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Abstract

In this thesis, adjoint error estimation techniques are applied to complex elastohydro-

dynamic lubrication (EHL) problems. A functional is introduced, namely the friction, and

justification is provided as to why this quantity, and hence its accuracy, is important. An

iterative approach has been taken to develop understandingof the mechanisms at work.

A series of successively complex cases are proposed, each with adjoint error estimation

techniques applied to them. The first step is built up from a model free boundary prob-

lem, where the cavitation condition is captured correctly using a sliding mesh. The next

problem tackled is a hydrodynamic problem, where non-linear viscosity and density are

introduced. Finally, a full EHL line contact problem is introduced, where the surface

deforms elastically under pressure. For each case presented, an estimate of a finer mesh

friction, calculated from solutions obtained only on a coarse mesh, is corrected according

to the adjoint error estimation technique. At each stage, care is taken to ensure that the

error estimate is computed accurately when compared against the measured error in the

friction.

Non-uniform meshes are introduced for the model free boundary problem. These non-

uniform meshes are shown to give the same excellent predictions of the error as uniform

meshes. Adaptive refinement is undertaken, with the mesh being refined using the adjoint

error estimate. Results for this are presented for both the model free-boundary problem

and the full EHL problem. This is shown to enable the accuratecalculation of friction

values using an order of magnitude fewer mesh points than with a uniform mesh.

Throughout this thesis, standard numerical techniques forcalculating EHL solutions

have been used. That is, regular mesh finite difference approximations have been used to

discretise the problem, with multigrid used to efficiently solve the equations, and spatial

adaptivity added through multigrid patches. The adjoint problems have been solved using

standard linear algebra packages.

i



Acknowledgements

In alphabetical order, I would like to thank all four of my supervisors, Professor Mar-

tin Berzins, Dr. Christopher Goodyer, Professor Peter Jimack, and Professor Laurence

Scales, whose help, advice, patience and support I have not only needed, but appreciated

immensely. I’d also like to thank Dr. Roger Fairlie, Dr. HangLeung, and Dr. Mark

Walkley for much the same, sharing their knowledge, giving advice, and helping me to

keep the faith. Since Eleanore Boullier has put up with the worse of the mood swings and

erratic working hours, it’s only fitting that she comes next on the bill, along with my mum,

dad, and brother. Without their combined support, I’d neverhave made it even close to

this far.

This work was funded through an EPSRC CASE studentship with Shell Global Solu-

tions.

ii



Contents

1 Introduction 1

2 Background to EHL 5

2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Reynolds equation . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Film thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Force balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . .. 10

2.3 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Single grid solution . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Force balance (H0) update . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 FAS multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Multilevel multi-integration . . . . . . . . . . . . . . . . . . .. 20

2.5 A brief history of EHL modelling . . . . . . . . . . . . . . . . . . . . .21

2.5.1 Overview of numerical methods for EHL problems . . . . . .. . 21

2.5.2 Adaptive EHL . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



2.5.3 Free boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.4 Surface roughness . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Background to Adjoints 26

3.1 Adjoint background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Adjoint error estimation . . . . . . . . . . . . . . . . . . . . . . . . . .. 27

3.3 A less rigorous view of adjoints . . . . . . . . . . . . . . . . . . . . .. 30

3.4 Example problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 The forward problem . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Cubic spline interpolation . . . . . . . . . . . . . . . . . . . . . . . .. . 34

3.6 Sparsity patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Friction as a Quantity of Interest 38

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Pressure spike resolution and friction . . . . . . . . . . . . . .. . . . . . 41

4.4 Domain size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 A Model Free Boundary Problem 47

5.1 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.3 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.4 Sliding grid solution method . . . . . . . . . . . . . . . . . . . . 50

iv



5.1.4.1 1: Solve forP . . . . . . . . . . . . . . . . . . . . . . 51

5.1.4.2 2: FindXc . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.4.3 3: FindH0 . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.4.4 Overall algorithm . . . . . . . . . . . . . . . . . . . . 53

5.2 Adjoint problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Adjoint right-hand side . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.3 Sparse matrix solution method . . . . . . . . . . . . . . . . . . . 57

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Uniform mesh results . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.2 Non-uniform and adaptive mesh results . . . . . . . . . . . . .. 59

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Hydrodynamic Lubrication 67

6.1 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.3 Solution process . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Adjoint problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Residual equations . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1.1 Expanded equations . . . . . . . . . . . . . . . . . . . 71

6.2.1.2 Compact equations . . . . . . . . . . . . . . . . . . . 72

6.3 Jacobian sparsity for the expanded system . . . . . . . . . . . .. . . . . 73

6.3.1 Expanded Jacobian derivation . . . . . . . . . . . . . . . . . . . 73

6.3.2 Differentiating theRi residual equations . . . . . . . . . . . . . . 75

v



6.3.3 Differentiating theRη i
equations . . . . . . . . . . . . . . . . . . 76

6.3.4 Differentiating theRρ i
equations . . . . . . . . . . . . . . . . . . 76

6.3.5 Differentiating theRH0 andRXc equations . . . . . . . . . . . . . 77

6.3.6 The right-hand side of the adjoint system . . . . . . . . . . .. . 77

6.4 Jacobian sparsity for the compact system . . . . . . . . . . . . .. . . . . 78

6.4.1 Compact Jacobian derivation . . . . . . . . . . . . . . . . . . . . 80

6.4.2 Evaluation of∂Ri
∂Pj

. . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.3 Evaluation of∂Ri
∂H0

. . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.4 Evaluation of∂Ri
∂Xc

. . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4.5 Differentiating theRH0 andRXc equations . . . . . . . . . . . . . 85

6.4.6 The right-hand side of the adjoint system . . . . . . . . . . .. . 85

6.5 Adjoint solution method and results . . . . . . . . . . . . . . . . .. . . 86

6.5.1 Expanded Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 EHL Line Contact Problems 93

7.1 Uniform mesh EHL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2.1 Continuous mathematical model . . . . . . . . . . . . . . . . . . 94

7.2.2 Residual equations . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.3 Solution method: Newton-Raphson boundary solve . . . .. . . . 96

7.3 Jacobian for adjoint solution . . . . . . . . . . . . . . . . . . . . . .. . 96

7.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3.2 Residual equation differentiation . . . . . . . . . . . . . . .. . . 99

vi



7.4 Choice of viscosity model . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 Uniform mesh results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5.1 Forward-solution profiles . . . . . . . . . . . . . . . . . . . . . . 103

7.5.2 Pure rolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5.3 Sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6 Adaptive EHL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6.1 Adaptive solution process . . . . . . . . . . . . . . . . . . . . . 111

7.6.2 Mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.6.3 Film thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.7 Non-uniform mesh results . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Discussion 119

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.2.1 Overall speed and efficiency . . . . . . . . . . . . . . . . . . . . 120

8.2.2 2D point contact EHL . . . . . . . . . . . . . . . . . . . . . . . 121

8.2.3 Advanced constitutive models . . . . . . . . . . . . . . . . . . . 122

8.2.4 Transient EHL . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 124

Appendix 133

vii



List of Figures

2.1 Simplification steps to get 1D line contact geometry . . . .. . . . . . . . 7

2.2 High level EHL numerical solution algorithm . . . . . . . . . .. . . . . 16

2.3 Schematic of a multigrid V-cycle . . . . . . . . . . . . . . . . . . . .. . 19

3.1 The sparsity pattern for an example Jacobian system, with zero Dirichlet

boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 The transposed sparsity pattern for an example Jacobiansystem, with zero

Dirichlet boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Non-dimensional pressure plot of a line contact problemwith increasing

mesh resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Non-dimensional pressure plot around spike with increasing mesh reso-

lution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Non-dimensional film thickness plot of a line contact problem with in-

creasing mesh resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Total friction through the contact calculated with increasing mesh resolution 44

4.5 Shear stress profiles with increasing grid resolution for a line contact case 45

4.6 Calculated friction against length of inlet domain for increasing grid res-

olution in a line contact case . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 A uniform computational mesh . . . . . . . . . . . . . . . . . . . . . . .49

5.2 The three cases for the right-hand boundary derivative .. . . . . . . . . . 52

viii



5.3 Model problem solution algorithm . . . . . . . . . . . . . . . . . . .. . 53

5.4 Model problem Jacobian sparsity pattern . . . . . . . . . . . . .. . . . . 56

5.5 Three possible finite difference stencils for the interface between refine-

ment levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6 Plot showing the absolute value of the correction vector, and how it is dis-

tributed through local mesh refinement, for a model free boundary prob-

lem; L = 5, χ = 20.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Plot showing error reduction for uniform and adaptive grids for a model

free boundary problem;L = 5, χ = 20.0 . . . . . . . . . . . . . . . . . . 64

5.8 Plot showing the absolute value of the correction vector, and how it is dis-

tributed through local mesh refinement, for a model free boundary prob-

lem; L = 5, χ = 0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Expanded Jacobian sparsity pattern for the hydrodynamic line contact

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Compact Jacobian sparsity pattern for the hydrodynamicline contact prob-

lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Pressure and viscosity solutions for the hydrodynamic problem;L = 1309 88

6.4 Pressure and density solutions for the hydrodynamic problem;L = 1309 . 88

6.5 Adjoint solutions for the hydrodynamic problem;L = 1309, slide-roll ra-

tio = 0.0 (pure rolling) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Adjoint solutions for the hydrodynamic problem;L = 1309, slide-roll ra-

tio = 0.0 (pure rolling) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.7 Comparison of solution residuals forP, η, andρ for the hydrodynamic

problem;L = 1309, slide-roll ratio = 0.0 (pure rolling) . . . . . . . . . . 90

6.8 Comparison of correction contributions forP, η , andρ for the hydrody-

namic problem with the expanded Jacobian system;L = 1309, slide-roll

ratio = 0.0 (pure rolling) . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ix



7.1 EHL pressure profiles for a series of loadings;L = 20000, 40000, 60000,

80000 and 100000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 EHL film thickness profiles for a series of loadings;L = 20000, 40000,

60000, 80000 and 100000 . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 EHL viscosity profiles for a series of loadings;L = 20000, 40000, 60000,

80000 and 100000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Adjoint solutions for pure rolling EHL cases;L = 20000, 40000, 60000,

80000 and 100000,ua = ub = 0.5 . . . . . . . . . . . . . . . . . . . . . 106

7.5 Adjoint solutions for EHL cases with sliding;L = 20000, 40000, 60000,

80000 and 100000,ua = 0.1, ub = 0.9 . . . . . . . . . . . . . . . . . . . 109

7.6 Friction error compared against a grid 14 “truth” solution . . . . . . . . . 115

7.7 Multigrid patch refinement pattern shown for adaptive refinement of an

EHL case (L = 120000) for finest meshes from grids 6 to 12 . . . . . . . 115

x



List of Tables

3.1 Adjoint based inter-grid functional error on uniform meshes for a linear

model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Adjoint based inter-grid friction error on uniform meshes for a model free

boundary problem;L = 5, χ = 20.0 . . . . . . . . . . . . . . . . . . . . 59

5.2 Adjoint based inter-grid friction error on uniform meshes for a model free

boundary problem;L = 5, χ = 0.0 . . . . . . . . . . . . . . . . . . . . . 60

5.3 Adjoint based inter-grid friction error on uniform meshes for a model free

boundary problem;L = 5, χ = 1.0 . . . . . . . . . . . . . . . . . . . . . 60

5.4 Adjoint based inter-grid friction error on uniform meshes for a model free

boundary problem;L = 5, χ = 2.0 . . . . . . . . . . . . . . . . . . . . . 61

5.5 Adjoint based inter-grid friction error on uniform meshes for a model free

boundary problem;L = 5, χ = 1.0. Only thePi components of the esti-

mate were used in calculating the estimate, not theH0 or Xc contributions

for this case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Adjoint based inter-grid friction error on non-uniformmeshes, each with

the same refinement pattern, for a model free boundary problem; L = 5,

χ = 20.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Adjoint based inter-grid friction error on uniform meshes using compact

Jacobian;L = 1309, slide-roll ratio = 0.0 (pure rolling) . . . . . . . . . . 91

6.2 Adjoint based inter-grid friction error on uniform meshes using expanded

Jacobian;L = 1309, slide-roll ratio = 0.0 (pure rolling) . . . . . . . . . . 91

xi



6.3 Adjoint based inter-grid friction error on uniform meshes using compact

Jacobian;L = 1309 slide-roll ratio = 0.8 (sliding) . . . . . . . . . . . . . 91

6.4 Adjoint based inter-grid friction error on uniform meshes using expanded

Jacobian;L = 1309 slide-roll ratio = 0.8 (sliding) . . . . . . . . . . . . . 92

7.1 Adjoint based inter-grid friction error on uniform meshes; L = 20000,

ua = ub = 0.5, slide-roll ratio = 0.0 (pure rolling) . . . . . . . . . . . . . 106

7.2 Adjoint based inter-grid friction error on uniform meshes; L = 40000,

ua = ub = 0.5, slide-roll ratio = 0.0 (pure rolling) . . . . . . . . . . . . . 107

7.3 Adjoint based inter-grid friction error on uniform meshes; L = 60000,

ua = ub = 0.5, slide-roll ratio = 0.0 (pure rolling) . . . . . . . . . . . . . 107

7.4 Adjoint based inter-grid friction error on uniform meshes; L = 80000,

ua = ub = 0.5, slide-roll ratio = 0.0 (pure rolling) . . . . . . . . . . . . . 107

7.5 Adjoint based inter-grid friction error on uniform meshes; L = 100000,

ua = ub = 0.5, slide-roll ratio = 0.0 (pure rolling) . . . . . . . . . . . . . 108

7.6 Adjoint based inter-grid friction error on uniform meshes; L = 20000,

ua = 0.1, ub = 0.9, slide-roll ratio = 0.8 (sliding) . . . . . . . . . . . . . 109

7.7 Adjoint based inter-grid friction error on uniform meshes; L = 40000,

ua = 0.1, ub = 0.9, slide-roll ratio = 0.8 (sliding) . . . . . . . . . . . . . 110

7.8 Adjoint based inter-grid friction error on uniform meshes; L = 60000,

ua = 0.1, ub = 0.9, slide-roll ratio = 0.8 (sliding) . . . . . . . . . . . . . 110

7.9 Adjoint based inter-grid friction error on uniform meshes; L = 80000,

ua = 0.1, ub = 0.9, slide-roll ratio = 0.8 (sliding) . . . . . . . . . . . . . 110

7.10 Adjoint based inter-grid friction error on uniform meshes;L = 100000,

ua = 0.1, ub = 0.9, slide-roll ratio = 0.8 (sliding) . . . . . . . . . . . . . 111

7.11 Adjoint based inter-grid friction error on adaptive non-uniform meshes;

L = 120000, slide-roll ratio = 0.0 (pure rolling) . . . . . . . . . . . .. . 117

xii



Chapter 1

Introduction

Friction is the resisting force which acts when one body moves over or through another.

Clearly friction is essential whenever traction is required, for example to avoid slipping

when walking. In this case, relative motion of the two surfaces is undesirable. However,

a machine like a car has many moving parts which are frequently in relative motion as

part of its normal operation. Any work which is required to overcome friction in order to

achieve or maintain relative movement will be a waste. In addition to the energy wasted

overcoming friction, a further source of waste is that caused by the wear of the surfaces

which are in contact.

An excellent introduction to some of the different aspects of friction and wear can

be found in [84]. An indication of the magnitude of the problem presented by friction

and wear is given by Taylor [68], who says “According to some analysts, however, the

direct costs of friction and wear can account for nearly 10% of the gross national product

(GNP) in many industrial nations”. The effective use of a lubricant, defined by [85] as

“Any substance interposed between two surfaces in relativemotion for the purpose of re-

ducing the friction and/or the wear between them”, is clearly key in mitigating this waste.

Taylor goes on to say “Moreover, they estimate that cost savings of up to 1% of the GNP

could be achieved simply by using the right lubricant for thejob”. Apart from the clear

economic incentive to reduce the amount of this waste (the GDP of Britain in 2006 was

approximately $1.9trillion), there is also the environmental impact. Bovington [7] says
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Chapter 1 2 Introduction

“The main driving force behind changes in automotive designand in lubricant require-

ments is the need to reduce levels of gaseous emission levels, conserve hydrocarbon fuels

and maintain emission levels over extended periods. Minimisation of lubricant-related

friction and wear is a key contribution to the achievement ofthese targets.”

There are four categories of lubrication problem: hydrodynamic, boundary, mixed and

elastohydrodynamic (EHL). Hydrodynamic lubrication, or fluid film lubrication, is where

there is a full fluid film that is maintained between the surfaces by the pressure generated

though the relative motion of the surfaces. Boundary lubrication is the case where the film

breaks down, potentially due to increased load or decreasedspeed, and there is signifi-

cant contact between the surfaces. Mixed lubrication is a mixture of hydrodynamic and

boundary lubrication, where the surfaces may contact, but not regularly. The main focus

of this work is the fourth type of problem, EHL, however hydrodynamic lubrication is also

introduced in Chapter 6 as an intermediate step between a model free-boundary problem

in Chapter 5 and the full EHL problem of Chapter 7. Elastohydrodynamic lubrication

(EHL) is the study of elastically deforming lubricated surfaces. This occurs in a wide

range of situations, from so called “soft EHL” in human hip joints [40], to “hard EHL” in

roller bearings etc. [63]. In this work, reference is largely made to the latter, where the

lubricant is likely to be a mineral oil, with the lubricated surfaces typically made of steel.

EHL occurs where the contacting elements are non-conformal(the area over which they

would contact unlubricated is small) and the loads applied to the components are large

compared to the elastic modulus of the contacting materials, generating very large pres-

sures within the contact region. In such circumstances, onemight reasonably expect the

lubricant to be squeezed from within the contact area, leaving the surfaces unlubricated.

However, due to the pressure exerted on the lubricant, its rheology changes significantly,

and “becomes glass-like and behaves more like a solid than a liquid” [68]. This massive

increase in viscosity and the adhesion of the lubricant to the surfaces ensures that a fluid

film is maintained. This leaves the load to be borne by the elastic deformation of the steel

components.

One factor which makes this lubrication regime so effectivein preventing direct con-

tact, and hence wear, of the surfaces is that the thickness ofthe lubricant film is remarkably

insensitive to increases in the loading of the contact [66].This is because it is easier to

further deform the steel components than to compress the lubricant film.

The topic of this thesis is computational simulation of EHL with a view to estimating

the friction in a contact. As explained in the next section, friction is an important quantity

which can be computed from an EHL solution. This will requirea discussion of both the
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mathematical and numerical models and also the need to estimate the error in the friction

calculation. This will be achieved through the use of a discrete adjoint approach [77].

The motivation for this work stems from a key goal of lubrication engineers: the

design of lubricants and machine elements. In order to design anything, there must first

be a goal which is the principal aim of the design, and in orderto assess whether this goal,

or even progress toward the goal, has been achieved, a way of measuring the success of a

particular solution is necessary. As mentioned, one measure frequently calculated in EHL

simulations is the friction within the contact. It is the calculation of this key quantity that

will be the driving motivation throughout this thesis.

Chapter 2 provides further background and an introduction to EHL, starting with a

brief history, the full numerical problem and an overview ofpopular solution methods

employed, including multigrid and multi-level multi-integration. Chapter 3 follows a sim-

ilar course, although this time introducing the use of a discrete adjoint for the purposes of

error estimation. A brief history, and some background theory is provided, after which,

Chapter 4 presents some work on the accurate calculation of the friction for a typical EHL

problem. Chapter 5 then focuses on application of the adjoint ideas introduced in Chap-

ter 3 to the solution of a model free boundary problem, which is designed to represent a

much simplified EHL problem. Results are presented that allow for the free boundary to

be included into the adjoint formulation, and hence the accuracy of the method in pre-

dicting the error in a derived quantity, similar in formulation to the friction introduced in

Chapter 4, is investigated. Results are also shown for simplistic spatial mesh adaptation,

based on the information gleaned from the adjoint error estimation process. This process

is demonstrated to still give excellent predictions of the error in the friction. In Chapter 6,

the problem being solved moves a step closer to the full EHL case. The addition of both

non-linear viscosity and non-linear density moves the ideafrom a rather simple model

free boundary problem to a model of the hydrodynamic lubrication regime. Two different

formulations of the residual equations are investigated, leading to two different adjoint

systems to be solved. Results for both are presented, with justification for the choice that

is taken forward to the next chapter. Results are presented to show that the error pre-

dictions for both adjoint systems are good for this new non-linear problem. Chapter 7

introduces adjoint error estimation as applied to the full EHL problem. Results are pre-

sented for rolling and sliding friction on uniform meshes for a series of loads, all showing

the excellent inter-grid friction error estimates. Following this, spatial mesh adaptation is

introduced and used to get non-uniform mesh solutions for both the forward and adjoint

problems. Again, results are presented showing the accuracy of the estimation of the fric-
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tion error. The potential benefits of using this error estimate to drive local mesh adaptivity

are also demonstrated. Finally, Chapter 8 discusses the results presented, and discusses

areas where future research is likely to be fruitful.



Chapter 2

Background to EHL

In this chapter, elastohydrodynamic lubrication (EHL) is introduced. First the problem

will be defined before moving on to provide an overview of someof the most significant

other work in the area.

2.1 Governing equations

As the name suggests, the EHL equations are based upon a lubrication approximation ap-

plied to the Stokes flow of an incompressible fluid. This approximation serves to reduce

the dimension of the model from three to two by assuming flow inthe direction perpen-

dicular to the contact is negligible. Two further simplifications will be made throughout

this thesis: firstly, the dimension of the problem will be reduced further by only consid-

ering the line contact problem (in which end effects are assumed to be negligible); and

secondly, only steady-state problems will be considered.

Before introducing the equations describing the problem the quantities involved, and

the variables representing them, are established. In the full EHL point contact problem

there are three independent variables. The distance through the computational domain is

given byx, the distance perpendicular given byy, with the centre of the contact located at

(x,y) = 0. The time the contact has been running for is given byt. Since the work in this
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Chapter 2 6 Background to EHL

thesis is entirely concerned with steady-state line contact EHL, y andt will be introduced

only briefly before being simplified out.

The pressurep is the hydrodynamic lubricant pressure, and is assumed to becon-

stant through the thickness of the lubricant film,h. The lubricant viscosity is denoted

by η and the lubricant density byρ . The flows that are simulated represent a lubricat-

ing fluid squeezed between two contacting surfaces in relative motion to each other (see

Figure 2.1). The speeds of the two surfaces are given byua andub, with the entrainment

velocity, essentially the speed at which lubricant is pulled into the contact,us = ua +ub.

There is also an applied load, perpendicular to the contact,which is denoted byL.

2.1.1 Reynolds equation

The main equation solved is the Reynolds equation (2.1). This can be derived from the

Navier-Stokes equations using two simplifying steps. The first is to assume that the mass-

inertia terms are negligible compared to the viscous terms.The second is to assume that

the gap between the surfaces is narrow, and hence variation in thez-direction is negligible

compared to thex andy directions. These steps eventually lead to equation (2.1).A more

comprehensive derivation can be found in [61].

In dimensional form, for flow parallel to the x-axis, the Reynolds equation is given by

∂
∂x

(

ρh3

η
∂ p
∂x

)

+
∂
∂y

(

ρh3

η
∂ p
∂y

)

−6us
∂ (ρh)

∂x
−12

∂ (ρh)

∂ t
= 0. (2.1)

This describes a point contact situation, arising from contact between two spheres. For

a 1D line contact, the bodies considered are infinitely long rollers, rather than spheres

(see Figure 2.1). In this case there is no variation in they-direction, due to symmetry. In

addition, the edge effects can be ignored, so the second termfrom equation (2.1) can be

eliminated. Further to this, all the work in this thesis refers to “steady state” EHL, where

there are no transient effects. This means that the final termin equation (2.1), the time

dependent “squeeze term” can be neglected to give equation (2.2):

∂
∂x

(

ρh3

η
∂ p
∂x

)

−6us
∂ (ρh)

∂x
= 0. (2.2)

For a given film thickness, fluid viscosity and density, this differential equation can be

solved to give the hydrodynamic pressure in the fluid. The first term describes the Poiseuille

flow, or laminar flow, of the lubricant. The second term is called the wedge term, or Cou-
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Figure 2.1: Simplification steps to get 1D line contact geometry

ette flow term, and these are the two different pressure generation mechanisms within the

EHL contact.

EHL is a challenging problem to solve numerically. However,it is especially difficult

to solve at high loads due to the huge change in character of the Reynolds equation through

the contact. In the inlet region, the Poiseuille term dominates and hence the problem

is largely elliptic in nature. However, moving into the contact region, the wedge term

dominates making the problem more hyperbolic. Essentially, the dominant term changes

from being the Poiseuille flow outside the contact area (diffusive terms), to the wedge

term when inside the contact region (advective-like term).The reason for this is expanded

upon in Section 2.4. It is the dominance of this term which makes the film thickness and

pressure solutions highly sensitive to changes in either one or the other. With increasing

loading, the pressure becomes increasingly sensitive to changes in the film thickness. This

is because the lubricant becomes very dense and viscous, meaning an increasingly large

increase in pressure is required to further reduce the film thickness.

2.1.2 Film thickness

The next equation described in the context of EHL is the film-thickness equation. This

arises due to linear elastic deformation that occurs in the contacting elements due to the

very high pressures that they experience at their surface. Mathematically, this deformation

may be added to the undeformed contact geometry (assumed to be parabolic) to yield the

film thickness:

h(x, p) = h0+
x2

2Rx
+

4
πE′

∫ ∞

−∞
ln

∣

∣

∣

∣

x−x′

x0

∣

∣

∣

∣

p(x′)dx′. (2.3)

The above equation is made up of three parts which between them, given a pressure

profile p, specifies the fluid film thickness. The first term,h0, gives the separation of the
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undeformed surfaces. The second term gives the undeformed geometry of the contacts,

and is derived according to Figure 2.1. The starting point iswith two infinitely long

rollers contacting along a line (hence line contact). Due tosymmetry and the ability to

avoid edge effects, these infinitely long 3D cylinders can bereduced to two 2D discs. Both

of the discs can then be approximated accurately as parabolas, with radius of curvature

Rx1 andRx2. This approximation is possible due to the fact that the film thickness and

the contact width are both small compared to the radius of curvature in the contact region.

Beginning with the equation for a circle centred on thez-axis a distanceRabove thex-axis

(z−R)2+x2 = R2,

expanding the first term yields

z2−2Rz+R2+x2 = R2.

After cancelling theR2 terms, it is noted that sincez is small, thez2 term may be neglected

and so, re-arranging forz, the expression becomes

z=
x2

2R
.

Finally, the two parabolas, with radii of curvatureRx1 andRx2, can be reduced to a plane

and a parabola of equivalent radiusRx using

1
Rx

=
1

Rx1
+

1
Rx2

.

This reduces the problem to one-dimension. The final term in equation (2.3) defines the

elastic deformation at a given point in space due to a pressure distribution, given by linear

elastic theory. More details of this can be found in [36, 41].This final part is one of

the reasons that makes this problem especially difficult to solve numerically, since even

pressure applied at some distance can have a significant effect on the local deformation.

Altogether this gives the deformed geometry of the contact,and hence the lubricant film

thickness.
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2.1.3 Force balance

The final, and most straightforward, of the EHL equations is the force balance equation:

∫ ∞

−∞
p(x)dx = L. (2.4)

This simply states that the total pressure generated in the fluid film must equal the applied

load,L. Whilst it not immediately obvious, it is this equation which is used in the numer-

ical simulation to determine the correct separation of the bodies (H0). This connection is

described in Section 2.4.2.

