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Fig. 10. Detailed Glider Path Analysis. The video shows the editing of the path of a glider. When a control
point is moved (2D view, right) the sample positions for the time series along the resulting path are recomputed,
triggering updates in the time-series view (left) for detailed analysis.
Please use Adobe Reader ≥ 9 to enable the video.

Aden to the Arabian Sea and the Persian Gulf. The
exact covered area extends from 9◦ N to 30◦ N, and
32◦ E to 77◦ E on a 1/10◦ × 1/10◦ (corresponding
to 9.6km to 11km) grid with 50 vertical layers. The
months of January to March 2004 were simulated and
the assimilation cycle was three days, resulting in a
dataset of 30 sampled time steps, with of 50 members,
each consisting of 450× 210 samples.

Underwater gliders [5], [46], [49] are autonomous
sea vehicles consuming very little energy. They move
without a propeller, only by means of changing their
volume, for example by de- or inflating an external
oil bladder, and shifting of weight. Recently Smith
et al. [48] proposed improving glider operations by
the use of an ocean model and Kalman filtering. The
reasons to use ocean forecasts when planning the
paths of a glider are diverse. Naturally, the positions
of moving eddies are important when one wants
to sample data inside these eddies. In addition to
this, the energy consumption of the gliders can be
judged more precisely when currents along the path
are known. Strong currents can also be used as an
accelerator, to minimize energy consumption or move
the gliders to a desired position more quickly.

In our system, planning the path of a glider is sim-
ilar to planning the position of an off-shore structure,
as described in Section 5.1. First, the user gathers an
overview of the eddy positions and their movements
over time, using any of the spatial views. Again, the
exploration starts with the definition of an area of
interest. After that, the user would look at the eddy
probability map (or risk estimate), as well as the eddy
centers in the 2D and 3D spatial views. In combination
with the visualization of the eddy centers, animat-
ing over the eddy probability maps of the different
samples of the time-series one can easily identify
moving and more stationary eddies and plan the path
accordingly. The path itself is then defined by placing
waypoints in the 2D view. By assigning a velocity

to the glider, the positions along the resulting path,
corresponding to the available samples of the time-
series of the forecast, can be computed. Waypoints
can be edited, simply by dragging them within the 2D
view. The available positions will automatically be re-
computed on the fly. The positions along the path, for
which forecast data is available are highlighted in the
spatial views, with extra emphasis on the point in time
which is currently active in the view. All available
positions can be shown in the time-series view. When
planning a path, the view behaves differently com-
pared to planning a single fixed position, as described
above. While the x-axis still corresponds to the time,
each glyph does not only reflect a point in time, but
is also created from the data at the grid point along
the path computed for this point in time. Figure 10
shows typical adjustments to a path. The user drags
one of the waypoints, resulting in variations of the
length of the adjacent path segments and thus updates
of the positions of the available samples of the time-
series along the path. The time-series view updates
immediately, showing the detailed information for
each of the positions along the path over time.

6 CONCLUSION
In this work we have presented an interactive, inte-
grated system for the visualization, exploration and
analysis of heightfield ensemble data. The core of
our framework, which consists of statistical analysis
and rendering, is implemented in an efficient GPU-
based pipeline. We have illustrated the utility of our
framework for two real-world applications based on
ocean forecasting. We developed the system in close
collaboration with domain expert partners, who now
use it on a regular basis. For the future we would like
to conduct a formal user study.

In the current state our framework requires the
whole dataset to be available in GPU-memory at any
point in the pipeline. Even though GPU-memory is
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getting larger and larger, this is an obvious prob-
lem when scaling to very large data. However, the
statistics can all be computed based on the histogram.
For the future we plan to implement a streaming
approach for computing the histogram, i.e. loading
the data into GPU memory in slabs and computing
the histogram slab by slab. Since the histogram is
of constant size, this would eliminate the problem of
computing statistics for very large data.

We would also like to explore the possibilities to
deploy our framework in a broader set of application
scenarios, different from ocean forecasting. While vi-
sualization of weather and climate forecasts are obvi-
ous targets, completely different areas like analysis of
time series of geospatial measurements [50] might also
profit from this kind of analysis. In previous work [13]
we present the application of our framework for
interpretation of seismic tomography data.
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