management

code within Uintah’s MPI+PThreads task scheduler [78]. At the start of a timestep,

partition_master uses OpenMP to subdivide the original execution space instance into

multiple instances. During a timestep, each instance calls runTasks() to select and execute

all tasks for a given timestep. At the end of a timestep, partition_master restores the original

execution space instance.

When using partition_master with multiple execution space instances, care must be

taken to ensure that a node is fully utilized. Specifically, thread placement becomes critical

as it is easy to launch overlapping instances inadvertently. Three OpenMP environment

variables are important for using partition_master: OMP_NESTED, OMP_PLACES, and

OMP_PROC_BIND. The OMP_NESTED environment variable enables nested parallelism

auto task_worker = [&] ( i n t partition_id , i n t num_partitions ) {
runTasks (); / / runTasks i s an e x i s t i n g f u n c t i o n within Uintah

};

/ / Each p a r t i t i o n e x e c u t e s task_worker
Kokkos :: OpenMP :: partition_master( task_worker

, num_partitions
, threads_per_partition );

Fig. 5.4: Code listing illustrating Uintah-based code required to enable parallel execution
of newly-written Kokkos-based data-parallel tasks and existing serial tasks within an MPI
process.
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and must be set to true to allow for multiple execution space instances within an MPI

process. The OMP_PLACES and OMP_PROC_BIND environment variables manage thread

placement. For best performance, Kokkos recommends use of threads and spread for

OMP_PLACES and OMP_PROC_BIND, respectively. This combination of environment

variables spreads a set of threads as evenly as possible among places where each place

corresponds to a single hardware thread on the target machine. In particular, spread is

critical for ensuring that task executors are placed disjointly across a node.

Figure 5.5 shows an example of properly placing two task executors, t1 and t2 in red and

blue, respectively, across a node using OMP_PLACES=threads and OMP_PROC_BIND=spread.

Here, red and blue correspond to the resources used by each task executor. With this

placement, tasks executed by individual task executors do not overlap one another and

utilize all cores.

Figure 5.6 shows an example of improperly placing two task executors, t1 and t2 in red

and blue, respectively, across a node using OMP_PLACES=threads and OMP_PROC_BIND=close.

Here, red and blue correspond to the resources used by each task executor with purple and

white corresponding to oversubscribed resources and unused resources, respectively. With

this placement, tasks executed by individual task executors overlap one another and do not

utilize all cores.

An analysis of partition_master overheads will be discussed in Section 5.5.

5.4 Loop Refactoring
With task schedulers implemented, the single-level and 2-level RMCRT variants de-

scribed in Section 3.5.1 and char oxidation model described in Section 3.5.3 were then

ported to support the use of the Kokkos::OpenMP back-end. For these ports, Kokkos

parallel patterns were used directly in application code to ease rapid prototyping. Given the

emphasis on OpenMP, ports were fairly straightforward and primarily involved converting

legacy data structures to Kokkos views. Other examples include creating temporary

variables for class members to be passed into Kokkos parallel patterns.

Algorithm 5.1 and Algorithm 5.2 provide an overview of the RMCRT algorithm de-

scribed further in Section 3.5.1. The core loop refactored to use the Kokkos::OpenMP

back-end features approximately 500 lines of code with a number of interior loops. Inside
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t1 t2

Fig. 5.5: Disjointly placed task executors, fully utilizing a node with OMP_PLACES=threads
and OMP_PROC_BIND=spread. Red and blue regions are resources used by a given task
executor.

t1 t2t1 & t2

Fig. 5.6: Oversubscribed task executors, under-utilizing a node with OMP_PLACES=threads
and OMP_PROC_BIND=close. Red and blue regions are resources used by a given task
executor. Purple is where resources are oversubscribed. White is where resources are
unused.

1: for all cells in a mesh patch do
2: intensity_sum = 0;
3: for all rays in a cell do
4: find_ray_direction()
5: find_ray_location()
6: update_intensity_sum() . Core loop ported to Kokkos
7: compute divergence of heat flux

Algorithm 5.1: Ray Marching Pseudocode

1: initialize all ray marching variables
2: while intensity > threshold do
3: while ray in domain do
4: obtain per-cell coefficients
5: march current ray to next cell
6: update ray marching variables
7: update ray location
8: in_domain=cellType[curr]==-1
9: compute optical thickness

10: compute contribution of current cell to sumI
11: compute wall emissivity
12: compute intensity
13: compute sumI

Algorithm 5.2: Radiation Intensity Summation Pseudocode (update_intensity_sum())
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of the core loop, there are a variety of multipliers incurred by the number of rays cast per

cell and the number of cells that each ray is traced across. For example, the core loop has a

multiplier of 100RaysPerCell ∗ CellsTracedAcross for the results presented here.

Algorithm 5.3 provides an overview of the char oxidation model described further in

Section 3.5.3. The core loop refactored to use the Kokkos::OpenMP back-end is the for loop

beginning at Line 3 of Algorithm 5.3. This loop features approximately 350 lines of code

with a number of interior loops and Newton iterations within. Outside of the core loop,

there is a multiplier incurred by the number of Gaussian quadrature nodes, which results

from the DQMOM approximation to the number density function. Inside of the core loop,

there are a variety of multipliers incurred by the number of reactions and species computed.

Additional complexity is introduced among these multipliers by the per-cell Newton

iterations beginning at Line 8 of Algorithm 5.3. For example, the top bottleneck within

the core loop has a multiplier of GaussianQuadratureNodes ∗NewtonIterations ∗ Reactions2

per cell.

5.5 Single-Node Studies
This section presents results from experimental studies solving the char oxidation

model within ARCHES. The results presented within this section used the following

implementation of CharOx:

• CharOx:Kokkos: This is a new implementation of the char oxidation model written for

this research to use Kokkos-based data-parallel tasks.

1: for all mesh patches do
2: for all Gaussian quadrature nodes do
3: for all cells in a mesh patch do . Core loop ported to Kokkos
4: loop over reactions with an inner loop over reactions
5: multiple loops over reactions
6: loop over species
7: loop over reactions with an inner loop over species
8: for all Newton iterations do
9: multiple loops over reactions

10: multiple loops over reactions with inner loops over reactions
11: loop over reactions

Algorithm 5.3: ARCHES Char Oxidation Model Loop Structure
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SNB-based results have been gathered on a node featuring two 2.7 GHz Intel Xeon

E5-2680 Sandy Bridge processors with 8 cores (2 threads per core) per processor and 64 GB

of RAM. Simulations were launched using 1 MPI process per node. Run configurations

were selected to use the extent of each node. Per-timestep timings correspond to timings

for execution of a timestep as a whole. Results have been averaged over 7 consecutive

timesteps. Additional details on problem setup and run configuration are discussed in

individual result paragraphs.

Tables 5.1 and 5.2 show partition_master overheads incurred at the start and end of

a timestep, respectively. These tables present SNB-based results gathered using the

CharOx:Kokkos implementation with the Kokkos::OpenMP back-end for three patch sizes

(163, 323, and 643 cells) and various combinations of OpenMP wait policies. Tasks were

executed using 16 task executors with 2 threads per task executor via 1 MPI process and

32 OpenMP threads. The OMP_WAIT_POLICY environment variable decides whether

threads spin (active) or yield (passive) while they are waiting. OMP_WAIT_POLICY

defaults to yielding (passive). The KMP_BLOCKTIME environment variable sets the time, in

milliseconds, that a thread should wait, after completing the execution of a parallel region,

before sleeping. KMP_BLOCKTIME defaults to 200 milliseconds.

Table 5.1: Dual-socket start-of-timestep partition_master overheads across OpenMP wait
policies for CharOx:Kokkos on Intel Sandy Bridge.

START-OF-TIMESTEP PARTITION_MASTER OVERHEAD - in microseconds (% of execution) - SNB
OMP_WAIT_POLICY KMP_BLOCKTIME 16 - 163 Patches 16 - 323 Patches 16 - 643 Patches

unspecified unspecified 117.19 (0.0202%) 122.48 (0.0138%) 135.05 (0.0026%)
passive 0 103.27 (0.0190%) 98.05 (0.0117%) 102.14 (0.0020%)
passive infinite 112.69 (0.0182%) 123.02 (0.0132%) 95.57 (0.0017%)
active infinite 108.12 (0.0173%) 100.46 (0.0108%) 105.94 (0.0019%)

Table 5.2: Dual-socket end-of-timestep partition_master overheads across OpenMP wait
policies for CharOx:Kokkos on Intel Sandy Bridge.

END-OF-TIMESTEP PARTITION_MASTER OVERHEAD - in microseconds (% of execution) - SNB
OMP_WAIT_POLICY KMP_BLOCKTIME 16 - 163 Patches 16 - 323 Patches 16 - 643 Patches

unspecified unspecified 900.88 (0.1555%) 900.55 (0.1016%) 34.44 (0.0007%)
passive 0 59.38 (0.0109%) 55.33 (0.0066%) 113.98 (0.0022%)
passive infinite 38.73 (0.0063%) 41.10 (0.0044%) 1197.01 (0.0216%)
active infinite 9342.95 (1.4979%) 10190.70 (1.0974%) 7555.71 (0.1328%)
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5.5.1 Further Analysis

Results in Table 5.1 and Table 5.2 suggest that the overheads incurred when using

partition_master are negligible in the context of this problem. Further, the default OpenMP

wait policies are sensible for Uintah’s MPI+Kokkos hybrid parallelism approach. For

the default OpenMP wait policies, start-of-timestep partition_master overheads account

for 0.0202%, 0.0138%, and 0.0026% of the elapsed time per timestep for 163, 323, and 643

patches, respectively. For the default OpenMP wait policies, end-of-timestep partition_master

overheads account for 0.1555%, 0.1016%, and 0.0007% of the elapsed time per timestep for

163, 323, and 643 patches, respectively. Together, these partition_master overheads account

for 0.1757%, 0.1154%, and 0.0033% of the elapsed time per timestep for 163, 323, and 643

patches, respectively, for default OpenMP wait policies.

5.6 Multi-Node Studies
The strong scaling studies presented within this chapter solve the Burns and Christon

benchmark problem described in [22] and used for recent CPU- and GPU-based studies

in [54] and [56], respectively. This problem exercises the radiation physics needed for

predictive boiler simulations and the main features of Uintah’s AMR support. Specifically,

this problem calculates the radiative-flux divergence for each cell within the computational

domain. An accuracy analysis verifying Uintah’s RMCRT-based radiation model against

the Burns and Christon benchmark problem can be found in [59]. More details on Uintah’s

RMCRT-based radiation model can be found in Section 3.5.1 and [54].

The results presented within this section used the following implementations of RMCRT:

• Single-Level RMCRT:CPU: This is an existing implementation of single-level RMCRT

written to use serial tasks.

• Single-Level RMCRT:Kokkos: This is an implementation of single-level RMCRT written

for this research to use Kokkos-based data-parallel tasks.

• 2-Level RMCRT:CPU: This is an existing implementation of 2-level RMCRT written to

use serial tasks.

• 2-Level RMCRT:GPU: This is an existing implementation of 2-level RMCRT written to

use NVIDIA CUDA-based data-parallel tasks.
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• 2-Level RMCRT:Kokkos: This is an implementation of 2-level RMCRT written for this

research to use Kokkos-based data-parallel tasks.

The results presented within this section used the following implementations of Uintah’s

multi-threaded MPI scheduler:

• Parallel Execution of Serial Tasks: This is an existing implementation of Uintah’s Unified

Scheduler that executes serial tasks with parallelism across tasks using one level of

PThreads-based parallelism.

• Serial Execution of Data-Parallel Tasks: This is an implementation extending Uintah’s

Dynamic MPI Scheduler to execute Kokkos-based data-parallel tasks with parallelism

inside tasks but not across tasks using one level of OpenMP-based parallelism.

• Parallel Execution of Data-Parallel Tasks: This is an implementation rewriting Uintah’s

Unified Scheduler to use partition_master to execute Kokkos-based data-parallel tasks

with parallelism inside tasks and across tasks using two levels of OpenMP-based

parallelism.

Aside from domain decomposition subtleties discussed later in this section, experiments

have been run as in [54] and [56] with results averaged over 7 consecutive timesteps. The

absorption coefficient was initialized per [22] with a uniform temperature field. For single-

level RMCRT simulations, 100 rays were used to compute the radiative-flux divergence for

each cell. For 2-level RMCRT simulations, 100 rays were used to compute the radiative-flux

divergence for each cell on the fine level.

With the exception of GPU-based results, these results have been gathered on the KNL

Upgrade of the NSF Stampede system [114]. This portion of Stampede features the Intel

Xeon Phi 7250 Knights Landing processor and offers a variety of memory and cluster mode

configurations. These studies were conducted on Knights Landing processors configured

for Cache-Quadrant mode. With this in mind, each problem size explored fits within the 16

GB memory footprint of MCDRAM.

These studies emphasize strong scaling due to the fixed target problem that the CCMSC

aims to simulate at large scale. As such, weak scaling is not addressed due to the nature of

communication growth for this problem, which has been characterized in [54]. Specifically,
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communication grows quadratically as O(n2) with respect to the problem size, where n

corresponds to the number of communicating MPI processes. This is due to the all-to-all

nature of radiation and each MPI process needing information about the entire domain to

trace rays throughout the domain. For non-fixed size problems, weak scaling is possible

through the use of aggressive mesh refinement to reduce communication requirements as

shown in past studies [57, 69, 104].

Here, strong scaling refers to the subdivision of a fixed size problem to support increasing

node counts. A fixed number of patches was maintained per node and their size reduced to

create additional patches for additional nodes. For simulations using serial tasks, patches

were sized to enforce 1 patch per hardware thread. For simulations using data-parallel

tasks, patches were sized to enforce 1 patch per MPI process unless noted otherwise. For

2-level RMCRT simulations, coarse-level patch sizes were fixed and fine-level patch sizes

were reduced as described above.

As a whole, simulations were launched using 1 MPI process per Knights Landing

node. Within an MPI process, threads were launched in multiples of 64 to ease domain

decomposition. For simulations using serial tasks, PThreads were launched without thread

affinity. For simulations using data-parallel tasks, OpenMP threads were launched via

Kokkos using OMP_PLACES=threads and OMP_PROC_BIND=spread. Additional details on

problem setup and run configuration are discussed in individual result paragraphs.

5.6.1 Serial Execution of Data-Parallel Tasks

Figure 5.7 shows strong scaling of single-level RMCRT:Kokkos. This implementation

features serial execution of data-parallel tasks within an MPI process. This figure presents

results for three problem sizes (1283, 2563, and 5123 cells). For each problem size, MPI

processes were launched with 256 threads to utilize 4 hardware threads per core.

Figure 5.8 shows strong scaling of single-level RMCRT:CPU. This implementation

features parallel execution of serial tasks within an MPI process. This figure presents results

for three thread counts (64, 128, and 256 threads per MPI process to utilize 1, 2, and 4

hardware threads per core, respectively). For each thread count, a problem size of 1283 cells

was utilized. To enable comparisons, this plot also features single-level RMCRT:Kokkos

results from Figure 5.7 for the corresponding problem size and node counts.
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Fig. 5.7: Strong scaling results to 256 nodes for single-level RMCRT:Kokkos with serial
execution of data-parallel tasks on Stampede’s Knights Landing processors.
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Figure 5.9 shows strong scaling of 2-level RMCRT:CPU. This implementation features

parallel execution of serial tasks within an MPI process. This figure presents results for three

problem sizes (1283, 2563, and 5123 cells on the fine mesh with 323, 643, and 1283 cells on

the coarse mesh, respectively). For each problem size, MPI processes were launched with

256 threads to utilize 4 hardware threads per core. To enable comparisons, this plot also

features prior 2-level RMCRT:GPU results gathered on the DOE NVIDIA Tesla K20X-based

Titan system for the corresponding problem sizes and node counts by Alan Humphrey [56].

More details on 2-level RMCRT:GPU can be found in Section 3.5.1 and [56].

Figure 5.10 shows strong scaling of 2-level RMCRT:Kokkos. This implementation

features serial execution of data-parallel tasks within an MPI process. This figure presents

results for two problem sizes (1283 and 2563 cells on the fine mesh with 323 and 1283 cells

on the coarse mesh, respectively). For each problem size, MPI processes were launched

with 256 threads to utilize 4 hardware threads per core. To enable comparisons, this plot

also features a portion of 2-level RMCRT:CPU results from Figure 5.9 for the corresponding

problem sizes and node counts. For 2-level RMCRT:Kokkos, fine-level patches were sized

to enforce 8 fine-level patches per MPI process.

5.6.2 Parallel Execution of Data-Parallel Tasks

Figure 5.11 shows strong scaling of 2-level RMCRT:Kokkos. This implementation

features parallel execution of data-parallel tasks within an MPI process. This figure presents

results for a problem featuring 7683 cells on the fine mesh and 1923 cells on the coarse mesh.

For this problem, the fine mesh was decomposed into 110,592 patches with 163 cells per

patch. Results are presented for three run configurations (1, 4, and 32 task executor(s) with

256, 64, and 8 threads per task executor, respectively, via 1 MPI process and 256 OpenMP

threads).

5.6.3 Further Analysis

Results presented within Figure 5.8 demonstrate that as more hardware threads were

utilized per core, node-level performance increased at the expense of reduced strong scaling

efficiency. This is attributed to the strict domain decomposition requirements imposed by

the serial task execution model. Though it improved node-level performance, the utilization

of more threads per core required immediate reductions in patch size to accommodate
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Fig. 5.9: Strong scaling results to 256 nodes for 2-level RMCRT:CPU with parallel execution
of serial tasks on Stampede’s Knights Landing processors and 2-level RMCRT:GPU with
parallel execution of data-parallel tasks on Titan’s K20X GPUs.
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additional threads within an MPI process. This expedited the breakdown of scalability,

which is attributed to per-patch computation no longer sufficing to hide communication.