2.1.4 Viscosity

The lubricating film is non-Newtonian and consequently its viscosity is highly dependent

upon the pressure. Two different models for viscosity are considered in this work but

in both cases the viscosity varies exponentially with increasing pressure. This ultimately

results in a glass-like behaviour of the lubricant in the high pressure contact region [1,89].

The two models that are considered in this work are the Roelands equation [62]

η(p) = η0e

(

α p0
z

[

−1+
(

1+ p
p0

)z])

, (2.5)

and the Barus equation [2]

η(p) = η0eα p, (2.6)

wherep0 is the pressure viscosity coefficient,z is the viscosity index,α is the pressure-

viscosity index andη0 is the viscosity at ambient pressure. Although we initiallyconsider

the algebraically simpler form (2.6), it is fair to say that (2.5) is more widely adopted

in practice (and is considered later in this work). This is because, whilst the viscosity

clearly increases exponentially for both models, when the pressure gets very large a simple

exponential relationship, such as that given by the Barus equation, tends to significantly

overestimate the viscosity.

2.1.5 Density

Finally, it is necessary to introduce a density-pressure relationship to the system of equa-

tions. The density, equation (2.7), is based on empirical observation. The model used



Chapter 2 10 Background to EHL

here is the standard model of Dowson and Higginson [17], and is generally of less impor-

tance (in the sense that the model is less sensitive to the precise choice of density-pressure

relation) than the more highly non-linear viscosity

ρ(p) = ρ0
0.59×109+1.34p

0.59×109+ p
, (2.7)

whereρ0 is the density at ambient pressure.

2.2 Non-dimensionalisation

In this section, we provide a description of the standard approach that is used for the

non-dimensionalisation of the EHL equations. This is followed by a summary of the

non-dimensional equations themselves. Non-dimensionalisation is simply the process

of removing the dimensionality from the variables within the equations involved. It is

useful in that different physical problems may have the sameunderlying mathematical

formulation. This means that non-dimensional parameters which have similar effects on

the solution can be grouped together, reducing the dimension of the parameter space. For

example, if doubling the surface speed has the same effect onan EHL solution as halving

the load, there is no need to solve two separate EHL cases.

At the same time that non-dimensionalisation occurs, the variables are often scaled to

have a value somewhere around 1. This is achieved by dividingthrough by characteristic

solution values. By doing this, rounding errors in the ensuing numerical calculations can

be reduced.

The non-dimensionalisation used here is based on Hertz’s theory for a dry contact [36].

Introducing the maximum Hertzian pressure,ph, as

ph =
2L
πb

(2.8)

whereb is the Hertzian radius, describing the half width of a contact with reduced modu-

lus of elasticityE′, given by

b =

√

8LRx

πE′
, (2.9)
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and the non-dimensional variables

X =
x
b
, P =

p
ph

, H =
hRx

b2 (2.10)

η =
η
η0

, ρ =
ρ
ρ0

, (2.11)

it is possible to rewrite equations (2.2) to (2.7) as the following non-dimensional equation

set. After substitution of the above variables, and with appropriate use of the chain rule,

the Reynolds equation can be rewritten as

∂
∂X

(

ε
∂P
∂X

)

−
∂ (ρH)

∂X
= 0 (2.12)

where

ε =
ρH3

ηλ
and

λ =
6η0usR2

x

b3ph

are both non-dimensional parameters. Similarly, the film thickness equation can be writ-

ten as

H(X,P) = H0+
X2

2
+

1
π

∫ ∞

−∞
ln
∣

∣X−X′
∣

∣P(X′)dX′, (2.13)

with the force balance equation given by

∫ ∞

−∞
P(X)dX =

π
2

. (2.14)

The remaining constitutive equations for viscosity and density become

η(P) = e

(

α p0
z

[

−1+
(

1+
Pph
p0

)z])

(2.15)

for Roelands viscosity, with Barus viscosity as

η = eαP, (2.16)

and density as

ρ(P) =
0.59×109+1.34Pph

0.59×109+Pph
. (2.17)
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2.3 Discretisation

Finite difference approximations have long been used and are generally well understood.

They can be easily derived through Taylor series expansions, and form a straightforward

way of discretising differential equations. For more information on finite difference meth-

ods, a comprehensive text is [67]. Here, the basic stencils used in this work are derived.

Before this, however, we note that the first step in the discretisation process is to replace

the infinite domain by a finite domain[Xin,Xc]. Here,Xin is taken to be far upstream of

the contact andXc is chosen to be downstream of the contact. Further discussion of the

choice ofXc will appear later in the thesis. We can now discretise the spatial domain with

a uniform grid ofn points with mesh size∆x

The Taylor series expansion of a functionf (x−∆x) is given by

f (x−∆x) = f (x)−∆x f ′(x)+
(∆x)2

2!
f ′′(x)− . . . . (2.18)

Combining all terms in the series after the second into one error term, whereξ is some

unknown point in[x−∆x,x], yields

f (x−∆x) = f (x)−∆x f ′(x)+
(∆x)2

2!
f ′′(ξ ) (2.19)

which is easily re-arranged to form the first order backwardsdifference formula

f ′(x) =
f (x)− f (x−∆x)

∆x
+

∆x
2!

f ′′(ξ ). (2.20)

The last term, which is not used in the calculations, is the error term due to the truncation

of the series, and shows this approximation to beO(∆x), or first order accurate.

To derive the second order backwards difference, the two expansions required are

f (x−∆x) = f (x)−∆x f ′(x)+
(∆x)2

2!
f ′′(x)−

(∆x)3

3!
f ′′′(ξ1) (2.21)

and

f (x−2∆x) = f (x)−2∆x f ′(x)+
(2∆x)2

2!
f ′′(x)−

(2∆x)3

3!
f ′′′(ξ2), (2.22)

whereξ1 ∈ [x−∆x,x] andξ2 ∈ [x−2∆x,x]. Subtracting four times equation (2.21) from
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equation (2.22) gives

f (x−2∆x)−4 f (x−∆x) =−3 f (x)+2∆x f ′(x)−4
(∆x)3

3!
f ′′′(ξ1)−

(2∆x)3

3!
f ′′′(ξ2).

(2.23)

Rearranging forf ′(x) yields the second order backwards formula, shown as

f ′(x) =
3 f (x)−4 f (x−∆x)+ f (x−2∆x)

2∆x
+(∆x)2

(

4
1
3!

f ′′′(ξ1)+
8
3!

f ′′′(ξ2)

)

. (2.24)

In this case the error term is multiplied by(∆x)2, and so the formula is second order

accurate.

Having derived these two backwards difference formulae, itis possible to decide on

one with which to discretise the wedge term in the Reynolds equation. For the work

presented throughout this thesis, the first order backwardsdifference will be used. The

main reason for this choice is primarily historical, since the first order difference has been

demonstrated to be stable under a far greater range of problem cases than the second order

one [55], leading to a more robust solver. Although transient cases are not discussed, were

there to be a case where the direction of flow reversed, the discretisation would need to

change to a forward difference formula. The second order backward difference is used in

the cavitation boundary derivative used from Chapter 5 onwards. This is because, with the

right-hand boundary fixed withP = 0, the first order backwards difference would require

that the first grid point inside the boundary would also be zero in order that the derivative

be zero, effectively fixing the cavitation point in the wrongplace.

Finally, the second order central difference approximation to f ′′ is derived as follows.

First, the Taylor series is expanded up the 5th term for both forward

f (x+∆x) = f (x)+∆x f ′(x)+
(∆x)2

2!
f ′′(x)+

(∆x)3

3!
f ′′′(x)+

(∆x)4

4!
f (4)(ξ3), (2.25)

and backward differences

f (x−∆x) = f (x)−∆x f ′(x)+
(∆x)2

2!
f ′′(x)−

(∆x)3

3!
f ′′′(x)+

(∆x)4

4!
f (4)(ξ4), (2.26)

whereξ3 ∈ [x−2∆x,x] andξ4 ∈ [x−2∆x,x]. Adding equations (2.25) and (2.26) gives

f (x+∆x)+ f (x−∆x) = 2 f (x)+2
(∆x)2

2!
f ′′(x)+

(∆x)4

4!
f (4)(ξ3)+

(∆x)4

4!
f (4)(ξ4). (2.27)
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This can then be rearranged to give

f ′′(x) =
f (x+∆x)−2 f (x)+ f (x−∆x)

(∆x)2 +(∆x)2
(

1
4!

f (4)(ξ3)+
1
4!

f (4)(ξ4)

)

. (2.28)

Looking at the multiplier in the error term, this is clearly also second order accurate. This

stencil is used to discretise the second order Poiseuille term in the Reynolds equation.

Discretisation of the film thickness and the force balance equations is relatively straight-

forward, being based on standard quadrature formulae. For example, (2.13) is approxi-

mated at a grid pointi by

Hi = H0+
X2

i

2
+

1
π

n−1

∑
j=0

Ki j Pj . (2.29)

When it is assumed that a finite difference mesh ofn equally spaced points is used, the

dense matrixK may be precomputed.

2.4 Solution method

In this section, the solution procedure used within the ‘Carmehl’ [71] industrial EHL

solver is described. This is the code that is used to generatethe forward solutions for

Chapters 4 and 7. A modified version is also used to generate the solutions in Chapter 6.

A detailed overview is therefore justified. For more specificdetails than contained here,

the reader should consult [26].

2.4.1 Single grid solution

The basic iterative solution procedure on a single grid is outlined first. For given solution

profiles ofH, η , andρ , and a latest solution profile for pressure,P, the first step is to

solve the Reynolds equation. This is calculated using several iterations of an approximate

Newton solve:

J̃∆P =−R. (2.30)

whereJ̃ is the approximate Jacobian, and∆P is the correction to the pressure. In this work

a penta-diagonal Jacobian approximation is sufficient.

The Nurgat Jacobi line scheme [55], which is used throughoutin solving for this



Chapter 2 15 Background to EHL

equation, distinguishes between the contact and non-contact region of the solution. It

does this based on the size ofε, whereε = H3ρ
λη as in the above formulation of Reynolds

equation (2.12). Outside the contact region, whereH is large andη is small,ε is large.

Conversely, moving into the contact region,H becomes small andη becomes very large,

soε becomes very small. This is the reason why the Reynolds equation behaves so dif-

ferently in the two different regions, as the equation is dominated by the different terms.

This is reflected in the solver since, after each Newton solve, the correction calculated is

used to update the pressure profile only at those points outside the contact region. The

points inside the contact region are then updated after the last solve. In each case, an

under-relaxation factor is applied. In this work, typically values of under-relaxation used

are 0.15 for the points outside the contact, and 0.1 for those inside the contact region.

A number of iterations of this procedure would result in the exact solution forP for the

values ofH, η , andρ given. However, since these values themselves are all dependent on

P, there would be little point in solvingP exactly at this stage. So following each pressure

update,H, η, andρ are recalculated. This process is repeated until the pressure solved

for, along with the values ofH, η, andρ, calculated from it, give sufficiently small values

for the Reynolds residual equations. In this case, that is after the RMS (root mean square)

value of the residuals is below 10−10 in size.

In the context of describing the FAS Multigrid algorithm below, this whole process

from Newton-Iteration through to recalculation ofH, η , andρ and hence the Reynolds

residuals will be referred to as one “smooth”, and is summarised in Figure 2.2.

2.4.2 Force balance (H0) update

The final addition to the single grid solution process is the way in which the force balance

equation is satisfied. During the process of solving forP, H, η , andρ outlined above,

there is no guarantee that the integral of the pressure over the computational domain will

remain equal to the load (i.e. force balance may be violated). For this reason, it is neces-

sary to alterH0 (the separation of the undeformed solids) during the courseof the process

so that once a solution is found, it also satisfies the force balance equation. By integrating

over the domain, it is possible to ascertain how close to the correct non-dimensional load

of π
2 the sum of pressures is. By recognising that increasing the separation of the surfaces

decreases the total pressure in the domain, it follows that if the sum of pressures is too

large, the surfaces are too close and soH0 must be made larger. Equally, if the sum is too

small, the surfaces are too far apart andH0 should be made smaller. However, since all
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Figure 2.2: High level EHL numerical solution algorithm
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of theH values are affected by a change inH0, which then has a corresponding effect on

the P solution, there is no simple relationship which describes the relationship between

H0 and the sum of pressures. Hence, the standard update formulaused to achieve this is

given by

H0← H0−ω

(

π
2
−

n−2

∑
i=0

Pi +Pi+1

2
∆X

)

, (2.31)

whereω is some under-relaxation factor (typically somewhere between 0.05 and 0.2 in

this work). This is not necessarily updated every time that asmooth is performed.

2.4.3 FAS multigrid

In order to speed up the convergence of the Reynolds solution, multigrid is used. Multi-

grid is so-called because of the sequence of meshes the solution is solved on. The basic

principle is that errors in a solution can be removed on a series of grids. The errors of

comparable wavelength to a particular grid can be efficiently reduced before restriction to

a coarser mesh, where the errors of a different wavelength can be reduced. This requires

a smoother which can efficiently reduce the components of theerror which are high fre-

quency compared to the resolution of the mesh. The first application of multigrid to EHL

was by Lubrecht [50].

Standard texts by Briggs [11] and Trottenberget al.[70] provide full technical details.

Multigrid as applied to EHL is well presented in both of [26, 83], but a brief overview is

presented below.

In this work we use FAS (Full Approximation Scheme) multigrid because this is able

to be applied to non-linear systems. The basic idea is to modify the right-hand side of

the equation system on the coarser grid to be equivalent to that solved for on the finer

grid. In this example, only two grids will be used, but it is straightforward to extend to

multiple levels. Once the actual system of solutions has been explained, the restriction

and prolongation operators used in this work (IH
h andIh

H) will be prescribed.

Consider a non-linear system

Lu = f , (2.32)

whereL is a non-linear operator,f is the right-hand side function, andu is the solution to

be approximated. For a fine mesh with spacingh, the discrete system can be written as

Lhuh = f h. (2.33)
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The residual equation can then be written as

rh = f h−Lhũh, (2.34)

whereũh is an approximate solution obtained by a small number of smooths using the

selected iterative scheme. By defining the error equation tobe

eh = uh− ũh, (2.35)

and after re-arranging (2.34) forf h, substitution into (2.33) of (2.34) and (2.35) yields

Lh(eh+ ũh) = Lhũh+ rh. (2.36)

On the coarse grid, with mesh spacingH, whereH = 2h, this can be approximated by

LH ũH = f H (2.37)

whereũH is the coarse grid solution variable given by

ũH = IH
h (eh+ ũh) = eH + IH

h (ũh). (2.38)

The FAS right-hand side is

f H = IH
h (Lhũh+ rh) = IH

h (Lhũh)+ IH
h (rh). (2.39)

It can be shown [83] that bothLH andIH
h (Lh) can be used as an approximation to the fine

grid system, and since it is more straightforward to form thenon-linear operator on the

coarse grid, that is what is used. The FAS right-hand side becomes

f H = LH(IH
h (ũh))+ IH

h (rh). (2.40)

There are now two clear parts to this right-hand side. The first term,LH(IH
h (ũh)), is the

part which adjusts the coarse grid system to be equivalent tothe fine grid system. This is

really just the coarse grid right-hand side, plus the residual gained when putting the fine

grid solution into the coarse grid system. The second termIH
h (rh) is the residual from the

fine grid after restriction to the coarse mesh. So the other way to think of the FAS right-

hand side is as the coarse grid right-hand side function, adjusted by two different residuals.

These are the coarsened fine grid residuals, and the coarse grid residuals computed from
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Figure 2.3: Schematic of a multigrid V-cycle

the coarsened fine grid solution.

Having formulated this system, it can be solved more cheaplythan the fine grid ver-

sion. In practice, this system would be restricted to a yet coarser mesh for recursive

solution down to a coarsest level.

Once the coarse grid solution is solved, the coarse grid variableũH can then be used

to update the fine grid solution ˜uh according to

ũh = ũh+ Ih
H(ũH− IH

h ũh). (2.41)

After this, the solution is again smoothed on the fine grid.

Having described the solution process, a note on the inter-grid transfer operators is

required. For reasons of stability and robustness, the restriction operator in this work

uses injection. That is, when coarsening a solution from a fine grid to a coarse one, the

coincident points on the fine grid are used to give the values on the coarse grid. In some

circumstances, injection may not represent fine grid errorsaccurately on the coarse grid,

leading to degraded solution convergence, but that is not anissue here since the error is

generally well smoothed on the fine grid before restriction takes place. The prolongation

used is equivalent to linear interpolation. This may introduce a small amount of high

frequency errors, but again, this is not an issue as high frequency errors can be removed

efficiently on the fine mesh. A more detailed discussion on inter-grid transfer operators

can be found in [70]. The whole process is summarised for one V-cycle in Figure 2.3.

In Chapter 7, the goal is to solve EHL problems adaptively. This requires the problem

to be discretised on a non-uniform grid. Fortunately, the MLAT scheme [70] can be used
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in conjunction with FAS multigrid. This is where the problemis posed on a series of

uniform meshes, and solved using multigrid, but “patches” of refinement are used where

additional refinement is required. The solution is computedas normal on the coarse grid,

before the region inside the patch is interpolated to the finegrid. The end points of this

patch are then set to be Dirichlet boundary points on the finest mesh, and the solution can

continue. As with normal multigrid, this would typically happen over a number of levels

with patches of different sizes on different levels.

There are various types of multigrid which are more applicable in certain other situ-

ations. Linear multigrid is a technique for solving a systemof linear equations. On each

level of the multigrid solve, it is the error equation which is solved for, rather than the

solution adjusted for the difference between the grids. This is only possible because of

the linear nature of the problem [11].

Algebraic multigrid uses a series of coarser approximations to the original system

matrix, but doesn’t require an underlying hierarchy of grids [11], whereas P-multigrid

uses polynomials of different orders to achieve faster convergence [24].

2.4.4 Multilevel multi-integration

Multilevel multi-integration (MLMI) [8] is a powerful toolfor reducing the time taken

during the film thickness calculation. With the deformationat every point influenced by

the pressure at all points, the calculation time will clearly beO(n2) for a grid ofn points,

since equation (2.29) will be calculatedn times and requiresO(n) operations. MLMI

exploits the smooth nature of the deformation kernel away from the central singularity, by

summing for the local deformation first on the coarsest grid,and then correcting in local

patches near the singularity on the finer grids. This reducesthe complexity toO(nlogn),

a huge saving.

By starting off on the finest grid, the pressure values are restricted using high order

operators onto coarser and coarser grids, until the coarsest level is reached. There, the

local deformation is calculated using the whole mesh. The local deformation values for

each point on the grid are then prolonged back up to the next coarsest grid using high order

interpolation. Here, the effect of the pressures within a few mesh points of the singularity

X′ = X is calculated for the more accurate kernel on that level. Since that small region

has influenced the deflection twice, the coarse grid effects are removed, on that area only,

and the process is repeated until the finest level is reached.
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This effectively means that the summation is performed on a different adaptive mesh

for each point, even though the underlying structure is actually a uniform mesh every-

where. It should be noted however that we do not make use of MLMI in this work since it

requires uniform refinement of the grids at each level. Sinceour ultimate goal (achieved

in Chapter 7) is to apply local mesh refinement for the EHL problem, developing a new

variant of MLMI for such grids is beyond the scope of this work.

2.5 A brief history of EHL modelling

EHL was born out of the realisation that both a viscosity-pressure dependence in the

lubricant and an elastic deformation of the contacting bodyare necessary to explain satis-

factorily the lubricant film thickness of certain non-conforming contacts. In other words,

before then, hydrodynamic lubrication had been augmented with both effects individu-

ally, and while both increased the film thickness, neither increased it sufficiently to be

validated by the practically observed life of bearings. There have been several excellent

reviews into the history of EHL, including [15], [16], and [39], and it would serve little

purpose to recreate them in full. However a brief overview ofparticular areas of relevance

to this thesis follows.

2.5.1 Overview of numerical methods for EHL problems

Since the first numerical solution of both the elastic equation and the Reynolds equa-

tion by Petrusevich [57] in 1951, a number of different numerical methods have been

developed for the solution of EHL. The first extensive set of solutions was calculated by

Dowson and Higginson [17], using an inverse approach. This inverse approach involves

solving the Reynolds equation for the film thickness, in addition to using the more stan-

dard film thickness equation, (2.3), and the difference between these film thicknesses is

used to correct the pressure. This approach allows for the solution of extremely highly

loaded cases, but is unstable at low loads.

The standard way of solving EHL numerically is detailed by Venner and Lubrecht [83],

and summarised here in Section 2.4. That is, using finite difference discretisations on

regular uniform meshes. This is accelerated by the use of themultilevel techniques of

multigrid and multilevel multi-integration.
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There is also a need for a different solver to be used outside of the contact region [80].

In the contact region Venner uses a distributive relaxationscheme [80], whereas in this

work the Jacobi line scheme of Nurgat [54] is used.

In the following subsections a more detailed survey of methods used for spatial mesh

adaptation is given, along with methods for dealing with theunknown cavitation position,

and a brief discussion of surface roughness.

2.5.2 Adaptive EHL

Adaptivity in numerical computation is not a new idea. The desire to minimise the com-

putational load and/or maximise numerical accuracy of a solution is common across many

disciplines. EHL is no exception, although efforts have been somewhat less than in other

areas of engineering. With the majority of numerical solutions historically based on finite

difference discretisations, spatial adaptivity is very much the exception rather than the

norm. The first adaptive finite difference solution was courtesy of [49], shortly followed

by [4] and [80]. The second of these is the more comprehensive, with an alternative dis-

cretisation and automatic refinement algorithm. A lack of citation of this paper over the

years is likely due to the unfashionable choice of solution method, the Newton iteration,

and the incompressible nature of the formulation. All threewere restricted to smooth

EHL. More recently, work on adaptive grids has been conducted by Goodyer [26,30], in-

cluding adaptive time-stepping, but in the words of the author “...it has been seen that there

are powerful numerical tools available, such as grid adaptation, which require further ex-

ploration and deeper understanding with regards to their application to EHL modelling.”

Finite element solutions, which perhaps lend themselves tospatially adaptive solu-

tions more naturally than their finite difference cousins, have unsurprisingly been used

to get adaptive solutions far more often. Wu [90] was in fact the first spatially adaptive

EHL solution, and used finite elements. Since then, Wu and Oden [91–93] in the late

eighties, and more recently the work by Durany, Garcia and Vazquez [19, 20] have all

done work with adaptive finite elements. More recently, Lu has successfully combined

mesh adaptivity with high order discontinuous Galerkin finite elements [46]. One of the

major disadvantages for unstructured meshes remains the kernel matrix for the deforma-

tion calculation. By precomputing the kernel matrix on a regular mesh, a large amount of

computational expense is saved.
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2.5.3 Free boundary

Toward the outlet of an EHL contact there is a sudden drop in oil pressure to ambient

pressure. At this point, air and other gases dissolved in thelubricant form bubbles and

the fluid cavitates. The position of this cavitation is not known a priori, and hence a

free boundary is introduced into an already complicated problem. Formulation of this

phenomenon mathematically is covered in detail in [18], although here only the Reynolds

condition is considered. The Reynolds condition states that the pressure and the pressure

gradient should be zero at the cavitation point,Xc. A number of approaches to finding the

correct cavitation position have been taken over the years.

First, the use of an over-sized domain is explored. The Reynolds equation (2.2) in-

cludes no physical constraints on the solution produced. This simply means that a phys-

ically and numerically valid set of input parameters may solve to give values that are a

valid numerical solution of the equation, but that does not give physically meaningful re-

sults. Unfortunately, this happens in the cavitation region, where negative pressures are

generated. Whilst this is clearly not physically realistic, additional difficulties arise when

attempting to calculate values of viscosity and density. Several ways of dealing with this

problem have been identified for this sub-problem.

The simplest, though least accurate, is to essentially ignore the cavitation point, and

just let the points whose pressure is negative form the cavitation region. During the solu-

tion procedure, and indeed after convergence of the Reynolds equation on a fixed grid, the

negative pressure values are simply set to zero. Unfortunately, unless the domain is close

to the correct size, througha priori knowledge, this not only gets the cavitation position

wrong, it also means the pressure solution may be inaccurate, and hence so are all the

other quantities calculated from it. This is the approach taken by [95].

The next approach, and the one taken in the numerical solution described in Sec-

tion 2.4, is to have some kind of outer iteration. Given the boundary conditions, that both

the pressure and the pressure gradient are zero at the cavitation position,Xc, thenXc will

be the last grid point to give a non-positive pressure value.Once this has been found,

the cavitation condition can then be imposed as a Dirichlet (fixed value) boundary, and

subsequent solutions calculated on that smaller domain. However, due to the highly non-

linear system of equations being solved, this boundary cannot be imposed exactly where

it might seem correct, as the cavitation position may “move around” while the solution

is converging. This method has been observed to be sensitiveto the discretisation. A

suitable choice of domain will result in the cavitation point resting on or very near a grid
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point. A bad choice may lead to difficulties solving the system as the cavitation point tries

to move between grid points, although adaptive refinement ora slight perturbation of the

domain may well alleviate this problem.

Solutions using Finite Element methods often use the penalty method to obtain a cav-

itation position [90]. Rather than finding the cavitation position explicitly, a penalty func-

tion is introduced into the discretisation of the Reynolds equation. This term forces any

negative pressure to be zero (arbitrarily small) by penalising any negative values through

a jump in the residual, but has no effect on the solution wherethe pressure is positive. [56]

uses an approach similar to that described for finite differences.

2.5.4 Surface roughness

It was realised fairly early on that realism would not be achieved without some attempt to

account for the rough surfaces which are inevitably found onmachine components. Some

of the very early work on surface roughness was done by Chow and Cheng [14] in 1976,

although at this stage it was simply based on the asperities causing a different pressure

at the inlet. Full numerical solutions for simple bumps or sinusoidal waviness have been

conducted for steady state EHL by many authors. In modellingterms, this means the

addition of a further geometry term to the film thickness equation, thus modifying the

shape of the undeformed surface. Works include those of Lubrechtet al. [51] and Kweh,

Evans and Snidle [42]. A simple bump, and subsequently waviness, were applied to

a simple EHL conjunction by Venner and Lubrecht [81], and theconclusion was that

transient analyses are essential, and they went on to do thistwo years later in [82], as did

Yang, Perian and Shen [94]. Again, both were for simple harmonic roughness, although

the latter work did include non-Newtonian fluid behaviour. At the same time, Evans and

Snidle [21] conducted a line contact simulation with real surface roughness, but only for

the steady-state case.

More recently, work has been done by Fanget al. [23] about ascertaining information

on how EHL conjunctions behave without resorting to numerical modelling of the com-

plete problem. However, only sinusoidal roughness is considered and, although useful in

getting trends in certain conditions, it is limited in its wider applicability to more general

problems.

In [96], Zhu details how surface roughness is modelled, including the transition from

full film to mixed lubrication. This is a challenging problem, and one which may well
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need far greater mesh resolution to capture accurately. While the computational mesh

spacing is comparable to that used in other papers, these arefor smooth contacts, and

would need many more points to capture the roughness profile accurately, as shown

in [31]. Since this, Holmeset al. have performed transient rough surface calculations

with significantly more mesh points [37]. There, asperity contact is said to have taken

place where the film thickness values are negative in the solution. This seems a very sen-

sible starting point, although even with the increased meshresolutions, there is concern

that the numerical model may still not be solved with sufficient accuracy. There is also

concern over exactly how the force balance equation is utilised since arguments based

upon physical realism are best used at the mathematical modelling stage, rather than the

stage of the numerical calculation.

Lubrecht and Venner [52] make two interesting points regarding surface roughness.

The first, that grid resolutions must be sufficient to capturethe features, and hence will

take the order of 105 points to resolve the surface properly in 1D, and then a similar

number of time steps for the transient solve. In itself, thisis not the challenge that it posed

at the time of writing, but when consideration is taken of thelarge amount of different

solves required when designing a lubricant, it quickly becomes clear that some way of

reducing the computational load of each solve would be very beneficial. The question

of the appropriate time-step size for rough surfaces was considered by [28]. They found

that the temporal error estimate required that the timestepbe very much smaller than

would usually be assumed (a factor of 32 smaller) when the surface roughness had large

amplitudes. They also considered, in [28], how parallel computing techniques could be

applied to EHL cases in order to get sufficient grid resolution for point contact surface

roughness cases.

The second point made by Lubrecht and Venner is “more fundamental” in that the

usefulness of solving for rough surfaces is called into question. The point made is that

solving for a roughness profile would not allow the prediction of a second roughness

profile measured a millimetre further on. Whilst this is undoubtedly true, we consider it a

useful goal to be able to parameterise roughness profiles, and hence predict how surfaces

with similar parameter values might behave.

Work on discontinuous Galerkin finite element methods for transient surface rough-

ness problems has been considered in [47], which is the transient extension of [48].
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Background to Adjoints

3.1 Adjoint background

The study of adjoints is a wide and varied field. They are primarily used for sensitivity

analysis, but from this many different uses may be derived. Examples include duality in

linear programming [13], shape optimisation [53], and error estimation [73]. In this work

we shall concern ourselves exclusively with the last. A general paper discussing error

analysis from a mathematical perspective is by Giles and Süli [25].

In particular, in this work concentration is focused on error estimation based upon the

accuracy of specific outputs of interest. Adjoint theory canbe used to provide a frame-

work for finding such estimates. That is, finding the sensitivity of the output quantity

of interest to other computable quantities. Exactly how this is achieved is explained in

greater detail in the next section, but it revolves around formulating and solving an ad-

joint system which is related to the original “forward” problem. There are two distinct

but related approaches to formulating the adjoint system: continuous and discrete. A

comprehensive comparison of the two methods for a shape optimisation problem is given

by Nadarajah and Jameson [53], but the basic differences between the two approaches

are highlighted here. In the continuous approach, the adjoint PDE is formed analytically

from the continuous PDE, and then discretised afterwards, e.g. [58]. If the analysis can

26
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be performed to get to the adjoint PDE, the boundary conditions can be difficult to formu-

late [45]. In the discrete adjoint approach, however, the adjoint system is formed directly

from the discretisation of the continuous forward problem.One advantage of this method

is that it can be applied to complex problems, where an analytic solution of the continuous

adjoint problem may be difficult or impossible to find. The method followed in this thesis

is that developed by Darmofal and Venditti [72–78]. This is adiscrete approach which, as

stated in [77], “is a discrete analogue of the Pierce and Giles [58] technique”. One of the

main reasons for our choice of this method over the Pierce andGiles approach is that, for

a complex engineering problem such as EHL, formulating the adjoint PDE problem (in-

cluding appropriate boundary conditions) would be extremely difficult, if not impossible.

However, by realising that, to benefit from a comparable increase in functional accuracy,

all that is required is a discretisation of the “forward” system being solved. Through the

use of the discrete approach, adjoint error estimation becomes a realistic prospect for ap-

plication to EHL. The details of the discrete approach used will be discussed further in

the next section.

Having discussed the detail of the adjoint error estimation, a less formal description of

the process forms the following section; the idea being to provide further insight into what

is actually going on in the formal description. Following this, a simple linear problem is

provided to introduce the effectivity index. The chapter concludes with some justification

for the choice of cubic spline interpolation between grids,and some notes on the boundary

values for the adjoint systems used for the work in this thesis.

3.2 Adjoint error estimation

In this section, the theoretical background to the adjoint estimation of an error is intro-

duced. The starting point is to define two meshes with spacingh = ∆x andH = ∆X =

m×∆x, {m∈ N |m> 1} (i.e. H is some multiple of the mesh space sizeh). The idea is

that mesh sizeH is fine enough to capture the features of the problem being solved, and

coarse enough to be solved in a reasonable time, while the finemesh sizeh would give the

solution to a greater accuracy but in an unacceptable time. Whilst the coarser of the two

meshes need not necessarily be very coarse, nor necessarilythe finer mesh particularly

fine, for ease of terminology these two meshes will be referred to as the coarse mesh and

the fine mesh hereafter.

Consider an arbitrary non-linear problem whose discrete form may be represented as
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Ah(uh) = fh on the fine mesh, andAH(uH) = fH on the coarse mesh, where in each case

A(u) is a non-linear operator. LetuH
h be an approximation touh obtained by interpolation

of the coarse mesh solution:uH
h = IH

h uH . Throughout this work the interpolation for the

adjoint solution will be through cubic splines, unless otherwise stated. The reason for this

choice is justified later in this chapter. The solutionu will be referred to as the forward

solution. The discrete fine grid residual is given by

Rh(uh) = fh−Ah(uh).

A Taylor series expansion about the interpolated coarse grid solution,uH
h , shows that

Rh(uh) = Rh(u
H
h +(uh−uH

h ))

= Rh(u
H
h )+

[

∂Rh

∂uh

∣

∣

∣

∣

uH
h

]

(uh−uH
h )+h.o.t. (3.1)

which, ignoring the higher order terms, is the linearisation of the fine mesh system of

equations, where

[

∂Rh
∂uh

∣

∣

∣

uH
h

]

is the Jacobian evaluated usinguH
h . Given thatRh(uh) = 0,

−Rh(u
H
h ) =

[

∂Rh

∂uh

∣

∣

∣

∣

uH
h

]

(uh−uH
h ),

and re-arranging gives

(uh−uH
h ) =−

[

∂Rh

∂uh

∣

∣

∣

∣

uH
h

]−1

Rh(u
H
h ), (3.2)

an expression for the error in the interpolated coarse grid solution with respect to the fine

grid solution.

Suppose that the quantity of interest for this problem is a functional which may be

expressed asFh(uh) on the fine grid. As with the fine grid residual, this can be expanded

about the interpolated coarse mesh solution to give

Fh(uh) = Fh(u
H
h )+

(

∂Fh

∂uh

∣

∣

∣

∣

uH
h

)T

(uh−uH
h )+h.o.t. (3.3)

Substitution of equation (3.2) into equation (3.3) for(uh−uH
h ), and again ignoring the
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higher order terms, yields

Fh(uh) = Fh(u
H
h )−

(

∂Fh

∂uh

∣

∣

∣

∣

uH
h

)T [

∂Rh

∂uh

∣

∣

∣

∣

uH
h

]−1

Rh(u
H
h ). (3.4)

By introducing a new variable,Ψh,

ΨT
h =

(

∂Fh

∂uh

∣

∣

∣

∣

uH
h

)T [

∂Rh

∂uh

∣

∣
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∣

uH
h

]−1

(3.5)

equation (3.4) may be rewritten as

Fh(uh) = Fh(u
H
h )−ΨT

h Rh(u
H
h ). (3.6)

Post multiplying equation (3.5) by

[

∂Rh
∂uh

∣

∣

∣

uH
h

]

gives

ΨT
h

[
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∂uh
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∣

∣

uH
h

]

=

(

∂Fh

∂uh
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uH
h

)T

.

Taking the transpose of both sides, and given(Av)T = vTAT , it follows that Ψh must

satisfy
[

∂Rh

∂uh

∣

∣

∣

∣

uH
h

]T

Ψh =

(

∂Fh

∂uh

∣

∣

∣

∣

uH
h

)

. (3.7)

Hereafter, equation (3.7) will be referred to as the fine gridadjoint system, andΨh the

fine grid adjoint solution. Once the adjoint solution has been obtained, an approximation

to Fh(uh) may be calculated using equation (3.6) without actually having solved foruh

explicitly. For highly non-linear problems, the need to only perform a linear solve on the

fine mesh (i.e. equation (3.7)) to get a value of the functional to the same order of accu-

racy as that gained from the solution of a whole non-linear problem, possibly consisting

of many linear solves, is hugely advantageous. In fact, ifA is a linear operator, rather

than a non-linear operator, then the “functional correction” term ΨT
h Rh(uH

h ), obtained in

equation (3.6), will be exact. However, there is a further advantage to be gained at this

stage.

Whilst the forward solutionuH
h used in equation (3.6) is only solved for on the coarse

mesh, the adjoint solution is still solved for on the fine mesh. Fortunately, it is possible to
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solve an alternative system to equation (3.7), also on the coarse mesh, shown here as

[

∂RH

∂uH

]T

ΨH =

(

∂FH

∂uH

)

. (3.8)

This adjoint system, which will be referred to as the coarse grid adjoint system, withΨH

the coarse grid adjoint solution, is an approximation to thefine grid adjoint system given

in equation (3.7). This is formed directly on the coarse gridfrom the coarse grid solution

and coarse grid residual equations, rather than on the fine grid using the interpolated

coarse grid solution. The basis for this approach is that theapproximation should be

satisfactory once the meshes are refined sufficiently such that the solutions have entered

their asymptotic ranges. In other words, as the meshes become more refined, the higher-

than-first order errors should become small in comparison tothe linear approximation.

This coarse grid adjoint solution is then interpolated ontothe fine grid to giveΨH
h =

IH
h ΨH . Equation (3.6) can now be reworked in terms of the coarse grid adjoint solution,

to give

Fh(uh)≈ F̃h(uH) = Fh(u
H
h )− (ΨH

h )TRh(u
H
h ). (3.9)

An approximation to the fine grid functional has now been obtained simply by solving an

additional linear problem on the coarse grid, the adjoint system given in equation (3.8).

As was previously mentioned, the expression(ΨH
h )TRh(uH

h ) will be referred to as the

“correction” to the functionalFh(uH
h ), since this is essentially what is happening.

The final point that must be made pertains to the application of the above theory to a

finite difference discretisation. In [77], is it pointed outthat “A typical finite difference

stencil would need to be scaled by an appropriate volume term(or an area term in two

dimensions) so that the residual became analogous to an integral expression”. This is key

in applying the procedure to non-uniform finite difference meshes. This idea is expanded

on further in Chapter 5.

3.3 A less rigorous view of adjoints

Having seen the mathematical theory underpinning adjoint error estimation, a rather more

informal description of the approach is attempted in this section.

The approach taken in this method is to take two things which are easily calculated,

and use them to estimate a quantity which is computationallyuseful, but not directly
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accessible. It is straightforward to compute the linear sensitivities of both the friction

calculation and the residual equations to the solution variables. By formulating the adjoint

problem, a solution can be obtained giving the linear sensitivity of the friction calculation

to the residual equations, a far more useful quantity. This is because the residuals are

easily calculated, and given a change in the residuals, a linear approximation to the change

in the friction can be predicted.

First, a similar example is presented, the Newton Iteration. In this,

∂R
∂u

δu =−R

is solved forδu, where theδ is used to signify a (hopefully) small change inu. We can

also calculate the (linear) sensitivity of any residual equation to the unknownu at any

point. Let
[

∂R
∂u

]

denote the Jacobian matrix whose entry in theith row and jth column

gives the rate of change of theith residual equation w.r.t. thejth solution value. A

particular row of the Jacobian gives the sensitivity of a particular residual equation to

all the different solution values, whereas a particular column of the Jacobian gives the

sensitivity of all the residual equations to one of the solution values.

So now, for our adjoint problem, we have

[

∂Rh

∂uh

∣

∣

∣

∣

uH
h

]T
(

Ψh|uH
h

)

=

(

∂ fh
∂uh

∣

∣

∣

∣

uH
h

)T

.

A row of the transposed Jacobian is just a column of the original Jacobian, i.e.

(

∂R1

∂u j
,
∂R2

∂u j
, · · · ,

∂Ri

∂u j
, · · ·

)

and multiplied out with the adjoint variable vectorΨ,

∂R1

∂u j
Ψ1+

∂R2

∂u j
Ψ2 + · · ·+

∂Ri

∂u j
Ψi + · · ·=

∂ f
∂u j

.

It follows, using the chain rule, that the adjoint variablesare the sensitivities of the func-

tional to the residuals. That is,

∂R1

∂u j

∂ f
∂R1

+
∂R2

∂u j

∂ f
∂R2

+ · · ·+
∂Ri

∂u j

∂ f
∂Ri

+ · · ·=
∂ f
∂u j

,
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and so

Ψi =
∂ f
∂Ri

.

3.4 Example problem

In this section a very simple linear problem is used to illustrate the adjoint error estimation

procedure. This will serve purely as an introduction to one of the main analysis tools used

with this work, the effectivity index. As such, the forward problem and adjoint correction

procedure are briefly described.

3.4.1 The forward problem

A simple linear PDE is defined by the following equations:

d
dX

(

H(X)
dP
dX

)

= λX,

where

H(X) = H0+
X2

2

on a finite computational domainXl < X < Xr . The boundary conditions are given

as P(Xr) = P(Xl) = 0, and the operating parameters for this example areH0 = 5.0,

Xr = 1.502 andXl = 1.502−50. Using the finite difference approximations derived in

Chapter 2, these equations may be discretised on a coarse regular grid ofn points, yielding

the discrete equations

(Pi+1−Pi)Hi+1/2− (Pi−Pi−1)Hi−1/2

(∆X)2 = λXi

and

Hi = H0+
X2

i

2
,

for i = 1. . .n−2, with P0 = Pn−1 = 0. The next step is to form the systemAP= f , with

A the linear tri-diagonal matrix of coefficients,P the solution vector, andf the right-hand

side with the valuesλXi. This is easily solved forP and the functional of interest, defined

to be

F =
n−2

∑
i=0

0.5(Pi +Pi+1)∆X ≈
∫ Xr

Xl

PdX,
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is easily calculated from it. The residual equations can then be defined as

Ri = λXi−
(Pi+1−Pi)Hi+1/2− (Pi−Pi−1)Hi−1/2

(∆X)2 ,

for i = 1, . . . ,n− 2. Having differentiated each of these with respect to the all of the

solution variables,Pj , the Jacobian can be formed. In this case, the Jacobian is just the

(n−2)× (n−2) matrix A, which also happens to be symmetric in this case. The right-

hand side of the adjoint system is then the vector of∆X values, and the adjoint system can

be formed and solved forΨH . Once these two solutions have been calculated, they are

then interpolated onto the fine grid (i.e. a uniform refinement of the current coarse grid),

using quadratic interpolation in this case. Having obtained the interpolated solutions on

the fine grid, the functional can be computed. Once the interpolated solution has been

used to generate the residuals for that level, the correction can be calculated. Results are

shown in the following subsection.

3.4.2 Results

In Table 3.1, results are shown for the example problem above. The main purpose of this

table, and those like it in the following chapters, is to showwhether or not the calculated

correction to the functional (i.e. the estimate of the inter-grid functional error) is close to

the actual error when measured. This is achieved by solving the system and calculating

the quantity of interest on the fine grid, giving the true value for that mesh. Thus, when

the solutions are solved on the coarse grid and interpolatedto the fine grid, followed by

the calculation of the estimate of the quantity of interest and subsequent correction, it is

possible to see how close the two are.

The columns of Table 3.1 are as follows: Column 1 shows the coarse grid on which

the solutions of the forward and adjoint problem are solved,with column 2 the number

of mesh points on that grid. Column 3 shows the interpolated functional. That means

the functional calculated on gridg+1 using the solutions calculated on gridg. The cor-

rection to the value in column 3 as calculated by the adjoint error estimation procedure

is then shown in column 4. It is this quantity in whose accuracy we are interested. Col-

umn 5 contains the resulting computed corrected functionalvalue, which can then be

easily compared to the actual functional value for gridg+1 which is shown in column 6.

The measured error, as shown in column 7, is the difference between columns 6 and 3,

i.e. the actual error in the functional computed from a solution interpolated to the fine
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Grid No. Interpolated Calculated Corrected Functional Measured Effectiv.
(g) Points Func. (g) Correction Func. (g) (g+1) Error Index
3 17 1.10973 0.19470 0.94278 1.36493 0.25520 1.311
4 33 1.36194 0.09868 1.26625 1.47011 0.10817 1.096
5 65 1.47049 0.02760 1.44251 1.49940 0.02890 1.047
6 129 1.49941 0.00750 1.49190 1.50698 0.00757 1.009
7 257 1.50698 0.00191 1.50507 1.50889 0.00191 1.002
8 423 1.50889 0.00048 1.50841 1.50937 0.00048 1.000
9 692 1.50937 0.00012 1.50925 1.50949 0.00012 1.000
10 964 1.50949 0.00003 1.50946 1.50952 0.00003 1.000
11 1152 1.50952 0.00001 1.50951 1.50952 0.00001 1.000

Table 3.1: Adjoint based inter-grid functional error on uniform meshes for a linear model
problem

grid, compared to the functional value as solved on the fine grid. This is the value that the

adjoint error estimate from column 4 should closely approximate. Finally, the last col-

umn in the table gives the effectivity index of the adjoint error estimate. This is defined

to be the ratio of the actual error (that in column 7) to the predicted error (i.e. the adjoint

error estimation in column 4). For this linear problem, it isclear that the effectivity index

tends towards a value of unity with increased grid refinement, showing the accuracy of the

predicted correction to the functional. Furthermore, evenfor very coarse grids the error

estimate is demonstrated to be remarkably accurate.

3.5 Cubic spline interpolation

Cubic spline interpolation is a third order accurate methodof interpolation (i.e. when data

points from a sufficiently smooth function are interpolatedusing cubic splines the error

is third order [12]). It is piecewise cubic interpolation, with the cubic on each interval

constrained to be such that:

• The cubic segment interpolates the values at either end of the segment;

• The first derivative of the segment matches the first derivative at the interface with

the adjoining segments (i.e. it is continuous);

• The second derivative is continuous.



Chapter 3 35 Background to Adjoints

Along with the information from the end point conditions (not-a-knot is used for this

work), this gives sufficient information to be able to solve asystem of equations to get the

interpolating cubics. Further details of this can be found in [59].

As mentioned near the beginning of this chapter, cubic spline interpolation is used

throughout this work. In Chapter 5, the discretisation of the model problem is second

order. According to [73], the order of the interpolation used to move coarse grid solutions

onto the fine grid should be at least as high as the discretisation of the system being

used. Therefore, second order interpolation would be sufficient in that case, and so using

quadratics would be an option. However, fitting a quadratic through the last three points

of the domain would always exactly satisfy the cavitation condition, equation (5.8), on the

fine mesh. This would lead to a loss of information about the how the functional should be

corrected due to the boundary being incorrectly placed. Forthis reason, and since higher

accuracy is generally regarded as a good thing, cubic splines are used.

3.6 Sparsity patterns

In this section, the reason that the boundary points are not solved for in the adjoint sys-

tem is described. There are two reasons why the boundary points could potentially be

necessary in the formulation of the adjoint equation system. The first is because there

may be a contribution to the correction term from that point,and the second is because

the equations there may affect the adjoint system, leading to a different adjoint solution.

Here, the reasons why the adjoint values at the boundaries are not needed for this work

are outlined.

Throughout this work, the boundary conditions are all defined to be Dirichlet, or fixed

value, points. This means that the residual on any grid at theboundary points must always

be zero, and so in the context of the adjoint error estimation, these points will make no

contribution.

The adjoint solution variables specify the linear combination of the Jacobian matrix

columns which, when multiplied, yield the corresponding sensitivity of the functional

to the solution variables. Since the residual equations at the boundaries for all of the

problems considered in this thesis are essentially

R0 =−P0 andRn−1 =−Pn−1,
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Figure 3.1: The sparsity pattern for an example Jacobian system, with zero Dirichlet
boundary conditions

Figure 3.2: The transposed sparsity pattern for an example Jacobian system, with zero
Dirichlet boundary conditions

there is no sensitivity to any solution variable other than the one at that point, and as such

the row in the Jacobian is empty apart from the one on the diagonal. Once the Jacobian

matrix has been transposed, this becomes a column. Now, since all of the entries are zero

apart from those pertaining to the boundaries, whatever theadjoint boundary values are

after the adjoint system has been solved makes no differenceto the other adjoint variables.

In other words, the boundaries have been de-coupled from therest of the adjoint solution.

This means that there is no need to consider the boundary points when formulating the

adjoint system because the variables there are a) not important in their own right as the

residual there will always be zero, and b) do not influence therest of the adjoint solution

since they are decoupled from it. The situation for an adjoint system that would arise

from a system similar to that considered in Chapter 7 is shownin Figure 3.1, along with

the transpose of the system in Figure 3.2. This shows pictorially how, after being trans-

posed, the first and last columns contain entirely zeros apart from on the diagonal. This

fits with the theory for continuous adjoints since homogeneous boundary conditions for

the forward problem often lead to in-homogeneous boundary conditions for the adjoint

problem [45].

Finally, a technical consideration is highlighted. When considering interpolation be-

tween grids, special treatment must now be used for the endpoints since there will be
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points on the finer mesh outside the end points on the coarse mesh. This is easily reme-

died by extrapolating the cubic spline segments at the edges.



Chapter 4

Friction as a Quantity of Interest

Historically, research into error estimation and control has tended to assume that, in a

numerical simulation, it is the accuracy of the computed solution which is of interest. In

many practical situations however, the solution field is used to calculate some derived

quantity, such as friction, drag, lift, etc. In this work, weare interested in such cases,

where a quantity of interest depends on the solution. It is this quantity in which the

accuracy is really required, rather than for the whole of thesolution. In this chapter

an output of interest in EHL problems, the friction within the contact, is introduced. In

subsequent chapters it will be seen how these ideas can be married to those of the previous

chapter, where the accuracy of an output functional can be estimated. The results in this

chapter are for EHL on a uniform grid using the numerical codedeveloped as part of the

Carmehl [71] software.

4.1 Motivation

Solution times for numerical models for solving elastohydrodynamic lubrication (EHL)

problems continue to decrease as the algorithms used improve and the computers on

which they are solved become more powerful. Conversely, as the lubricant models used

by industry become more complex, the demands for robustness, accuracy and speed of

38
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the software increase. In addition as the breadth of cases increases the generality of the

software must also increase, so a single code should be able to tackle a wide range of

problems with the minimum of user input.

The main requirement of a user of such a code is to obtain the “correct” solution as

quickly as possible. This leads to the consideration of the question of what is meant by

“correct”. In order to consider a solution “correct” it mustsatisfy some objective criteria

and it could be that the spatial mesh resolution required to meet these criteria for one

solution component is inadequate for another. Typically, afiner resolution computational

mesh leads to more accuracy but at the expense of increased solution times. Therefore

if the user is only concerned with solution components that already meet the objective

“correctness” criteria at a certain level of grid resolution, it may be unnecessary to in-

crease the grid resolution further. However care must be taken as not only can solution

components which are not accurately resolved affect other components, but in transient

problems the growth of errors in these other components can result in completely inac-

curate solutions at later times. In this chapter it is shown how account may be taken of

some of these requirements when considering accuracy in terms of the ability to reliably

estimate solution-dependent quantities such as friction.

In order to measure the error in a computational experiment it is necessary to measure

how far the computational result is from the true solution. Since EHL problems only

have an analytic solution in very special cases, the “true” solution will be taken to be that

obtained as the number of points increases, and hence the mesh spacing decreases. In

particular, the “true” solution will be defined here by that computed on a very fine mesh,

often termed a “truth mesh” in the computational science community. Providing the truth

mesh is sufficiently fine, it is possible to model the discretisation error numerically on

much coarser meshes.

In this chapter only the key quantity of friction will be considered. The motivation

for this is that in many real simulations being performed, this will be the only quantity

considered by, and of interest to, the user [29].

Investigations into friction have been mainly confined to experimental work such as

Blencoeet al. [6] and Workelet al. [88]. As will be shown later in this chapter, e.g. Fig-

ures 4.1 to 4.4, the friction appears to be closely related toaccurately capturing the profile

of the pressure spike. Work by Bisset and Glander [4] showed that when more fine mesh

points are used in the region of the spike then it is no longer seen as a singularity in the

solution, but a smooth profile. This work only resolved the spike using up to 1000 points,
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however it did still highlight the importance of this area ofthe solution. Results later in

this chapter show this resolution extended to over a millionmesh points. Further consid-

eration of this area in respect to the elastic properties is given by Hall [33] and the benefits

of this approach for better accuracy is shown by Lee and Hsu [43].

The consideration of friction will be seen to have great dependence on the resolution

of the pressure profile, as will be explained with reference to the governing equations.

The consideration of the resolution of the single pressure spike in a line contact case will

be used as an example which must be applied to the much more general cases of surface

roughness, where sharp pressure spikes will occur through the length of the contact region.

Accurate resolution of these features will lead to more reliable computational results for

the key quantities of interest.

Whilst not considered in this work, subsurface stress components [38, 44] calculated

from the pressure play a significant role in determining the life of a bearing. Accurate

resolution of the pressure solution will be equally important in computing this and other

quantities of interest.

4.2 Friction

As mentioned in Chapter 1, friction is a force which opposes motion. The friction gener-

ated in an EHL contact is given by the shear stress generated within the lubricant. This

comes about through two mechanisms, rolling friction and kinetic (sliding) friction.

Within the contact, a pressure gradient is generated. This is because the deformation

of the contact is largest in the centre, requiring the greatest pressure to maintain it. As the

two surfaces move into the contact, lubricant is pulled withthem (entrained). However, it

is also squeezed out by the pressure generated in the contactregion, and so the lubricant in

the middle is moving at a different speed to the surfaces, causing it to shear. The resistance

to this motion is called the rolling friction and forms the first term of (4.1) and (4.2) below.

The second mechanism for the generation of shear stress, only happens when the

surfaces are in relative motion, hence sliding friction. Now, the lubricant is sheared at the

rate of the difference in speed of the two surfaces per unit thickness. Given the viscosity,

η, i.e. the resistance to shear, the force at any position in the contact can be determined.



Chapter 4 41 Friction as a Quantity of Interest

It is possible to derive the shear stress on each surface [65]:

τxz;a(x) =−
h
2

∂ p
∂x

+
η
h

(ub−ua) , (4.1)

τxz;b(x) =
h
2

∂ p
∂x

+
η
h

(ub−ua) , (4.2)

for the lower and upper surfaces moving at speedsua andub respectively. From these ex-

pressions it is possible to work out the total (dimensional)friction through a line contact,

F as either

F =
∫ ∞

−∞
τxz;a(x)dx (4.3)

or

F =

∫ ∞

−∞
−τxz;b(x)dx (4.4)

depending on which surface is required. In this work, the friction on the lower surface will

be used, i.e. equation (4.3), although this choice is arbitrary. This is a key quantity of in-

terest as it gives a measure of the force opposing the shear inthe lubricant, e.g. [5, Chapter

6]. Experimentally, the rolling friction and the sliding friction cannot be measured inde-

pendently, and hence in this work only the total friction will be considered, although in

some cases this will be made up of only rolling friction.