While this approach has suited CPU-based architectures well [54,78], these observations

suggest that serial tasks are undesirable for large-scale simulations on many-core systems

with additional support for this provided by Chapter 4. Supporting this conclusion, single-

level RMCRT:Kokkos results included within Figure 5.8 suggest that we have overcome the

scalability barrier posed by strict domain decomposition requirements through the use of

data-parallel tasks. This has been achieved with an accompanying improvement in node-

level performance, which is believed to be attributed to improvements in microarchitecture

utilization enabled via data-parallel tasks.

Comparing results presented within Figure 5.7 to those within Figure 5.9, single-level

RMCRT:Kokkos exhibited strong scaling characteristics comparable to those of 2-level

RMCRT:CPU. This is encouraging as the AMR approach utilized within 2-level RMCRT:CPU

enabled strong scaling characteristics to 262K CPU cores on the DOE Titan system that were

previously unattainable via single-level RMCRT:CPU [54]. Further, node-level performance

on Stampede’s Knights Landing processors outperformed that of Titan’s K20X GPUs.

Though the K20X is dated, this is encouraging as Titan is one of the largest systems that we

utilized at the time. For upcoming Theta and Aurora simulations, this suggests a potential

for improving boiler performance predictions through the use of finer mesh resolutions

and/or more simulated time.

Results presented in Figure 5.11 demonstrate that as more, yet smaller, task executors

were used per node, node-level performance increased at the expense of reductions in

strong scaling efficiency. This is attributed to thread scalability within individual task

executors. For 163 patches, individual tasks are executed more efficiently when using fewer

threads per task executor, resulting in more quickly executing tasks. This expedited the

breakdown of scalability, which is attributed to computation no longer sufficing to hide

communication. More efficient use of a node has allowed to speedups up to 1.62x and 1.40x

to be achieved at 27 and 1728 nodes, respectively, over the use of 1 task executor with 256

threads per task executor within an MPI process.

Perhaps more important, these results demonstrate that it is possible to achieve good

strong scaling characteristics to 442,368 threads across 1728 Knights Landing processors
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using this MPI+Kokkos::OpenMP task scheduling approach. This is encouraging as it

suggests a potential for reducing the number of per-node MPI processes by a factor of up

to the number of cores/threads per node in comparison to an MPI-only approach. This

is advantageous for many-core systems where the number of MPI processes required to

utilize increasingly larger per-node core/thread counts becomes intractable.

5.7 Summary
This work has helped advance Uintah’s preparedness for large-scale simulations on

many-core systems. Perhaps more important, it has improved our readiness for CCMSC

simulations on the DOE Theta and Aurora systems. Such readiness promotes more

productive use of our Aurora Early Science Program allocation when predicting boiler

performance for the PSAAP II project.

These advancements have been made possible by the direct adoption of Kokkos within

Uintah and the extension of Uintah’s task scheduler to support MPI+Kokkos::OpenMP.

Though already supported for GPU-based architectures, Kokkos back-ends enable data-

parallel tasks for CPU- and MIC-based architectures. These data-parallel tasks have helped

overcome the MIC-specific scalability barrier pertaining to strict domain decomposition

requirements identified in Chapter 4. The resulting flexibility in domain decomposition

and run configuration allows Uintah to accommodate larger thread counts within an MPI

process and offers greater control over the balance between local and global communication.

This has been accomplished by allowing MPI processes to utilize fewer, yet larger, patches,

improving our ability to hide communication.

These results offer encouragement as we prepare for the widespread adoption of Kokkos

throughout Uintah. Next steps include creating Uintah-specific portable abstractions to

indirectly adopt Kokkos throughout Uintah and ARCHES as a whole. For Uintah’s Aurora

Early Science Program efforts, this will encourage the adoption of Kokkos in a manner that

provides flexibility should another performance portability layer or programming model

be needed for eventual exascale systems.



CHAPTER 6

AN APPROACH FOR INDIRECTLY

ADOPTING KOKKOS

6.1 Overview
Ports in Chapter 5 relied on direct adoption of Kokkos in application code. Direction

adoption of a performance portability layer, however, poses challenges for large pre-existing

codebases that may need to preserve legacy code and/or adopt other programming models

in the future (e.g., a new programming model needed to support a novel architecture).

This is a result of reliance on the performance portability layer to provide support for new

underlying programming models. Such challenges are complicated in large pre-existing

codebases where multiple refactors are not feasible and even one refactor may require a

significant investment. Such is the case for Uintah, which aims to preserve legacy code in

addition to using Kokkos to support the use of OpenMP and CUDA.

This chapter captures work from a workshop paper by the author [49] and addresses

this challenge using an indirect adoption approach that introduces a framework-specific

portability layer between the application developer and the adopted performance portability

layer. Figure 6.1 shows an example of such an intermediate layer in the context of Uintah.

Much like how a performance portability layer eases investment in multiple programming

models, a framework-specific intermediate portability layer is needed to ease investment in

a performance portability layer.

The goal of this intermediate layer is for application developers to, hopefully, need only

adopt the layer once to support current and future interfaces to underlying programming

models. For application developers, this layer allows for easy adoption of underlying

programming models without requiring knowledge of low-level implementation details.

For infrastructure developers, this layer allows for easy addition, removal, and tuning of

interfaces behind the scenes in a single location, reducing the need for far-reaching changes



67

Future InterfaceLegacy Code Kokkos::OpenMP Kokkos::CUDA

Future ModelC/C++ OpenMP CUDA

Future ArchitectureMulticore Many-Core GPU

Uintah Intermediate Portability Layer

ToolsLoop Statements TagsData Structures

Uintah Application Code

Fig. 6.1: Structure of Uintah’s intermediate portability layer [50].

across application code.

This chapter describes the implementation of such a framework-specific portability layer 

used to address performance portability layer limitations for legacy code. This intermediate 

layer consists of three components: (1) loop-level support providing application developers 

with framework-specific abstractions (e.g., generic parallel loop statements) that map to 

interface-specific abstractions (e.g., PPL-specific parallel loop statements), (2) application-

level support that includes a tagging system to identify which interfaces are supported by a 

given loop, and (3) build-level support that includes selective compilation of loops to allow 

for incremental refactoring and simultaneous use of multiple underlying programming 

models for heterogeneous HPC systems.

This design is informed by the CCMSC’s multi-year Kokkos adoption effort adding 

portable support for OpenMP and CUDA in a complex real-world application, ARCHES. 

This ongoing effort has been non-trivial due to the codebase:

1. consisting of 1-2 million lines of complex code,

2. maintaining a divide between application code, where framework-specific abstrac-

tions are needed, and infrastructure code, where interface-specific abstractions are

implemented,

3. having hundreds of pre-existing loops to port in application code,

4. being under active development with many contributors, and



68

5. having a pre-existing userbase to support.

The resulting approach aims to ease performance portability layer adoption in similar

codebases and help improve legacy code support and long-term portability for future

architectures and programming models. Though adoption has been limited to Kokkos,

high-level ideas associated with this approach are broad enough to apply to performance

portability layers offering similar parallel loop statements such as RAJA. Note, the author

formally defined this layer with many others having helped to implement portions of this

layer. Section 6.2 provides a comprehensive overview of contributors.

To demonstrate Kokkos capabilities, three case studies using this approach are ex-

amined for challenging calculations modeling the char oxidation of coal particles and

radiative heat transfer in large-scale combustion simulations predicting the performance of

a next-generation, 1000 MWe ultra-supercritical clean coal boiler and a related simple, yet

representative, radiative particle property model loop. These case studies show the portable

use of OpenMP and CUDA via Kokkos across multicore-, many-core-, and GPU-based nodes

using a single implementation. The associated refactors have allowed for performance

improvements up to 2.7x when refactoring for portability and 2.6x when more efficiently

using a node to be achieved at the node level.

6.2 State of Uintah’s Kokkos Adoption
The non-trivial nature of Uintah’s adoption of Kokkos has required a number of small-

scale case studies and refactors [48, 50, 51, 93, 94, 113]. These individual efforts validate the

use of Kokkos:

(1) in simple representative settings outside of Uintah, (2) in simple isolated portions

of Uintah, (3) in complex isolated portions of Uintah, (4) in complex far-reaching portions

of Uintah, and (5) at scale. This incremental approach has been critical for ensuring the

continued feasibility and success of the effort given the high levels of investment required

of Uintah when adopting a performance portability layer. Refactoring the most complex

code early on has been key to identifying challenges quickly and refining best practices

to simplify refactors moving forward. Such an approach is important for this and similar

codebases where suitability must be evaluated before far-reaching adoption and significant

investment in a performance portability layer.
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Though the author has led Uintah’s adoption of Kokkos, several other Uintah developers

contributed to this effort. Key contributors include Daniel Sunderland (D.Su.), Brad Peterson

(B.P.), Damodar Sahasrabudhe (D.Sa.), Jeremy Thornock (J.T.), Derek Harris (D.H.), and

Oscar Díaz-Ibarra (O.D.-I.). Uintah’s Kokkos-related activities to date are itemized below,

with initials included for key contributors.

• Single-node case studies exploring the use of Kokkos parallel patterns with Kokkos::

OpenMP in a simple standalone example outside of Uintah’s simulation components 

[93] (D.Su., J.K.H)

• Single-node case studies exploring the use of Kokkos parallel patterns and unmanaged 

Kokkos views with Kokkos::OpenMP and Kokkos::CUDA in a mock runtime system 

representative of Uintah and the ARCHES simulation component [113] (D.Su., B.P.)

• Implementation of Uintah-specific abstractions to provide portable interfaces to 

Kokkos parallel patterns and unmanaged Kokkos views (D.Su., J.K.H., B.P., D.Sa.,

D.H.)

• Refactoring of a challenging standalone radiative heat transfer calculation outside of 

Uintah’s simulation components to support the use of Kokkos::OpenMP [48] (J.K.H.)

• Multi-node case studies exploring the use of Kokkos::OpenMP at scale on the NSF 

Stampede 2 system using the refactored radiative heat transfer calculation [48] (J.K.H.)

• Incremental refactoring of loops in ARCHES to support the use of Kokkos::OpenMP

(ongoing) (J.T., D.H., O.D.-I., J.K.H., B.P., D. Sa.)

• Implementation of a portable random number generator adopting Kokkos_Random 

functionality [94] (B.P.)

• Refactoring of the radiative heat transfer calculation to additionally support the use

of Kokkos::CUDA [94] (B.P., J.K.H.)

• Extension of Kokkos itself to support asynchronous execution of Kokkos parallel 

patterns [94] (B.P.)

• Extension of Uintah’s Unified Scheduler to support execution of individual Kokkos::

CUDA tasks [94] (B.P.)
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• Multi-node case studies exploring the use of Kokkos::OpenMP at scale on the DOE 

Theta system and use of Kokkos::CUDA at scale on the DOE Titan system using the 

refactored radiative heat transfer calculation [94] (B.P., J.K.H.)

• Implementation of a new task scheduler adopting Kokkos partitioning functionality 

to support the use of nested Kokkos::OpenMP [50] (J.K.H.)

• Implementation of portable synchronization primitives based on Kokkos MasterLock 

functionality (J.K.H.)

• Implementation of a task tagging system to allow for selective compilation of loops 

across Kokkos back-ends [50] (B.P., J.K.H.)

• Extension of Uintah’s task tagging system throughout ARCHES [50] (J.K.H., B.P.)

• Refactoring of a challenging combustion loop modeling the char oxidation of coal 

particles in ARCHES to support the use of Kokkos::OpenMP and Kokkos::CUDA [50]

(J.K.H)

• Refactoring of a simple loop weighting radiative particle properties in ARCHES to 

support the use of Kokkos::OpenMP and Kokkos::CUDA (D.H.)

• Single-node case studies exploring the use of nested Kokkos::OpenMP and Kokkos::

CUDA at the loop-level using the refactored radiative heat transfer calculation, 

refactored char oxidation model, and refactored simple loop [50] (J.K.H., B.P.)

• Multi-node case studies exploring the use of nested Kokkos::OpenMP at scale on the 

NSF Stampede 2 system using the refactored radiative heat transfer calculation [50]

(J.K.H.)

• Incremental refactoring of loops in ARCHES to additionally support the use of 

Kokkos::CUDA (ongoing) (J.K.H., D. Sa., B.P., D.H.)

• Extension of Uintah’s Unified Scheduler to support execution of multiple Kokkos::

CUDA tasks [51] (D.Sa., J.K.H.)

• Implementation of a new task scheduler to support simultaneous use of nested 

Kokkos::OpenMP and Kokkos::CUDA [51] (J.K.H.)
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• Multi-node case studies exploring simultaneous use of nested Kokkos::OpenMP

and Kokkos::CUDA using an ARCHES-based radiative heat transfer calculation and

helium plume problem [51] (J.K.H., D.Sa.)

This progress has been achieved using the following Kokkos functionality [1]:

• Kokkos::parallel_for

• Kokkos::parallel_reduce (min and sum reductions)

• Kokkos::View (unmanaged)

• Kokkos::OpenMP::partition_master

• Kokkos::Experimental::MasterLock

• Kokkos_Random

The indirect performance portability layer adoption approach that has been informed by

this progress was formally defined by the author in a workshop paper [50].

6.3 Uintah’s Intermediate Portability Layer
A fundamental abstraction shared among several performance portability layers is the

parallel loop statement. This abstraction is key to providing access to multiple underlying

programming models through a single interface. Though exact syntax and implementation

details vary, parallel loop statements generally rely upon an iteration range and a loop

body defined as a C++ lambda or functor. Figure 6.2 shows an example of simplified syntax

for Kokkos and RAJA parallel loop statements. Note, more discussion on similarities and

/ / Kokkos
parallel_for( n, KOKKOS_LAMBDA( i n t i )
BODY
);

/ / RAJA
forall <thread_exec >( 0, n, [=]( Index_type i )
BODY
);

Fig. 6.2: Simplified syntax for Kokkos and RAJA parallel loop statements from Figure 5 in a
recent evaluation [42].
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differences among modern C++ parallel programming models, including Kokkos, RAJA,

and SYCL, can be found in a recent evaluation [42] and comparative analysis [41].

For OpenMP and CUDA themselves, the parallel loop statements and other abstractions

offered by Kokkos have worked well in Uintah for the advantages discussed in Section

5.2. The high levels of investment required of Uintah when adopting Kokkos, however,

have discouraged the direct adoption of these PPL-specific abstractions. Specifically, direct

adoption of Kokkos throughout Uintah has been avoided to:

1. allow for legacy code to be preserved,

2. eliminate reliance on Kokkos to provide support for new underlying programming

models,

3. simplify abstractions provided for application developers, and

4. ease re-work should implementation changes or a different performance portability

layer be needed.

The approach taken to indirectly adopt Kokkos within Uintah uses an intermediate

portability layer to provide Uintah-specific abstractions that interact with underlying

programming models through various interfaces (e.g., implementing Kokkos-specific

abstractions behind-the-scenes). These framework-specific interfaces allow for pre-existing

code to be preserved when adopting Kokkos and, in theory, provide easy means of

adopting other programming models should Kokkos not yet support one needed for

a novel architecture. To date, Uintah’s interfaces map Uintah-specific abstractions to:

1. legacy code,

2. Kokkos-specific abstractions for Kokkos::OpenMP, and

3. Kokkos-specific abstractions for Kokkos::CUDA.

Note, individual interfaces are used for Kokkos::OpenMP and Kokkos::CUDA to ease

selective compilation of loops and provide more control over the implementation and

execution of loops.

Table 6.1 shows the individual components that form Uintah’s intermediate portability

layer. Specifically, this intermediate layer consists of three components: (1) loop-level sup-
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Table 6.1: Components of Uintah’s intermediate portability layer.
Level Component

Loopa Generic Loop Statements Mapped to Multiple Execution Schemes
Generic Data Structures Mapped to Multiple Data Structures

Applicationb Arbitrary Tags to Manage Interfaces to Programming Models
Arbitrary Execution Spaces to Manage Execution Schemes
Arbitrary Memory Spaces to Manage Data Structures
Portable Tools (e.g., Locks, Random Number Generators)

Buildc Preprocessor Macros to Manage Multiple Build Configurations
Build-Specific Tags to Manage Selective Compilation of Loops

port providing application developers with framework-specific abstractions (e.g., generic

parallel loop statements) that map to interface-specific abstractions (e.g., PPL-specific

parallel loop statements), (2) application-level support that includes a tagging system

to identify which interfaces are supported by a given loop, and (3) build-level support

that includes selective compilation of loops to allow for incremental refactoring and

simultaneous use of multiple underlying programming models for heterogeneous HPC

systems.

Figure 6.3 shows an example of how these components are implemented using the

Uintah::parallel_for. This is a framework-specific parallel loop statement modeled after

the approach used by performance portability layers. Similar to performance portability

layer goals, this abstraction aims to provide application developers with a single loop

statement that allows for easy adoption of underlying programming models without

requiring knowledge of low-level implementation details (e.g., for Kokkos). In practice,

this approach has worked well for application developers used to writing serial loops in

Uintah with little parallel programming experience. Note, this particular abstraction was

developed in collaboration with Brad Peterson.

The Uintah::parallel_for parameter list differs slightly from previous examples in that it

includes an additional parameter and requires 3-dimensional indexing. The executionObject

/ / Uintah
parallel_for( executionObject

, iterationRange
, LAMBDA( i n t i, i n t j, i n t k )

BODY
);

Fig. 6.3: Uintah’s framework-specific abstraction for parallel_for.
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parameter is a templated object used to pass non-portable objects and additional parameters

(e.g., CUDA streams, CUDA blocks per loop, template parameters used to manage paths of

execution, etc.) into portable loops for use behind-the-scenes in interfaces to underlying

programming models. Three-dimensional indexing is used to ease legacy code support

and is mapped to 1-dimensional indexing, as needed, behind the scenes. This is managed

with the help of iterationRange, which is an object used to pass iteration range indices into

portable loops. Note, LAMBDA is a generic macro for managing lambda capture clauses

and CUDA annotation (e.g., __device__) in a manner similar to that used by Kokkos and

RAJA (e.g., KOKKOS_LAMBDA, RAJA_DEVICE, RAJA_HOST_DEVICE).