4.3 Pressure spike resolution and friction

The speed of modern EHL codes and the computers they are run onmakes it possible to

obtain solutions to line contact problems with up to 106 mesh points, as will be shown

below. The quality of the results obtained varies between grid levels. This variation

may give a larger error in key quantities of interest, such asthe total friction defined by

equation (4.3), than just the discretisation error in the pressure. For example, the total

error in the friction depends on errors in the pressure derivative ∂P
∂X , the film thickness, the

reciprocal of film thickness and also on the viscosity. As filmthickness depends on all

the pressures, the error in the film thickness at any point depends on all the errors in the

pressure values.

An example of the differing quality of solution is shown in [31]. They considered
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Figure 4.1: Non-dimensional pressure plot of a line contactproblem with increasing mesh
resolution

increasing the mesh resolution and observed the change in both the primary solutions

and the derived friction. In Figure 4.1, the pressure distribution across the whole domain

is shown. It can be seen that the curves are almost coincidental apart from around the

pressure spike. This area is shown in detail in Figure 4.2, where the addition of several

orders of magnitude more points has now captured the pressure spike completely and

appears to have achieved a converged continuous solution. More work has been done

recently to achieve convergence of the pressure spike with only a fraction of the mesh

points used here, using high order Discontinuous Galerkin finite element solutions [48].

The effect of extra grid resolution can be seen to only affecta small portion of the pres-

sure plot, namely the spike area, and only to a very small degree once the grids greater

than 4097 points have been reached. However, as Figure 4.3 illustrates, an increasingly

refined spike, achieved through finer meshes, has a more global effect on the film thick-

ness. Similarly, considering the total friction through the contact, as shown in Figure 4.4,

the resolution of the pressure profile, and hence pressure spike, is important if the total

friction through the contact is to be calculated accurately.

It is the derivatives of pressure in equation (4.2) that are especially important in purely
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Figure 4.2: Non-dimensional pressure plot around spike with increasing mesh resolution

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

-1 -0.5 0 0.5 1

N
on

-d
im

en
si

on
al

 fi
lm

 th
ic

kn
es

s 
- 

H

Non-dimensional distance through contact - X

257 points
513 points

1025 points
2049 points
4097 points
8193 points

16385 points
32769 points

Figure 4.3: Non-dimensional film thickness plot of a line contact problem with increasing
mesh resolution
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Figure 4.4: Total friction through the contact calculated with increasing mesh resolution

rolling friction calculations. If the pressure spike is notcaptured well enough then these

derivatives will not represent the true friction through the contact. These derivatives are

also present through the calculation of the shear stress, asgiven in equations (4.1, 4.2).

These shear stresses have an even more extreme profile on finermeshes as shown in

Figure 4.5. It can be seen how the results on grid levels wherethe calculated key quantities

have converged are still not capturing the maximum shear stress quite so accurately.

4.4 Domain size

The size of the domain used for the calculation of purely rolling friction is also very im-

portant. In Figure 4.6, again taken from [31], the calculated friction against the length of

the negativeX domain is shown, i.e. -Xl , for fixed grid levels. It is seen that with very large

negative domains, i.e. large inlet regions, the sensitivity of the friction to further changes

in the domain size will be negligible. Obviously, for each grid level the mesh spacing will

increase as the value ofXl gets larger, however it can be seen from the coincident curves

for the finest meshes that this is not enough to account for theconvergence behaviour

of the friction. The conclusion to be drawn is that the inlet region has a very important
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Figure 4.5: Shear stress profiles with increasing grid resolution for a line contact case
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effect on the friction results calculated, in many cases over 10% of the calculated friction.

This result will be significant in the next three chapters since, in all of those chapters, the

left-hand boundary will not be identically placed between cases, so it is important that the

domain is sufficiently large so as to have negligible effect when this happens. Fortunately

this result is mitigated to some extent by two factors. The first is that the introduction of

some sliding to the contact reduces the increase of frictionwith domain size. The second,

and more important point, is that due to the solution processused, the left hand boundary

will only move at most by one mesh point when a finer grid is usedto gain a more accurate

solution. This means that the domain only needs to be large enough that a small change

in the size results in a negligible change in the friction.

4.5 Discussion

In this chapter it has been shown how accurate resolution of the pressure profile leads to

accurate values of computed friction. In the next chapter a model free boundary problem

is introduced, and this is used to show how adjoint error estimation techniques can be

used for accurate prediction of the friction on a uniformly refined mesh and also how it

can be applied to driving adaptive refinement.



Chapter 5

A Model Free Boundary Problem

For such a complex and highly non-linear problem as that described in Chapter 2, it is use-

ful to take several simplifying steps. These facilitate better understanding of how adjoint

error estimation needs to be applied to each of the various problem-specific mechanisms

at work. To this end, a sequence of model problems are proposed which retain sufficient

similarities to the full EHL problem to be useful, whilst providing a relatively straightfor-

ward set of increments. In this chapter, a linear PDE with a free boundary is considered,

and in the next chapter this is generalised to a non-linear PDE. Although the PDE consid-

ered here is linear, because the position of the free boundary depends upon the solution of

the PDE in a non-linear way, the overall free-boundary problem is still non-linear. Force

balance is also present in this model through the separationparameterH0.

5.1 Forward problem

This section defines the forward problem to which adjoint error estimation will then be

applied. First, the mathematical model is described. This is followed by its discretisa-

tion, and finally its solution method. An expression for “friction” is also defined and

discretised.

47
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5.1.1 Mathematical model

Although the model proposed here may be thought of as an incompressible, isoviscous

hydrodynamic problem, this is just a model problem. The equations have been chosen

to look similar to the EHL equations, but the quantities, whilst referred to as such, have

no physical meaning. By using this model, the non-linearities arising from the density,

viscosity, and elastic deformation are removed:η andρ having been assigned nominal

values of unity. The PDE, similar to the non-dimensional Reynolds equation, after taking

account ofη andρ, is given by:

d
dX

(

H3 dP
dX

)

−λ
dH
dX

= 0. (5.1)

With no deformation of the solid bodies, the film thickness issimply given by the separa-

tion H0, and the parabolic geometry of the surfaces, thus

H(X) = H0+
X2

2
. (5.2)

As usual, the force balance equation is applied, so that the applied load is balanced by the

sum of the pressures generated within the lubricant film,

∫ Xc

Xin

P(X) dX = L. (5.3)

The presence of a load,L, on the right-hand side of equation (5.3) enables a range of

cases to be tackled. This is akin to non-dimensionalisationagainst a reference loading, as

is done for transient cases with variable loads, such as in [26, 27, 87]. The boundary and

cavitation conditions are specified as in the full EHL case, such that

P(Xin) = P(Xc) = P′(Xc) = 0. (5.4)

AlthoughP(Xin) = P(Xc) = 0 is enforced at the boundaries,P′(Xc) = 0 becomes one of

the conditions to be satisfied by the solution. This is achieved by finding the value of

Xc such that the above cavitation condition is satisfied. This is unknowna priori, and as

such forms part of the set of solution variables which must befound. In equations (5.3)

and (5.4)Xin is defined to be equal toXc minus a given, constant, domain size,D. As dis-

cussed in Chapter 4, this is chosen to be sufficiently large asto not influence the solution

in the contact region, and hence the friction. Precise details of Xc and the role it plays in

the solution are detailed in the next section.
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X 0 X 1 X 2 X n−2 X n−1X 3 X n−3

Figure 5.1: A uniform computational mesh

5.1.2 Numerical model

Having specified the mathematical model, it is simple to formulate the numerical problem

using finite difference approximations on a uniform grid using n nodes, numberedi =

0, . . . ,n−1, as in Figure 5.1. On this mesh, the values ofXi can be calculated byXi =

Xc−D+ i∆X, where∆X is the spacing between the grid points. First, given equation (5.2),

clearly dH
dX = X. Hence the discretisation of the Reynolds equation, (5.1),gives

(Pi+1−Pi)H3
i+ 1

2
∆X −

(Pi−Pi−1)H3
i− 1

2
∆X

∆X
−λXi = 0.

This approximation is derived using a central difference ateach ofi + 1/2 andi−1/2,

both of which are second order accurate. The central difference is then taken between

these two to form the above equation. The second order derivative is approximated by the

difference of two first order differences. This uses the film thickness at the midpoint in

the cell, defined asH3
i± 1

2
=

H3
i +H3

i±1
2 . Alternatives to this approximation exist, e.g.H3

i± 1
2
=

(Hi+Hi±1
2 )3. Simplifying and rearranging gives

H3
i+ 1

2
Pi+1− (H3

i+ 1
2
+H3

i− 1
2
)Pi +H3

i− 1
2
Pi−1

(∆X)2 −λXi = 0, (5.5)

for i = 1, . . . ,n−2. The film thickness equation becomes

Hi = H0+
X2

i

2
, (5.6)

with the force balance
n−2

∑
i=0

Pi +Pi+1

2
∆X = L. (5.7)
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The cavitation boundary condition in equation (5.4) can be given, as shown in Section 2.3,

using a second order backwards difference stencil,

3Pn−1−4Pn−2+Pn−3

2∆X
= 0, (5.8)

and Dirichlet boundary valuesP0 = Pn−1 = 0 are imposed. The cavitation condition above

then reduces to
−4Pn−2 +Pn−3

2∆X
= 0. (5.9)

As previously mentioned, the cavitation position is an extra unknown to be solved for.Xc

is the value ofX that satisfies the cavitation condition (5.9). Using a sliding grid (moving

domain), as detailed in Section 5.1.4, the right-hand boundary can be moved such thatXc

is at the cavitation point. In other words, the domain[Xin,Xc] is repeatedly moved untilXc

satisfies (5.9) to within some tolerance.

5.1.3 Friction

The friction calculation for the model problem proposed in this chapter is given by

F(P) =

∫ Xc

Xin

(

−
∂P
∂X

H
2

+
χ
H

)

dX. (5.10)

In this, χ is used to emulate the sliding term in equation (4.3). This isnecessary for this

problem because the viscosity is simplyη = 1, and the individual roller speeds,ua andub,

are not defined for this model problem. As suchχ is taken to be a combination of the two

factors, i.e.χ ≡ η(ub−ua). By varyingχ it is possible to introduce a sliding component

to the friction, and results are presented that show this to be sufficient to illustrate how the

adaptive mesh should change for different sliding values. Discretising (5.10) over the cell

mid-points, yields

F(P) =−
n−2

∑
i=0

(Pi+1−Pi)

2
Hi+ 1

2
+

n−2

∑
i=0

χ
Hi+ 1

2

∆X. (5.11)

5.1.4 Sliding grid solution method

Having defined a system of equations to solve, attention is turned to the solution method.

It should be noted that this solution method has not been designed with speed or efficiency
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in mind, rather as a simple, robust way to solve the model problem. The sliding grid

approach outlined below is used because it allowsXc to vary continuously, thus easing

the derivation of the adjoint system, and also allowing arbitrary accuracy of solving the

cavitation boundary condition.

There are three steps (which must be repeated) to solving thenumerical system as

defined by equations (5.5)-(5.8). They are:

1. Solve the linear system (5.5) forP

2. Find the correctXc for the currentH0 (using (5.9))

3. Find the correctH0 for the input parametersL andλ (using (5.7))

Each of these is discussed in turn, with the overall description of the algorithm following

in Figure 5.3.

5.1.4.1 1: Solve forP

The discretisation shown in equation (5.5) leads to a tri-diagonal matrix, which for given

values ofH (and henceH0), λ , ∆X, andXi (and henceXc), a solution forP is easily ob-

tained using (banded) LU decomposition. Having found the solution for P, the algorithm

moves on to step 5.1.4.2.

5.1.4.2 2: FindXc

Given a solution forP (solved for in the previous step), the cavitation boundary condi-

tion (5.9) can be evaluated. If the gradient is sufficiently close to zero (
∣

∣

∣

−4Pn−2+Pn−3
2∆X

∣

∣

∣
<

10−8 in this case), the cavitation pointXc has already been found and the algorithm pro-

ceeds to step 5.1.4.3. If not,Xc moves according to Figure 5.2. Clearly, in Figure 5.2

(a), the gradient is positive atXc, and the boundary is too far to the right. Therefore,Xc

(and hence the grid) should be moved left. Conversely, in Figure 5.2 (b), the gradient is

negative because the boundary is too far left, and soXc should be moved to the right.

The new position ofXc is determined by the repeated use of a bisection algorithm.

Given that the cavitation position must be to the right of thecentre of the contact(X = 0),

and starting with a large value ofXc (such as that pictured in Figure 5.2 (a)), it is simple to

form the initial solution bracket. At this point,Xc is set to be the mid-point of the interval.
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(a) P′(Xc) > 0 (b)P′(Xc) < 0 (c) P′(Xc) = 0

Figure 5.2: The three cases for the right-hand boundary. When deciding how to move
this boundary position, cases (a) and (b) result in the mesh moving either left or right
respectively.

Consequently,Xin is recalculated asXc−D and the values ofXi andHi are calculated for

all of then grid points, and the algorithm returns to step 5.1.4.1. Oncestep 5.1.4.1 has

been completed again (assuming thatP′ is not yet close enough to zero), one of the right

or left-hand brackets will be set to the value ofXc, depending on the sign ofP′(Xc). Xc

can then be set to the midpoint of this new bracket and the procedure repeated.

In Chapter 7, where one solve for a given value ofXc takes longer (O(n2) compared

to O(n) here), a faster way of findingXc is introduced.

5.1.4.3 3: FindH0

Having found a solution forP andXc, the force balance equation (5.7) must be evaluated.

If the force balance residual, equation (5.13) defined in Section 5.2, is sufficiently small

(again, 10−8 for the work in this chapter), the whole system of equations has been satisfied

and the solution has been obtained. If it is not, thenH0 must be adjusted according to the

following procedure. The reason for this approach has been explained in Section 2.4.2,

but is recapped here for convenience. If the sum of the pressures is currently greater than

the applied load, the pressure generated in forcing the liquid through the gap is too large,

andH0 must be increased. If the sum of the pressures is less than theapplied load, the

pressures generated are insufficient to balance the appliedload, and so the surfaces must

move together, i.e.H0 must be decreased. This happens according to

H0← H0−ω

(

L−
n−2

∑
i=0

Pi +Pi+1

2
∆X

)

,

whereω is a relaxation parameter (typically 0.2 here). OnceH0 has been adjusted, theHi

values can be recalculated and the algorithm goes back to step 5.1.4.1.
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Figure 5.3: Model problem solution algorithm

5.1.4.4 Overall algorithm

The overall process is illustrated in Figure 5.3.

Before moving on to the formulation of the adjoint problem, an alternative approach

to the sliding grid method is discussed. One idea which wouldkeepXc as a continuous

variable, would be to fix the left hand boundary of the grid, and “concertina” the grid to

find the correct cavitation position. So a solution procedure could be followed, similar

to that above, only instead of shifting all of the grid pointsby the same amount asXc

is moved, the mesh points become closer together asXc moves left, and further apart

as Xc moves right. One disadvantage to this approach would be that∆X would then

be dependent onXc, and so extra terms would be introduced into the Jacobian through

the force balance and the cavitation condition. Whilst not aconsideration for the model

problem introduced in this chapter, a further disadvantagein the full EHL line contact case

would be the need to recalculate the discrete kernel used in the deformation calculation.

5.2 Adjoint problem

The residual equations implicitly solved for in achieving the solution detailed in the pre-

vious section, are listed here fori = 1, . . . ,n−2,

Ri = ∆X



λXi−
H3

i+ 1
2
Pi+1− (H3

i+ 1
2
+H3

i− 1
2
)Pi +H3

i− 1
2
Pi−1

(∆X)2



= 0, (5.12)
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along with,

RH0 = L−
n−2

∑
i=0

Pi +Pi+1

2
∆X = 0, (5.13)

and

RXc =−
3Pn−1−4Pn−2+Pn−3

2∆X
= 0. (5.14)

Unlike standard pointwise finite difference residuals associated with the discretisation

of the Reynolds equation, the residual equations here have been multiplied through by

∆X. In order to understand why this scaling is necessary, it is important to remember

what is happening. The solution of the adjoint system shouldgive the sensitivity of the

friction calculation to the residuals [77]. Since the friction is an integral quantity, each

pointwise shear stress value is effectively multiplied by the area over which it is acting,

∆X. Equally, in order to find the total effect of each residual, it must be multiplied by

the area over which it acts. This makes the finite difference residuals roughly analogous

to finite element residuals. So now, each element of frictioncalculated is related to an

equivalent element of residual. The other two residuals, equations (5.13) and (5.14), have

no need for such scaling. This is because the whole integral computed when calculating

the friction is sensitive to bothH0 andXc. This means there is no mesh dependence of the

right-hand side of the adjoint, and so no scaling is necessary.

For uniform meshes it is equally valid to remove the mesh dependency from the right-

hand side of the adjoint system and use standard finite difference residuals to get the

adjoint system, i.e. relate pointwise residuals to pointwise friction values. This is because

all of the grid points contribute equally to the overall quantity calculated. However, this

approach is not valid for non-uniform meshes, because no account is then taken of the

amount by which a particular element contributes to the overall quantity calculated, and

so the effect on the friction from coarse regions of the mesh would be underestimated.

5.2.1 Jacobian

Here, the non-zero entries in the Jacobian, made up of the derivatives of the residu-

als (5.12)-(5.14) with respect to then−2 pressures,H0 andXc, are presented.

Once transposed, these form the system of equations to be solved for the adjoint prob-

lem (3.8). The first terms to consider are those associated with the Reynolds residuals.

Clearly, each residual equation depends on three pressures, the pressure at the same place,
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and the ones on either side:

∂Ri

∂Pi−1
=−





H3
i− 1

2

∆X



 ,
∂Ri

∂Pi
=





H3
i+ 1

2
+H3

i− 1
2

∆X



 ,
∂Ri

∂Pi+1
=−





H3
i+ 1

2

∆X



 ,

giving the Jacobian its main tri-diagonal structure. The other two terms on each row of

the Jacobian are

∂Ri

∂H0
=−3





H2
i+ 1

2
Pi+1− (H2

i+ 1
2
+H2

i− 1
2
)Pi +H2

i− 1
2
Pi−1

∆X





whereH2
i± 1

2
=

H2
i +H2

i±1
2 , and

∂Ri

∂Xc
= λ −3





ε2
i+ 1

2
Pi+1− (ε2

i+ 1
2
+ ε2

i− 1
2
)Pi + ε2

i− 1
2
Pi−1

∆X





whereε2
i± 1

2
=

H2
i Xi+H2

i±1Xi±1
2 . The remaining terms to consider come from equations (5.13)

and (5.14),
∂RH0

∂Pj
=−∆X,

∂RH0

∂H0
= 0,

∂RH0

∂Xc
= 0,

∂RXc

∂Pn−3
=−

1
2∆X

,
∂RXc

∂Pn−2
=

2
∆X

,
∂RXc

∂H0
= 0,

∂RXc

∂Xc
= 0.

The structure of the Jacobian therefore is an arrow, as shownin Figure 5.4.

5.2.2 Adjoint right-hand side

Here, the values for the right-hand side of the adjoint system are derived. These represent

the sensitivity of the friction to each of the variables.

First, the discrete friction calculation, (5.11), is restated as

F(P) =−
n−2

∑
i=0

(Pi+1−Pi)

2
Hi+ 1

2
+

n−2

∑
i=0

χ
Hi+ 1

2

∆X.
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Figure 5.4: Model problem Jacobian sparsity pattern



Chapter 5 57 A Model Free Boundary Problem

The sensitivities of this sum to the pressure variablesPj , j = 1. . .n−2, are given by

∂F
∂Pj

=−
H j− 1

2
−H j+ 1

2

2
.

Next, the sensitivity toH0 is considered. Noting that∂H
∂H0

= 1,

∂F
∂H0

= −
n−2

∑
i=0

Pi+1−Pi

2
+

n−2

∑
i=0

−χ
H2

i+ 1
2

∆X (5.15)

= −
Pn−1−P0

2
−

n−2

∑
i=0

χ
H2

i+ 1
2

∆X. (5.16)

Given that since

P(Xin) = P(Xc) = 0, (5.17)

P0 = Pn−1 = 0, it is immediately clear the first term is identically equalto zero, and so the

expression becomes
∂F
∂H0

=−
n−2

∑
i=0

χ
H2

i+ 1
2

∆X.

Last, the sensitivity to the cavitation boundary position,Xc, is found. By taking only the

first term of the integrand in equation (5.10), and noting that ∂H
∂Xc

= X, the expression

becomes
∂F1

∂Xc
=−

n−2

∑
i=0

Pi+1−Pi

2
Xi+ 1

2
.

Finally, considering the second part of (5.11),

∂F2

∂Xc
= +

n−2

∑
i=0

−χXi+ 1
2

H2
i+ 1

2

∆X,

which put altogether, gives

∂F
∂Xc

=−
n−2

∑
i=0

Pi+1−Pi

2
Xi+ 1

2
−

n−2

∑
i=0

χXi+ 1
2

H2
i+ 1

2

∆X.

5.2.3 Sparse matrix solution method

The numerical package used to solve the adjoint system defined in the previous two sec-

tions is SPARSKIT [64]. The sparse matrix format used is the compressed row format,
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and the specific method is ILUT preconditioned GMRES (Generalised Minimal Resid-

ual).

5.3 Results

In this section, a series of results are presented starting with uniform meshes and global

refinement. This is followed by non-uniform adaptivity, driven by the adjoint solution.

The method provides similar tables of results for all loadings and so a single representative

case is presented in detail here.

5.3.1 Uniform mesh results

Before considering a sequence of locally refined meshes, results on uniform meshes are

presented. This case has been solved for a nominal load ofL = 5.0, and sliding parameter

χ = 20.0. Table 5.1 shows the performance of the predicted error in the friction, as

calculated using the adjoint approach, by comparing it withthe true error when solving

on the next mesh. Note that in this context the term error is used to meanF(uH
h )−F(uh)

(as opposed toF(uH
h )−F(u) whereu is the unknown exact solution of the continuous

problem).

The first column of the table shows the grid level for the coarser of the two grids, and

has a number of points equal to 2g+1 +1. Using the solution from this grid, interpolated

onto gridg+1, a friction value is calculated which is shown in the secondcolumn. Col-

umn 3 shows the correction to this friction, as calculated using the adjoint system solved

on the coarse gridg. The corrected friction is shown in column 4, with the “true”friction

value for gridg+ 1 shown in column 5. The measured error between columns 2 and 5

is shown in column 6. The final column shows the ratio of the measured error to the

estimated error (known as the effectivity index). One of thecentral beliefs of this work

is that with increasing mesh resolution the estimated errorshould become increasingly

close to the measured error. This is because the higher orderterms not accounted for in

the Taylor expansions in (3.3) and (3.1) will become less significant with increasing mesh

resolution, so the system solved will be a better approximation. Since the effectivity index

can be seen to approach unity as the number of mesh points usedincreases, this gives a

strong indication that for uniform grids the friction errorestimate is remarkably accurate.

The “correction” procedure can therefore be used with a highdegree of confidence. If



Chapter 5 59 A Model Free Boundary Problem

Grid Interpolated Calculated Corrected Friction Measured Effectiv.
(g) Fric. (g) correction Fric. (g) (g+1) Error Index
5 87.95668 15.27956 72.67711 68.02241 19.93427 1.304
6 68.67781 2.64095 66.03686 66.37680 2.30101 0.871
7 66.52919 0.31057 66.21862 66.31442 0.21477 0.691
8 66.35216 0.01504 66.33712 66.34818 0.00398 0.264
9 66.35761 -0.00255 66.36015 66.36125 -0.00365 1.432
10 66.36361 -0.00124 66.36484 66.36496 -0.00135 1.094
11 66.36555 -0.00037 66.36592 66.36593 -0.00038 1.035
12 66.36608 -0.00010 66.36618 66.36618 -0.00010 1.016

Table 5.1: Adjoint based inter-grid friction error on uniform meshes for a model free
boundary problem;L = 5, χ = 20.0

the adjoint solution were not available, it would be necessary to keep computing on finer

and finer grids until the friction changed by less thanε, at which point the last (and most

expensive) solution does not yield a friction value that is significantly more accurate than

the previous. By using the adjoint estimate, the same accuracy will be achieved without

the cost of computing a solution on the finest mesh in this sequence. This is a significant

computational advantage.

Having considered in detail the case in Table 5.1, more results are presented for three

different values ofχ; 0.0, 1.0 and 2.0. These are given in Tables 5.2 to 5.4. In addition,

Table 5.5 shows the predicted correction when the correction components from theH0 and

Xc adjoints are neglected, and only the corrections from theP adjoints are used. In this

case the effectivity index not only does not converge to a value of 1.0, but is approximately

a factor of three out. This shows the importance of the model used and the subsequent

adjoint formulation.