Behind-the-scenes, preprocessor macros and template metaprogramming are used to

manage paths of execution for Uintah’s interfaces to underlying programming models in

a single location. For example, a Uintah::parallel_for is executed using a Kokkos::parallel_for

optimized for CUDA when Uintah is built with Kokkos::CUDA. This behind-the-scenes

management is key to easily adding, removing, and tuning interfaces (e.g., to change how a

Kokkos::parallel_for iterates over work items or, in theory, add support for another perfor-

mance portability layer’s parallel loop statement). Details on Uintah’s use of preprocessor

macros for managing multiple build configurations and custom paths of execution can be

found in Chapter 8.

A notable component of the layer that builds on this use of preprocessor macros and tem-

plate metaprogramming are the arbitrary tags used to manage interfaces to programming

models. Tags are used by application developers to indicate which back-end(s) are sup-

ported by a given task. For example, each Uintah task uses defines for UINTAH_CPU_TAG,

KOKKOS_OPENMP_TAG, and KOKKOS_CUDA_TAG. Commenting a given tag disables

execution via the related execution space (e.g., Kokko::Cuda). Uncommented tags are

mapped to the corresponding execution and memory space behind-the-scenes (e.g., #define

KOKKOS_OPENMP_TAG Kokkos::OpenMP COMMA Kokkos::HostSpace). Additional

details on task tagging can be found in Brad Peterson’s dissertation [89]. Note, the Uintah’s

task tagging system has been extended throughout ARCHES by the author as a part of this

dissertation’s research.

Another notable component of the layer is Uintah’s MasterLock class. The MasterLock

class is used to provide a general abstraction for synchronization primitives. Currently,
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std:mutex and OpenMP-based omp_lock_t primitives are supported. This class has been

helpful for avoiding the mixing of primitives and ensuring that all locks are paired with

the appropriate type to avoid deadlock. At run-time, either all std:mutex or all omp_lock_t

primitives are used based upon which scheduler is used.

6.4 Loop Refactoring
With Uintah’s intermediate portability later implemented, several key loops were then

ported to support the use of both the Kokkos::OpenMP and Kokkos::CUDA back-end.

Loops ported include single-level and 2-level RMCRT variants (Algorithm 5.2 from Chapter

5), a char oxidation model (Algorithm 5.3 from Chapter 5), and radiative particle property

model (Algorithm 6.1). RMCRT variants and the char oxidation model were chosen due

to being among the most complex loops in Uintah and, thus, used to identify challenges

sooner. The radiative property model was chosen due to being a more straightforward

loop representative of typical ARCHES loops. The key challenge for these ports related to

support for Kokkos::CUDA and primarily involved removing C/C++ functionality that

did not have CUDA equivalents. Examples include replacing the use of std::vector inside of

loops with 1-dimensional arrays of doubles, hard-coding short virtual functions inside of

loops, and replacing std::stringcomparisons inside of loops with integer-based comparisons.

6.5 Single-Node Studies
Results in Section 6.5.1 and Section 6.5.2 were gathered in collaboration with Brad

Peterson as part of the author’s workshop paper [50]. In the sections to follow, Peterson

collected Maxwell-based GPU results for RMCRT in Section 6.5.1 and CharOx in Section

6.5.2.

1: for all mesh patches do
2: for all cells in a mesh patch do
3: apply a weight to a particle’s absorption coefficient
4: store the weighted coefficient for flow cells
5: store a zero for non-flow cells

Algorithm 6.1: ARCHES Radiative Particle Property Model Loop Structure
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6.5.1 Radiation Modeling Results

This section presents results from experimental studies solving the Burns and Christon

benchmark problem described in [22]. Past Uintah-based studies solving this problem on

CPU-, GPU-, and KNL-based systems can be found in [48], [54], [56], and [94]. The studies

presented here have been run as in past studies.

The results presented within this section used the following implementations of 2-level

RMCRT:

• 2-Level RMCRT:CPU: This is an existing implementation of 2-level RMCRT written to

use serial tasks.

• 2-Level RMCRT:GPU: This is an existing implementation of 2-level RMCRT written to

use CUDA-based data-parallel tasks.

• 2-Level RMCRT:Kokkos: This is an existing implementation of 2-level RMCRT written

to use Kokkos-based data-parallel tasks. This implementation previously supported

the Kokkos::OpenMP back-end and has been refactored to support the Kokkos::Cuda

back-end as a part of this work.

SNB-based results have been gathered on a node featuring two 2.7 GHz Intel Xeon

E5-2680 Sandy Bridge processors with 8 cores (2 threads per core) per processor and 64 GB

of RAM. HSW-based results have been gathered on a node featuring four 2.5 GHz Intel Xeon

E7-8890 v3 Haswell processors with 18 cores (2 threads per core) per processor and 2,976

GB of RAM. MAX-based results have been gathered on a node featuring a Maxwell-based

NVIDIA GeForce GTX Titan X GPU with 12 GB of RAM. SKX-based results have been

gathered on a node featuring one 2.7 GHz Intel Xeon Gold 6136 Skylake processor with 12

cores (2 threads per core) per processor and 256 GB of RAM. KNL-based results have been

gathered on a node featuring one 1.3 GHz Intel Xeon Phi 7210 Knights Landing processor

configured for Flat-Quadrant mode with 64 cores (4 threads per core) and 96 GB of RAM.

Simulations were launched using 1 MPI process per node. Run configurations were

selected to use the extent of each node. Per-timestep timings correspond to timings for

execution of a timestep as a whole. Results have been averaged over 7 consecutive timesteps.

Additional details on problem setup and run configuration are discussed in individual

result paragraphs.
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Table 6.2 depicts cross-architecture comparisons for 2-level RMCRT. This table presents 

SNB-, HSW-, MAX-, SKX-, and KNL-based results for three 2-level RMCRT implementations

using a problem featuring 1283 cells on the fine mesh and 323 cells on the coarse mesh. 

Results are presented for three fine-mesh configurations (512, 64, and 8 patches with 163, 323,

and 643 cells per patch, respectively). These results demonstrate the portability of a single

codebase across many-core, multicore, and GPU-based architectures. Further, these results

suggest that no performance has been lost when moving to 2-Level RMCRT:Kokkos. Best

run configurations correspond to the fastest running run configuration among all possible

run configurations. For SNB-based results, best run configurations with 2L-RMCRT:Kokkos

have allowed for speedup up to 1.48x and 1.71x to be achieved for 163 and 323 patches, 

respectively, over previously supported run configurations using the existing non-Kokkos

implementation. For HSW-based results, best run configurations with 2L-RMCRT:Kokkos 

have allowed for speedup up to 1.53x to be achieved for 163 patches, respectively, over

previously supported run configurations using the existing non-Kokkos implementation.

Table 6.2: Single-node per-timestep timings comparing 2-level RMCRT performance across 
Intel Sandy Bridge, NVIDIA GTX Titan X, Intel Skylake, and Intel Knights Landing. Same 
Configuration indicates the use of the same run configuration as the existing non-Kokkos 
implementation. Best Configuration indicates the use of the best run configuration enabled 
by additional flexibility introduced when adopting Kokkos. (X) indicates an impractical 
patch count for a run configuration using the full node. (*) indicates the use of 2 threads per 
core. (**) indicates the use of 4 threads per core.

PER-TIMESTEP TIMINGS - in seconds (x speedup) - SNB/HSW/MAX/SKX/KNL

Architecture Implementation 512 - 163 Patches 64 - 323 Patches 8 - 643 Patches
Dual Sandy Bridge 2L-RMCRT:CPU 51.57* (-) 71.69 (-) X (-)
Same Configuration 2L-RMCRT:Kokkos 36.30* (1.42x) 55.49 (1.29x) X (-)
Best Configuration 2L-RMCRT:Kokkos 34.96* (1.48x) 42.03* (1.71x) 60.55* (-)
Quad Haswell 2L-RMCRT:CPU 12.21* (-) X (-) X (-)
Same Configuration 2L-RMCRT:Kokkos 8.81* (1.39x) X (-) X (-)
Best Configuration 2L-RMCRT:Kokkos 8.00* (1.53x) 9.94* (-) 14.91* (-)
Maxwell 2L-RMCRT:GPU 32.08 (-) 46.58 (-) X (-)
Same Configuration 2L-RMCRT:Kokkos 25.88 (1.24x) 36.66 (1.27x) X (-)
Best Configuration 2L-RMCRT:Kokkos 19.96 (1.61x) 25.60 (1.82x) 43.63 (-)
Skylake 2L-RMCRT:CPU 40.19* (-) 61.90 (-) X (-)
Same Configuration 2L-RMCRT:Kokkos 32.41* (1.24x) 46.93 (1.32x) X (-)
Best Configuration 2L-RMCRT:Kokkos 28.00* (1.44x) 36.97* (1.67x) 59.71* (-)
Knights Landing 2L-RMCRT:CPU 57.93** (-) 102.11 (-) X (-)
Same Configuration 2L-RMCRT:Kokkos 43.82** (1.32x) 80.99 (1.26x) X (-)
Best Configuration 2L-RMCRT:Kokkos 29.17** (1.99x) 38.78** (2.63x) 60.45** (-)
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For Maxwell-based results, best run configurations with 2L-RMCRT:Kokkos have allowed

for speedup up to 1.61x and 1.82x to be achieved for 163 and 323 patches, respectively, over

previously supported run configurations using the existing non-Kokkos implementation.

For SKX-based results, best run configurations with 2L-RMCRT:Kokkos have allowed for

speedup up to 1.44x and 1.67x to be achieved for 163 and 323 patches, respectively, over

previously supported run configurations using the existing non-Kokkos implementation.

For KNL-based results, best run configurations with 2L-RMCRT:Kokkos have allowed for

speedup up to 1.99x and 2.63x to be achieved for 163 and 323 patches, respectively, over

previously supported run configurations using the existing non-Kokkos implementation.

For SNB, HSW, SKX, and HSW, these results suggest that it is advantageous to use all

threads within a core.

6.5.2 Char Oxidation Modeling Results

This section presents results from experimental studies solving the char oxidation model

within ARCHES.

The results presented within this section used the following implementations of CharOx:

• CharOx:CPU: This is an existing implementation of the char oxidation model written

to use serial tasks.

• CharOx:Kokkos: This is a new implementation of the char oxidation model written to

use Kokkos-based data-parallel tasks. This implementation has been refactored to

support the Kokkos::OpenMP and Kokkos::Cuda back-ends as a part of this work.

Results have been gathered on the same nodes used for radiation modeling and de-

scribed in Section 6.5.1. Simulations were launched using 1 MPI process per node. SNB-,

HSW-, SKX-, and KNL-based problems used 1 patch per core with the exception of per-loop

throughput timings. MAX-based problems used 16 patches with the exception of per-loop

throughput timings. Note, a patch is the collection of cells assigned to a task executor. Run

configurations were selected to use the extent of each node. Per-loop timings correspond

to timings for the Uintah::parallel_for itself. Per-timestep timings correspond to timings

for execution of a timestep as a whole. Results have been averaged over 7 consecutive

timesteps. Additional details on problem setup and run configuration are discussed in

individual result paragraphs.
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Table 6.3 depicts incremental performance improvements achieved when refactoring

the char oxidation model. This table presents SNB-based results gathered using the 

CharOx:CPU implementation for three patch sizes (163, 323, and 643 cells) at various steps

of the refactor. Tasks were executed using 16 task executors with 1 thread per task executor

via 16 MPI processes. Step 0 corresponds to the original serial loop. Step 1 corresponds to 

refactoring the loop to use the Uintah::parallel_for interface described in Section 6.3. Step

2 corresponds to replacing the use of std::vector inside of the loop with 1-dimensional 

arrays of doubles. Step 3 corresponds to replacing temporary object construction inside of

the loop with 2-dimensional arrays of doubles. Step 4 corresponds to hard-coding short 

virtual functions inside of the loop. Step 5 corresponds to refactoring data warehouse 

variables to use the Uintah::KokkosView3 interface. Step 6 corresponds to replacing std::string 

comparisons inside of the loop with integer-based comparisons. Step 7 corresponds to 

restructuring the loop to improve data warehouse variable access patterns. These results 

demonstrate that performance is a by-product of refactoring for portability.

Table 6.4 depicts cross-architecture comparisons for char oxidation modeling. This 

table presents SNB-, HSW-, MAX-, SKX-, and KNL-based results gathered using the 

CharOx:Kokkos implementation with the Kokkos::OpenMP, Kokkos::Cuda, and Kokkos::

OpenMP back-ends, respectively. For SNB-based results, tasks were executed using 16 task 

executors with 1 thread per task executor via 1 MPI process and 16 OpenMP threads. For 

HSW-based results, tasks were executed using 72 task executors with 1 thread per task 

executor via 1 MPI process and 72 OpenMP threads. For MAX-based results, tasks were 

executed using 1 CUDA stream and 16 CUDA blocks per loop with 256 CUDA threads 

Table 6.3: Dual-socket per-loop timings at various steps of the CharOx:CPU refactor on 
Intel Sandy Bridge. Note, refactor steps are cumulative.

PER-LOOP TIMINGS - in milliseconds (x speedup) - SNB
CharOx:CPU Refactor Step 163 Patch 323 Patch 643 Patch
0: Original serial loop 17.87 (-) 141.80 (-) 1132.46 (-)
1: Using Uintah::parallel_for 19.19 (0.93x) 142.06 (1.00x) 1147.99 (0.99x)
2: No std::vector in loops 11.74 (1.52x) 93.72 (1.51x) 752.62 (1.50x)
3: No temporary object construction in loops 10.96 (1.63x) 88.50 (1.60x) 709.80 (1.60x)
4: No virtual functions in loops 9.75 (1.83x) 78.55 (1.81x) 634.25 (1.79x)
5: Using unmanaged Kokkos views 10.18 (1.76x) 78.61 (1.80x) 633.02 (1.79x)
6: No std::string in loops 9.16 (1.95x) 73.35 (1.93x) 591.37 (1.91x)
7: Improved memory access patterns 6.73 (2.66x) 55.19 (2.57x) 444.64 (2.55x)
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Table 6.4: Single-node per-timestep loop throughput timings comparing CharOx:Kokkos
performance across Intel Sandy Bridge, Intel Haswell, NVIDIA GTX Titan X, Intel Skylake,
and Intel Knights Landing. (X) indicates an impractical patch count for a run configuration
using the full node. (-) indicates a problem size that does not fit on the node.

PER-TIMESTEP LOOP THROUGHPUT - in milliseconds - SNB/HSW/MAX/SKX/KNL
163 Patches per Node Dual Sandy Bridge Quad Haswell Maxwell Skylake Knights Landing

16 34.60 X 9.76 28.26 X
32 69.29 X 20.71 42.59 X
64 138.49 X 41.79 84.74 117.41
128 277.08 71.93 76.69 155.89 230.96
256 554.89 140.10 150.93 312.36 461.85
512 1108.88 278.82 - 618.63 915.99
1024 2219.71 526.15 - 1234.12 1878.02
2048 4444.84 1019.46 - 2437.63 3706.70
4096 - 2000.71 - 4859.79 7356.10
8192 - 4041.47 - 9868.60 -

per block and 255 registers per thread. For SKX-based results, tasks were executed using 

12 task executors with 1 thread per task executor via 1 MPI process and 12 OpenMP threads. 

For KNL-based results, tasks were executed using 64 task executors with 4 threads per 

task executor via 1 MPI process and 256 OpenMP threads. Results are presented for 

nine patch counts (16, 32, 64, 128, 256, 512, 1024, 2048, and 4096 patches with 163 cells 

per patch). These results demonstrate the portability of a single codebase across many-

core, multicore, and GPU-based architectures. While the GPU outperforms both CPU and 

KNL, this is achieved at the expense of problem size restrictions.

Table 6.5 depicts SNB-based OpenMP thread scalability within a task executor for char 

oxidation modeling. This table presents SNB-based results gathered using the CharOx:Kokkos 

implementation with the Kokkos::OpenMP back-end for three patch sizes (163, 323, and 643 

cells). For 1 thread per core runs, tasks were executed using 1, 2, 4, 8, and 16 task executor(s) 

with 16, 8, 4, 2, and 1 thread(s) per task executor, respectively, via 1 MPI process and 16 

OpenMP threads. For 2 threads per core runs, tasks were executed using 1 and 16 task 

executor(s) with 32 and 2 threads per task executor, respectively, via 1 MPI process and 32 

OpenMP threads. These results demonstrate that it is possible to achieve good loop-level 

scalability across dual-socket Sandy Bridge. When identifying optimal run configurations, 

this suggests that task execution times may vary little across variations of task executor 

counts and sizes. Comparing 1 core per loop, 1 thread per loop timings to Step 7 timings
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Table 6.5: Dual-socket per-loop thread scalability in a task executor for CharOx:Kokkos on
Intel Sandy Bridge. All speedups are referenced against 1 core per loop, 1 thread per loop
timings. (*) indicates the use of 2 threads per core for an individual loop. (**) indicates the
use of 2 sockets for an individual loop.

PER-LOOP SCALABILITY - in milliseconds (x speedup) - SNB
Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

32* 1 2 7.36 (0.94x) 50.38 (1.11x) 426.66 (1.10x)
16 1 1 6.90 (-) 55.88 (-) 469.20 (-)
16 2 2 4.38 (1.58x) 29.34 (1.90x) 239.76 (1.96x)
16 4 4 2.54 (2.72x) 15.13 (3.69x) 120.42 (3.90x)
16 8 8 1.54 (4.48x) 7.51 (7.44x) 60.28 (7.78x)
16 16** 16 0.48 (14.38x) 3.72 (15.02x) 30.62 (15.32x)
32* 16** 32 0.41 (16.83x) 3.24 (17.25x) 26.66 (17.60x)

in Table 6.3 suggests that no performance has been lost when moving to CharOx:Kokkos.

The use of additional OpenMP threads within a task executor has allowed for speedups up

to 16.83x, 17.25x, and 17.60x to be achieved for 163, 323, and 643 cells, respectively, when

using 16 cores with 2 threads per core over the use of 1 core and 1 thread per loop. These

results suggest that 2 threads per core can be used when enough per-core work is provided.

Best per-loop timings achieve 43.59x, 43.77x, and 42.48x speedups for 163, 323, and 643 cells,

respectively, over the use of 1 Sandy Bridge core and 1 thread per loop for the original serial

loop without Kokkos (Step 0 in Table 6.3).

Table 6.6 depicts HSW-based OpenMP thread scalability within a task executor for

char oxidation modeling. This table presents HSW-based results gathered using the

CharOx:Kokkos implementation with the Kokkos::OpenMP back-end for three patch sizes

(163, 323, and 643 cells). For 1 thread per core runs, tasks were executed using 1, 2, 3, 4, 6, 8,

9, 12, 18, 24, 36, and 72 task executor(s) with 72, 36, 24, 18, 12, 9, 8, 6, 4, 3, 2, and 1 thread(s)

per task executor, respectively, via 1 MPI process and 72 OpenMP threads. For 2 threads

per core runs, tasks were executed using 1 and 72 task executor(s) with 144 and 2 threads

per task executor, respectively, via 1 MPI process and 144 OpenMP threads. These results

demonstrate that it can be difficult to achieve good loop-level scalability across quad-socket

Haswell. When identifying optimal run configurations, this suggests that task execution

times may vary little across variations of task executor counts and sizes. Comparing 1

core per loop, 1 thread per loop timings to Step 7 timings in Table 6.3 suggests that no

performance has been lost when moving to CharOx:Kokkos. The use of additional OpenMP
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Table 6.6: Quad-socket per-loop thread scalability in a task executor for CharOx:Kokkos
on Intel Haswell. All speedups are referenced against 1 core per loop, 1 thread per loop
timings. (*) indicates the use of 2 threads per core for an individual loop. (**) indicates the
use of 2 sockets for an individual loop. (***) indicates the use of 4 sockets for an individual
loop.

PER-LOOP SCALABILITY - in milliseconds (x speedup) - HSW
Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

144* 1 2 7.25 (0.97x) 50.66 (1.13x) 468.97 (1.18x)
72 1 1 7.05 (-) 57.40 (-) 553.95 (-)
72 2 2 6.33 (1.11x) 37.74 (1.52x) 276.12 (2.01x)
72 3 3 3.97 (1.78x) 26.26 (2.19x) 185.99 (2.98x)
72 4 4 3.43 (2.06x) 20.52 (2.80x) 137.48 (4.03x)
72 6 6 2.51 (2.81x) 13.79 (4.16x) 94.63 (5.85x)
72 8 8 2.16 (3.26x) 10.48 (5.48x) 73.98 (7.49x)
72 9 9 1.93 (3.65x) 9.48 (6.05x) 64.68 (8.56x)
72 12 12 1.51 (4.67x) 7.61 (7.54x) 50.63 (10.94x)
72 18 18 1.00 (7.05x) 5.16 (11.12x) 34.20 (16.20x)
72 24** 24 0.94 (7.50x) 4.25 (13.51x) 26.15 (21.18x)
72 36** 36 1.02 (6.91x) 3.81 (15.07x) 18.75 (29.54x)
72 72*** 72 0.23 (30.65x) 2.17 (26.45x) 13.62 (40.67x)

144* 72*** 144 0.40 (17.63x) 3.20 (17.94x) 27.68 (20.01x)

threads within a task executor has allowed for speedups up to 30.65x, 26.45x, and 40.67x to

be achieved for 163, 323, and 643 cells, respectively, when using 72 cores with 1 thread per

core over the use of 1 core and 1 thread per loop. These results suggest that 2 threads per

core can be used when enough per-core work is provided. Best per-loop timings achieve

77.70x, 65.35x, and 83.15x speedups for 163, 323, and 643 cells, respectively, over the use of 1

Sandy Bridge core and 1 thread per loop for the original serial loop without Kokkos (Step 0

in Table 6.3).

Table 6.7 depicts SKX-based OpenMP thread scalability within a task executor for char ox-

idation modeling. This table presents SKX-based results gathered using the CharOx:Kokkos

implementation with the Kokkos::OpenMP back-end for three patch sizes (163, 323, and

643 cells). For 1 thread per core runs, tasks were executed using 1, 2, 3, 4, 6, and 12 task

executor(s) with 12, 6, 4, 3, 2, and 1 thread(s) per task executor, respectively, via 1 MPI

process and 12 OpenMP threads. For 2 threads per core runs, tasks were executed using

1 and 12 task executor(s) with 24 and 2 threads per task executor, respectively, via 1 MPI

process and 24 OpenMP threads. These results demonstrate that it is possible to achieve

good loop-level scalability across single-socket Skylake. When identifying optimal run
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Table 6.7: Single-socket per-loop thread scalability in a task executor for CharOx:Kokkos
on Intel Skylake. All speedups are referenced against 1 core per loop, 1 thread per loop
timings. (*) indicates the use of 2 threads per core for an individual loop.

PER-LOOP SCALABILITY - in milliseconds (x speedup) - SKX
Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

24* 1 2 3.32 (0.85x) 22.78 (1.12x) 163.99 (1.20x)
12 1 1 2.81 (-) 25.60 (-) 196.86 (-)
12 2 2 2.03 (1.38x) 15.06 (1.70x) 103.77 (1.90x)
12 3 3 1.40 (2.01x) 10.13 (2.53x) 74.14 (2.66x)
12 4 4 1.01 (2.78x) 7.77 (3.29x) 54.89 (3.59x)
12 6 6 0.74 (3.80x) 5.20 (4.92x) 37.54 (5.24x)
12 12 12 0.29 (9.69x) 2.24 (11.43x) 18.63 (10.57x)
24* 12 24 0.22 (12.77x) 1.72 (14.88x) 14.09 (13.97x)

configurations, this suggests that task execution times may vary little across variations

of task executor counts and sizes. The use of additional OpenMP threads within a task

executor has allowed for speedups up to 12.77x, 14.88x, and 13.97x to be achieved for 163,

323, and 643 cells, respectively, when using 12 cores with 2 threads per core over the use of 1

core and 1 thread per loop. These results suggest that 2 threads per core can be used when

enough per-core work is provided. Best per-loop timings achieve 81.23x, 82.44x, and 80.37x

speedups for 163, 323, and 643 cells, respectively, over the use of 1 Skylake core and 1 thread

per loop for the original serial loop without Kokkos (Step 0 in Table 6.3).

Table 6.8 depicts KNL-based OpenMP thread scalability within a task executor for

char oxidation modeling. This table presents KNL-based results gathered using the

CharOx:Kokkos implementation with the Kokkos::OpenMP back-end for three patch sizes

(163, 323, and 643 cells). For 1 thread per core runs, tasks were executed using 1, 2, 4, 8,

16, 32, and 64 task executor(s) with 64, 32, 16, 8, 4, 2, and 1 thread(s) per task executor(s),

respectively, via 1 MPI process and 64 OpenMP threads. For 2 threads per core runs, tasks

were executed using 1 and 64 task executor(s) with 128 and 2 threads per task executor,

respectively, via 1 MPI process and 128 OpenMP threads. For 4 threads per core runs, tasks

were executed using 1 and 64 task executor(s) with 256 and 4 threads per task executor,

respectively, via 1 MPI process and 256 OpenMP threads. These results demonstrate that

it can be difficult to achieve good loop-level scalability across Knights Landing. When

identifying optimal run configurations, this suggests that task execution times may vary

across variations of task executor counts and sizes. As a result, the use of more, yet smaller,
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Table 6.8: Single-socket per-loop thread scalability in a task executor for CharOx:Kokkos
on Intel Knights Landing. All speedups are referenced against 1 core per loop, 1 thread per
loop timings. (*) indicates the use of 2 threads per core for an individual loop. (**) indicates
the use of 4 threads per core for an individual loop.

PER-LOOP SCALABILITY - in milliseconds (x speedup) - KNL
Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

256** 1 4 23.44 (1.17x) 150.83 (1.44x) 1232.83 (1.47x)
128* 1 2 23.48 (1.17x) 160.96 (1.35x) 1343.58 (1.35x)
64 1 1 27.36 (-) 216.79 (-) 1812.62 (-)
64 2 2 18.02 (1.52x) 114.52 (1.89x) 903.23 (2.01x)
64 4 4 9.55 (2.86x) 59.26 (3.66x) 459.39 (3.95x)
64 8 8 4.84 (5.65x) 31.18 (6.95x) 232.40 (7.80x)
64 16 16 2.62 (10.44x) 17.76 (12.21x) 122.78 (14.76x)
64 32 32 1.64 (16.68x) 10.55 (20.55x) 62.99 (28.78x)
64 64 64 0.63 (43.43x) 4.63 (46.82x) 30.79 (58.87x)

128* 64 128 0.59 (46.37x) 3.31 (65.50x) 23.57 (76.90x)
256** 64 256 1.59 (17.21x) 5.08 (42.68x) 27.19 (66.66x)

task executors have the potential to improve node utilization. The use of additional OpenMP 

threads within a task executor has allowed for speedups up to 46.37x, 65.50x, and 76.90x 

to be achieved for 163, 323, and 643 cells, respectively, when using 64 cores with 2 threads 

per core over the use of 1 core and 1 thread per loop. These results suggest that up to 4 

threads per core can be used when enough per-core work is provided. Best per-loop timings 

achieve 30.29x, 42.84x, and 48.05x speedups for 163, 323, and 643 cells, respectively, over 

the use of 1 Sandy Bridge core and 1 thread per loop for the original serial loop without 

Kokkos (Step 0 in Table 6.3).

Table 6.9 and Table 6.10 depict MAX-based CUDA block and thread scalability for 

char oxidation modeling. These tables present MAX-based results gathered using the

Table 6.9: Single-device performance for varying quantities of CUDA blocks per loop for 
CharOx:Kokkos on NVIDIA GTX Titan X using 256 CUDA threads per block. All speedups 
are referenced against 1 block per loop timings.

PER-LOOP SCALABILITY - in milliseconds (x speedup) - MAX
CUDA Blocks per Loop 163 Patch 323 Patch 643 Patch

1 2.80 (-) 18.57 (-) 147.59 (-)
2 1.47 (1.90x) 9.59 (1.94x) 77.58 (1.90x)
4 0.80 (3.50x) 5.50 (3.38x) 43.99 (3.36x)
8 0.48 (5.83x) 3.17 (5.86x) 25.57 (5.77x)
16 0.36 (7.78x) 2.29 (8.11x) 18.99 (7.77x)
24 0.28 (10.00x) 1.92 (9.67x) 13.88 (10.63x)
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Table 6.10: Single-device performance for varying quantities of CUDA threads per CUDA
block for CharOx:Kokkos on NVIDIA GTX Titan X using 4 blocks per loop. All speedups
are referenced against 128 threads per block timings.

PER-LOOP SCALABILITY - in milliseconds (x speedup) - MAX
CUDA Threads per CUDA Block 163 Patch 323 Patch 643 Patch

128 1.35 (-) 9.09 (-) 71.91 (-)
192 1.14 (1.18x) 7.12 (1.28x) 55.24 (1.30x)
256 0.80 (1.69x) 5.50 (1.65x) 43.99 (1.63x)

CharOx:Kokkos implementation with the Kokkos::Cuda back-end for three patch sizes (163,

323, and 643 cells). For Table 6.9, tasks were executed using 1 CUDA stream and 1, 2, 4, 8,

16, and 24 CUDA block(s) per loop with 256 CUDA threads per block and 255 registers

per thread. For Table 6.10, tasks were executed using 1 CUDA stream and 4 CUDA blocks

per loop with 128, 192, and 256 CUDA threads per block and 255 registers per thread. The

use of additional CUDA blocks per loop has allowed for speedups up to 10.00x, 9.67x, and

10.63x to be achieved for 163, 323, and 643 cells, respectively, when using up to 24 blocks per

loop over the use of 1 block per loop. The use of additional CUDA threads per CUDA block

has allowed for speedups up to 1.69x, 1.65x, and 1.63x to be achieved for 163, 323, and 643

cells, respectively, when using 256 threads per block over the use of 128 threads per block.

Best per-loop timings achieve 63.82x, 73.85x, and 81.59x speedups for 163, 323, and 643 cells,

respectively, over the use of 1 Sandy Bridge core and 1 thread per loop for the original serial

loop without Kokkos (Step 0 in Table 6.3).

6.5.3 Radiative Particle Properties Modeling Results

This section presents results from experimental studies solving the radiative particle

properties model within ARCHES.

The results presented within this section used the following implementations of Rad-

Prop:

• RadProp:CPU: This is an existing implementation of the radiative particle properties

model written to use serial tasks.

• RadProp:Kokkos: This is a new implementation of the radiative particle properties

model written to use Kokkos-based data-parallel tasks.
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Results have been gathered on the same nodes used for char oxidation modeling and 

described in Section 6.5.1. Simulations were launched using 1 MPI process per node. 

Run configurations were selected to use the extent of each node. Per-timestep timings 

correspond to timings for execution of a timestep as a whole. Results have been averaged 

over 7 consecutive timesteps. Additional details on problem setup and run configuration 

are discussed in individual result paragraphs.

Table 6.11 depicts incremental performance improvements achieved when refactoring 

the radiative particle properties model. This table presents SNB-based results gathered 

using the RadProp:CPU implementation for three patch sizes (163, 323, and 643 cells) at 

various steps of the refactor. Tasks were executed using 16 task executors with 1 thread 

per task executor via 16 MPI processes. Step 0 corresponds to the original serial loop. Step 

1 corresponds to refactoring the loop to use the Uintah::parallel_for interface described in 

Section 6.3. These results demonstrate that performance is a by-product of refactoring for 

portability.

Table 6.12 depicts cross-architecture comparisons for radiative particle properties mod-

eling. This table presents SNB-, HSW-, MAX-, SKX-, and KNL-based results gathered 

using the RadProp:Kokkos implementation with the Kokkos::OpenMP, Kokkos::Cuda, and 

Kokkos::OpenMP back-ends, respectively. For SNB-based results, tasks were executed 

using 16 task executors with 1 thread per task executor via 1 MPI process and 16 OpenMP 

threads. For HSW-based results, tasks were executed using 72 task executors with 1 thread 

per task executor via 1 MPI process and 72 OpenMP threads. For MAX-based results, tasks 

were executed using 1 CUDA stream and 16 CUDA blocks per loop with 256 CUDA threads 

per block and 255 registers per thread. For SKX-based results, tasks were executed using 12 

task executors with 1 thread per task executor via 1 MPI process and 12 OpenMP threads. 

For KNL-based results, tasks were executed using 64 task executors with 4 threads per task

Table 6.11: Dual-socket per-loop timings at various steps of the RadProp:CPU refactor on 
Intel Sandy Bridge. Note, refactor steps are cumulative.

PER-LOOP TIMINGS - in microseconds (x speedup) - SNB
RadProp:CPU Refactor Step 163 Patch 323 Patch 643 Patch
0: Original serial loop 78.67 (-) 591.28 (-) 4574.66 (-)
1: Using Uintah::parallel_for 17.80 (4.42x) 119.90 (4.93x) 973.45 (4.70x)
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Table 6.12: Single-node per-timestep loop throughput timings comparing RadProp:Kokkos
performance across Intel Sandy Bridge, Intel Haswell, NVIDIA GTX Titan X, Intel Skylake,
and Intel Knights Landing. (X) indicates an impractical patch count for a run configuration
using the full node. (-) indicates a problem size that does not fit on the node.

PER-TIMESTEP LOOP THROUGHPUT - in microseconds - SNB/HSW/MAX/SKX/KNL
163 Patches per Node Dual Sandy Bridge Quad Haswell Maxwell Skylake Knights Landing

16 307.91 - - 354.08 X
32 614.95 - - 540.19 X
64 1234.04 - - 1089.02 1435.31
128 2470.63 540.37 - 1991.16 2865.38
256 4925.28 1064.93 - 3972.65 5717.83
512 9840.19 2116.74 - 7793.70 11382.00
1024 19650.43 3946.78 - 15685.47 22809.94
2048 - 7661.01 - 31083.13 45686.11
4096 - 15605.85 - 62035.25 -

executor via 1 MPI process and 256 OpenMP threads. Results are presented for nine patch

counts (16, 32, 64, 128, 256, 512, 1024, 2048, and 4096 patches with 163 cells per patch). These

results demonstrate the portability of a single codebase across many-core, multicore, and

GPU-based architectures. While the GPU outperforms both CPU and KNL, this is achieved

at the expense of problem size restrictions.

Table 6.13 depicts SNB-based OpenMP thread scalability within a task executor for

radiative particle properties modeling. This table presents SNB-based results gathered

using the RadProp:Kokkos implementation with the Kokkos::OpenMP back-end for three

patch sizes (163, 323, and 643 cells). For 1 thread per core runs, tasks were executed using 1,

2, 4, 8, and 16 task executor(s) with 16, 8, 4, 2, and 1 thread(s) per task executor, respectively,

Table 6.13: Dual-socket per-loop thread scalability in a task executor for RadProp:Kokkos
on Intel Sandy Bridge. All speedups are referenced against 1 core per loop, 1 thread per
loop timings. (*) indicates the use of 2 threads per core for an individual loop. (**) indicates
the use of 2 sockets for an individual loop.