5.3.2 Non-uniform and adaptive mesh results

Table 5.6 shows that with non-uniform meshes the adjoint error estimation approach is

still reliable, in the sense that the ratio of the predicted correction to the actual difference

in friction on consecutive meshes still tends to one as the meshes are refined. Note that

in order to obtain these results global mesh refinement, based upon element bisection,

has still been used, but now the initial mesh (and hence all subsequent meshes) is non-

uniform. Clearly the residual equation (5.12) at an interface between different levels of

refinement must take account of the non-uniformity in∆X. One approach would be to

define a different finite difference stencil based on the different∆X either side of the
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g grid g error between computed effectivity
func. value gridsg, g+1 correction index

5 5.503589 -7.354570e-01 -6.906117e-01 9.390238e-01
6 4.768132 -3.514585e-01 -3.694314e-01 1.051138
7 4.416673 -1.833214e-01 -1.876365e-01 1.023538
8 4.233352 -9.324546e-02 -9.410017e-02 1.009166
9 4.140107 -4.689058e-02 -4.708537e-02 1.004154
10 4.093216 -2.350241e-02 -2.354944e-02 1.002001
11 4.069714 -1.176439e-02 -1.177598e-02 1.000984
12 4.057949 -5.885350e-03 -5.888227e-03 1.000489
13 4.052064 -2.943447e-03 -2.944163e-03 1.000243
14 4.049120 -1.471914e-03 -1.472092e-03 1.000121
15 4.047649 -7.360050e-04 -7.360488e-04 1.000059
16 4.046913 -3.680116e-04 -3.680250e-04 1.000036

Table 5.2: Adjoint based inter-grid friction error on uniform meshes for a model free
boundary problem;L = 5, χ = 0.0

g grid g error between computed effectivity
func. value gridsg, g+1 correction index

5 8.550387e+00 -8.297460e-01 -3.698735e-01 4.457671e-01
6 7.720641e+00 -3.065513e-01 -2.688710e-01 8.770834e-01
7 7.414090e+00 -1.262497e-01 -1.310124e-01 1.037724e+00
8 7.287840e+00 -6.138486e-02 -6.465935e-02 1.053344e+00
9 7.226455e+00 -3.162180e-02 -3.269289e-02 1.033872e+00
10 7.194833e+00 -1.618346e-02 -1.648038e-02 1.018347e+00
11 7.178650e+00 -8.197283e-03 -8.274910e-03 1.009470e+00
12 7.170452e+00 -4.126227e-03 -4.146044e-03 1.004803e+00
13 7.166326e+00 -2.070142e-03 -2.075144e-03 1.002416e+00
14 7.164256e+00 -1.036843e-03 -1.038098e-03 1.001211e+00
15 7.163219e+00 -5.188670e-04 -5.191804e-04 1.000604e+00
16 7.162700e+00 -2.595404e-04 -2.596229e-04 1.000318e+00

Table 5.3: Adjoint based inter-grid friction error on uniform meshes for a model free
boundary problem;L = 5, χ = 1.0
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g grid g error between computed effectivity
func. value gridsg, g+1 correction index

5 1.159718e+01 -9.240350e-01 -4.913524e-02 5.317465e-02
6 1.067315e+01 -2.616441e-01 -1.683107e-01 6.432811e-01
7 1.041151e+01 -6.917809e-02 -7.438827e-02 1.075316e+00
8 1.034233e+01 -2.952425e-02 -3.521853e-02 1.192868e+00
9 1.031280e+01 -1.635302e-02 -1.830042e-02 1.119085e+00
10 1.029645e+01 -8.864516e-03 -9.411308e-03 1.061683e+00
11 1.028759e+01 -4.630173e-03 -4.773844e-03 1.031029e+00
12 1.028296e+01 -2.367103e-03 -2.403861e-03 1.015528e+00
13 1.028059e+01 -1.196836e-03 -1.206125e-03 1.007761e+00
14 1.027939e+01 -6.017713e-04 -6.041047e-04 1.003877e+00
15 1.027879e+01 -3.017290e-04 -3.023121e-04 1.001932e+00
16 1.027849e+01 -1.510691e-04 -1.512208e-04 1.001004e+00

Table 5.4: Adjoint based inter-grid friction error on uniform meshes for a model free
boundary problem;L = 5, χ = 2.0

g grid g error between computed effectivity
func. value gridsg, g+1 correction index

5 1.159718e+01 -9.240350e-01 -1.209958e+00 1.309429e+00
6 1.067315e+01 -2.616441e-01 -4.992491e-01 1.908123e+00
7 1.041151e+01 -6.917809e-02 -2.360559e-01 3.412293e+00
8 1.034233e+01 -2.952425e-02 -1.150627e-01 3.897226e+00
9 1.031280e+01 -1.635302e-02 -5.685207e-02 3.476549e+00
10 1.029645e+01 -8.864516e-03 -2.826390e-02 3.188431e+00
11 1.028759e+01 -4.630173e-03 -1.409213e-02 3.043542e+00
12 1.028296e+01 -2.367103e-03 -7.036178e-03 2.972484e+00
13 1.028059e+01 -1.196836e-03 -3.515625e-03 2.937431e+00
14 1.027939e+01 -6.017713e-04 -1.757197e-03 2.920041e+00
15 1.027879e+01 -3.017290e-04 -8.784450e-04 2.911371e+00
16 1.027849e+01 -1.510691e-04 -4.391841e-04 2.907173e+00

Table 5.5: Adjoint based inter-grid friction error on uniform meshes for a model free
boundary problem;L = 5, χ = 1.0. Only thePi components of the estimate were used in
calculating the estimate, not theH0 or Xc contributions for this case
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Figure 5.5: Three possible finite difference stencils for the interface between refinement
levels. Case (a) shows the stencil for a fine mesh point. The left hand value would need
recovering from the neighbouring points; Case (b) shows thecase for a non-symmetric
stencil. Care would need to be taken over the weightings of the node values to preserve
second order accuracy; Case (c) shows the coarse grid stencil which is used in this work

interface. A further approach would be to treat the interface point as a fine grid point,

using interpolation to get values for the missing mesh pointon the coarse side of the

interface. The approach taken here, however, is simply to treat the equation at the interface

as a coarse grid point. This is the simplest approach, since the coarse stencil can now be

applied to the interface point by ignoring the first mesh point on the refined side of the

interface. The three different approaches are illustratedin Figure 5.5.

Having demonstrated that the predicted error is still reliable on non-uniform meshes

it is now possible to use these values as the basis for local, rather than global, mesh

refinement. It should be noted, however, that the correctionvalue given by the last term

in equation (3.9) is just a single number indicating the current error in the friction and so

further information is required in order to determine wherethe contribution to this error

is the greatest. In the following example we base the local refinement on the magnitude

of (ΨH
h )i× (Rh(uH

h ))i locally, and refer to this as the correction component of mesh point

i [77]. Figure 5.6 shows the computed correction components across the domain after a

number of local refinements have been undertaken. In this case, the sliding-like friction

χ has been set to a value of 20, with the loadL set to 5.0. Starting from the left it may

be seen that the contribution to the estimated friction error gradually increases until the

first region of local refinement is reached, whereupon it drops suddenly. The contribution

to the error then grows again until the next region of local refinement is reached, and so

on. The contribution to the error is always kept below an imposed tolerance of 10−7 in

this particular example. The dark regions of the graph are due to the oscillating nature

of the residual. Figure 5.7 shows the overall effectivenessof this strategy compared to

the use of uniform mesh refinement. In this case the plot is of the error in the friction
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Figure 5.6: Plot showing the absolute value of the correction vector, and how it is dis-
tributed through local mesh refinement, for a model free boundary problem;L = 5,
χ = 20.0

(as compared against a friction value calculated on a so-called “truth mesh” containing

approximately 250 000 equally spaced points) versus the total number of nodes present

in the mesh. Unsurprisingly the uniform refinement strategyconverges most slowly, the

next curve shows the error in the friction on the locally refined (adapted) mesh, whilst the

final curve shows the error in the corrected friction value onthe adapted mesh. Figure 5.8

again shows the computed correction components across the domain, but this time for

pure rolling friction (χ = 0.0). A similar refinement pattern is shown, but the refinement

levels are more spread out through the domain, indicating that, as expected, a different

refinement is required for a different functional.

5.4 Summary

Results have been presented which show that the adjoint error estimation approach may

be used effectively for a non-linear incompressible isoviscous hydrodynamic lubrication

model problem containing a free boundary due to the cavitation condition. The effectivity
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Figure 5.7: Plot showing error reduction for uniform and adaptive grids for a model free
boundary problem;L = 5, χ = 20.0

Grid Interpolated Calculated Corrected Friction Measured Effectiv.
(g) Fric. (g) correction Fric. (g) (g+1) Error Index
5 87.66173 -4.56301 92.22474 67.98769 19.67404 -4.311
6 68.65988 2.62800 66.03187 66.36806 2.29181 0.872
7 66.52502 0.30892 66.21611 66.31220 0.21282 0.688
8 66.35111 0.01462 66.33649 66.34762 0.00348 0.238
9 66.35734 -0.00266 66.36000 66.36111 -0.00377 1.417
10 66.36354 -0.00127 66.36481 66.36492 -0.00138 1.093
11 66.36553 -0.00038 66.36591 66.36592 -0.00039 1.035
12 66.36608 -0.00010 66.36618 66.36618 -0.00010 1.016

Table 5.6: Adjoint based inter-grid friction error on non-uniform meshes, each with the
same refinement pattern, for a model free boundary problem;L = 5, χ = 20.0
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Figure 5.8: Plot showing the absolute value of the correction vector, and how it is dis-
tributed through local mesh refinement, for a model free boundary problem;L = 5,
χ = 0.0
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of this estimate on uniformly refined meshes may be used to provide a reliable stopping

criterion without the need to solve on the finest mesh. Moreover, it is demonstrated that

adjoint variables corresponding toXc andH0 are required to ensure quantitative accuracy

of the error estimate. Furthermore, the components of the correction term are shown to

provide an appropriate basis for determining where to refinelocally. The resulting meshes

can yield solutions of a considerably greater accuracy (in terms of friction, for example)

than obtained on correspondingly sized uniform grids. To our knowledge this is the first

time that a free boundary problem has been solved adaptivelyin this manner, and the

results have been published in [34] and [35]. Although theseresults are promising, it is

also clear that more sophisticated refinement procedures such as those presented in [79]

and [3], may pay dividends. However, the main focus of this research is on applying

adjoint techniques to full EHL cases. Thus, although automatic refinement is introduced

to the full EHL problem in Chapter 7, the attention in the chapters that follow is largely

on extending the model. In the next chapter, the applicationof the adjoint error estimation

will be extended to a full hydrodynamic lubrication test case.
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Hydrodynamic Lubrication

In this chapter, a compressible piezo-viscous hydrodynamic lubrication problem is intro-

duced. This is an industrially relevant problem that will serve as an intermediate step

between the model problem of the previous chapter and the full EHL problem described

in the following chapter. An analysis of the formulation of the residual equations, and

hence the Jacobian, will facilitate an understanding of theadjoint error estimation proce-

dure when applied to complex systems of equations, and hencethat used for EHL. Two

different approaches will be explored: one based upon a ‘compact’ Jacobian; the other

an ‘expanded’ Jacobian. This is because the variables for viscosity and density can be

considered either as functions of P or as independent variables in their own right.

Hydrodynamic lubrication is a physical phenomenon found where the contact area

is sufficiently large, or the load is light enough, such that deformation of the contacting

components does not occur or is negligible. Pressure is generated to separate the surfaces

through motion of the lubricant (hence the name dynamic). This study of hydrodynamic

lubrication, whilst not the main goal of this work, will prove useful in that it augments

the previous model problem with both non-linear viscosity and density, thus taking it a

step towards the full EHL regime. However, since the surfacegeometry is considered to

be fixed, there is no global deformation calculation which means that the Jacobian of the

discretised system of equations is still sparse.

67
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6.1 Forward problem

To begin this section, the mathematical model underlying hydrodynamic lubrication is

defined, followed by the discretised equations. Following this, a brief description of the

solution method is given, indicating the main differences from that given for the earlier

models. Sample forward solutions are also given.

6.1.1 Mathematical model

The non-dimensionalised mathematical problem is defined bythe following equations:

The Reynolds equation
∂

∂X

(

ρH3

λη
∂P
∂X

)

−
∂ (ρH)

∂X
= 0 (6.1)

and the film thickness

H = H0+
X2

2
. (6.2)

The viscosity is defined using the Barus equation [2],

η = eαP, (6.3)

whilst the density is given by [17],

ρ =
0.59×109+1.34Pph

0.59×109+Pph
. (6.4)

As before, force balance is specified according to

∫ ∞

−∞
P dX =

π
2

. (6.5)

As stated, the Barus viscosity model is used for viscosity inthis chapter. The Roelands

model [62] has been shown to fit the empirical data better at high loads, but this adds little

extra to the analysis at this stage, other than unnecessary complication.

6.1.2 Numerical model

By discretising the above equations on a regular mesh using the finite difference sten-

cils defined earlier, the following set of discrete equations can be found. The Reynolds



Chapter 6 69 Hydrodynamic Lubrication

equation becomes:

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi− 1

2

(∆X)2

)

−

(

ρ iHi−ρ i−1Hi−1

∆X

)

= 0, (6.6)

whereεi =
H3

i ρ i
λη i

, εi±1
2

= (εi + εi±1)/2 andHi is given byHi = H0 +
X2

i
2 . The viscosity

equation is simply

η i = eαPi , (6.7)

and the density equation becomes:

ρ i =
0.59×109+1.34Pi ph

0.59×109+Pi ph
. (6.8)

Finally, a discrete force balance equation is required

n−2

∑
i=0

Pi +Pi+1

2
∆X =

π
2

, (6.9)

along with the boundary conditions:

P0 = Pn−1 = 0, RXc =−
3Pn−1−4Pn−2 +Pn−3

2∆X
. (6.10)

Before going on to talk about the residual equations in more detail, and the corresponding

adjoint problem, the solution process is briefly outlined.

6.1.3 Solution process

The solution to the forward problem is obtained in a similar manner to that proposed in

Chapter 5, with a small number of minor differences. The mainhydrodynamic solver

solves the equations (6.6)-(6.9) so that, as well as obtaining solutions for the main vari-

ablesP, η andρ , the force balance equation is satisfied. This uses multigrid for efficiency

and solves by setting the pressure after the cavitation point to be zero.

There is no deformation term in the film thickness equation, so the film thickness

values are only updated whenH0 changes. This leaves only the free boundary equa-

tion, (6.10) to be satisfied. The procedure used in the previous chapter is repeated here,

i.e. moving the computational mesh according to a bisectionscheme until a value ofXc is
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found which satisfies equation (6.14) to within some tolerance. One slight complication

with this occurs after the first solve, when the cavitation point is not at the right-hand

boundary. This means the cavitation pressure gradient computed from the last non-zero

pressure points can not be relied upon to move the computational domain in the correct

direction. This is easily remedied though, since whenever the cavitation point is found at

a mesh point to the left of the right-hand boundary, the right-hand boundary is moved to

the location of the cavitation position for the next solve (although in the next chapter a

more reliable method is introduced to find the cavitation position). By using a continua-

tion strategy to provide initial guesses into the black-boxsolver, the solution can be found

increasingly quickly with subsequent solves [29]. This hasalso been found to counter-

act the occasional stalling of the numerical convergence, which appears to result from

incorrect boundary positions, which can sometimes impair the solution procedure.

6.2 Adjoint problem

As in the earlier chapters, the steps used to calculate the correction in a computed quantity

of interest are as follows:

• Solve for the forward solution;

• Solve for the adjoint solution;

• Interpolate both solutions from the coarse grid to the fine grid;

• Calculate the fine grid residuals using the interpolated coarse grid solution;

• Multiply the adjoint by the residuals to obtain an estimate for the correction term.

This hydrodynamic problem provides a useful test as to how the residual equations should

be defined and used. Firstly, two different ways that the residual equations can be formu-

lated are introduced. Following this, the derivation of both corresponding Jacobians is

included. In order to aid comparison of the two methods, Figures 6.1 and 6.2 show the

sparsity patterns of the Jacobians in each case.
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6.2.1 Residual equations

The residual equations can be formulated in at least two ways. This is because we can

treat the variables representing viscosity and density as either “primary” or “secondary”

dependent variables. For this problem, clearly the independent variable isX. Similarly, it

is clear thatP is a dependent variable. However, it is not immediately clear whetherρ and

η should be considered as in the same class asP. It is definitely the case that as part of

the solution procedure,ρ andη are calculated, and at the end, values are known for these

important quantities. One approach therefore is that they should have residual equations

and hence corresponding adjoint variables to indicate the sensitivity of the quantity of

interest to them. Alternatively, one could use equations (6.3) and (6.4) to eliminateρ and

η by writing them explicitly as functions ofP. In this case, there are no residual equations

and hence no corresponding variables in the adjoint system.

In the following subsections, these two different approaches are explained.

6.2.1.1 Expanded equations

This approach treats (6.3) and (6.4) as equations to be solved with all of the other residual

equations. As always, the Reynolds residual is given by

Ri = ∆X

(

(

ρ iHi−ρ i−1Hi−1

∆X

)

−

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi−1

2

(∆X)2

))

=
(

ρ iHi−ρ i−1Hi−1
)

−

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi−1

2

∆X

)

(6.11)

=
(

ρ iHi−ρ i−1Hi−1
)

−

(

εi+1
2
Pi+1− (εi+1

2
+ εi− 1

2
)Pi + εi− 1

2
Pi−1

∆X

)

(6.12)

whereεi =
H3

i ρ i
λη i

, εi±1
2
= (εi + εi±1)/2 andHi is given byHi = H0+

X2
i
2 . Equations (6.11)

and (6.12) are simply two equivalent ways of grouping the terms, which will both be

useful for the derivation of the Jacobian later on. Again theforce balance residual is

given by

RH0 =
π
2
−

n−2

∑
i=0

Pi +Pi+1

2
∆X, (6.13)
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and the cavitation pressure derivative corresponding to the free boundary condition is

given as

RXc =−
3Pn−1−4Pn−2+Pn−3

2∆X
. (6.14)

In this expanded equation model the equations for the viscosity and density residuals are

also included. The viscosity residuals are

Rη i
= ∆X

(

eαPi −η i

)

, (6.15)

and the density residuals are

Rρ i
= ∆X

(

0.59×109+1.34Pi ph

0.59×109+Pi ph
−ρ i

)

. (6.16)

6.2.1.2 Compact equations

The alternative approach considered here is to treatρ andη as given functions ofP. In

this sense, the viscosity and density are not really solved for, but rather eliminated, to be

replaced by expressions forP. For this reason we make a distinction between “primary”

and “secondary” dependent variables: primary dependent variables (P, H0, Xc) are those

which are solved for, and so are independent of each other, whereas secondary dependent

variables (η, ρ) are merely used to aid the solution process, and are dependent on some

other variable (in this caseP). There are two consequences of this. The first is that only

equations (6.12) to (6.14) need be considered when formulating the discrete system. The

second is that the resulting Jacobian becomes more complicated to derive, asη andρ are

quite complex expressions (in terms ofP).

In terms of efficiency of solution, clearly the compact solution is likely to win out,

as the expanded version is almost three times as big (for a grid of n mesh points, the

compact Jacobian will be (n+ 2)× (n+ 2), while the expanded will have (3n+ 2)×

(3n+ 2) entries). This larger system is likely to take significantly longer to solve, and

while in this work efficiency is not the main concern, a factorthis large is an important

consideration.



Chapter 6 73 Hydrodynamic Lubrication

f

f f

f

@
@

@
@

@
@

@@

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@

@
@

@
@

@@

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@

@
@

@
@

@@

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@

@
@

@
@

@@
@

@
@

@
@

@
@@

-I

-I 0

0

Pj ηj ρj H0Xc

Ri

Rη
i

Rρ
i

RXc

RH0
XX

1

Figure 6.1: Expanded Jacobian sparsity pattern for the hydrodynamic line contact prob-
lem

6.3 Jacobian sparsity for the expanded system

In Figure 6.1, the sparsity pattern of the Jacobian is shown.This is block tri-diagonal with

two additional lines on the outer rows (for the free boundaryand force balance equation)

and outer columns (for the cavitation boundary position,Xc, and separation parameter

H0).

6.3.1 Expanded Jacobian derivation

In order to derive the values of the non-zero entries shown inFig 6.1, we begin by deriving

some dependencies of various term uponPi, η i andρ i . SinceP, η, andρ are considered

primary dependent variables (as defined earlier), onlyHi =
X2

i
2 needs to be considered as
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a secondary dependent variable. Hence

∂Hi

∂Pj
=

∂Hi

∂η j
=

∂Hi

∂ρ j
= 0,

however
∂Hi

∂H0
= 1, and

∂Hi

∂Xc
= Xi.

This final equality follows from the fact thatXi is defined asXc−D+ i×∆X (whereD is

the domain size), and so∂Xi
∂Xc

= 1. Also, givenεi defined above, wheni = j it follows that:

∂εi

∂Pj
= 0,

∂εi

∂η j
=−

ρ iH
3
i

λη2
i

,

∂εi

∂ρ j
=

H3
i

λη i
.

When j 6= i these terms are zero, with

∂εi

∂H0
=

3ρ iH
2
i

λη i
,

∂εi

∂Xc
=

3Xiρ iH
2
i

λη i
.

Hence, we see that
∂εi± 1

2

∂Pi
=

∂
∂Pi

(

εi±1+ εi

2

)

= 0,

and similarly,
∂εi± 1

2

∂η i
=−

1
2

ρ iH
3
i

λη2
i

,
∂εi± 1

2

∂η i±1
=−

1
2

ρ i±1H3
i±1

λη2
i±1

, (6.17)

∂εi± 1
2

∂ρ i
=

1
2

H3
i

λη i
,

∂εi± 1
2

∂ρ i±1
=

1
2

H3
i±1

λη i±1
, (6.18)

∂εi± 1
2

∂H0
=

1
2λ

(

3ρ iH
2
i

η i
+

3ρ i±1H2
i±1

η i±1

)

, (6.19)

∂εi± 1
2

∂Xc
=

1
2λ

(

3Xiρ iH
2
i

η i
+

3Xi±1ρ i±1H2
i±1

η i±1

)

. (6.20)
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These expressions are now used in the evaluation of the Jacobian itself.

6.3.2 Differentiating the Ri residual equations

Using (6.12),

∂Ri

∂Pi
=

(εi+1
2
+ εi− 1

2

∆X

)

,
∂Ri

∂Pi+1
=−

(εi+ 1
2

∆X

)

,
∂Ri

∂Pi−1
=−

(εi−1
2

∆X

)

.

Otherwise∂Ri
∂Pj

= 0. Also, using (6.11) and (6.17),

∂Ri

∂η i
= −

((

Pi+1−Pi

∆X

)(

−
ρ iH

3
i

2λη2
i

)

−

(

Pi−Pi−1

∆X

)(

−
ρ iH

3
i

2λη2
i

))

=

(

ρ iH
3
i

2λη2
i

)(

Pi+1−2Pi +Pi−1

∆X

)

, (6.21)

∂Ri

∂η i+1
=

(

ρ i+1H3
i+1

2λη2
i+1

)

(

Pi+1−Pi

∆X

)

,

∂Ri

∂η i−1
=−

(

ρ i−1H3
i−1

2λη2
i−1

)

(

Pi−Pi−1

∆X

)

.

Otherwise∂Ri
∂η j

= 0. Using (6.11) and (6.18),

∂Ri

∂ρ i
= Hi−

((

Pi+1−Pi

∆X

)(

H3
i

2λη i

)

−

(

Pi−Pi−1

∆X

)(

H3
i

2λη i

))

= Hi−

(

H3
i

2λη i

)(

Pi+1−2Pi +Pi−1

∆X

)

, (6.22)

∂Ri

∂ρ i+1
=−

(

H3
i+1

2λη i+1

)

(

Pi+1−Pi

∆X

)

,

∂Ri

∂ρ i−1
=−Hi−1+

(

H3
i−1

2λη i−1

)

(

Pi−Pi−1

∆X

)

.

Otherwise∂Ri
∂ρ j

= 0. Finally, using (6.11) and (6.19),

∂Ri

∂H0
= (ρ i−ρ i−1)
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−
1

2λ

[

(

Pi+1−Pi

∆X

)

(

3H2
i ρ i

η i
+

3H2
i+1ρ i+1

η i+1

)

−

(

Pi−Pi−1

∆X

)

(

3H2
i ρ i

η i
+

3H2
i−1ρ i−1

η i−1

)]

, (6.23)

and, using (6.11) and (6.20),

∂Ri

∂Xc
= (Xiρ i−Xi−1ρ i−1)

−
1

2λ

[

(

Pi+1−Pi

∆X

)

(

3XiH2
i ρ i

η i
+

3Xi+1H2
i+1ρ i+1

η i+1

)

−

(

Pi−Pi−1

∆X

)

(

3XiH2
i ρ i

η i
+

3Xi−1H2
i−1ρ i−1

η i−1

)]

. (6.24)

6.3.3 Differentiating the Rη i
equations

The derivatives of (6.15) are straight forward to evaluate:

∂Rη i

∂Pi
= ∆X

(

αeαPi

)

,
∂Rη i

∂Pj
= 0(i 6= j),

∂Rη i

∂η i
=−∆X,

∂Rη i

∂η i
= 0(i 6= j),

∂Rη i

∂ρ j
=

∂Rη i

∂H0
=

∂Rη i

∂Xc
= 0.

6.3.4 Differentiating the Rρ i
equations

Similarly, the derivatives of (6.16) are relatively straightforward:

∂Rρ i

∂Pi
= ∆X

(

(0.59×109+Pi ph)1.34ph− (0.59×109+1.34Pi ph)ph

(0.59×109+Pi ph)2

)

= ∆X

(

(0.59×109×1.34ph)+(1.34p2
hPi)− (0.59×109ph)− (1.34p2

hPi)

(0.59×109+Pi ph)2

)

= ∆X

(

(1.34−1.0)0.59×109ph

(0.59×109+Pi ph)2

)

= ∆X

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

)

,
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∂Rρ i

∂Pj
= 0(i 6= j),

∂Rρ i

∂η i
= 0,

∂Rρ i

∂ρ i
=−∆X,

∂Rρ i

∂ρ i
= 0(i 6= j),

∂Rρ i

∂H0
=

∂Rρ i

∂Xc
= 0

6.3.5 Differentiating the RH0 and RXc equations

The final two equations in the system are also easy to differentiate. For the force balance

residual:
∂RH0

∂Pj
=−∆X, for j = 1, . . . ,n−2, (6.25)

and
∂RH0

∂η j
=

∂RH0

∂ρ j
=

∂RH0

∂H0
=

∂RH0

∂Xc
= 0.

For the free boundary residual:

∂RXc

∂Pn−3
=−

1
2∆X

,
∂RXc

∂Pn−2
=

2
∆X

, (6.26)

∂RXc

∂Pj
= 0 ( j < n−3), (6.27)

and
∂RXc

∂η j
=

∂RXc

∂ρ j
=

∂RXc

∂H0
=

∂RXc

∂Xc
= 0.

6.3.6 The right-hand side of the adjoint system

Recall from the previous chapter that the right-hand side ofthe discrete adjoint system is

the derivative of the quantity of interest with respect to the dependent variables. In this

example, dimensional friction is considered, wherem1 andm2 are the dimensionalising

parameters multiplying the non-dimensional variables.
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Let m1 = b
2Rx

andm2 = η0Rx
b . The friction is then given by:

F =

∫ Xc

Xin

(

−m1
∂P
∂X

H
2

+m2
η
H

(ub−ua)

)

dX.

In discrete form, this quantity may be expressed as

F =
n−2

∑
i=0

(

−m1

(

Pi+1−Pi

∆X

)(

Hi+1+Hi

4

)

+m2

(

η i+1+η i

Hi+1+Hi

)

(ub−ua)

)

∆X.

Hence it is possible to differentiate with respect to each ofthe primary dependent vari-

ables:
∂F
∂Pj

= m1

(

H j+1+H j

4
−

H j +H j−1

4

)

,

∂F
∂η j

= m2

(

ub−ua

H j+1+H j
+

ub−ua

H j +H j−1

)

∆X,

∂F
∂ρ j

= 0,

∂F
∂H0

= − m1

n−2

∑
i=0

Pi+1−Pi

2

− 2m2

n−2

∑
i=0

(

η i+1+η i

(Hi+1+Hi)2

)

(ub−ua)∆X, (6.28)

and

∂F
∂Xc

= − m1

n−2

∑
i=0

(Pi+1−Pi)

(

Xi+1+Xi

4

)

− m2

n−2

∑
i=0

(

(η i+1+η i)(Xi+1+Xi)

(Hi+1+Hi)2

)

(ub−ua)∆X.

The adjoint system of equations consists of the transpose ofthe Jacobian matrix with the

above terms forming the right-hand side vector.

6.4 Jacobian sparsity for the compact system

We continue to consider a mesh withn node points, however we now eliminateη and

ρ by expressing them explicitly in terms ofP. Figure 6.2 shows the sparsity pattern for
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Figure 6.2: Compact Jacobian sparsity pattern for the hydrodynamic line contact problem

the resulting Jacobian of this compact system. It has the same pattern for theRi ×Pj

block as in Figure 6.1, however this block is augmented with just two additional rows and

columns. The non-zero entries for the main tri-diagonal block are more complicated to

evaluate than before so we begin by writing the residuals outin full.

The Reynolds residuals, fori = 1. . .n−2, are given by

Ri = ∆X

(

(

ρ iHi−ρ i−1Hi−1

∆X

)

−

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi−1

2

(∆X)2

))

=
(

ρ iHi−ρ i−1Hi−1
)

−

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi−1

2

∆X

)

(6.29)

=
(

ρ iHi−ρ i−1Hi−1
)

−

(

εi+1
2
Pi+1− (εi+1

2
+ εi− 1

2
)Pi + εi− 1

2
Pi−1

∆X

)

, (6.30)
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whereεi =
H3

i ρ i
λη i

andεi± 1
2
= (εi + εi±1)/2. Also,Hi, η i , andρ i are given respectively by

Hi = H0+
X2

i

2
, η i = eαPi , ρ i =

0.59×109+1.34Pi ph

0.59×109+Pi ph
.