PER-LOOP SCALABILITY - in microseconds (x speedup) - SNB
Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

32* 1 2 223.88 (0.46x) 784.69 (1.01x) 5413.83 (1.19x)
16 1 1 102.43 (-) 793.02 (-) 6427.33 (-)
16 2 2 78.16 (1.31x) 499.11 (1.59x) 3549.99 (1.81x)
16 4 4 59.46 (1.72x) 259.76 (3.05x) 1852.52 (3.47x)
16 8 8 33.29 (3.08x) 115.95 (6.84x) 818.76 (7.85x)
16 16** 16 19.79 (5.18x) 74.41 (10.66x) 443.11 (14.51x)
32* 16** 32 19.00 (5.39x) 59.12 (13.41x) 356.52 (18.03x)
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via 1 MPI process and 16 OpenMP threads. For 2 threads per core runs, tasks were executed 

using 1 and 16 task executor(s) with 32 and 2 threads per task executor, respectively, via

1 MPI process and 32 OpenMP threads. These results demonstrate that it is possible to 

achieve good loop-level scalability across dual-socket Sandy Bridge. When identifying

optimal run configurations, this suggests that task execution times may vary little across 

variations of task executor counts and sizes. Comparing 1 core per loop, 1 thread per loop

timings to Step 7 timings in Table 6.11 suggests that no performance has been lost when 

moving to RadProp:Kokkos. The use of additional OpenMP threads within a task executor

has allowed for speedups up to 5.39x, 13.41x, and 18.03x to be achieved for 163, 323, and

643 cells, respectively, when using 16 cores with 2 threads per core over the use of 1 core 

and 1 thread per loop. These results suggest that 2 threads per core can be used when

enough per-core work is provided. Best per-loop timings achieve 43.15x, 43.83x, and 42.48x 

speedups for 163, 323, and 643 cells, respectively, over the use of 1 Sandy Bridge core and 1

thread per loop for the original serial loop without Kokkos (Step 0 in Table 6.11).

Table 6.14 depicts HSW-based OpenMP thread scalability within a task executor for

radiative particle properties modeling. This table presents HSW-based results gathered

Table 6.14: Quad-socket per-loop thread scalability in a task executor for RadProp:Kokkos 
on Intel Haswell. All speedups are referenced against 1 core per loop, 1 thread per loop 
timings. (*) indicates the use of 2 threads per core for an individual loop. (**) indicates the 
use of 2 sockets for an individual loop. (***) indicates the use of 4 sockets for an individual 
loop.

PER-LOOP SCALABILITY - in microseconds (x speedup) - HSW
Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

144* 1 2 340.39 (0.28x) 1125.72 (0.64x) 5883.01 (1.04x)
72 1 1 96.30 (-) 722.08 (-) 6093.75 (-)
72 2 2 232.19 (0.41x) 1103.73 (0.65x) 4943.64 (1.23x)
72 3 3 190.59 (0.51x) 770.78 (0.94x) 3432.86 (1.78x)
72 4 4 188.96 (0.51x) 552.55 (1.31x) 2675.64 (2.28x)
72 6 6 170.94 (0.56x) 356.99 (2.02x) 1783.82 (3.42x)
72 8 8 153.67 (0.63x) 284.09 (2.54x) 1296.63 (4.70x)
72 9 9 142.91 (0.67x) 247.60 (2.92x) 1121.73 (5.43x)
72 12 12 163.14 (0.59x) 235.99 (3.06x) 904.26 (6.74x)
72 18 18 137.55 (0.70x) 184.18 (3.92x) 596.30 (10.22x)
72 24** 24 178.87 (0.54x) 174.76 (4.13x) 545.12 (11.18x)
72 36** 36 187.03 (0.51x) 192.18 (3.76x) 496.12 (12.28x)
72 72*** 72 18.79 (5.13x) 88.31 (8.18x) 257.35 (23.68x)

144* 72*** 144 26.96 (3.58x) 140.62 (5.13x) 305.45 (19.95x)
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using the RadProp:Kokkos implementation with the Kokkos::OpenMP back-end for three 

patch sizes (163, 323, and 643 cells). For 1 thread per core runs, tasks were executed using 

1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, and 72 task executor(s) with 72, 36, 24, 18, 12, 9, 8, 6, 4, 3, 2, 

and 1 thread(s) per task executor, respectively, via 1 MPI process and 72 OpenMP threads. 

For 2 threads per core runs, tasks were executed using 1 and 72 task executor(s) with 144 

and 2 threads per task executor, respectively, via 1 MPI process and 144 OpenMP threads. 

These results demonstrate that it can be difficult to achieve good loop-level scalability 

across quad-socket Haswell. When identifying optimal run configurations, this suggests 

that task execution times may vary little across variations of task executor counts and sizes. 

Comparing 1 core per loop, 1 thread per loop timings to Step 7 timings in Table 6.11 suggests 

that no performance has been lost when moving to RadProp:Kokkos. The use of additional 

OpenMP threads within a task executor has allowed for speedups up to 5.13x, 8.18x, and 

23.68x to be achieved for 163, 323, and 643 cells, respectively, when using 72 cores with 1 

thread per core over the use of 1 core and 1 thread per loop. These results suggest that 2 

threads per core can be used when enough per-core work is provided. Best per-loop timings 

achieve 77.32x, 65.23x, and 83.13x speedups for 163, 323, and 643 cells, respectively, over 

the use of 1 Sandy Bridge core and 1 thread per loop for the original serial loop without 

Kokkos (Step 0 in Table 6.11).

Table 6.15 depicts SKX-based OpenMP thread scalability within a task executor for 

radiative particle properties modeling. This table presents SKX-based results gathered 

using the RadProp:Kokkos implementation with the Kokkos::OpenMP back-end for three

Table 6.15: Single-socket per-loop thread scalability in a task executor for RadProp:Kokkos 
on Intel Skylake. All speedups are referenced against 1 core per loop, 1 thread per loop 
timings. (*) indicates the use of 2 threads per core for an individual loop.

PER-LOOP SCALABILITY - in microseconds (x speedup) - SKX
Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

24* 1 2 85.70 (0.69x) 533.64 (0.85x) 3808.82 (0.94x)
12 1 1 59.13 (-) 455.37 (-) 3581.34 (-)
12 2 2 61.30 (0.96x) 418.98 (1.09x) 2179.17 (1.64x)
12 3 3 31.55 (1.87x) 397.69 (1.15x) 1463.91 (2.45x)
12 4 4 25.99 (2.28x) 256.55 (1.77x) 1096.30 (3.27x)
12 6 6 95.03 (0.62x) 163.83 (2.78x) 743.24 (4.82x)
12 12 12 15.18 (3.90x) 68.13 (6.68x) 352.61 (10.16x)
24* 12 24 14.32 (4.13x) 61.06 (7.46x) 328.25 (10.91x)
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patch sizes (163, 323, and 643 cells). For 1 thread per core runs, tasks were executed using

1, 2, 3, 4, 6, and 12 task executor(s) with 12, 6, 4, 3, 2, and 1 thread(s) per task executor,

respectively, via 1 MPI process and 12 OpenMP threads. For 2 threads per core runs, tasks

were executed using 1 and 12 task executor(s) with 24 and 2 threads per task executor,

respectively, via 1 MPI process and 24 OpenMP threads. These results demonstrate that

it is possible to achieve good loop-level scalability across single-socket Skylake. When

identifying optimal run configurations, this suggests that task execution times may vary

little across variations of task executor counts and sizes. The use of additional OpenMP

threads within a task executor has allowed for speedups up to 4.13x, 7.46x, and 10.91x to be

achieved for 163, 323, and 643 cells, respectively, when using 12 cores with 2 threads per

core over the use of 1 core and 1 thread per loop. These results suggest that 2 threads per

core can be used when enough per-core work is provided. Best per-loop timings achieve

82.23x, 82.61x, and 80.35x speedups for 163, 323, and 643 cells, respectively, over the use of 1

Skylake core and 1 thread per loop for the original serial loop without Kokkos (Step 0 in

Table 6.11).

Table 6.16 depicts KNL-based OpenMP thread scalability within a task executor for

radiative particle properties modeling. This table presents KNL-based results gathered

using the RadProp:Kokkos implementation with the Kokkos::OpenMP back-end for three

patch sizes (163, 323, and 643 cells). For 1 thread per core runs, tasks were executed using

Table 6.16: Single-socket per-loop thread scalability in a task executor for RadProp:Kokkos
on Intel Knights Landing. All speedups are referenced against 1 core per loop, 1 thread per
loop timings. (*) indicates the use of 2 threads per core for an individual loop. (**) indicates
the use of 4 threads per core for an individual loop.

PER-LOOP SCALABILITY - in microseconds (x speedup) - KNL
Total Threads Cores per Loop Threads per Loop 163 Patch 323 Patch 643 Patch

256** 1 4 992.09 (0.48x) 3215.50 (1.16x) 20491.30 (1.45x)
128* 1 2 719.39 (0.66x) 3303.79 (1.13x) 22400.40 (1.32x)
64 1 1 478.18 (-) 3728.15 (-) 29660.60 (-)
64 2 2 431.42 (1.11x) 2572.35 (1.45x) 16909.00 (1.75x)
64 4 4 287.66 (1.66x) 1444.63 (2.58x) 8257.03 (3.59x)
64 8 8 264.37 (1.81x) 648.64 (5.75x) 4111.10 (7.21x)
64 16 16 200.43 (2.39x) 409.10 (9.11x) 2109.31 (14.06x)
64 32 32 187.86 (2.55x) 314.80 (11.84x) 1144.52 (25.96x)
64 64 64 34.64 (13.80x) 146.72 (25.41x) 757.80 (39.14x)

128* 64 128 39.87 (11.99x) 214.89 (17.35x) 1013.38 (29.27x)
256** 64 256 124.55 (3.84x) 526.49 (7.08x) 2070.74 (14.32x)
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1, 2, 4, 8, 16, 32, and 64 task executor(s) with 64, 32, 16, 8, 4, 2, and 1 thread(s) per task

executor(s), respectively, via 1 MPI process and 64 OpenMP threads. For 2 threads per

core runs, tasks were executed using 1 and 64 task executor(s) with 128 and 2 threads per

task executor, respectively, via 1 MPI process and 128 OpenMP threads. For 4 threads

per core runs, tasks were executed using 1 and 64 task executor(s) with 256 and 4 threads

per task executor, respectively, via 1 MPI process and 256 OpenMP threads. These results

demonstrate that it can be difficult to achieve good loop-level scalability across Knights

Landing. When identifying optimal run configurations, this suggests that task execution

times may vary across variations of task executor counts and sizes. As a result, the use

of more, yet smaller, task executors have the potential to improve node utilization. The

use of additional OpenMP threads within a task executor has allowed for speedups up to

13.80x, 25.41x, and 39.14x to be achieved for 163, 323, and 643 cells, respectively, when using

64 cores with 1 thread per core over the use of 1 core and 1 thread per loop. These results

suggest that up to 4 threads per core can be used when enough per-core work is provided.

Best per-loop timings achieve 30.11x, 42.84x, and 48.04x speedups for 163, 323, and 643 cells,

respectively, over the use of 1 Sandy Bridge core and 1 thread per loop for the original serial

loop without Kokkos (Step 0 in Table 6.11).

6.6 Foreseable Challenges
The approach presented here is a starting point for easing the adoption of a performance

portability layer in large legacy codebases. Foreseeable challenges include understanding

how to: (1) use third party libraries using a performance portability layer in a codebase using

a performance portability layer (e.g., using hypre in Uintah while using Kokkos in both

hypre and Uintah), (2) manage increasing configurability (e.g., multiple tuneable run-time

parameters across host and device), (3) make informed use of underlying programming

models (e.g., using the device only when advantageous for a given loop), and (4) efficiently

manage parallel execution and memory across multiple underlying programming models.

6.7 Summary
This work has helped improve Uintah’s portability to current and future architectures

and programming models while also preserving support for pre-existing code. Specifically,

it has shown an approach for indirectly adopting a performance portability layer to
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help improve legacy code support and long-term portability in a large legacy codebase.

Kokkos capabilities have been shown when using this approach to make portable use

of Kokkos::OpenMP and Kokkos::CUDA across multicore-, many-core-, and GPU-based

nodes using a single implementation for the case studies examined. At the node-level,

performance improvements up to 2.7x when refactoring for portability and 2.6x when more

efficiently using a node have been achieved. At scale, good strong-scaling to 442,368 threads

across 1,728 Knights Landing processors has been achieved using MPI+Kokkos.

These advancements have been made possible by the introduction of a framework-

specific portability layer between Uintah’s application code and Kokkos. This intermediate

layer consists of three components: (1) loop-level support providing application developers

with framework-specific abstractions (e.g., generic parallel loop statements) that map to

interface-specific abstractions (e.g., PPL-specific parallel loop statements), (2) application-

level support that includes a tagging system to identify which interfaces are supported by a

given loop, and (3) build-level support that includes selective compilation of loops to allow

for incremental refactoring and simultaneous use of multiple underlying programming

models for heterogeneous HPC systems. This layer provides application developers with

easy to use portable abstractions while allowing maintaining developers to easily add,

remove, and tune interfaces to underlying programming models in a single location with

fewer far-reaching changes across application code.

The portability and performance improvements shown here offer encouragement as

we extend more of Uintah to heterogeneous HPC systems using Kokkos::OpenMP and

Kokkos::CUDA. Next steps include furthering our understanding of Kokkos use across

host and device simultaneously on heterogeneous IBM- and NVIDIA-based systems with

multiple sockets and devices per node. As a part of this, emphasis will again be placed

on long-term portability and managing simultaneous use of host and device in a portable

manner with upcoming systems such as the future Intel-based DOE Aurora and AMD-based

DOE Frontier in mind.



CHAPTER 7

A HETEROGENEOUS MPI+KOKKOS TASK

SCHEDULING APPROACH

7.1 Overview
The complexity of nodes anticipated in exascale systems poses new challenges for

codes emphasizing large-scale simulation. Asynchronous many-task runtime systems and

MPI+X hybrid parallelism approaches show promise for helping manage the increased

concurrency, deep memory hierarchies, and heterogeneity. Performance portability layers

(PPL) show promise for helping manage the architectural diversity. The combination of

these promising solutions, however, poses challenges for asynchronous many-task runtime

systems. This is a result of the rapid and varying rates of development that the other

solutions are experiencing while trying to maintain pace with current and emerging HPC

systems. Such challenges are complicated further for runtimes using third-party libraries,

whose developers are facing similar challenges, and large legacy runtimes, where the

combination may require a significant investment.

This chapter captures work from a conference paper by the author [51] and addresses

these challenges using a heterogeneous MPI+PPL task scheduling approach for combining

these solutions with additional consideration for parallel third party libraries to help

prepare such a runtime for the diverse heterogeneous systems accompanying exascale

computing. The goal of this approach is the implementation of a heterogeneous MPI+PPL

task scheduler achieving scalable adaptive execution of individually portable tasks making

simultaneous use of both the host and device through a performance portability layer

on complex heterogeneous nodes. For application developers, this scheduler allows for

easy means of improving complex heterogeneous node use without requiring extensive

knowledge of low-level details for making efficient use of the underlying hardware and

programming models. For infrastructure developers, this scheduler provides the foundation
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for a wholly portable heterogeneous MPI+PPL task scheduling approach. Here, wholly

portable refers to an approach using portable abstractions for task scheduling in addition to

portable abstractions inside individual tasks.

This chapter demonstrates this approach using a heterogeneous MPI+Kokkos task

scheduler implemented in the Uintah Computational Framework, an asynchronous many-

task runtime system, with additional consideration for hypre, a parallel library. This design

is informed by a Kokkos adoption effort adding portable support for OpenMP and CUDA

in both (1) a complex real-world application requiring the use of a parallel third-party

library, hypre [34], and (2) an asynchronous many-task runtime system, Uintah. This

ongoing effort has been non-trivial due to the codebase: (1) consisting of 1-2 million lines of

complex code, (2) maintaining a divide between application code, where accompanying

portable abstractions [49] are used, and infrastructure code, where task scheduling logic

is maintained, (3) having 100s of pre-existing loops to port in application code, (4) being

under active development with many contributors, and (5) having a pre-existing userbase to

support. The resulting approach aims to ease scheduler implementation in similar runtimes

while also helping to prepare Uintah for early use of the DOE Aurora system through the

Aurora Early Science Program. Though implementation has been limited to support for

NVIDIA GPUs, high-level ideas associated with this approach are broad enough to apply

to other GPUs.

To demonstrate task scheduling capabilities, strong scaling studies using this scheduler

with accompanying portable abstractions [49] are examined for two challenging problems

executing workloads representative of typical Uintah applications. These strong scaling

studies show heterogeneous use of OpenMP and CUDA via Kokkos across multi-socket,

multi-device nodes using a single source implementation. The associated refactors have

allowed for performance improvements up to 4.4x to be achieved when using this scheduler

and the accompanying portable abstractions [49] to port a previously MPI-Only problem

to MPI+Kokkos::OpenMP+Kokkos::CUDA to improve complex heterogeneous node use.

At scale, the use of MPI+Kokkos::OpenMP+Kokkos::CUDA has allowed for good strong

scaling to 1,024 NVIDIA V100 GPUs and 512 IBM POWER9 processors to be achieved.
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7.2 Scheduler Improvements
To support this work, Uintah’s Unified Scheduler was extended with the help of

Damodar Sahasrabudhe (D.Sa.) to address several shortcomings preventing large-scale

ARCHES simulations using the latest portable infrastructure. Shortcomings addressed are

itemized below, with initials included for key contributors.

1. The scheduler required all tasks to use the same number of halo cells to avoid excessive

synchronizations. (D.Sa., J.K.H.)

2. The scheduler supported “read-only” and “write-only” dependencies between tasks

but not “read-write” dependencies. (J.K.H., D.Sa.)

3. Scheduler logic featured multiple race conditions. (D.Sa.)

4. Hypre tasks were not GPU portable. (D.Sa.)

5. Uintah’s parallelism model did not match hypre’s most performant. (D.Sa., J.K.H.)

6. Legacy tasks were not portable. (J.K.H., D.Sa.)

7. The scheduler was based on PThreads and limited to execution of serial tasks on the

host-side. (J.K.H.)

To address (7), the device-side support from this effort was combined with the host-side

support from Chapter 5’s task scheduler. Additional details on (1) through (6) can be found

in Damodar Sahasrabudhe’s dissertation [101].

Algorithm 7.1 provides an overview of the resulting task executor logic forming the

core of the heterogeneous MPI+Kokkos task scheduler. Execution begins serially at Line

1. Execution is passed to Kokkos at Line 2 to launch multiple disjoint task executors

within an MPI process using Kokkos::OpenMP::partition_master to achieve 2 levels of portable

parallelism. Individual task executors execute Algorithm 7.1 largely independent of one

another until all tasks are computed. Note, synchronization is used as needed to ensure

data integrity (e.g., when selecting a task to execute at Line 10).

The logic in Lines 3 to 16 corresponds to a task queue-based state machine used to

coordinate data dependencies and non-trivial interactions taking place while tasks are in

flight. This state machine consists of a series of individual task queues specific to each
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1: while tasks to compute do
2: launch multiple disjoint per-MPI process task executors
3: while tasks to compute do
4: // TASK QUEUE STATE MACHINE
5: mark tasks with MPI complete as “pending halo cells”
6: initiate host-to-device/device-to-host transfers for “pending halo cells”
7: query pending host-to-device/device-to-host transfers
8: decrement dependency count for completed transfers
9: mark tasks with all dependencies complete as “ready”

10: select a “ready” task and break if a hypre task
11: mark write-only and read-write dependencies as “invalid“
12: launch “ready” task on host or device
13: mark write-only and read-write dependencies as “valid”
14: initiate MPI sends for completed tasks
15: process pending MPI receives
16: exit multiple disjoint per-MPI process task executors
17: launch hypre task using single per-MPI process task executor on host or device

Algorithm 7.1: Task Executor Logic.

action itemized in Line 5 through 15. Note for Line 5 and 6, halo cells exist as individually

allocated and transferred groups of cells independent of per-loop cell data. More details on

Uintah’s automatic halo management can be found in a recent article [92]. Note for Line 12

and 18, host or device execution is determined by the application developer using a task

tagging system implemented as a part of the portable abstractions [49] that accompany this

task scheduler.

For example, Line 5 corresponds to a task queue collecting all tasks that have been

identified as having MPI complete that are awaiting halo cells to arrive from another task

(e.g., an earlier task that modified halo cell data). After a given task has been identified as

having MPI complete and awaiting halo cells, it is pushed to the next queue, Line 6, where

host-device data movement coordinating the gathering of these halo cells is initiated. Each

individual task executor repeatedly iterates over this state machine looking for work to

process and implicitly stealing work from one another until all tasks are computed.

Uintah’s use of Kokkos::OpenMP::partition_master determines (1) how many simultane-

ously executing task executors are used in an MPI process (i.e., 1 to many) and (2) how

many compute resources are used by a given task executor (i.e., 1 to many). Together, the

two dictate how many tasks may be executed across compute resources at a given time (e.g.,

1 task across 10 cores vs. 10 tasks across 1 core each). This is a key detail for improving

node use as it provides means of controlling granularity on not only task execution itself

but actions forming the state machine in Lines 3 to 16 (e.g., to determine how many or few
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task executors are, say, initiating host-device data transfers).

In practice, individual task executors are bound to specific compute resources (e.g.,

cores) and MPI_THREAD_MULTIPLE is used to coordinate data dependencies across a

shared per-MPI process data warehouse. Binding is accomplished using a combination

of OpenMP environment variables (e.g., OMP_NUM_THREADS) and Uintah-specific run

configuration parameters (e.g., specifying the number of CUDA threads per block). More

details on Uintah’s use of Kokkos::OpenMP::partition_master be found in a recent technical

report [50]. Note, use of MPI_THREAD_MULTIPLE, where multiple threads may call MPI

with no restrictions, has proven difficult when trying to coordinate data dependencies

across a number of task executors. To ease coordination, an MPI_THREAD_FUNNELED-

based approach, where only the main thread will make MPI calls, has been proposed by

Alan Humphrey. The key difference between the two is a transition from using a single

shared data warehouse across tasks to a per-task data warehouse model. The latter eases

coordination as it eliminates the need to manage data dependencies across tasks.

A key limitation of Uintah’s current heterogeneous MPI+Kokkos task scheduler is that it

makes use of raw CUDA, which must be replaced with portable alternatives for forthcoming

exascale systems. Specifically, cudaStream, cudaMemcpyAsync, and cudaStreamQuery are

used. Line 6 makes use of cudaMemcpyAsync for asynchronous host-to-device (H2D) and

device-to-host (D2H) transfers. Line 7 makes use of cudaStreamQuery to check the status

of transfers. While limited, this use was unavoidable due to the maturity of Kokkos at the

time of early adoption.

7.3 Target Exascale Benchmarks
The results presented in this chapter used two problems previously described in Section

3.5.1 and Section 3.5.4 to uniquely stress different portions of three individually ported

codes: (1) Uintah’s ARCHES turbulent combustion simulation component [106], (2) Uintah’s

standalone linear solver using Lawrence Livermore National Laboratory’s hypre [34], and

(3) Uintah’s standalone reverse Monte-Carlo ray tracing (RMCRT) radiation model [54].

These codes are central to both CCMSC boiler simulations and subsequent combustion

research. Note, demonstrations of weak-scaling for these codes can be found in past

studies [57, 69, 104]. For RMCRT, weak scaling is possible through the use of aggressive
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mesh refinement to reduce communication requirements.

The first problem, a helium plume, demonstrates the newly portable interoperability of

(1) and (2) on a single-level structured grid. The second problem, a modified Burns and

Christon benchmark, demonstrates the newly portable interoperability of (1), (2), and (3) on

a 2-level structured adaptive mesh refinement grid. For both problems, newly ported single

source implementations with underlying support for legacy serial loops and Kokkos-based

data-parallel loops for Kokkos::OpenMP and Kokkos::CUDA were used. Note for (2), a

modified version of hypre implementing recently published techniques [103] for improving

GPU-based performance of hypre was used. Note for both, a modified version of Kokkos

implementing recently published techniques [94] for improving GPU-based performance of

Kokkos was used.

As described in Section 3.5.4, helium plume problems played a key role in CCMSC efforts

for their ability to validate ARCHES using problems with characteristics representative

of a real fire but without introducing the complexities of combustion [104]. The problem

used here consists of 125 unique portable loops individually using up to 17 variables with

complex interconnectedness. Underlying Kokkos functionality used among loops includes

Kokkos::parallel_for, Kokkos::parallel_reduce, and Kokkos::View. A key feature making this

an important problem for validating Uintah’s heterogeneous MPI+Kokkos task scheduler is

the large number of unique portable loops and variables in flight during execution. This is

helpful for ensuring robustness due to the long and complex data dependency sequences

generated by these loops (e.g., variables computed on the host, modified on the device, and

later required on the host). Note, there are domain decomposition and run configuration

dependent multipliers on unique loops not reflected in the counts above. More details on

the helium plume problem can be found in Section 3.5.4.

As described in Section 3.5.1, Uintah’s 2-level reverse Monte-Carlo ray tracing (RMCRT)

radiation model [54] also played a key role in CCMSC boiler simulations, where radiation

is the dominant mode of heat transfer. The problem used here modifies the ARCHES’

Burns and Christon benchmark problem to incorporate a pressure solve, requiring use of

hypre, and consists of 19 unique portable loops individually using up to 28 variables with

complex interconnectedness. Underlying Kokkos functionality used among loops includes

Kokkos::parallel_for, Kokkos::parallel_reduce, Kokkos::View, and Kokkos_Random. A
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key feature making this an important problem for validating Uintah’s heterogeneous

MPI+Kokkos task scheduler is the ability to simultaneously stress interoperability of

ARCHES, hypre, and RMCRT while also stressing Uintah’s adaptive mesh refinement

support. This is helpful for ensuring robustness due to the complex hand-offs that take

place between these codes (e.g., shared data dependencies). Note, there are domain

decomposition and run configuration dependent multipliers on unique loops not reflected

in the counts above. More details on the radiation problem can be found in Section 3.5.1.

7.4 Multi-Node Results
Results in Section 7.4.1 through Section 7.4.3 were gathered in collaboration with

Damodar Sahasrabudhe as part of the joint conference paper [51].

7.4.1 Lassen Results

To demonstrate scalability of Uintah’s heterogeneous MPI+Kokkos task scheduler,

strong scaling studies were performed on the DOE Lassen system. This system features

two IBM POWER9 processors with 22 cores (4 SMT threads per core) per processor, four

Volta-based NVIDIA Tesla V100 GPUs with 5,120 CUDA cores and 16 GB of HBM2 per

GPU, and 256 GB of DDR4 per node. For both problems, these studies explored varying

domain decomposition approaches using problems sized to fill the 64 GB per-node memory

footprint of HBM2. Note, additional demonstration of host-only capabilities related to this

approach can be found in Chapter 5.

For MPI+Kokkos, simulations were launched using 4 MPI processes per node. Within

an MPI process, 10 OpenMP threads were used to simultaneously launch and execute loops

across: (1) 10 cores using 1 core and 1 SMT thread per loop for Kokkos::OpenMP and (2) 1

V100 using 1 CUDA stream and 256 CUDA blocks per loop for Kokkos::CUDA with 256

CUDA threads per block. For MPI-Only, simulations were launched using 40 MPI processes

per node to execute loops using 1 core and 1 SMT thread per loop.

Problems were sized to provide each MPI process with at least 1 patch in all data points

shown. Here, a patch refers to the collection of cells executed by a loop. Note, larger

patch sizes result in fewer patches being available to distribute across MPI processes. Data

points with fewer than 1 patch per MPI process were omitted from figures. Reported

per-timestep timings measure the simultaneous execution of all loops across both the host
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and device in a given timestep. Results have been averaged over 7 consecutive timesteps.

Additional details on problem setup and run configuration are discussed in individual

result paragraphs.

Figure 7.1 shows strong scaling results for the helium plume problem on a single-level

structured grid. Results were gathered using MPI+Kokkos::OpenMP+Kokkos::CUDA for a

problem featuring 5123 cells for three patch sizes (323, 643, and 1283 cells per patch). Note

for all patches sizes, individual patches were combined to a single patch when passed to

hypre for execution using CUDA. This is done to allow Uintah to make performant use of

hypre as recently demonstrated in [103]. To enable comparisons to how this problem would

traditionally have been run using ARCHES, results were also gathered using Uintah’s

MPI-Only task scheduler for a problem featuring 5123 cells for one patch size (323 cells

per patch). Note, a single patch size is used here as the MPI-Only task scheduler does not

support running this problem with 643 and 1283 patches due to Uintah’s 1 patch per MPI

process requirement. Use of MPI+Kokkos::OpenMP+Kokkos::CUDA to improve complex

heterogeneous node use has allowed for speedups up to 2.3x and 4.4x to be achieved for

643 and 1283 cells, respectively, over MPI-Only.
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Figure 7.2 shows strong scaling results for the modified Burns and Christon benchmark

problem on a 2-level structured adaptive mesh refinement grid. Results were gathered using

MPI+Kokkos::OpenMP+Kokkos::CUDA for a problem featuring 5123 cells on the fine mesh

and 1283 cells on the coarse mesh for three fine-mesh patch sizes (323, 643, and 1283 cells per

fine mesh patch). Note for all patches sizes, individual patches were combined to a single

patch when passed to hypre for execution using CUDA. This is done to allow Uintah to make

performant use of hypre as recently demonstrated in [103]. Note, MPI-Only comparisons

are not made here as the global, all-to-all nature of the radiation model used by this problem

necessitates the use of MPI+X hybrid parallelism [54]. For MPI+CUDA comparisons, see

related MPI+CUDA and MPI+Kokkos::CUDA comparisons [49, 94] gathered on a single

node and the DOE Titan system, respectively.

7.4.2 Summit Results

To demonstrate scalability of Uintah’s heterogeneous MPI+Kokkos task scheduler,

strong scaling studies were performed on the DOE Summit system. This system features
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two IBM POWER9 processors with 22 cores (4 SMT threads per core) per processor, six

Volta-based NVIDIA Tesla V100 GPUs with 5,120 CUDA cores and 16 GB of HBM2 per

GPU, and 512 GB of DDR4 per node. For both problems, these studies explored varying

domain decomposition approaches using problems sized to fill the 96 GB per-node memory

footprint of HBM2. Note, additional demonstration of host-only capabilities related to this

approach can be found in Chapter 5.

For MPI+Kokkos, simulations were launched using 6 MPI processes per node. Within

an MPI process, 7 OpenMP threads were used to simultaneously launch and execute loops

across: (1) 7 cores using 1 core and 1 SMT thread per loop for Kokkos::OpenMP and (2) 1

V100 using 1 CUDA stream and 256 CUDA blocks per loop for Kokkos::CUDA with 256

CUDA threads per block.

Problems were sized to provide each MPI process with at least 1 patch in all data points

shown. Here, a patch refers to the collection of cells executed by a loop. Note, larger

patch sizes result in fewer patches being available to distribute across MPI processes. Data

points with fewer than 1 patch per MPI process were omitted from figures. Reported

per-timestep timings measure the simultaneous execution of all loops across both the host

and device in a given timestep. Results have been averaged over 7 consecutive timesteps.

Additional details on problem setup and run configuration are discussed in individual

result paragraphs.

Figure 7.3 shows strong scaling results for the helium plume problem on a single-level

structured grid. Results were gathered using MPI+Kokkos::OpenMP+Kokkos::CUDA for

three problem sizes (7683, 15363, and 30723 cells) and two patch sizes (643 and 1283 cells

per patch). Note for all patches sizes, individual patches were combined to a single patch

when passed to hypre for execution using CUDA. This is done to allow Uintah to make

performant use of hypre as recently demonstrated in [103].

Figure 7.4 shows strong scaling results for the modified Burns and Christon benchmark

problem on a 2-level structured adaptive mesh refinement grid. Results were gathered

using MPI+Kokkos::OpenMP+Kokkos::CUDA for three problem sizes (7683, 15363, and

30723 cells on the fine mesh with 1923, 3843, and 7683 cells on the coarse mesh, respectively)

and one patch size (643 cells per patch). Note for all patches sizes, individual patches were

combined to a single patch when passed to hypre for execution using CUDA. This is done
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to allow Uintah to make performant use of hypre as recently demonstrated in [103].

7.4.3 Frontera Results

To demonstrate scalability of Uintah’s heterogeneous MPI+Kokkos task scheduler,

strong scaling studies were performed on the NSF Frontera system. This system features

two Intel Cascade Lake processors with 28 cores per processor and 192 GB of DDR4 per node.

For both problems, these studies explored varying domain decomposition approaches using

problems sized similar to DOE Lassen runs. Note, additional demonstration of host-only

capabilities related to this approach can be found in Chapter 5.

For MPI+Kokkos, simulations were launched using 1 MPI processes per node. Within

an MPI process, 56 OpenMP threads were used to simultaneously launch and execute

loops across: (1) 56 cores using 28 cores per loop for Kokkos::OpenMP. For hypre, both 14

endpoints with 4 threads per endpoint and 8 endpoints with 7 threads per endpoint were

used to provide at least 1 patch per endpoint.

Problems were sized to provide each MPI process with at least 1 patch in all data points

shown. Here, a patch refers to the collection of cells executed by a loop. Note, larger

patch sizes result in fewer patches being available to distribute across MPI processes. Data

points with fewer than 1 patch per MPI process were omitted from figures. Reported

per-timestep timings measure the simultaneous execution of all loops across both the host

and device in a given timestep. Results have been averaged over 7 consecutive timesteps.

Additional details on problem setup and run configuration are discussed in individual

result paragraphs.

Figure 7.5 shows strong scaling results for the helium plume problem on a single-level

structured grid. Results were gathered using MPI+Kokkos::OpenMP for three problem

sizes (2563, 5123, and 10243 cells) and one patch sizes (323 cells per patch). Note for all

problem sizes, hypre was used with 14 endpoints and 4 threads per endpoint during initial

scaling data points and with 8 endpoints and 7 threads per endpoint during final scaling

data points to provide at least 1 patch per endpoint. This is done to allow Uintah to make

performant use of hypre as recently demonstrated in [103].

Figure 7.6 shows strong scaling results for the modified Burns and Christon benchmark

problem on a 2-level structured adaptive mesh refinement grid. Results were gathered
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using MPI+Kokkos::OpenMP for three problem sizes (2563, 5123, and 10243 cells on the fine

mesh with 643, 1283, and 2563 cells on the coarse mesh, respectively) and one patch size

(323 cells per patch). Note for all problem sizes, hypre was used with 14 endpoints and 4

threads per endpoint during initial scaling data points and with 8 endpoints and 7 threads

per endpoint during final scaling data points to provide at least 1 patch per endpoint. This

is done to allow Uintah to make performant use of hypre as recently demonstrated in [103].

7.4.4 Further Analysis

Results in Figure 7.1 through 7.6 show that good strong scaling to 24,576 GPUs and 8,192

processors is possible using MPI+Kokkos. This is encouraging as it suggests a potential for

this heterogeneous MPI+Kokkos task scheduler to reduce the gap between development

time and our ability to run on heterogeneous systems requiring other underlying program-

ming models. This is advantageous for expediting Uintah’s ability to support forthcoming

exascale systems such as the Intel-based DOE Aurora and AMD-based DOE Frontier.

Results in Figure 7.2 show that for a compute-dominant problem, it is possible to

achieve good strong scaling across multi-socket, multi-device nodes using an asynchronous

many-task model. Results in Figure 7.1 show that for a communication-dominant prob-

lem, it can be difficult to achieve performance across multi-socket, multi-device nodes

using an asynchronous many-task model. This is not unexpected given the additional

overheads (i.e., for data movement) incurred between the host and device on such nodes.

As shown in Figure 7.1, offloading fewer, yet larger, patches to the device can be used to

improve node-level performance at the expense of reductions in strong scaling efficiency for

communication-dominant problems. These results suggest that care must be taken when

using an asynchronous many-task model on multi-socket, multi-device nodes. Though per-

formance improvements are achievable when using the full node, performance reductions

are also possible when overdecomposing a simulation domain too far.

Comparing 323 patch MPI-Only results in Figure 7.1 to 643 patch and 1283 patch

MPI+Kokkos results in Figure 7.1 shows that it is possible for Uintah application developers

to improve node-level performance with relative ease using this scheduler and the accom-

panying portable abstractions [49] to port legacy serial loops to OpenMP and CUDA via

Kokkos. This is encouraging as the wholesale refactoring of ARCHES loops to additionally



107

support the use of Kokkos::OpenMP and Kokkos::CUDA has been largely naive with

ample opportunity to improve performance. The ease with which this has been achieved

is attributed to Kokkos abstractions aligning well with Uintah’s loop-based asynchronous

many-task model. For ARCHES, this has spared application developers having to, for

example, learn CUDA and write individual kernels for the triple-digit files comprising this

simulation component. This is advantageous as it allows application developers to expedite

scientific efforts.