The boundary conditions are imposed by requiringR0 = Rn−1 = 0. The force balance and

free boundary residuals are as before:

RH0 =
π
2
−

n−2

∑
i=0

Pi +Pi+1

2
∆X, (6.31)

and

RXc =
3Pn−1−4Pn−2+Pn−3

2∆X
. (6.32)

6.4.1 Compact Jacobian derivation

In order to simplify the Jacobian calculation, we first differentiate the secondary depen-

dent variables dependent variablesHi, η i andρ i with respect to the primary dependent

variablesPj , H0 andXc. When j = i,

∂Hi

∂Pj
= 0,

∂Hi

∂H0
= 1,

∂Hi

∂Xc
= Xi;

∂η i

∂Pj
=

∂
∂Pi

eαPi = αeαPi = αη i,
∂η i

∂H0
=

∂η i

∂Xc
= 0;

∂ρ i

∂Pj
=

(0.59×109+Pi ph)1.34ph− (0.59×109+1.34Pi ph)ph

(0.59×109+Pi ph)2

=
(0.59×109×1.34ph)+(1.34p2

hPi)− (0.59×109ph)− (1.34p2
hPi)

(0.59×109+Pi ph)2

=

(

(1.34−1.0)0.59×109ph

(0.59×109+Pi ph)2

)

=

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

)

,

∂ρ i

∂H0
=

∂ρ i

∂Xc
= 0.
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When j 6= i,
∂Hi

∂Pj
=

∂η i

∂Pj
=

∂ρ i

∂Pj
= 0.

Next, we consider differentiatingεi with respect to the independent variables. Whenj = i,

∂εi

∂Pj
=

∂
∂Pi

(

ρ iH
3
i

λη i

)

=
1
λ

(

H3
i

η i

∂ρ i

∂Pi
+

ρ i

η i

∂ (H3
i )

∂Pi
+ρ iH

3
i

∂
∂Pi

(

1
η i

))

=
1
λ

(

H3
i

η i

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

)

+0+ρ iH
3
i
−α
η i

)

=
H3

i

λη i

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

)

−αεi , (6.33)

otherwise
∂εi

∂Pj
= 0.

Following on from this, we considerεi±1
2
:

∂εi± 1
2

∂Pi
=

∂
∂Pi

(

εi + εi±1

2

)

=
∂

∂Pi

(εi

2

)

=
1
2

∂εi

∂Pi
, (6.34)

and similarly
∂εi± 1

2

∂Pi±1
=

1
2

∂εi±1

∂Pi±1
. (6.35)

The final expressions that are useful to us at this stage are obtained from (6.29). Consid-

ering differentiating the first part of (6.29) with respect to P:

∂
∂Pi

(

ρ iHi−ρ i−1Hi−1
)

= Hi
∂ρ i

∂Pi
(6.36)

and
∂

∂Pi−1

(

ρ iHi−ρ i−1Hi−1
)

=−Hi−1
∂ρ i−1

∂Pi−1
. (6.37)

Considering differentiating the second part of (6.29):

∂
∂Pi

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi−1

2

∆X

)

(6.38)

= −

(εi+ 1
2
+ εi−1

2

∆X

)

+

(

Pi+1−Pi

∆X

) ∂εi+ 1
2

∂Pi
−

(

Pi−Pi−1

∆X

) ∂εi− 1
2

∂Pi
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= −

(εi+ 1
2
+ εi−1

2

∆X

)

+

(

Pi+1−Pi

∆X

)

1
2

∂εi

∂Pi
−

(

Pi−Pi−1

∆X

)

1
2

∂εi

∂Pi

= −

(εi+ 1
2
+ εi−1

2

∆X

)

+
1
2

∂εi

∂Pi

(

Pi+1−2Pi +Pi−1

∆X

)

; (6.39)

whereas

∂
∂Pi+1

(

(Pi+1−Pi)εi+ 1
2
− (Pi−Pi−1)εi−1

2

∆X

)

(6.40)

=

(εi+1
2

∆X

)

+

(

Pi+1−Pi

∆X

) ∂εi+ 1
2

∂Pi+1

=

(εi+1
2

∆X

)

+

(

Pi+1−Pi

∆X

)

1
2

∂εi+1

∂Pi+1

=

(εi+1
2

∆X

)

+
1
2

∂εi+1

∂Pi+1

(

Pi+1−Pi

∆X

)

; (6.41)

and similarly

∂
∂Pi−1

(

(Pi+1−Pi)εi+ 1
2
− (Pi−Pi−1)εi−1

2

∆X

)

(6.42)

=

(εi−1
2

∆X

)

−

(

Pi−Pi−1

∆X

) ∂εi− 1
2

∂Pi−1

=

(εi−1
2

∆X

)

−

(

Pi−Pi−1

∆X

)

1
2

∂εi−1

∂Pi−1

=

(εi−1
2

∆X

)

−
1
2

∂εi−1

∂Pi−1

(

Pi−Pi−1

∆X

)

. (6.43)

These expressions will now be used in the evaluation of the Jacobian itself.

6.4.2 Evaluation of∂Ri
∂Pj

Using (6.30), (6.36), (6.37), (6.39), (6.41) and (6.43),

∂Ri

∂Pi
= Hi

∂ρ i

∂Pi
−

(

−

(εi+1
2
+ εi− 1

2

∆X

)

+
1
2

∂εi

∂Pi

(

Pi+1−2Pi +Pi−1

∆X

))

= Hi

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

)

+

(εi+ 1
2
+ εi− 1

2

∆X

)

−
1
2

(

H3
i

λη i

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

)

−αεi

)(

Pi+1−2Pi +Pi−1

∆X

)

.
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Similarly,

∂Ri

∂Pi+1
= −

((εi+1
2

∆X

)

+
1
2

∂εi+1

∂Pi+1

(

Pi+1−Pi

∆X

))

= −

(εi+ 1
2

∆X

)

−
1
2

(

H3
i+1

λη i+1

(

0.34×0.59×109ph

(0.59×109+Pi+1ph)2

)

−αεi+1

)

(

Pi+1−Pi

∆X

)

,

and

∂Ri

∂Pi−1
= −Hi−1

∂ρ i−1

∂Pi−1
−

((εi− 1
2

∆X

)

−
1
2

∂εi−1

∂Pi−1

(

Pi−Pi−1

∆X

))

= −Hi−1

(

0.34×0.59×109ph

(0.59×109+Pi−1ph)2

)

−

(εi− 1
2

∆X

)

+
1
2

(

H3
i−1

λη i−1

(

0.34×0.59×109ph

(0.59×109+Pi−1ph)2

)

−αεi−1

)

(

Pi−Pi−1

∆X

)

.

6.4.3 Evaluation of ∂Ri
∂H0

Recalling thatHi = H0+ 1
2X2

i , it is trivial to show that

∂Hi

∂H0
= 1.

Hence,
∂εi

∂H0
=

∂
∂H0

(

H3
i ρ i

λη i

)

=
3H2

i ρ i

λη i
,

and
∂εi± 1

2

∂H0
=

1
2

(

∂εi

∂H0
+

∂εi±1

∂H0

)

.

Hence, from (6.29),

∂Ri

∂H0
= (ρ i−ρ i−1)−

(

(

Pi+1−Pi

∆X

) ∂εi+ 1
2

∂H0
−

(

Pi−Pi−1

∆X

) ∂εi− 1
2

∂H0

)

= (ρ i−ρ i−1)

−

((

Pi+1−Pi

∆X

)

1
2

(

∂εi

∂H0
+

∂εi+1

∂H0

)

−

(

Pi−Pi−1

∆X

)

1
2

(

∂εi

∂H0
+

∂εi−1

∂H0

))
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= (ρ i−ρ i−1)−
1

2λ

(

(

Pi+1−Pi

∆X

)

(

3H2
i ρ i

η i
+

3H2
i+1ρ i+1

η i+1

)

−

(

Pi−Pi−1

∆X

)

(

3H2
i ρ i

η i
+

3H2
i−1ρ i−1

η i−1

))

. (6.44)

6.4.4 Evaluation of ∂Ri
∂Xc

Recalling thatXi = Xc−D+ i×∆X andHi = H0+ 1
2X2

i , it is clear that

∂Hi

∂Xc
= Xi.

Hence,
∂εi

∂Xc
=

∂
∂Xc

(

H3
i ρ i

λη i

)

=
3XiH2

i ρ i

λη i

and
∂εi± 1

2

∂Xc
=

1
2

(

∂εi

∂Xc
+

∂εi±1

∂Xc

)

.

Thus, from (6.29),

∂Ri

∂Xc
= (Xiρ i−Xi−1ρ i−1)−

(

(

Pi+1−Pi

∆X

) ∂εi+ 1
2

∂Xc
−

(

Pi−Pi−1

∆X

) ∂εi− 1
2

∂Xc

)

(6.45)

= (Xiρ i−Xi−1ρ i−1)

−

((

Pi+1−Pi

∆X

)

1
2

(

∂εi

∂Xc
+

∂εi+1

∂Xc

)

−

(

Pi−Pi−1

∆X

)

1
2

(

∂εi

∂Xc
+

∂εi−1

∂Xc

))

= (Xiρ i−Xi−1ρ i−1)

−
1

2λ

(

(

Pi+1−Pi

∆X

)

(

3XiH2
i ρ i

η i
+

3Xi+1H2
i+1ρ i+1

η i+1

)

−

(

Pi−Pi−1

∆X

)

(

3XiH2
i ρ i

η i
+

3Xi−1H2
i−1ρ i−1

η i−1

))

.
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6.4.5 Differentiating the RH0 and RXc equations

The remaining contributions to the Jacobian for this problem are all relatively straightfor-

ward to evaluate:

∂RH0

∂Pj
=−∆X, (−

∆X
2

f or j = 0, j = n−1),

∂RH0

∂H0
= 0,

∂RH0

∂Xc
= 0;

and,

∂RXc

∂Pn−3
=

1
2∆X

,
∂RXc

∂Pn−2
=−

2
∆X

,
∂RXc

∂H0
= 0,

∂RXc

∂Xc
= 0. (6.46)

6.4.6 The right-hand side of the adjoint system

As with the expanded discretisation, if the discrete adjoint approach is to be used to ap-

proximate the error in a quantity of interest then the derivative of this quantity must feature

on the right-hand side of the adjoint system. As in the previous section, the dimensional

friction is used as the quantity of interest:

F =
∫ Xc

Xin

(

−m1
∂P
∂X

H
2

+m2
η
H

(ub−ua)

)

dX.

In discrete form this quantity may be expressed as

F =
n−2

∑
i=0

(

−m1

(

Pi+1−Pi

∆X

)(

Hi+1+Hi

4

)

+m2

(

η i+1+η i

Hi+1+Hi

)

(ub−ua)

)

∆X,

hence differentiation with respect toPj , H0 andXc yields:

∂F
∂Pj

=−m1

(

H j+1+H j

4
−

H j +H j−1

4

)

+m2αη j

(

ub−ua

H j+1+H j
+

ub−ua

H j +H j−1

)

∆X,

∂F
∂H0

=−m1

n−2

∑
i=0

Pi+1−Pi

2
−2m2

n−2

∑
i=0

(
η i+1+η i

(Hi+1+Hi)2)(ub−ua)∆X

and

∂F
∂Xc

=−m1

n−2

∑
i=0

(Pi+1−Pi)

(

Xi+1+Xi

4

)

−m2

n−2

∑
i=0

(

(η i+1−η i)(Xi+1+Xi)

(Hi+1+Hi)2

)

(ub−ua)∆X.
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6.5 Adjoint solution method and results

Having defined the adjoint equation system for both the “compact” and “expanded” Ja-

cobians in the previous section, attention is turned to their solution. Since both of the Ja-

cobians are still sparse, the same numerical package is usedas in Chapter 5, SPARSKIT.

Again, the specific method used is GMRES.

In the rest of this section it is demonstrated, via numericalexamples, that the im-

plementations of both the “compact” and “expanded” Jacobians, used within the adjoint

system, give excellent error estimates for the given quantity of interest. Since this hy-

drodynamic problem is only intended as a step toward the fullEHL problem, local mesh

refinement is not considered here: it is sufficient to demonstrate the quality of the results

on a sequence of uniform refinements. Local mesh refinement will be considered again in

the following chapter.

All of the numerical results presented in this chapter are for a hydrodynamic case

with loadL = 1309. Two different sets of different surface speeds are considered, namely

ua = ub = 0.5 andua = 0.1, ub = 0.9. These corresponds to a case with pure rolling, and

one with a slide-roll ratio of 0.8, respectively.

6.5.1 Expanded Jacobian

The first thing to notice about a hydrodynamic pressure solution is how much less com-

plicated the pressure profile is than for the EHL problem. This can be seen by comparing

Figures 4.1 and 6.3. Looking at Figures 6.3 and 6.4, the solutions for viscosity and den-

sity are very similar in shape to the pressure solution. In contrast to this, Figure 6.5 shows

how different the three computed adjoint solutions (relating toP, η andρ) are from each

other. Looking at Figure 6.5, apart from being fairly influential in broadly the same re-

gion (around the contact region), it is clear that they are really quite different. This is

shown more clearly in Figure 6.6 which uses a different vertical scale for the density ad-

joint. From this observation alone, one might be tempted to conclude that the adjoint

equations are all important and as such all adjoint variables are equally important in the

adjoint method. However, a look at the residuals for each of the three variables (P, η and

ρ) shows that this is not the case. Figure 6.7 shows that only the pressure residuals are

actually non-negligible. This is because the residual equations for viscosity and density

(equations (6.15) and (6.16)) are only trivial pointwise calculations. As a result of this,
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mesh points which are coincident between the coarse and fine meshes have identically

zero residuals, and the very small residual at the non-coincident points is due primarily

to interpolation error. This means that the adjoint solutions for viscosity and density do

not make any significant contribution to the correction calculated for the quantity of in-

terest. These vectors can be seen in Figure 6.8. It is perhapsto be expected therefore that

the compact approximation, using justP as a primary variable, will provide equally good

results.

The most persuasive evidence of this is shown next where the tables showing conver-

gence of the adjoint error estimates are presented.

6.5.2 Tables

Tables 6.1 to 6.4 show how accurately the adjoint error estimation predicts the inter-grid

friction error in all four cases. Those case are sliding and rolling friction for both the

compact and expanded Jacobians introduced earlier. As withthe tables in Chapter 5,

the grid shows the effectivity index converging to 1.0 with increased mesh resolution.

Column 2 shows the friction as calculated on the fine mesh using values interpolated

from the coarse mesh solution, while column 3 shows the correction as calculated using

the adjoint error estimation. Column 4 combines these two values to get the corrected

friction, which can then be directly compared to the actual friction as solved for and

calculated on the fine grid, shown in column 5. The measured error, given in column 6,

is calculated as the difference between columns 2 and 5. The ratio of the actual measured

error to that predicted is known as the effectivity index, and is given in column 7.

As mentioned above, it can be seen that in all four cases the effectivity index gets

closer to 1.0 with increasing mesh resolution. This shows that the adjoint error estima-

tion is extremely effective at predicting the inter-grid error for hydrodynamic lubrication.

More importantly in this instance, though, is the fact that both the expanded and the

compact Jacobians have been demonstrated to be accurate as part of the adjoint solution

process. This is an important conclusion going forwards, asit shows that when applying

adjoint error estimation to elastohydrodynamic lubrication in the following chapter, only

a compact Jacobian need be considered, allowing for the increased efficiency described

earlier. In a wider context, it sheds light on how complex systems of equations can be

solved, in particular problems of real engineering interest which use iterative techniques

to solve them.
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Figure 6.3: Pressure and viscosity solutions for the hydrodynamic problem;L = 1309
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Figure 6.4: Pressure and density solutions for the hydrodynamic problem;L = 1309
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Figure 6.5: Adjoint solutions for the hydrodynamic problem; L = 1309, slide-roll ra-
tio = 0.0 (pure rolling)
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Figure 6.6: Adjoint solutions for the hydrodynamic problem; L = 1309, slide-roll ra-
tio = 0.0 (pure rolling)
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Grid Interpolated Calculated Corrected Friction Measured Effectiv.
(g) Fric. (g) correction Fric. (g) (g+1) Error Index
5 -8.52510 0.11986 -8.64496 -8.64753 0.12242 1.02139
6 -8.64751 0.05886 -8.70637 -8.70663 0.05912 1.00442
7 -8.70663 0.02876 -8.73539 -8.73545 0.02882 1.00195
8 -8.73545 0.01417 -8.74962 -8.74964 0.01419 1.00098
9 -8.74964 0.00703 -8.75667 -8.75667 0.00703 1.00035
10 -8.75667 0.00350 -8.76017 -8.76017 0.00350 0.99997
11 -8.76017 0.00175 -8.76192 -8.76192 0.00175 0.99986

Table 6.1: Adjoint based inter-grid friction error on uniform meshes using compact Jaco-
bian;L = 1309, slide-roll ratio = 0.0 (pure rolling)

Grid Interpolated Calculated Corrected Friction Measured Effectiv.
(g) Fric. (g) correction Fric. (g) (g+1) Error Index
5 -8.52510 0.11986 -8.64496 -8.64753 0.12242 1.02140
6 -8.64751 0.05883 -8.70634 -8.70663 0.05912 1.00491
7 -8.70663 0.02875 -8.73538 -8.73545 0.02882 1.00250
8 -8.73545 0.01417 -8.74962 -8.74964 0.01419 1.00154
9 -8.74964 0.00703 -8.75666 -8.75667 0.00703 1.00091
10 -8.75667 0.00350 -8.76017 -8.76017 0.00350 1.00055
11 -8.76017 0.00175 -8.76192 -8.76192 0.00175 1.00044

Table 6.2: Adjoint based inter-grid friction error on uniform meshes using expanded Ja-
cobian;L = 1309, slide-roll ratio = 0.0 (pure rolling)

Grid Interpolated Calculated Corrected Friction Measured Effectiv.
(g) Fric. (g) correction Fric. (g) (g+1) Error Index
5 -18.22851 0.27258 -18.50109 -18.51682 0.28831 1.05770
6 -18.52599 0.15056 -18.67656 -18.68449 0.15850 1.05270
7 -18.68689 0.07824 -18.76513 -18.76743 0.08054 1.02942
8 -18.76804 0.03973 -18.80777 -18.80834 0.04030 1.01438
9 -18.80850 0.02003 -18.82853 -18.82870 0.02020 1.00876
10 -18.82874 0.01001 -18.83875 -18.83882 0.01007 1.00664
11 -18.83883 0.00500 -18.84382 -18.84384 0.00502 1.00462

Table 6.3: Adjoint based inter-grid friction error on uniform meshes using compact Jaco-
bian;L = 1309 slide-roll ratio = 0.8 (sliding)
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Grid Interpolated Calculated Corrected Friction Measured Effectiv.
(g) Fric. (g) correction Fric. (g) (g+1) Error Index
5 -18.22852 0.27322 -18.50173 -18.51682 0.28831 1.05523
6 -18.52599 0.15074 -18.67673 -18.68449 0.15850 1.05148
7 -18.68689 0.07833 -18.76522 -18.76743 0.08054 1.02823
8 -18.76804 0.03977 -18.80782 -18.80834 0.04030 1.01316
9 -18.80850 0.02005 -18.82855 -18.82870 0.02020 1.00751
10 -18.82874 0.01002 -18.83876 -18.83882 0.01007 1.00537
11 -18.83883 0.00500 -18.84383 -18.84384 0.00502 1.00333

Table 6.4: Adjoint based inter-grid friction error on uniform meshes using expanded Ja-
cobian;L = 1309 slide-roll ratio = 0.8 (sliding)

6.6 Summary

Adjoint error estimation has been applied to a compressiblepiezo-viscous hydrodynamic

lubrication problem. The additional non-linearities introduced by the viscosity and den-

sity equations have been shown to cause no difficulty to the adjoint error estimation pro-

cedure, which still gives accurate predictions of the inter-grid error in the friction, as

demonstrated by Tables 6.1 to 6.4. This shows that the adjoint error estimation proce-

dure can be carried out using either the compact or expanded Jacobians, which will be

useful going forward. In the next chapter, the application of the adjoint error estimation

will be further extended to a full steady-state elastohydrodynamic lubrication problem, by

introducing the deformation calculation within the film thickness equation.



Chapter 7

EHL Line Contact Problems

In the previous chapter, adjoint error estimation was successfully applied to a hydrody-

namic problem. This was achieved for the residual equationsposed in two different ways

and it was shown that both were equally accurate when attempting to predict the inter-grid

functional error. In this chapter, adjoint error estimation is used on an elastohydrodynamic

problem. It will be shown that, again, adjoint error estimation provides good predictions

of the inter-grid functional error.

Having highlighted the efficacy of this approach on uniform meshes, spatial mesh

adaptation will be introduced. The exact nature of the forward problem will be discussed,

including the suitability of performing a global mesh calculation on an adaptive multi-

grid problem. Following a short discussion on the correct form of the Jacobian for this

problem, and the approximation used, results of spatial mesh adaptation carried out using

the size of the correction components will be presented. Additional functionals will be

introduced to further illustrate adjoint error estimationas applied to EHL, as well as to

highlight some apparent limitations of this approach.

93
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7.1 Uniform mesh EHL

In this section, the full EHL system is defined by including the elastic deformation term

into the film thickness equation. There is also a change to theviscosity model used, in that

the Barus equation (2.6), used for all of the previous work, has been replaced by the more

accurate Roelands equation (2.5). Not only is the latter model more physically realistic

but it also has computational advantages since the exponential growth of viscosity is not

unbounded, as in the Barus case.

7.2 Forward problem

7.2.1 Continuous mathematical model

In Section 2.2, the equations and parameters for the non-dimensional EHL model were

defined. The following set of equations in the unknownsP, H, η , ρ, andXc are repeated

below.

The Reynolds equation for the full line contact is given by

∂
∂X

(

ε
∂P
∂X

)

−
∂ (ρH)

∂X
= 0, (7.1)

with the film thickness equation, now including the deformation term, written as

H = H0+
X2

2
+

1
π

∫ ∞

−∞
ln |X−X′|P(X′)dX′. (7.2)

The viscosity model is now provided by Roelands [62],

η = exp

{(

α p0

z

)(

−1+

[

1+
Pph

p0

]z)}

, (7.3)

with justification for this change explained in Section 7.4.The density, as before, is given

by [17],

ρ =
0.59×109+1.34Pph

0.59×109+Pph
. (7.4)

Note that the cavitation boundary position,Xc, must be found such that the boundary
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conditions

P(X−∞) = P(Xc) = P′(Xc) = 0 (7.5)

are satisfied, andH0 must be found such that the sum of the pressure is equal to the applied

load. This is shown here as
∫ ∞

−∞
P dX =

π
2

. (7.6)

7.2.2 Residual equations

Once discretised, equations (7.1) to (7.6) can be written asresidual equations. As in

previous chapters, these residual equations will be used inthe derivation of the Jacobian

matrix for the calculation of the adjoint solution. For a uniform mesh withn nodes,

labelled 0 ton−1, we have the following. The residuals for the Reynolds equation (7.1)

for pointsi = 1. . .n−2, are given by

Ri = ∆X

(

(

ρ iHi−ρ i−1Hi−1

∆X

)

−

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi−1

2

(∆X)2

))

=
(

ρ iHi−ρ i−1Hi−1
)

−

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi−1

2

∆X

)

(7.7)

=
(

ρ iHi−ρ i−1Hi−1
)

−

(

εi+1
2
Pi+1− (εi+1

2
+ εi− 1

2
)Pi + εi− 1

2
Pi−1

∆X

)

, (7.8)

and for the two end points are given by

R0 = 0−P0,

and

Rn−1 = 0−Pn−1,

whereεi =
H3

i ρ i
λη i

, andεi± 1
2
= (εi + εi±1)/2. The discrete form ofHi , η i , andρ i are given

respectively by

Hi = H0+
X2

i

2
+

1
π

n−1

∑
j=0

Ki j Pj , (7.9)

η i = exp

{(

α p0

z

)(

−1+

[

1+
Pi ph

p0

]z)}

, (7.10)

ρ i =
0.59×109+1.34Pi ph

0.59×109+Pi ph
. (7.11)
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Note that in (7.9) the termsKi j result from the application of quadrature to (7.2), see

Section 2.3. The discrete cavitation position residual is gained through a second order

upwind finite difference approximation,∂Pi
∂X = 3Pi−4Pi−1+Pi−2

2∆X . By evaluating this at the

boundary pointi = n−1, and noting thatPn−1 = 0, this residual can be expressed as

RXc =
4Pn−2−Pn−3

2∆X
. (7.12)

The final condition that must be satisfied in the forward solveis the discrete force balance

equation, used to updateH0. The residual for this discrete equation is

RH0 =
π
2
−

n−2

∑
i=0

Pi +Pi+1

2
∆X. (7.13)

7.2.3 Solution method: Newton-Raphson boundary solve

In order to solve the EHL problem, the Carmehl solver [71] developed for Shell Global

Solutions is being used. This is being treated as a ‘black-box’ in order to provide a guar-

anteed level of accuracy and reliability from the solver. The solver operates as described

in [26] and is summarised in Chapter 2, specifically Figure 2.2. Note that the multilevel

multi-integration (MLMI) capability within Carmehl is notused in this work since it is

only applicable on uniform spatial discretisations and we wish the work here to be appli-

cable on locally refined, as well as uniform, meshes. One of the inputs to the solver is

the computational domain range. Note that as part of our new “sliding grid” process to

satisfy the cavitation condition (7.12) (see Section 7.2),this domain may be shifted by

up to half a grid cell. Moreover, since the EHL solver is relatively computationally ex-

pensive, a more efficient approach to finding the correct boundary position is needed than

was previously employed in Chapter 5. Two new approaches have been implemented; a

secant-type method, and a Newton-Raphson-type method. Both give similar increases in

performance and so it is the secant method that is used throughout this chapter.

7.3 Jacobian for adjoint solution

In this section the residual equations shown above are differentiated with respect to each

of the degrees of freedom. As was shown in Chapter 6, the adjoint error estimation pro-

cedure is equally applicable for both the “expanded” and “dense” Jacobian formulations.
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In this Chapter, the dense Jacobian is used throughout. Thisis because a fully formed

expanded Jacobian would now have approximately four times as many rows as the equiv-

alent dense Jacobian, leading to longer solution times for no benefit. Although much of

the expanded Jacobian would be sparse (block tri-diagonal)there would still be a dense

block the size of the dense Jacobian eliminating the possibility of a faster iterative solution

procedure.

7.3.1 Preliminaries

First, we consider differentiating the secondary dependent variablesHi , η i andρ i with

respect to the primary dependent variablesPj , H0 andXc. These results will be used to

compute derivatives ofεi+ 1
2
. These preliminary results will simplify the Jacobian evalu-

ation in the next subsection. Where appropriate, the Kronecker delta will be used. This

discrete function is a special case of the generalised Kronecker delta symbol, and is de-

fined to be

δi j =

{

1 i = j

0 i 6= j
.

Note that the distance through the domain,Xi, given by

Xi = Xc +(i−n)∆X,

depends onXc which is one of the degrees of freedom. This is therefore another con-

tributing complication into the discrete film thickness equation (7.9). This film thickness

equation can be differentiated with respect to then pressure values, the cavitation position

andH0, to give
∂Hi

∂Pj
=

1
π

Ki j ,
∂Hi

∂H0
= 1,

∂Hi

∂Xc
= Xi. (7.14)

The non-dimensional viscosity, given in equation (7.10), is differentiated with respect to

the pressures as

∂η i

∂Pj
=

∂
∂Pj

(

exp

{(

α p0

z0

)(

−1+

[

1+
Pi ph

p0

]z)})

= δi j

(

z
α p0

z0

ph

p0

[

1+
Pi ph

p0

]z−1

exp

{(

α p0

z0

)(

−1+

[

1+
Pi ph

p0

]z)}
)

= δi j

(

zα ph

z0

[

1+
Pi ph

p0

]z−1

exp

{(

α p0

z0

)(

−1+

[

1+
Pi ph

p0

]z)}
)

, (7.15)
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and with respect toH0 andXc as

∂η i

∂H0
=

∂η i

∂Xc
= 0.

The non-dimensional density, (7.11), similarly, gives

∂ρ i

∂Pj
= δi j

(

(0.59×109+Pi ph)1.34ph− (0.59×109+1.34Pi ph)ph

(0.59×109+Pi ph)2

)

= δi j

(

(0.59×109×1.34ph)+(1.34p2
hPi)− (0.59×109ph)− (1.34p2

hPi)

(0.59×109+Pi ph)2

)

= δi j

(

(1.34−1.0)0.59×109ph

(0.59×109+Pi ph)2

)

= δi j

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

)

, (7.16)

and
∂ρ i

∂H0
=

∂ρ i

∂Xc
= 0. (7.17)

Next, differentiation ofεi with respect to the primary dependent variables is consid-

ered. This is defined above as

εi =
H3

i ρ i

λη i
,

which means that differentiation with respect toPj requires use of the chain rule. Hence

∂ (εi)

∂Pj
=

∂ (εi)

∂Hi

∂Hi

∂Pj
+

∂ (εi)

∂ρ i

∂ρ i

∂Pj
+

∂ (εi)

∂η i

∂η i

∂Pj
(7.18)

=
1
π

Ki j
3H2

i ρ i

λη i
+δi j

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

)

H3
i

λη i

−δi j

(

phα
[

1+
Pi ph

p0

]z−1

η i

)

H3
i ρ i

λ (η i)
2 (7.19)

=
Ki j

π
3εi

Hi
+δi j

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

εi

ρ i
− phαεi

[

1+
Pi ph

p0

]z−1
)

. (7.20)

Similarly,
∂ (εi)

∂H0
=

3H2
i ρ i

λη i
=

3εi

Hi
(7.21)

and
∂ (εi)

∂Xc
=

3XiH2
i ρ i

λη i
=

3Xiεi

Hi
. (7.22)
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Following on from this,εi± 1
2

is considered:

∂εi± 1
2

∂Pj
=

∂
∂Pj

(

εi + εi±1

2

)

(7.23)

=
1
2

∂εi

∂Pj
+

1
2

∂εi±1

∂Pj
(7.24)

=
1
2

Ki j

π
3εi

Hi
+

1
2

Ki±1, j

π
3εi±1

Hi±1

+
1
2

δi j

(

0.34×0.59×109ph

(0.59×109+Pi ph)2

εi

ρ i
−αεi

[

1+
Pi ph

p0

]z−1
)

+
1
2

δi±1, j

(

0.34×0.59×109ph

(0.59×109+Pi±1ph)2

εi±1

ρ i±1
−αεi±1

[

1+
Pi±1ph

p0

]z−1
)

(7.25)

where for this problemz= z0, and hencez/z0 = 1.

7.3.2 Residual equation differentiation

Having obtained some helpful preliminary expressions, theterms of the Jacobian are now

derived. In certain places, superfluous use of theδ notation will be used to make depen-

dencies more immediately obvious.

First, the discrete Reynolds residual, equation (7.7), is restated,

Ri =
(

ρ iHi−ρ i−1Hi−1
)

−

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi− 1

2

∆X

)

. (7.26)

Considering the first part of the equation above,
(

ρ iHi−ρ i−1Hi−1
)

,

∂
∂Pj

((

ρ iHi−ρ i−1Hi−1
))

= ρ i
∂Hi

∂Pj
+δi j

(

Hi
∂ρ i

∂Pj

)

− ρ i−1
∂Hi−1

∂Pj
−δi−1, j

(

Hi−1
∂ρ i−1

∂Pj

)

(7.27)

Now, considering the second part of the above equation,

(

(Pi+1−Pi)εi+ 1
2
−(Pi−Pi−1)εi− 1

2
∆X

)

,

∂
∂Pj

(

(Pi+1−Pi)εi+1
2
− (Pi−Pi−1)εi−1

2

(∆X)

)
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= −δi j

(εi+ 1
2
+ εi− 1

2

∆X

)

+δi−1, j

(εi− 1
2

∆X

)

+δi+1, j

(εi+1
2

∆X

)

+

(

Pi+1−Pi

∆X

) ∂εi+ 1
2

∂Pj
−

(

Pi−Pi−1

∆X

) ∂εi− 1
2

∂Pj
(7.28)

Combining these two results, it is possible to obtain

∂Ri

∂Pj
= ρ i

∂Hi

∂Pj
+δi j

(

Hi
∂ρ i

∂Pj

)

−ρ i−1
∂Hi−1

∂Pj
−δi−1, j

(

Hi−1
∂ρ i−1

∂Pj

)

−

[

−δi j

(εi+1
2
+ εi− 1

2

∆X

)

+δi−1, j

(εi− 1
2

∆X

)

+δi+1, j

(εi+1
2

∆X

)

+

(

Pi+1−Pi

∆X

) ∂εi+ 1
2

∂Pj
−

(

Pi−Pi−1

∆X

) ∂εi− 1
2

∂Pj

]

(7.29)

= ρ i
∂Hi

∂Pj
−ρ i−1

∂Hi−1

∂Pj
+δi j

(

Hi
∂ρ i

∂Pj

)

−δi−1, j

(

Hi−1
∂ρ i−1

∂Pj

)

+δi j

(εi+1
2
+ εi− 1

2

∆X

)

−δi−1, j

(εi− 1
2

∆X

)

−δi+1, j

(εi+1
2

∆X

)

−

(

Pi+1−Pi

∆X

) ∂εi+ 1
2

∂Pj
+

(

Pi−Pi−1

∆X

) ∂εi− 1
2

∂Pj
. (7.30)

Note that this expression, whilst still quite complex, is simplified by the use of the sub-

expressions derived in the previous subsection. Similarly, differentiating equation (7.26)

with respect toH0, gives

∂Ri

∂H0
=
(

ρ i−ρ i−1

)

−

[

(

Pi+1−Pi

∆X

) ∂εi+ 1
2

∂H0
−

(

Pi−Pi−1

∆X

) ∂εi− 1
2

∂H0

]

, (7.31)

and, with respect toXc,

∂Ri

∂Xc
=
(

ρ iXi−ρ i−1Xi−1
)

−

[

(

Pi+1−Pi

∆X

) ∂εi+ 1
2

∂Xc
−

(

Pi−Pi−1

∆X

) ∂εi− 1
2

∂Xc

]

. (7.32)

Having finished deriving the terms of the Jacobian related tothe Reynolds residual equa-

tions, attention is turned to equation (7.13) the force balance residual, given again here

as

RH0 =
π
2
−

n−2

∑
i=0

Pi +Pi+1

2
∆X.



Chapter 7 101 EHL Line Contact Problems

It is straightforward to see that for eachPj for j = 1 to n−2

∂RH0

∂Pj
=−∆X.

With no dependence onH or X, clearly

∂RH0

∂H0
=

∂RH0

∂Xc
= 0.

Finally, given the discrete residual equation for the cavitation boundary condition (7.12)

as

RXc =
4Pn−2−Pn−3

2∆X
,

it follows that
∂RXc

∂Pn−3
=−

1
2∆X

,
∂RXc

∂Pn−2
=

2
∆X

and that
∂RXc

∂H0
=

∂RXc

∂Xc
= 0.

Having obtained expressions for all of the terms which appear in the dense form of

the Jacobian matrix associated with the full EHL problem, weare now in a position to

consider generalisation of our adjoint techniques to this problem.

7.4 Choice of viscosity model

In this section, the reason for the change of viscosity modelto Roelands from Barus is

outlined. Initially, work was completed to make adjoint error estimation work for an

expanded Jacobian for the full EHL, as well as for a compact Jacobian. This was largely

successful, although the best accuracy that could be gainedby the adjoint error estimation

had around a 6% error in it, and the effectivity index reliably converged to a value of about

1.06. The move to Roelands viscosity has eliminated this inaccuracy, and the effectivity

index now converges to 1.0 again. There are two possible reasons that have been identified

as to why the previous model may not have been completely successful.

The first refers to the shape of the pressure spike. The shape of the pressure spike

generated with the Barus viscosity is “sharp”, i.e. there isa distinct singularity in the

pressure gradient at that point. The reason that this might be a problem is to do with the

interpolation of these values and the consistency between the different mesh levels. When
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interpolating the pressure solution to move it to the fine grid, this sharp spike becomes

rounded by the cubic spline interpolation. This is not an issue for the Roelands viscosity,

as the spike is smooth to begin with. A summary of the argumentis as follows:

• The coarse grid Jacobian uses the coarse grid “sharp” pressure solution

• The fine grid interpolation of the pressure has a smooth, or rounded spike

• The residuals calculated on the fine mesh use the smooth spike

• The adjoint solved on the coarse grid as an approximation to the fine grid uses the

sharp spike

• Now there is an inconsistency between the Jacobian and the residuals calculated on

the fine grid.

It is this inconsistency which is likely to be responsible for the slight discrepancy between

the solutions.

There are two potential methods that could be explored in order to avoid this. The

first is to try to calculate the adjoint solution on the fine mesh using the interpolated

pressure values, so that the residuals and Jacobian are consistent. The other is to use

an interpolation method which preserves the shape of the spike. However, since we are

interested in more realistic rheological models such as Roelands, resolving this issue is

not of paramount importance.

The second potential reason that has been identified is to do with the behaviour of

the pressure spike with increased mesh resolution. Using the Roelands viscosity, the

pressure spike of the resultant solution can be resolved, and it converges with increasing

mesh points [4, 31]. Using the Barus viscosity, this is not the case, and adding more

points merely adds to the size and sharpness of the pressure spike. The adjoint error

estimation method has at its core the idea that, given sufficient mesh resolution, the first

order approximation from the Jacobian will be sufficient, and that the higher order terms

will be negligible. This may not be true for a solution that has a clear singularity which

appears not to converge.
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7.5 Uniform mesh results

We begin our assessment of the adjoint-based error estimateby assessing its performance

on a sequence of uniformly refined grids. The following sections will then discuss the

application with adaptivity and results on non-uniformly refined meshes.

7.5.1 Forward-solution profiles

In this section, results are presented for the adjoint errorestimation procedure as applied

to the full EHL problem on a series of uniform meshes. Resultsare shown for five dif-

ferent loadings on each of a purely rolling case and a slidingcase. The non-dimensional

solution profiles for pressure, film thickness, and viscosity are shown in Figures 7.1-7.3

respectively. These results were calculated using a uniform mesh of 257 points. The

five solutions go through the range from being almost entirely hydrodynamic for the

most lightly loaded case, though to a relatively highly loaded EHL case for the largest

load. Figure 7.1 clearly illustrates the pressure spike moving towards the outlet with

increasing load, with the main pressure bump becoming increasingly rounded. The non-

dimensional film thickness, shown in Figure 7.2, is reduced overall with increased load,

but also becomes thinner in the contact area, which is itselfwider. Figure 7.3 shows the

non-dimensional viscosity which increases dramatically with load. To understand this,

consider for simplicity the non-dimensional Barus viscosity equation (2.16),

η = eαP, (7.33)

as an example, whereP is the non-dimensional pressure, andα = α ph. As shown in

Figure 7.1, although the solution profile changes shape, thenon-dimensionalisedP values

are broadly similar with increasing load. However, becauseα contains the dimensional

quantity ph (the maximum Hertzian pressure), the viscosity, whilst non-dimensional, is

not scaled to a range with maximum value around unity. A similar argument can be

applied for the Roelands viscosity shown in Figure 7.3.

Next, results are presented for a rolling EHL case, followedby a case with sliding.
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Figure 7.1: EHL pressure profiles for a series of loadings;L = 20000, 40000, 60000,
80000 and 100000
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Figure 7.2: EHL film thickness profiles for a series of loadings;L = 20000, 40000, 60000,
80000 and 100000
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Figure 7.3: EHL viscosity profiles for a series of loadings;L = 20000, 40000, 60000,
80000 and 100000

7.5.2 Pure rolling

The dimensional friction, derived from that shown in Chapter 4, is given by

F =

∫ ∞

−∞

(

−m1
∂P
∂X

H
2

+m2
η
H

(ub−ua)

)

dX, (7.34)

where the re-dimensionalising factorsm1 = phb2

Rx
andm2 = η0Rx

b . Pure rolling is the case

where the two surface speeds,ub andua, are moving at the same speed in the same di-

rection, and hence the second term of the friction is zero. For the case where the surface

speeds areua = ub = 0.5, results for five different non-dimensional loads are presented.

With no relative motion of the surfaces, the resistance to motion is purely that generated

by trying to squeeze the fluid into the contact against the pressure gradient. The adjoint

for each of the five solutions is shown in Figure 7.4. The solution profile of each of

these adjoints is remarkably smooth, with little influence seen from the pressure spike.

Tables 7.1 to 7.5 show the usual measures of success, including the effectivity index, for

these typically loaded cases. This is the ratio of the measured error to the predicted error.

In addition, there is an extra column. This, the last column in the table, shows the differ-

ence between the effectivity index and unity. Clearly, as the effectivity index approaches a

value of 1.0 with increasing mesh refinement, the difference should become increasingly
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Figure 7.4: Adjoint solutions for pure rolling EHL cases;L = 20000, 40000, 60000,
80000 and 100000,ua = ub = 0.5

small. It is clear to see that all of the tables exhibit excellent convergence of the effectivity

index. In other words, the adjoint error estimation can predict the inter-grid friction error,

in cases of pure rolling, extremely accurately for EHL. Furthermore, this estimate appears

to be equally effective over the range of loads.

Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 -15.72099 0.02302 -15.74401 -15.73426 0.01327 0.57623 0.42377
6 -15.73444 0.01190 -15.74634 -15.74391 0.00947 0.79602 0.20398
7 -15.74395 0.00596 -15.74991 -15.74931 0.00535 0.89922 0.10078
8 -15.74932 0.00297 -15.75230 -15.75215 0.00283 0.95001 0.04999
9 -15.75215 0.00149 -15.75364 -15.75360 0.00145 0.97512 0.02488
10 -15.75360 0.00074 -15.75434 -15.75433 0.00073 0.98772 0.01228
11 -15.75433 0.00037 -15.75471 -15.75470 0.00037 0.99347 0.00653
12 -15.75470 0.00019 -15.75489 -15.75489 0.00019 0.99720 0.00280

Table 7.1: Adjoint based inter-grid friction error on uniform meshes;L = 20000,ua =
ub = 0.5, slide-roll ratio = 0.0 (pure rolling)
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Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 -23.46751 -0.24336 -23.22415 -23.20372 -0.26379 1.08397 0.08397
6 -23.20388 -0.10870 -23.09518 -23.08984 -0.11404 1.04908 0.04908
7 -23.08988 -0.05025 -23.03964 -23.03834 -0.05154 1.02578 0.02578
8 -23.03835 -0.02372 -23.01463 -23.01435 -0.02401 1.01194 0.01194
9 -23.01435 -0.01141 -23.00294 -23.00288 -0.01147 1.00510 0.00510
10 -23.00288 -0.00557 -22.99731 -22.99730 -0.00558 1.00216 0.00216
11 -22.99730 -0.00275 -22.99455 -22.99455 -0.00275 1.00092 0.00092
12 -22.99455 -0.00136 -22.99319 -22.99319 -0.00136 1.00071 0.00071

Table 7.2: Adjoint based inter-grid friction error on uniform meshes;L = 40000,ua =
ub = 0.5, slide-roll ratio = 0.0 (pure rolling)

Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 -27.55984 -0.52940 -27.03044 -26.99802 -0.56182 1.06125 0.06125
6 -26.99814 -0.23267 -26.76547 -26.75316 -0.24498 1.05291 0.05291
7 -26.75319 -0.10732 -26.64588 -26.64236 -0.11083 1.03278 0.03278
8 -26.64237 -0.05046 -26.59191 -26.59097 -0.05140 1.01866 0.01866
9 -26.59097 -0.02410 -26.56687 -26.56665 -0.02432 1.00911 0.00911
10 -26.56665 -0.01166 -26.55500 -26.55495 -0.01170 1.00375 0.00375
11 -26.55495 -0.00571 -26.54925 -26.54924 -0.00571 1.00137 0.00137
12 -26.54924 -0.00282 -26.54642 -26.54642 -0.00282 1.00043 0.00043

Table 7.3: Adjoint based inter-grid friction error on uniform meshes;L = 60000,ua =
ub = 0.5, slide-roll ratio = 0.0 (pure rolling)

Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 -30.19587 -0.81428 -29.38159 -29.32429 -0.87158 1.07037 0.07037
6 -29.32437 -0.35367 -28.97070 -28.95105 -0.37332 1.05556 0.05556
7 -28.95108 -0.16250 -28.78858 -28.78296 -0.16812 1.03454 0.03454
8 -28.78297 -0.07577 -28.70720 -28.70528 -0.07769 1.02545 0.02545
9 -28.70528 -0.03599 -28.66929 -28.66871 -0.03657 1.01608 0.01608
10 -28.66871 -0.01734 -28.65138 -28.65123 -0.01748 1.00817 0.00817
11 -28.65123 -0.00844 -28.64280 -28.64277 -0.00847 1.00348 0.00348
12 -28.64277 -0.00414 -28.63862 -28.63862 -0.00415 1.00125 0.00125

Table 7.4: Adjoint based inter-grid friction error on uniform meshes;L = 80000,ua =
ub = 0.5, slide-roll ratio = 0.0 (pure rolling)
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Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 -32.11875 -1.11456 -31.00419 -30.92962 -1.18913 1.06690 0.06690
6 -30.92962 -0.47488 -30.45474 -30.43133 -0.49829 1.04930 0.04930
7 -30.43135 -0.21507 -30.21628 -30.20711 -0.22424 1.04262 0.04262
8 -30.20712 -0.09973 -30.10739 -30.10431 -0.10281 1.03087 0.03087
9 -30.10431 -0.04722 -30.05709 -30.05607 -0.04824 1.02162 0.02162
10 -30.05607 -0.02268 -30.03340 -30.03309 -0.02298 1.01349 0.01349
11 -30.03309 -0.01101 -30.02208 -30.02201 -0.01108 1.00691 0.00691
12 -30.02201 -0.00538 -30.01662 -30.01661 -0.00540 1.00279 0.00279

Table 7.5: Adjoint based inter-grid friction error on uniform meshes;L = 100000,ua =
ub = 0.5, slide-roll ratio = 0.0 (pure rolling)

7.5.3 Sliding

Using the same five non-dimensional loads used for the rolling case, results are presented

here for the case where the non-dimensional surface speeds are ua = 0.1, ub = 0.9. In

addition to the friction generated by having to force fluid against the pressure gradient,

there is now an extra source of friction. Since the surfaces move at different speeds,

there is shear in the fluid between them. With viscosity beingthe resistance to fluid

shear, the friction is then the product of the two. This term is typically dominant, as

evidenced by the fact that the friction value for the most heavily loaded rolling case is

still an order of magnitude smaller than the most lightly loaded case with both sliding and

rolling. Figure 7.5 shows the adjoint solutions for the five loads. In contrast to the adjoint

solutions for the rolling case in Figure 7.4, there is significant activity in and around the

pressure spike region. Tables 7.6 to 7.10 show the effectivity index for this problem. For

the two lightest loads, the method again shows its effectiveness at predicting the inter-grid

friction error where the effectivity index is close to unityby grid 6 (129 points), and gets

increasingly close with further refinement. The middle loadof the five starts off with an

error estimate on grid 5 (65 points) which is nearly 80% wrong, with the estimate on grid 6

just under 50% out. However, after that the error in the estimate falls to an acceptable

level. The two most heavily loaded cases provide rather lessaccurate predictions for the

coarse grids, but even here, once the mesh becomes sufficiently refined, the inter-grid

error estimates are again very good. There is clearly a trendof worsening accuracy with

increasing load, which is likely due to the large increases in the viscosity. Nevertheless,

convergence of the estimate to the true error is observed in all cases.
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Figure 7.5: Adjoint solutions for EHL cases with sliding;L = 20000, 40000, 60000,
80000 and 100000,ua = 0.1, ub = 0.9

Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 381.16185 -13.24747 394.40933 395.29655 -14.13469 1.06697 0.06697
6 395.26199 -7.77855 403.04054 403.33739 -8.07540 1.03816 0.03816
7 403.32754 -4.25516 407.58269 407.67011 -4.34258 1.02054 0.02054
8 407.66746 -2.23175 409.89921 409.92306 -2.25560 1.01069 0.01069
9 409.92237 -1.14377 411.06615 411.07239 -1.15001 1.00545 0.00545
10 411.07221 -0.57911 411.65133 411.65292 -0.58071 1.00275 0.00275
11 411.65288 -0.29140 411.94428 411.94467 -0.29180 1.00136 0.00136
12 411.94466 -0.14617 412.09083 412.09093 -0.14627 1.00067 0.00067

Table 7.6: Adjoint based inter-grid friction error on uniform meshes;L = 20000,ua = 0.1,
ub = 0.9, slide-roll ratio = 0.8 (sliding)



Chapter 7 110 EHL Line Contact Problems

Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 3345.49389 -80.14426 3425.63815 3451.10255 -105.60866 1.31773 0.31773
6 3448.33170 -83.26708 3531.59878 3542.09648 -93.76478 1.12607 0.12607
7 3541.39335 -61.49194 3602.88529 3610.58244 -69.18908 1.12517 0.12517
8 3610.39035 -40.27333 3650.66369 3653.83995 -43.44960 1.07887 0.07887
9 3653.78827 -23.57142 3677.35969 3678.37504 -24.58677 1.04308 0.04308
10 3678.36143 -12.81609 3691.17752 3691.46376 -13.10233 1.02233 0.02233
11 3691.46025 -6.68934 3698.14959 3698.22543 -6.76519 1.01134 0.01134
12 3698.22456 -3.41806 3701.64262 3701.66221 -3.43765 1.00573 0.00573

Table 7.7: Adjoint based inter-grid friction error on uniform meshes;L = 40000,ua = 0.1,
ub = 0.9, slide-roll ratio = 0.8 (sliding)

Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 12205.96611 -375.30052 12581.26663 12278.18194 -72.21583 0.19242 0.80758
6 12255.02955 -144.91328 12399.94283 12469.84738 -214.81783 1.48239 0.48239
7 12462.70119 -188.24168 12650.94287 12700.28466 -237.58347 1.26212 0.26212
8 12698.50913 -162.15862 12860.66775 12892.64558 -194.13645 1.19720 0.19720
9 12892.20697 -116.43783 13008.64481 13022.62082 -130.41385 1.12003 0.12003
10 13022.50895 -72.05889 13094.56784 13099.34594 -76.83699 1.06631 0.06631
11 13099.31731 -40.41668 13139.73399 13141.12181 -41.80450 1.03434 0.03434
12 13141.11457 -21.42438 13162.53895 13162.90936 -21.79478 1.01729 0.01729

Table 7.8: Adjoint based inter-grid friction error on uniform meshes;L = 60000,ua = 0.1,
ub = 0.9, slide-roll ratio = 0.8 (sliding)

Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 32847.90292 717.87994 32130.02299 32667.90099 180.00194 0.25074 0.74926
6 32582.36697 -518.46131 33100.82828 32846.97578 -264.60881 0.51037 0.48963
7 32824.63259 -559.14829 33383.78088 33305.84795 -481.21536 0.86062 0.13938
8 33301.04221 -383.39286 33684.43507 33784.93053 -483.88832 1.26212 0.26212
9 33782.59231 -305.36009 34087.95240 34151.60976 -369.01745 1.20847 0.20847
10 34151.05130 -216.58757 34367.63887 34393.64885 -242.59756 1.12009 0.12009
11 34393.51454 -132.54454 34526.05908 34534.96140 -141.44687 1.06716 0.06716
12 34534.92943 -73.90874 34608.83817 34611.39598 -76.46655 1.03461 0.03461

Table 7.9: Adjoint based inter-grid friction error on uniform meshes;L = 80000,ua = 0.1,
ub = 0.9, slide-roll ratio = 0.8 (sliding)
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Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 75942.44786 1514.05197 74428.39590 74961.63818 980.80968 0.64780 0.35220
6 74829.35179 -1429.76015 76259.11195 75076.18903 -246.83723 0.17264 0.82736
7 75062.32454 -447.54805 75509.87259 76036.19337 -973.86883 2.17601 1.17601
8 76004.98630 -884.18078 76889.16708 76898.72841 -893.74211 1.01081 0.01081
9 76888.36623 -662.51809 77550.88431 77645.73835 -757.37213 1.14317 0.14317
10 77643.20345 -468.41145 78111.61490 78188.36713 -545.16368 1.16386 0.16386
11 78187.85170 -309.36932 78497.22102 78529.37180 -341.52011 1.10392 0.10392
12 78529.25738 -182.68070 78711.93808 78722.30232 -193.04495 1.05673 0.05673

Table 7.10: Adjoint based inter-grid friction error on uniform meshes;L = 100000,ua =
0.1, ub = 0.9, slide-roll ratio = 0.8 (sliding)

7.6 Adaptive EHL

In the previous section it has been seen how the adjoint solution can be used to predict the

error in a given functional for elastohydrodynamic lubrication cases. The aim is now to

establish how this solution can be used to guide adaptive refinement of the domain. The

aim is, as explained in Chapter 3, to give the value of the functional, rather than the full

solution profile, as accurately as possible.

In this section, the adaptation method used in the industrial code is explained. This

uses multigrid patches for the non-uniform mesh discretisation as mentioned in Sec-

tion 2.4.3. Then in Section 7.6.2, the overall adjoint mesh refinement algorithm is de-

tailed. The rest of the section is devoted to discussing how the solution from the multigrid

patches for the EHL cases is not as consistent as is normally expected.

7.6.1 Adaptive solution process

The following algorithm provides an overview of the adaptive solution process that is

used in this chapter.

1. Solve forward problem on the current non-uniform mesh (the coarse mesh).

2. Solve adjoint problem on the same mesh.

3. Interpolate the above solutions onto a uniformly refined version of the coarse mesh

(the fine mesh).
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4. Evaluate the residuals on the fine mesh.

5. Calculate the error correction value (i.e. the scalar product of the residuals and the

interpolated adjoint solution).

6. Define an error correction vector to be a vector of the contributions to the above

scalar product (vi = r i .ai, wherer i is the residual andai is the adjoint solution at

mesh pointi).

7. Use the error correction vector to identify where the current coarse mesh needs

refining (i.e. around those nodes with the greatest contribution to this vector).

8. Write out the new refined mesh and use the interpolated solution as continuation

input to next iteration.

9. Repeat the above process until a satisfactory solution isobtained: return to step 1.

7.6.2 Mesh refinement

The above algorithm provides a means of identifying which part of the current solution is

contributing the most to the error in the functional of interest. The specific details of the

refinement are described according to the following algorithm:

1. Identify the grid points where the error correction component associated with that

point is above a prescribed tolerance (1e−6).

2. Add a “safety layer” either side of all such points.

3. Sweep over the grid and identify areas not marked for refinement which are too

small, and mark these for refinement too.

4. If the coarse mesh is already non-uniform, take care around the interfaces between

different mesh levels. This means that if further refinementis required at these

points, the current level of adaptivity should be extended outwards into the coarse

region.