7.5 Foreseable Challenges
The approach presented here is a starting point for achieving portable heterogeneous

MPI+PPL task scheduling in an asynchronous many-task runtime system. Foreseeable

challenges include understanding how to: (1) coordinate host-device data movement in

a portable manner, (2) efficiently coordinate host-device data movement in the context of

an asynchronous many-task model, (3) coordinate MPI in a simpler manner (e.g., using

MPI_THREAD_FUNNELED to allow only the main thread to make MPI calls), (4) execute

tasks using parallel third party libraries among tasks using a performance portability layer,

and (5) automate the decision of when to use the host or device for portable tasks (e.g., to

make informed use of the device).

7.6 Summary
This work has helped improve Uintah’s portability to complex heterogeneous systems.

Specifically, it has shown an approach for heterogeneous MPI+PPL task scheduling to help

prepare an asynchronous many-task runtime system for the diverse heterogeneous systems

accompanying exascale computing. This approach combines three individual solutions

offering promise for making efficient use of the complex nodes anticipated in these systems:

(1) asynchronous many-task runtime systems, (2) MPI+X hybrid parallelism approaches,

and (3) performance portability layers. This is done with additional consideration for

parallel third-party libraries facing similar challenges related to (2) and (3).

This approach has been demonstrated using a heterogeneous MPI+Kokkos task sched-

uler implemented in the Uintah Computational Framework, an asynchronous many-task

runtime system, with additional consideration for hypre, a parallel third party library.

Kokkos capabilities have been shown for two challenging problems using this scheduler
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and the accompanying portable abstractions [49] to execute workloads representative of

typical Uintah applications across multi-socket, multi-device nodes while making hetero-

geneous use of OpenMP and CUDA via Kokkos with a single source implementation.

Performance improvements up to 4.4x have been achieved when using this scheduler and

the accompanying portable abstractions [49] to port a previously MPI-Only problem to

Kokkos::OpenMP and Kokkos::CUDA to improve complex heterogeneous node use. At

scale, good strong-scaling to 24,576 NVIDIA V100 GPUs and 8,192 IBM POWER9 processors

has been achieved using MPI+Kokkos::OpenMP+Kokkos::CUDA.

The portability and performance improvements shown here offer encouragement as we

prepare Uintah for the diverse heterogeneous systems accompanying exascale computing.

Next steps include extending Uintah’s intermediate portability layer [49] to support Kokkos’

default host and device spaces to make quicker use of underlying programming models.

For Uintah’s Aurora Early Science Program efforts, this will improve the speed with which

we can support Kokkos::OpenMPTarget for running on the Intel GPUs anticipated in the

DOE Aurora system. For Uintah’s emphasis on maintaining broad support for major HPC

systems, this will allow the speed with which we can implement, refine, and extend Uintah’s

more formal support for future major HPC systems. As a part of this, emphasis will be

placed on generalizing CUDA-specific code used in Uintah’s heterogeneous MPI+Kokkos

task scheduler to achieve more portable heterogeneous MPI+Kokkos task scheduling.



CHAPTER 8

LESSONS LEARNED

8.1 Overview
This chapter collects lessons learned while designing the heterogeneous MPI+PPL task

scheduling approach for asynchronous many-task runtime systems [51] (Chapter 7) and

the indirect performance portability layer adoption approach for large legacy codes [49]

(Chapter 6). As a whole, these lessons offer insights into opportunities to ease implemen-

tation of both the task scheduler [51] and the accompanying portable abstractions [49]

making scalability demonstrations in Chapter 7 possible. These lessons are informed by the

CCMSC’s multi-year Kokkos adoption effort adding portable support for Kokkos::OpenMP

and Kokkos::CUDA in a complex real-world application and representative asynchronous

many-task runtime system, Uintah. This ongoing effort has been non-trivial due to the

codebase:

1. consisting of 1-2 million lines of complex code,

2. maintaining a divide between application code, where framework-specific abstrac-

tions are needed, and infrastructure code, where interface-specific abstractions are

implemented,

3. having hundreds of pre-existing loops to port in application code,

4. being under active development with many contributors, and

5. having a pre-existing userbase to support.

An example of the non-trivial nature of the codebase can be seen in Uintah’s input-driven

variable creation. Global variables shared across a simulation domain are initially specified

by name in an XML-based input file by the application developer. At run-time, input

files are parsed to obtain variable names, which are commonly assigned to a string-based
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temporary variable in application code. These string-based temporary variables are then

used to register the global variable with the runtime system. Once registered, these same

strings are then used to access the associated data in application code and commonly

assigned to a temporary variable of the associated data type.

Figure 8.1 shows an example of how variable names may differ in application code.

Here, the runtime system knows this variable as “volFraction” (e.g., for debugging output).

However, application code uses this variable as “vol_fraction” (e.g., for calculations). Such

naming conventions are problematic as they make it difficult to debug and isolate issues to

a given file or line of code. This is a result of the variant known to the runtime system being

searchable among inputs alone, while the variant known to application code may be used

throughout countless tasks or files.

The primary lesson learned is that performance portability is difficult and non-trivial for

existing asynchronous many-task runtime systems. This is a result of the many-task model

inherently having data dependencies and tasks in abundance with potentially long and

complex data dependency sequences, which, for example, greatly complicate debugging.

While porting may appear straightforward, the combinatorially increasing data dependency

sequences to consider as task graphs grow and flexibility in where and how tasks may

execute make it easy to introduce unanticipated changes for a given back-end(s) and

requires great attention to detail when porting to ensure correctness across all back-ends.

Performance portability is further complicated for runtimes with (1) existing application

code, where application developers may have an abundance of over-engineered and/or

non-portable code, and (2) problems that execute different subsets of partially overlapping

portable loops, where fixes to one problem may break another problem.

High-level lessons learned include:

• Collaborate Closely: Maintaining a divide between application code and infrastruc-

ture code with separate developers for each makes close collaboration critical for

improving productivity. Porting efforts related to this research were slowed by, for

std:: string m_volFraction_name = "volFraction";
register_variable(m_volFraction_name , ...);
auto vol_fraction = tsk_info ->getField <...>( m_volFraction_name);

Fig. 8.1: Multiple naming conventions for a single shared variable, volFraction.
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example, application developers over-engineering solutions in application code that

posed barriers to portability.

• Favor Simplicity: It is difficult to support a wide range of underlying programming

models with a single source implementation. Porting efforts related to this research

were slowed by, for example, having to replace unnecessarily complex data structures

with plain-old-data variants in application code.

• Offer Flexibility: Decomposing problems into a collection of tasks results in a wide

variety of performance characteristics across tasks. Performance improvements related

to this research were more easily achieved by, for example, using the flexibility offered

in where and how tasks are run to improve node use for individual problems.

• Standardize Code: The interconnectedness of data dependencies and tasks when using

a many-task model makes standardized code (e.g., formatting, naming conventions,

whitespace) critical for improving productivity. Far-reaching changes and debugging

efforts related to this research were slowed by, for example, inconsistent naming

conventions used across different files.

• Test Often: It is easy to introduce unanticipated changes in portable code due to

emphasis on executing a single source implementation in many different ways. Early

efforts related to this research were made unnecessarily complicated by, for example,

allowing application developers to port code without proper test coverage.

• Work Incrementally: Decomposing problems into a collection of tasks results in a wide

variety of ways in which individual tasks can be combined to produce individual

problems. Porting efforts related to this research were slowed by, for example, starting

to port code using unnecessarily complex problems executing large numbers of tasks.

The sections to follow capture detailed loop-level, application-level, build-level, and

general lessons learned resulting from this effort.
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8.2 Loop-Level Lessons
8.2.1 Portable Code Inside of Portable Abstractions

A key benefit of performance portability layers is their ability to execute a single source

implementation in many different ways. This, however, is not guaranteed by adopting

a portable abstraction itself. This is complicated by underlying programming models

supporting code to different extents (e.g., convenience mechanisms). Understanding what

can and cannot be done in portable loops is helpful for ensuring successful compilation and

execution across multiple underlying programming models. This is eased by keeping code

in portable loops as simple as possible.

Examples of changes needed in pre-existing loops to make portable use of OpenMP and

CUDA via Kokkos in Uintah include:

1. eliminating the use of C++ standard library classes and functions that do not have

CUDA equivalents,

2. copying object data members into local variables to pass them into a portable loop,

and

3. eliminating allocation of host memory in portable loops.

8.2.2 Implementation of Portable Loops

Portable loop abstractions bring with them implementation challenges independent

of whether they are adopted directly or indirectly. This is a result of great flexibility in

where and how execution and memory are managed. This is complicated by pre-existing

serial loops where parallel execution and thread safety need not be accounted for. Thinking

through the implementation and execution of portable loops is important for improving

loop-level performance and scalability.

Implementation and execution details found helpful when adopting Kokkos in Uintah

include:

1. ensuring that portable loops are written in a thread-safe manner,

2. ensuring that portable loops are provided with enough work items to iterate over in

parallel (e.g., at least as many work items as there are OpenMP threads),

3. using lambdas instead of functors (e.g., to avoid duplication of long parameter lists),
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4. considering how to structure portable loops (e.g., 1D, 3D, etc.),

5. considering how portable loops iterate over work items (e.g., individually or in

groups),

6. considering how portable loops utilize underlying hardware (e.g., cores, caches, etc.),

7. exploring configurability of underlying programming models (e.g., OpenMP loop

scheduling parameters), and

8. adding run-time parameters to manage execution (e.g., OpenMP threads per loop,

CUDA blocks per loop, etc.).

For (1), tools such as Archer [7], Intel Inspector, and ThreadSanitizer [105] are helpful for

identifying data races.

8.3 Application-Level Lessons
8.3.1 Portable Code Outside of Portable Abstractions

A key benefit of performance portability layers is their ability to reduce the amount of

duplicated code in an application. This, however, applies only to the portable abstractions

adopted. In practice, application code extends beyond portable abstractions (e.g., in

large legacy codebases). Looking for opportunities to apply portable techniques used

by performance portability layers elsewhere in application code is important for improving

long-term portability and code maintainability.

Examples encountered when adopting Kokkos in Uintah include using behind-the-

scenes preprocessor macros and template metaprogramming to add portable support for:

1. arbitrary tags to manage interfaces to underlying programming models (e.g., for

selective compilation of loops),

2. arbitrary execution spaces to manage loop execution schemes,

3. arbitrary memory spaces to manage data structures, and

4. an object to pass interface-specific needs into portable loops (e.g., CUDA streams).
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8.3.2 Portable Tools for Application Code

Commonly used tools (e.g., C++ standard library convenience mechanisms) pose

portability challenges when using multiple underlying programming models. This is

a result of underlying programming models supporting such tools to different extents.

This is complicated by pre-existing loops using non-portable tools (e.g., in large legacy

codebases). Thinking through which portable tools to support before the far-reaching

adoption of a performance portability layer is important for avoiding unexpected refactors.

Portable tools found helpful when adopting Kokkos in Uintah include portable:

1. vector containers,

2. synchronization mechanisms,

3. random number generation, and

4. mechanisms for simultaneously executing portable loops.

In Kokkos, portable options for (1), (3), and (4) include Kokkos::Vector, Kokkos_Random, and

Kokkos::OpenMP::partition_master, respectively. For (2), a Uintah-specific abstraction based

on Kokkos::Experimental::MasterLock was implemented to avoid mixing use of std::mutex and

omp_lock_t. Details on Uintah’s use of Kokkos::OpenMP::partition_master can be found in a

recent technical report [50].

8.3.3 Support for Tasks Using Third Party Libraries

Third-party libraries pose interoperability challenges when used in a parallel codebase.

This is a result of each supporting parallelism in potentially different capacities (e.g., MPI-

Only vs. MPI+X hybrid parallelism). This is complicated by differing rates of development

and preferred models of execution (e.g., MPI+X to improve node use for a global, all-to-all

algorithm). Thinking through how to accommodate tasks using third-party libraries is

important for avoiding performance and thread-safety issues.

Examples found helpful when adopting a heterogeneous MPI+PPL task scheduling

approach in Uintah include:

1. implementing individual interfaces to underlying programming models used by

third-party libraries,
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2. modifying third-party libraries to more closely align parallelism approaches,

3. separating execution of tasks using third-party libraries from other tasks, and

4. using MPI endpoints [29] to accommodate third-party libraries performing best with

an MPI-only parallelism approach.

8.3.4 Granularity of Host-Device Data Movement

A key benefit of the asynchronous many-task model is the adaptive execution of tasks.

Limitless adaptive execution, however, does not guarantee performance on heterogeneous

systems where data movement between the host and device must be considered. This is

complicated by lightweight tasks whose running time may not justify associated overheads.

Thinking through mechanisms for managing the granularity of data movement is helpful

for ensuring performance across broad applications.

Examples found helpful when adopting a heterogeneous MPI+PPL task scheduling

approach in Uintah include supporting the ability to:

1. group individual patches into a single larger patch,

2. group individual tasks into a single larger task,

3. specify the number of task executors used on the host to launch kernels on the device,

and

4. restrict portable tasks from being able to execute on the device (i.e., leaving a portable

task on the host to avoid host-device data movement altogether).

8.3.5 Coordination of Host-Device Data Movement

Heterogeneous systems pose thread-safety challenges when using both the host and the

device. This is a result of data associated with an individual task being able to reside on

(1) the host, (2) the device, or (3) both the host and the device. This is complicated by the

asynchronous many-task model, where data dependencies and tasks are in abundance with

potentially long and complex data dependency sequences. Looking for opportunities to

ease the coordination of data movement (e.g., identifying where data resides, whether data

is ready to use, etc.) is important for avoiding data integrity issues.
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Examples found helpful when adopting a heterogeneous MPI+PPL task scheduling

approach in Uintah include supporting the ability to:

1. using bit sets and boolean logic to monitor data movement status (e.g., to identify

when data is valid on the host, invalid on the device, awaiting halo cells, etc. and

similar to a cache coherence protocol),

2. allocating memory to accommodate the largest number of halo cells used across tasks

for a given variable,

3. restricting the use of underlying programming models to one per task (i.e., to avoid

data residing in multiple locations for tasks using multiple parallel patterns), and

4. enforcing continuous use of either the host or device for a given task.

8.4 Build-Level Lessons
8.4.1 Support for Multiple Build Configurations

Adoption of multiple underlying programming models requires careful consideration

of new build configurations and paths of execution. This is complicated by heterogeneous

HPC systems requiring the simultaneous use of multiple underlying programming models

(e.g., OpenMP and CUDA) to fully utilize a heterogeneous compute node. Thinking through

how to manage current and future build configurations before the far-reaching adoption of

a performance portability layer is important for avoiding unexpected refactors.

Recurring paths of execution encountered when adopting Kokkos in Uintah include:

1. code needed for the underlying programming model independent of the performance

portability layer (e.g., OpenMP locks),

2. code needed for the performance portability layer independent of the underlying

programming model(s) (e.g., Kokkos Views), and

3. code needed for the performance portability layer dependent upon the underlying

programming model(s) (e.g., Uintah-specific abstractions for Kokkos::OpenMP).

Consistent use of standardized preprocessor macros simplifies the management of

such paths. An example of a macro definition for (1) is HAVE_<BACK-END>, which is
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defined when the application picks up the underlying programming model. An example

of a macro definition for (2) is HAVE_<PPL>, which is defined when the application

picks up the performance portability layer. An example of a macro definition for (3) is

<APP>_ENABLE_<PPL>_<BACK-END(S)>, which is defined when both the application

and the performance portability layer pick up the underlying programming model(s). Note,

preprocessor macros helpful for identifying when Kokkos itself picks up the underlying

programming model(s) can be found in kokkos/core/src/Kokkos_Macros.hpp.

When using multiple underlying programming models, preprocessor macro logic to

support (3) becomes complicated quickly. This posed unexpected challenges requiring

additional refactors when adding support for Kokkos::OpenMP and Kokkos::CUDA in the

same Uintah build. The use of preprocessor macros explicitly identifying code specific to

such builds (e.g., UINTAH_ENABLE_KOKKOS_OPENMP_CUDA) is helpful for simplifying

logic and readability. Note, heterogeneous builds can be simplified using the nvcc_wrapper

Linux shell script found on the Kokkos GitHub.

8.4.2 Selective Compilation of Portable Loops

The use of portable abstractions across multiple loops poses challenges when adding

support for additional underlying programming models. This is a result of every portable

loop having to properly support the newly adopted programming model to avoid breaking

builds. It is not feasible, however, to refactor all loops at once (e.g., to remove non-portable

code) after portable abstractions have been widely adopted throughout a codebase.

This challenge has been addressed using a tagging system that allows application

developers to individually identify each loop’s supported interfaces. These tags are used to

ensure that loops are compiled for only the respective underlying programming models that

are supported to avoid breaking builds. This allows for incremental refactoring on a loop-

by-loop basis when adding support for additional programming models, eliminating the

need to refactor all loops at once. This approach also simplifies the isolation of problematic

code by allowing loops to be easily enabled/disabled across programming models when

debugging.

Such a tagging system has been implemented in Uintah using preprocessor macros and

template metaprogramming. At compile-time, a portable loop is compiled for all interfaces
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identified as being currently supported by application developers using macro-based

tags (e.g., KOKKOS_OPENMP_TAG). Behind-the-scenes, provided tags are mapped to

their respective underlying execution and memory spaces (e.g., Kokkos::OpenMP and

Kokkos::HostSpace). At run-time, the portable loop is executed by one of the supported

underlying programming models based upon build-specific paths of execution and Uintah-

specific template parameters (e.g., ExecSpace and MemSpace). Uintah-specific template

parameters extend those used by Kokkos to allow for other non-Kokkos execution spaces

and memory spaces to be supported (e.g., Uintah::Legacy and Uintah::HostSpace to preserve

legacy code). This approach is used to improve the long-term portability of execution and

memory spaces for future interfaces and underlying programming models.

8.5 General Lessons
8.5.1 Far-Reaching Test Coverage and Regular Testing

Far-reaching test coverage and regular testing of a codebase is critical for easing the

adoption of a performance portability layer. This is a result of it being inherently easy to

introduce unanticipated changes in portable code due to emphasis on executing a single

source implementation in many different ways. This is complicated by combinatorially

increasing scenarios to consider for newly introduced underlying programming models,

build configurations, and run configurations. Test scenarios found helpful when adopting

Kokkos in Uintah include testing:

1. each underlying programming model,

2. relevant combinations of underlying programming models,

3. each build configuration,

4. serial execution of portable loops, and

5. parallel execution of portable loops.

Such testing is crucial for codebases where multiple tests execute different subsets of

partially overlapping portable loops, which makes it easier to introduce unanticipated

changes.
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8.5.2 Intermediate Portability Layers

Portability layers require a significant investment from large legacy codebases. This

is a result of such codebases having existing code to maintain and users to support.

Intermediate portability layers ease this investment by allowing legacy code to be preserved,

underlying portability layers (e.g., Kokkos, RAJA) to be centrally managed, and adoption of

an underlying portability layer to take place incrementally. An example of an intermediate

portability layer can be found in Chapter 6.

8.5.3 Standardization of Adopted Portability Layers

The far-reaching adoption of a portability layer poses code maintainability and debug-

ging challenges. This is a result of portable loops relying upon each other for successful

compilation and execution. Standardization of newly adopted portability layers eases these

challenges by improving searchability to simplify far-reaching changes (e.g., to add support

for a new interface) and debugging (e.g., to quickly identify all code using a given interface).

An example of standardization applied to Uintah’s intermediate portability layer includes

consistent formatting, naming conventions, and whitespace.

8.5.4 Living Best Practices

Pre-existing loops pose refactoring challenges when incrementally adopting a perfor-

mance portability layer in a large legacy codebase. This is a result of not knowing both what

and how much non-portable code is used in loops before adoption. This is complicated

by loops having different barriers to portability. Maintaining a living document collecting

best practices and portability barriers from past refactors helps simplify refactors moving

forward.

8.5.5 Incremental Case Studies

Carefully selected case studies are helpful for evaluating a performance portability layer

before far-reaching adoption and significant investment. Two types of case studies used to

ease the adoption of Kokkos in Uintah include those examining:

1. the most complex code and

2. simple representative code.
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Case studies using (1) identified challenges quickly and informed best practices. Examples

of (1) include loops with complicated nesting hierarchies, extensive use of C/C++ function-

ality, complex data structures, etc. Case studies using (2) evaluated the representative

performance of more typical portable loops and refined best practices. Examples of

(2) include loops with recurring patterns throughout the codebase, simple math, etc.

Results from past Uintah case studies can be found in a technical report [50] and other

publications [48, 49, 51, 93, 94, 113].

8.5.6 Run Configuration Parameters

The asynchronous many-task model requires careful consideration of run configuration

parameters. This is a result of applications being decomposed into a number of individual

tasks that is typically much larger than the number of compute resources (e.g., cores). This

is complicated by combinatorially increasing configurations to consider as MPI processes

span more hardware and individual tasks with different arithmetic intensities, running

times, and scalability. Thinking through where and how to manage run configuration

parameters is important for ease of use and code maintainability. An example found helpful

when adopting a heterogeneous MPI+PPL task scheduling approach in Uintah has been

to apply a global run configuration across tasks based on user-defined run configuration

parameters with defaults applied when not provided.

8.5.7 Thread Scalability

A key benefit of adding loop-level parallelism is the ability to make cooperative use of

compute resources (e.g., cores, caches, etc.). Limitless scaling, however, does not guarantee

performance as thread scalability must be considered. This is complicated by loops having

different scaling characteristics. Thinking through how many threads to use per loop and

how many loops to execute simultaneously is important for improving performance. An

example found helpful when adopting a heterogeneous MPI+PPL task scheduling approach

in Uintah has been to explore performance of all available run configurations to identify the

optimal run configuration for a given problem.
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8.5.8 Debugging Output

Debugging output is critical for improving productivity when implementing portable

heterogeneous tasks. This is a result of the inherent interconnectedness of data depen-

dencies and tasks when using an asynchronous many-task model. This is complicated by

combinatorially increasing data dependency sequences to consider as task graphs grow and

flexibility in where and how tasks may execute. Offering debugging output to monitor the

flow of data movement and task execution is helpful for improving productivity. Examples

found helpful when adopting a heterogeneous MPI+PPL task scheduling approach in

Uintah include output identifying:

1. the underlying programming model used by each task,

2. variables computed, modified, and/or required by each task,

3. halo cell and neighboring data requirements for each variable,

4. data movement status for each task, and

5. task execution order.

8.5.9 Differing Rates of Development

Use of multiple third-party libraries poses development challenges when codes are

under active development. This is a result of each moving at different rates of development.

This is complicated by each having different resource constraints. Thinking through how

to maintain pace across codes is important for improving productivity. Examples found

helpful when adopting a heterogeneous MPI+PPL task scheduling approach in Uintah

include:

1. avoiding custom patches,

2. merging code regularly,

3. using pull requests, and

4. collaborating closely.
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8.6 Summary
These lessons learned have helped ease the adoption of a heterogeneous MPI+PPL task

scheduling approach in Uintah [51] (Chapter 7) and ease indirect adoption of a performance

portability layer in Uintah [49] (Chapter 6). As a whole, these lessons offer insights into

opportunities to ease implementation of both the task scheduler [51] and the accompanying

portable abstractions [49] making scalability demonstrations in Chapter 7 possible. These

lessons are informed by the CCMSC’s multi-year Kokkos adoption effort adding portable

support for Kokkos::OpenMP and Kokkos::CUDA in a complex real-world application and

representative asynchronous many-task runtime system, Uintah.

While many are general software engineering best practices, use of an intermediate

portable layer is becoming common practice when adopting a performance portability

layer. Uintah’s indirect adoption of Kokkos through such a layer has made it possible to (1)

preserve legacy code for existing users, (2) reduce reliance on Kokkos for new underlying

programming models, and (3) further simplify portable abstractions for non-CS application

developers. Similar approaches are taken by AMReX [122–124] and HPX [26, 45, 62, 63]. For

HPX, indirect adoption is also used to extend Kokkos parallel pattern functionality (e.g., to

return futures).



CHAPTER 9

CONCLUSIONS AND FUTURE WORK

This dissertation has helped improve Uintah’s node use, legacy code support, and

long-term portability to complex heterogeneous systems. Specifically, it has helped address

challenges relating to the complexity of nodes anticipated in exascale systems. These

challenges include understanding how to manage the increased concurrency, deep memory

hierarchies, and heterogeneity to make efficient use of such nodes, as well as understanding

how to manage the increasing architectural diversity with systems such as the DOE

Aurora [5] and DOE Frontier [84] to include Intel- and AMD-based GPUs, respectively.

Two promising solutions were explored for addressing these challenges: (1) asynchronous

many-task runtime systems and (2) performance portability layers.

This research aimed to demonstrate how a performance portability layer can be adopted

in a large asynchronous many task runtime system to achieve scalable performance portabil-

ity for large-scale simulations on current and emerging HPC systems featuring diverse mi-

croarchitectures. This aim has been achieved by indirectly adopting Kokkos, a performance

portability layer, in Uintah, a representative asynchronous many-task runtime system,

and extending Uintah’s heterogeneous MPI+X task scheduling capabilities to support

heterogeneous MPI+Kokkos task scheduling using Kokkos::OpenMP and Kokkos::CUDA

on the host and device, respectively. This dissertation shows that it is possible to combine

these promising solutions for exascale computing in a scalable manner for real-world

applications with good strong scaling achieved across Intel Knights Landing- and Intel

Cascade Lake-based many-core systems and IBM POWER9 and NVIDIA Volta-based

heterogeneous systems. The portability and performance improvements shown throughout

this dissertation offer encouragement as we prepare Uintah for the diverse heterogeneous

systems accompanying exascale computing, specifically for DOE Aurora runs through the

Aurora Early Science Program.
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For CCMSC goals, this dissertation’s research marks notable progress towards the

end goal of an exascale-capable runtime system. This has been made possible through

incremental improvements to Uintah’s MPI+X task scheduling approach. Paired with the

use of a performance portability layer, these advancements lay the foundation for a wholly

portable task scheduling approach allowing one to use exascale systems when they arrive.

It must be noted that this progress is the result of several collaborative efforts among the

CCMSC, most notably with Brad Peterson and Damodar Sahsrabudhe.

Contributions and future work are summarized in subsequent sections.

9.1 Uintah’s MPI+PThreads
Task Scheduling Approach

Chapter 4 examined Intel Xeon Phi performance in the context of Uintah’s MPI+PThreads

task scheduling approach. This evaluation explored several thread placement strategies

with special attention to the Intel Knights Corner’s 61st core. Single-node experiments

have shown that many-core architectures such as the Intel Knights Corner require greater

attention to run configuration and domain decomposition as demonstrated by 10.1%

performance differences across run configurations on Intel Sandy Bridge compared to

performance differences up to 149.3% on Knights Corner [47]. Multi-node experiments

have shown that Uintah’s MPI+PThreads task scheduling approach’s need to decompose

a simulation domain into more, yet smaller, patches to support additional threads is not

conducive to scalability, especially when problem sizes are limited by the Knights Corner

memory footprint.

9.2 An MPI+Kokkos::OpenMP
Task Scheduling Approach

Chapter 5 described two approaches taken to portably address domain decomposition

challenges related to Uintah’s use of serial tasks. The first approach implemented a task

scheduler enabling serial execution of data-parallel tasks within an MPI process. This

implementation achieved good strong scaling characteristics to 65,536 threads across 256

Knights Landing processors with node-level performance improvements up to 3.00x [48]

for a key algorithm refactored to use Kokkos. Though this approach addressed domain

decomposition challenges, it also identified thread scalability challenges related to serial
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execution of portable Kokkos-based data-parallel tasks within an MPI process.

The second approach implemented a task scheduler enabling parallel execution of

data-parallel tasks within an MPI process. This implementation achieved good strong

scaling characteristics to 442,368 threads across 1,728 Knights Landing processors with

performance improvements up to 1.62x demonstrated at scale and little overhead added

(< 0.2% per timestep) [49] for a key algorithm refactored to use Kokkos. This approach

addressed thread scalability challenges by allowing fewer threads to be used per task

for cases when tasks struggle to scale across large core counts. Ultimately, this approach

formed the foundation for the OpenMP-based host-side capabilities of the heterogeneous

MPI+Kokkos task scheduling approach in Chapter 7.

9.3 An Approach for Indirectly Adopting Kokkos
Chapter 6 described an approach for indirectly adopting a performance portability layer

to help improve legacy code support and long-term portability in a large legacy codebase.

The goal of this intermediate layer is for application developers to, hopefully, need only

adopt the layer once to support current and future interfaces to underlying programming

models.

For application developers, this layer allows for easy adoption of underlying pro-

gramming models without requiring knowledge of low-level implementation details.

For infrastructure developers, this layer allows for easy addition, removal, and tuning

of interfaces behind the scenes in a single location, reducing the need for far-reaching

changes across application code. This layer has made possible node-level performance

improvements up to 2.63x in Uintah when porting key loops to the associated parallel

patterns to more efficiently using a node [49].

9.4 A Heterogeneous MPI+Kokkos
Task Scheduling Approch

Chapter 7 described an approach taken to portably address Uintah’s heterogeneous

task execution needs. This approach implemented a task scheduler enabling simultaneous

use of Kokkos on both host and device. The resulting implementation achieved good

strong scaling characteristics to 8,192 IBM POWER9 processors and 24,576 NVIDIA V100

GPUs with performance improvements up to 4.4x when using this scheduler and the
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accompanying portable abstractions to port a previously MPI-Only problem to use both host

and device [51]. Completion of this scheduler in collaboration with Damodar Sahasrabudhe

marks a significant step forward for the CCSMC as a whole for the many individual efforts

through the years that have worked towards this exascale computing goal.

9.5 Lessons Learned
Chapter 8 provided lessons learned that have helped ease the adoption of a het-

erogeneous MPI+PPL task scheduling approach in Uintah [51] (Chapter 7) and ease

indirect adoption of a performance portability layer in Uintah [49] (Chapter 6). As a

whole, these lessons offer insights into opportunities to ease implementation of both the

task scheduler [51] and the accompanying portable abstractions [49] making scalability

demonstrations in Chapter 7 possible. These lessons are the result of careful reflection on

Uintah’s Kokkos adoption effort as a whole.

9.6 Future Work
9.6.1 Generic Host and Device Support

Uintah’s intermediate portability layer is limited to the use of Kokkos::OpenMP and

Kokkos::CUDA back-ends for the host and device, respectively. While this eased rapid de-

velopment, hard-coded use of Kokkos back-ends hindered Uintah’s long-term portability to

exascale systems requiring different back-ends for the device (e.g., Kokkos::OpenMPTarget).

This hard coding was unavoidable due to the complexity of Uintah’s infrastructure, use of

raw CUDA for GPU-specific paths of execution, and maturity of Kokkos at the time of early

adoption.

This proposed direction suggests extending Uintah’s intermediate portability layer

to additionally support Kokkos’ default host and device execution spaces. This may be

achievable by extending Uintah’s task tagging system to support two new tags for default

spaces and porting both application code and infrastructure code using tags to support the

newly added tags. As a part of this, Uintah’s support for multiple build configurations

would also need to be extended to ensure that standardized preprocessor macros used

throughout Uintah to manage back-end specific paths of execution are managed correctly.

Such an extension has the potential to improve the speed with which Uintah can run on new

systems requiring different underlying programming models (e.g., Kokkos::OpenMPTarget
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for the Intel-based GPUs to appear in the DOE Aurora system).

The key challenge for this proposed direction will be understanding how to generalize

Uintah’s data structures and related infrastructure to support arbitrary memory spaces.

This adds new complexity due to Uintah’s many convenience mechanisms for managing

data (e.g., specialized data types) and use of raw CUDA for GPU support. A risk associated

with this direction is that mixing hard-coded use of back-ends and default back-ends

makes specialized paths of execution unintuitive for the user (i.e., application developers).

Accomplishing this proposed direction will pave the way for faster prototyping when new

underlying programming models are available for use in Kokkos (e.g., to help stress test

Kokkos itself).

9.6.2 Portable Heterogeneous MPI+PPL Task Scheduling

Uintah’s heterogeneous MPI+Kokkos task scheduler is not yet wholly portable. While

individual tasks themselves are portable, task executor logic used to schedule and execute

tasks makes use of raw CUDA (e.g., cudaStream, cudaMemcpyAsync, and cudaStream-

Query). This use was unavoidable due to the functionality used and maturity of Kokkos at

the time of early adoption.

This proposed direction suggests generalizing task executor logic in Uintah’s heteroge-

neous MPI+Kokkos task scheduler to allow other back-ends to be used on the device (e.g.,

Kokkos::OpenMPTarget). This may be achievable using Kokkos instance functionality

to replace the use of cudaStream objects. As a part of this, portable alternatives for

initiating asynchronous host-to-device transfers and checking if a transfer is complete are

also needed to replace use of cudaMemcpyAsync and cudaStreamQuery, respectively. Such

generalization has the potential to improve the speed with which Uintah can run on new

systems requiring different underlying programming models (e.g., Kokkos::OpenMPTarget

for the Intel-based GPUs to appear in the DOE Aurora system).

The key challenge for this proposed direction will be identifying portable abstractions

suitable for scheduling and executing portable tasks across a diverse set of underlying

programming models. This adds new complexity for scenarios where underlying program-

ming models offer unique abstractions not found in others. A risk associated with this

proposed direction is that underlying programming models are too dissimilar and portable
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abstractions are not feasible. Accomplishing this proposed direction will pave the way for

defining AMT-related portable abstractions for task scheduling and execution (e.g., to help

refine Kokkos’ HPX functionality).

9.6.3 Improving Per-MPI Process Task Throughput

The MPI+Kokkos task scheduling approaches introduced by this work are limited to

using the same number of threads for all tasks executed by a given problem. While this

simplifies task scheduling, it lends itself to poor use of cores and threads when executing

serial tasks (i.e., non-Kokkos) and/or parallel tasks (e.g., Kokkos::OpenMP) with loops that

do not scale well across the designated number of threads. This inefficiency is unavoidable

due to the diverse mix of tasks and loops within Uintah and its applications. For example,

ARCHES has approximately 500 loops ranging from 1 line of code to approximately 800

lines of code with an average of 20 lines of code.

This proposed direction suggests extending the MPI+Kokkos task scheduling approach

to support using either 1 thread or multiple threads to compute tasks executed by a given

problem. This may be achievable by using Kokkos partitioning functionality recursively in

task executors to sub-divide a group of threads designated for executing 1 task at a time

with n threads per task into a group of threads designated for executing n tasks at a time

with 1 thread per task. Such an extension has the potential to improve node use by avoiding

idle threads within task executors when executing a serial task and reducing performance

penalties when executing a parallel task with loops that do not scale.

The key challenge for this proposed direction will be understanding how to indicate

OpenMP thread placement when recursively using Kokkos partitioning functionality. This

adds new complexity when groups of threads may feature different levels of nesting

and requires new task scheduling logic to differentiate and selectively execute tasks.

A risk associated with this proposed direction is that the cost of additional scheduling

logic may outweigh performance improvements offered by improved task throughput.

Accomplishing this proposed direction will pave the way for more intricate thread group

management approaches (e.g., dynamic sizing of thread groups based on thread scalability).
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9.7 Summary
In summary, this dissertation demonstrates that the proposed approaches for improving

asynchronous many-task runtime node use work well across the largest of HPC systems

that we have access to (i.e., Summit). Though much work remains to enable wholly portable

task scheduling, we know what needs to be done and have articulated a clear path forward

among future work discussed here. As a part of this, a substantial yet well-understood

refactor of the code is needed to support new back-ends (e.g., Kokkos::OpenMPTarget) for

future exascale systems.
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