7.6.3 Film thickness

There is a slight complication with how the film thickness is solved for on a non-uniform

mesh. As previously described in Chapter 2, the forward solve is obtained by solving
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using multigrid with adaptive patches [26, 70]. One test to see if the residual equations

which have been defined for use in the adjoint error procedureare consistent with the

solutions obtained from the forward solve is to check that the residuals produced using

these solutions are small. In other words, there should be a single non-uniform grid on

which the solutionP is equivalent to the multi-level solution. Clearly theP value to be

used at any given point can just be obtained from the finest level mesh, since any points

which were solved on coarser meshes have already been interpolated to the fine level so

that the film thickness can be calculated. Equally, the viscosity and density are calculated

from these pointwise values so there is no confusion as to thevalues to use. However, any

film thickness value is calculated from theP values at all of the other mesh points. This is

why the finest mesh must be fine everywhere even though large sections may not be used

in the actual solution of the Reynolds equation.

This however leads to a dilemma. ShouldH values in coarse regions be calculated

using the interpolatedP values (on the uniformly fine mesh), or should theH value cal-

culated during the solution on the coarse level be used? The best answer is that the coarse

values should be used since it was those that were used when solving for theP values at

those points. However, this is not perfect, since at least some of the pressure values would

have been calculated with the FAS right-hand side being non-zero. The main problem

comes from the interface points. When the adaptive patch is refined, the ends are taken

to be Dirichlet points using the values from the coarser mesh. So theH values used in

the residual equation for either of those points should use the coarseH values. However,

the point inside of the fine region is solved for using fine gridH values. Since the resid-

ual for any point uses values from either side, the points either side should have fineH

values too. However, it has already been said that the interface point should have coarse

H values. So in order for theH value at the interface to be consistent with the residuals

used to calculate theP values around it, two values are required at the same point. The

same is also true for the first point inside the interface on the fine mesh side. This means

that there are two points, the interface and the first point inside on the fine side, which

need two film thickness values at the same point to satisfy theequations as solved in the

multi-level solution.

This clearly casts some doubt over the exact formulation of the multi-level solution as

it stands. However, in practice, as demonstrated by the results in the next section, this has

little or no discernible effect on the solution or the adjoint error estimation method.

We conclude this section by noting that the evaluation of theJacobian is made slightly

more complex by the inclusion of a non-uniform spatial mesh.Hence these modifications
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must not be overlooked when moving from a uniform to a non-uniform grid.

7.7 Non-uniform mesh results

In order to illustrate adjoint error estimation and spatialmesh adaptivity, an EHL case is

presented with a load of 120000. In this section, attention is focused on a typical highly

loaded example, similar to those presented in the previous section. The main difference

here is that rather than the usual dimensional rolling friction used for the majority of the

work presented, a new “friction-like” functional is introduced. This is basically the same

as the rolling term from friction from the standard frictionequation (7.34):

F1 =
∫ Xc

Xc−D
H

∂P
∂X

dX. (7.35)

This can be discretised in the usual manner to give

F1 =
n−2

∑
i=0

0.5(Hi+1+Hi)
Pi+1−Pi

Xi+1−Xi
(Xi+1−Xi). (7.36)

It is harder to assess the quality of our error approximationon non-uniform meshes than

on uniform meshes since the effectivity index is not likely to tend to unity in this case

(the grid is only refined where the contributions to the errorestimate are large not where

the error in the estimate itself is large!). Furthermore, inaddition to the need for a reli-

able error estimate the proposed adaptation procedure alsorequires that the regions that

contribute most to this error estimate are the most suitableones in which to perform local

mesh refinement. Fortunately, the results in Figure 7.6 suggest that the error estimate and

the adaptive strategy are both robust for the purposes of controlling local adaptivity.

Figure 7.6 shows the estimated error based upon a comparisonof various computed

solutions against a “numerical truth solution” that is calculated using an excessively re-

fined uniform mesh (level 14, 32769 points). Clearly the mostdesirable area of this

figure is in the bottom left-hand corner, where there is greater accuracy for fewer points!

However, there is a trade-off between the desirable quantity (increased accuracy) and that

which it costs to achieve (increased mesh points). This is clearly shown by all three lines,

which illustrate the error in the solutions when compared toa “truth solution”. The top

line on the graph shows the error in the friction for a series of uniform grid solutions. This

is the benchmark against which a comparison of the adaptivity can be made. The second
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line shows the resulting error using local adaptivity basedupon the adjoint correction

procedure applied to the coarse grid solution. This is wherethe coarse grid solution has

been refined based on the components of the error correction vector (as described earlier).

Once the solution has been obtained on this coarse grid, it isinterpolated onto a uniformly

refined version, where an estimate of the friction can be calculated as if it had been on that

fine grid. The value shown on this second graph is that of the aforementioned estimate

as corrected by the adjoint method. The third graph shows thefriction calculated from

solutions obtained directly once on the uniformly refined adaptive mesh.

Initially, the error is reduced in line with the uniform solutions. This is simply because

only global refinement has taken place at this stage, i.e. thecomponents of the error cor-

rection vector are all sufficiently large to warrant refinement (this may not quite be true

to the extent that it is the buffer regions introduced aroundcomponents which are larger

than the tolerance which mean that all of the mesh points become refined). As previously

seen, where the adjoint error estimation is applied to theseuniform solutions, the error

is reduced to that of a uniformly refined version, but with themajority of the calculation

performed only on the original coarse mesh. As the mesh is further refined, the contribu-

tion to the error is primarily found to be in certain regions.Here Figure 7.6 clearly shows

the value of the local versus the global mesh refinement.

In Figure 7.7 the meshes used on each multigrid level are shown. This shows, as

stated above, that the first few levels (up to the blue line) have only global refinement.

At this stage the gradient of both of the adaptive error linessharpens, indicating that the

adaptive meshing is actually working. In other words, by refining the regions where the

components of the error vector are large the error in the friction can be reduced by an

amount roughly comparable to that achieved by uniform refinement, but with far fewer

grid points. This trend continues with further local refinement. By noting in Figure 7.6

that the adaptive solution on the fine grid stays to the left ofthe uniform line, it is clear that

adaptivity is effective at reducing the number of grid points needed to calculate friction

to a specific accuracy. Further, by correcting this value according to the adjoint error

estimate, the line can be moved further left, clearly demonstrating the efficacy of this

method.

We conclude this section by presenting the results in the same tabular form as used for

demonstrating the accuracy of the error estimate on uniformmeshes. Table 7.11 shows

the data corresponding to the calculations in Figures 7.6 and 7.7. As already predicted,

the effectivity index is no longer tending to unity, howeverthe estimate always remains

within about 20% of the true error and its variation is very much in line with that of the
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Grid No. Interpolated Calculated Corrected Friction Measured Effectiv.
(g) Points Fric. (g) correction Fric. (g) (g+1) Error Index
5 65 0.11423 0.00359 0.11064 0.11036 0.00387 1.07787
6 129 0.11036 0.00148 0.10888 0.10876 0.00160 1.07955
7 257 0.10876 0.00066 0.10809 0.10806 0.00070 1.05185
8 423 0.10800 0.00024 0.10775 0.10774 0.00026 1.04994
9 692 0.10788 0.00031 0.10757 0.10760 0.00028 0.90484
10 964 0.10761 0.00004 0.10757 0.10758 0.00003 0.68463
11 1152 0.10771 0.00019 0.10751 0.10756 0.00015 0.76009
12 1327 0.10775 0.00029 0.10746 0.10752 0.00023 0.79639

Table 7.11: Adjoint based inter-grid friction error on adaptive non-uniform meshes;L =
120000, slide-roll ratio = 0.0 (pure rolling)

true error.

7.8 Summary

In this chapter, adjoint error estimation procedures have been successfully applied to full

elastohydrodynamic lubrication problems. First, severaldifferently loaded cases were

considered on uniform meshes. Adjoint error estimation wasshown to give excellent pre-

dictions of the inter-grid error estimate in the case of purely rolling friction, and also for

moderately loaded sliding friction. For high loads, very good predictions for the slid-

ing friction error estimate were also achieved after sufficient grid resolution had been

achieved. Finally, adjoint error estimation for EHL has been shown to be useful for driv-

ing spatial mesh adaptation. By adaptively refining the gridin regions where the contri-

bution to the adjoint error estimation was large, and then correcting the friction with the

error estimate, significant savings in the number of points used in the calculation were

made over the uniform grids. However, it is clear that there are limitations to this ap-

proach as implemented for this work. Two areas which may benefit from further attention

are now discussed.

As mentioned above, the accuracy of the adjoint error estimation procedure described

above worsens for highly loaded EHL cases where the frictioncontains a sliding com-

ponent. Preliminary investigations suggest that this is due to the exponential term within

the viscosity equation, which is a multiplier in the second term of equation (7.34). These

investigations centred around choosing the functional of interest to be each of the terms

from the friction calculation in turn to see the accuracy of each. The precise mechanism
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which causes the degradation in accuracy compared to purelyrolling friction is as yet

unclear. One possibility is that the linear approximationsused in the derivation of the

method are only valid for meshes with medium to high levels ofrefinement when dealing

with exponential values. In this sense, the asymptotic range is further away with increas-

ing load, and it may be possible to derive some empirical way of deciding the coarsest

level possible. It is also the case that since the derivativeof an exponential is another ex-

ponential, the right hand side of the adjoint system to be solved will contain exponential

terms. It may be possible to mitigate the effect of these large values by using a different

non-dimensionalisation for the viscosity equation which usesα to reduce the maximum

value of the viscosity to approximately unity.

The adaptive mesh refinement here is straight-forward to implement. A mesh point is

marked for refinement wherever the contribution to the errorcorrection for that point is

above some prescribed tolerance. After a fresh solution is calculated on the refined mesh,

the process is repeated until the inter-grid friction erroris below some other prescribed

tolerance. There are therefore two tolerances which need tobe specified, the first is used

to decided where to refine, and the second to decide when sufficient accuracy has been

obtained. While the second of the two can be chosen with the goal of the overall accuracy

in mind, the first tolerance requires an arbitrary choice based on previous experience

to determine a suitable value. A more sophisticated method,which would avoid this

problem, would involve identifying the points with the largest error, and then refining

those. This means that only the second of the two tolerance values need be supplied, and

as before this process can continue until the inter-grid friction error is below the prescribed

value.
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Discussion

This final chapter of the thesis provides a brief overview of the research that has been

undertaken and then presents a short discussion of some of the main extensions of this

work that should be undertaken.

8.1 Overview

In this thesis, adjoint error estimation techniques have been applied to complex EHL prob-

lems. A functional has been introduced, the friction, and justification has been provided

as to why this quantity, and hence its accuracy, is important. An iterative approach has

been taken to understanding the mechanisms at work, starting with a model problem, and

culminating with the full EHL line contact problem.

In Chapter 4, friction has been introduced as a quantity of interest. Here it has been

demonstrated that resolution of the pressure spike is key inaccurately capturing the fric-

tion through the contact. A model free-boundary problem resembling EHL in certain key

features has been formulated in Chapter 5. With this, a novelway of solving for the free

boundary allowing for the exact capture of the cavitation position has been shown, and

a new functional introduced analogous to the friction in Chapter 4. Non-uniform grids

have been introduced, with the adjoint error estimate used as the basis for refinement,

119



Chapter 8 120 Discussion

again showing the prediction of the estimate to be accurate.The successful application of

adjoint error estimation to this free-boundary problem hasbeen published in [34, 35]. In

Chapter 6, hydrodynamic lubrication was introduced via theaddition of non-linear vis-

cosity and density models. The formulation of the adjoint system of equations for this

more complicated engineering problem has been considered,with two possible alterna-

tives explored. The “expanded” and “dense” Jacobians have been shown to be similar,

with both predicting the inter-grid friction error accurately. This informed the choice

of system for the following chapter, Chapter 7. The final partof this work is presented

in Chapter 7, where adjoint error estimation theory has beenapplied to the complicated

real-world engineering problem of elastohydrodynamic lubrication. Results have been

presented showing this to give reliable estimates of the inter-grid friction error. Non-

uniform meshes have been used with adaptivity driven automatically by the size of the

components of the adjoint correction, and this has been shown to dramatically reduce the

number of points needed in order to achieve a given accuracy of friction.

8.2 Future Work

In this section, a number of areas of work are discussed with regard to extending the

current research.

8.2.1 Overall speed and efficiency

The work in this thesis is very much a proof of concept for the application of adjoint error

estimation to EHL, and in that sense it has been shown to be effective. However, in order

for the method to become more attractive from a user’s perspective, MLMI must be in-

corporated into the forward solve. This would mean investigating efficient techniques for

MLMI implementation on non-uniform meshes (a topic that hasreceived little attention

in the literature [9,10]), as well as considering the implications for the formulation of the

adjoint system.

In addition to this, faster ways of solving the adjoint system must be found. In the

work of Chapter 7, a direct solver is used to get a solution to the adjoint system as the

Jacobian is almost entirely dense due to the film thickness calculation. The solution of this

takesO(n3) operations, so quickly becomes prohibitively expensive oneven a moderately

refined mesh. There is potential for some kind of multigrid type approach to be applied
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to the adjoint error estimation process, since the residualterms in the FAS right-hand side

for the forward problem are not dissimilar to the interpolated residuals in the adjoint error

estimation approach. In this work the full system Jacobian was used in formulating the

adjoint system. It may be that sufficient accuracy can be gained using an approximate

Jacobian, such as that used in the Newton iteration which forms part of the smoothing

process in the multigrid solve. Finally, by realising the equivalence of the expanded and

dense Jacobians shown in Chapter 6, it would be possible to derive something between

the two, whereP, H0 andXc were primary dependent variables, but alsoH. The sparsity

pattern for this Jacobian would then have four main blocks, with one of them dense, due

to the film thickness kernelK. If this could be solved in a de-coupled way, MLMI may

become applicable which could potentially speed up the solution process enormously.

8.2.2 2D point contact EHL

The most obvious extension to the work carried out in this thesis would be the extension

to the 2D point contact problem, introduced briefly in Chapter 2 as equation (2.1). As

this problem is now 2D, the work involved in solving on a uniformly refined grid jumps

by at least a factor of four (and by a larger factor if a non-optimal solver is employed).

This should clearly indicate the potential benefit for solving two systems on a coarse grid

rather than one system on a fine grid. In a similar fashion, non-uniform meshes have

greater potential for saving in 2D than in 1D. Consider, for example, a 1D mesh which is

refined by one extra level over half of the domain. In this case, approximately a quarter of

the total points of the fine mesh are saved by only refining where necessary. If the same

were true in 2D, and half of the domain in each direction was refined by one extra level

(so a quarter of the domain), three eighths of the equivalentfine mesh could be saved.

The main obstacle to the immediate application of the work presented here to a 2D

case is the treatment of the cavitation condition. In this work, the 1D solver was aug-

mented by an outer-iteration which solved for the cavitation condition though the use of a

sliding grid. This allowedXc to be a continuous variable, facilitating the direct implemen-

tation of the adjoint error estimation. However, it should be clear that this is no longer

an option in 2D for a sliding rectangular grid. Rather than one cavitation point, there is

now a cavitation line, represented by a set of cavitation points, one for each row of mesh

points parallel to thex-axis. Satisfaction of the cavitation condition at one point would

almost certainly guarantee that the cavitation condition would not hold at most of the rest

of the points. If each row of mesh points parallel to thex-axis were allowed to slide,
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the cavitation condition could be satisfied at all of the points, but this would come at the

expense of the rectangular grid, and would make finite differences, and multigrid with the

MLAT scheme, a significant challenge to implement. This could perhaps be overcome by

mapping to a rectangular reference grid to perform the solution.

One obvious alternative to using finite differences would beto move to a finite element

solution. Since finite elements can be used on non-regular domains far more naturally,

exact capture of the cavitation condition with a moving meshmethod may be possible.

However, any move away from regular grids comes at the price of not using multilevel

multi-integration.

One method for dealing with the cavitation region not considered in this work, is the

penalty method [47, 90]. As mentioned in Chapter 2, rather than explicitly finding the

cavitation region, in this method all negative pressures are forced to be zero (or negligibly

small) by a penalty term in the residual equations. Since theexact boundary no longer

needs including in the formulation, there would be no need tofind Xc and hence no need

to include it as a free and continuous variable. This method also has the advantage that

it can be applied to both finite difference and finite element methods. It is not yet clear

however exactly how the adjoint system would be formulated in this case.

The final suggestion for overcoming the cavitation boundarycondition in 2D is to treat

eachXc as a continuous variable on a fixed grid, but then only allow them to move to the

discrete grid points. In this way, the adjoint system could still be formed, including any

sensitivities to the cavitation condition, and a residual calculated. However, the correction

may not be as reliable as a sliding grid, since the change in friction due to a change in the

mesh position predicted by a cavitation residual may not correspond to the actual change

on the fine grid if the position predicted does not fall on or very near a grid point. This

method may still be sufficiently accurate for practical solution purposes, and would also

remove the need for resolving the solution every time the mesh moves.

8.2.3 Advanced constitutive models

Two potential augmentations to the model used here are thermal EHL, and non-Newtonian

fluid behaviour. Thermal EHL arises due to the temperature dependence of the lubricant

viscosity. When sliding is present, the heat generated in the lubricant through the contact

region can no longer be ignored, as it has a significant thinning effect on the lubricant.

A model for this is presented in [22]. Any behaviour of a fluid where the shear-rate is
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not proportional to the applied strain is deemed non-Newtonian. Two such fluid models

are the Ree-Eyring fluid model [60] and the more complicated White-Metzner model [65,

86]. The second of these is visco-elastic, and hence the fluidviscosity is time-dependent.

Either of these would increase the number of adjoint variables to be solved for, potentially

making the solution with even moderately refined grids challenging.

8.2.4 Transient EHL

Adjoint sensitivity analysis for time-dependent PDEs is still relatively poorly understood [69].

However spatial mesh refinement could take place in order to reduce the growth of errors

in the friction over time. Also, with transient EHL, surfaceroughness becomes a possibil-

ity, with refinement only around those areas which would adversely affect the friction. In

order to capture the roughness profile accurately, very fine meshes are likely to be needed.

While this may be achievable for 1D line contact cases, in 2D parallel solutions on the

grid become a necessity [32].
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Chapter 8 127 BIBLIOGRAPHY

editors,Applied Parallel Computing, Proceedings of PARA ’02, Lecture Notes in

Computer Science, volume 2367, pages 523–532. Springer, 2002.

[33] R. W. Hall. Pressure spikes in elastohydrodynamics - some elastic considerations.

WEAR, 131(1):151–161, 1988.

[34] D. E. Hart, C. E. Goodyer, M. Berzins, P. K. Jimack, and L.E. Scales. Adjoint error

estimation for EHL-like models.International Journal for Numerical Methods in

Fluids, 47:1069–1075, 2005.

[35] D. E. Hart, C. E. Goodyer, M. Berzins, P. K. Jimack, and L.E. Scales. Adjoint

error estimation and spatial adaptivity for EHL-like models. IUTAM Symposium on

Elastohydrodynamics And Micro-elastohydrodynamics: Proceedings of the IUTAM

Symposium Held in Cardiff, UK, 1-3 September 2004, pages 47–58, 2006.

[36] H. Hertz. The contact of elastic solids.Journal f̈ur die reine angew. Math., 92:156–

171, 1881.

[37] M. J. A. Holmes, H. P. Evans, and R. W. Snidle. Transient effects in EHL point

contacts with transverse surface finish. In A.A. Lubrecht and G. Dalmaz, editors,

Transient Processes in Tribology: Proceedings of the 30th Leeds-Lyon Symposium

on Tribology. Elsevier, 2004.

[38] C. J. Hooke and K. Y. Li. An inverse approach to the validation of pressure predic-

tions in rough elastohydrodynamic contacts.J. Tribology, 124:103–108, 2002.

[39] B. Jacobson. Thin film lubrication of real surfaces.Tribology International, 33:205–

210, 2000.

[40] D. Jalali-Vahid, Z. M. Jin, and D. Dowson. Prediction oflubricating film thickness

in a ball-in-socket model with a soft lining representing human natural and artificial

hip joints. Proc. Instn. Mech. Engrs., 215:363–372, 2001.

[41] K. L. Johnson.Contact Mechanics. Cambridge University Press, 2001.

[42] C. C. Kweh, H. P. Evans, and R. W. Snidle. Micro-elastohydrodynamic lubrication

of an elliptical contact with transverse and three-dimensional sinusoidal roughness.

J. Tribology, 111:577–584, 1989.

[43] R.-T. Lee and C.-H. Hsu. A fast method for the analysis ofthermal-

elastohydrodynamic lubrication of rolling/sliding line contacts.WEAR, 166(1):107–

117, 1993.



Chapter 8 128 BIBLIOGRAPHY

[44] K. Y. Li and C. J. Hooke. Use of the inverse approach to investigate the stresses in

rough elastohydrodynamic contacts.J. Tribology, 124:109–113, 2002.

[45] S. Li and L. Petzold. Adjoint sensitivity analysis for time-dependent partial differ-

ential equations with adaptive mesh refinement.J. Comput. Phys., 198(1):310–325,

2004.

[46] H. Lu. High Order Finite Element Solutions of ElastohydrodynamicLubrication

Problems. PhD thesis, School of Computing, University of Leeds, 2006.

[47] H. Lu, M. Berzins, C. E. Goodyer, P. K. Jimack, and M. A. Walkley. Adaptive high-

order finite element solutions of transient elastohydrodynamic lubrication problems.

Proceedings of the Institution of Mechanical Engineers Part J, Journal of Engineer-

ing Tribology, 220(3):215–225, 2006.

[48] H. Lu, Berzins M., Goodyer C. E., and Jimack P. K. High order discontinuous

galerkin method for ehl line contact problems.Communication in Numerical Meth-

ods in Engineering, 21(11):643–650, 2005.

[49] A. A. Lubrecht. Numerical solution of the EHL line and point contact problem

using multigrid techniques. PhD thesis, University of Twente, Endschende, The

Netherlands, 1987. ISBN 90-9001583-3.

[50] A. A. Lubrecht, W. E. ten Napel, and R. Bosma. Multigrid,an alternative method

of calculating film thicknesses and pressure profiles in elastohydrodynamically lu-

bricated line contacts.Trans. ASME, Journal of Tribology, 108(4):551–556, 1986.

[51] A. A. Lubrecht, W. E. ten Napel, and R. Bosma. The influence of longitudinal and

transverse roughness on the elastohydrodynamic lubrication of circular contacts.J.

Tribology, 110:421–426, 1988.

[52] A. A. Lubrecht and C. H. Venner. Elastohydrodynamic lubrication of rough surfaces.

Proc. Instn. Mech. Engrs., 213:397–404, 1999.

[53] S. Nadarajah and A. Jameson. A comparison of the continuous and discrete ad-

joint approach to automatic aerodynamic optimization. InProceedings of the 38th

Aerospace Sciences Meeting and Exhibit, Reno, NV, number AIAA-200-0667, 2000.

[54] E. Nurgat, M. Berzins, and L. E. Scales. Solving EHL problems using iterative,

multigrid and homotopy methods.Trans. ASME, Journal of Tribology, 121(1):28–

34, 1999.



Chapter 8 129 BIBLIOGRAPHY

[55] E. G. Nurgat.Numerical Methods in Lubrication Modelling. PhD thesis, School of

Computer Studies, University of Leeds, 1997.

[56] K. P. Oh. The numerical solution of dynamically loaded elastohydrodynamic contact

as a nonlinear complementarity problem.J. Tribology, 106:88–95, 1984.

[57] A. I. Petrusevich. Fundamental conclusions from the contact-hydrodynamic theory

of lubrication. Izv. Akad. Nauk. SSSR (OTN), 2:209, 1951.

[58] N. A. Pierce and M. B. Giles. Adjoint recovery of superconvergent functionals from

PDE approximations.SIAM Review, 42(2):247–264, 2000.

[59] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.Numerical recipes

in C. Cambridge University Press Cambridge, 1992.

[60] T. Ree and H. Eyring. Theory of non-Newtonian flow. I. solid plastic system.Journal

of Applied Physics, 26(7):793–800, 1955.

[61] O. Reynolds. On the theory of lubrication and its application to Mr Beauchamp

Tower’s experiments, including an experimental determination of the viscosity of

olive oil. Philosophical Transactions of the Royal Society of London, 177:157–234,

1886.

[62] C. J. A. Roelands.Correlational Aspects of the viscosity-temperature-pressure rela-

tionship of lubricating oils. PhD thesis, Technische Hogeschool Delft, The Nether-

lands, 1966.

[63] C. N. Rowe. Specific Film Thickness: A Closer Examination of the Effects of EHL

Film Thickness and Surface Roughness on Bearing Fatigue.Tribology Transactions,

24(4):423–430, 1981.

[64] Y. Saad.Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[65] L. E. Scales. Quantifying the rheological basis of traction fluid performance. InPro-

ceedings of the SAE International Fuels and Lubricants Meeting, Toronto, Canada.

Society of Automotive Engineers, 1999.

[66] M. Smeeth and H. A. Spikes. Central and minimum elastohydrodynamic film thick-

ness at high contact pressure.Journal of Tribology, 119(2):291–296, 1997.

[67] G. D. Smith.Numerical Solution of Partial Differential Equations. Oxford Univer-

sity Press, 1999.



Chapter 8 130 BIBLIOGRAPHY

[68] I. Taylor. Car lubricants: fact and friction.Physics World, February 2002.

[69] L-T. Tran, C. E. Goodyer, and M. Berzins. Adaptive methods for time-dependent

problems using classical and adjoint methods. Presentation at SIAM Conference on

Computer Science and Engineering, Costa Mesa, California,USA, 19–23rd Febru-

ary, 2007.

[70] U. Trottenberg, C. Oosterlee, and A. Schüller.Multigrid. Academic Press, 2001.

[71] University of Leeds, CPDE Unit.Carmehl, EHL Lubrication software for Shell

Global Solutions, 1996-2007.

[72] D. A. Venditti and D. L. Darmofal. A multilevel error estimation and grid adaptive

strategy for improving the accuracy of integral outputs. In14th Computational Fluid

Dynamics Conference. American Institute of Aeronautics and Astronautics, 1999.

[73] D. A. Venditti and D. L. Darmofal. Adjoint error estimation and grid adaptation for

functional outputs: application to quasi-one-dimensional flow. Journal of Computa-

tional Physics, 164:204–227, 2000.

[74] D. A. Venditti and D. L. Darmofal. Adjoint error estimation and grid adaptation for

functional outputs: Application to quasi-one-dimensional flow. Journal of Compu-

tational Physics, 164:204–227, 2000.

[75] D. A. Venditti and D. L. Darmofal. A grid adaptive methodology for functional

outputs of compressible flow simulations. In15th Computational Fluid Dynamics

Conference. American Institute of Aeronautics and Astronautics, 2001.

[76] D. A. Venditti and D. L. Darmofal. Adjoint recovery of superconvergent functionals

from pde approximations.SIAM Review, 42(2):247–264, 2002.

[77] D. A. Venditti and D. L. Darmofal. Grid adaptation for functional outputs: Applica-

tion to two-dimensional inviscid flows.Journal of Computational Physics, 176:40–

69, 2002.

[78] D. A. Venditti and D. L. Darmofal. Output-based error estimation and adaptation

for aerodynamics. In H. A. Mang and F. G. Rammerstorfer, editors, Fifth World

Congress on Computational Mechanics, 2002.

[79] D.A. Venditti and D.L. Darmofal. Grid adaptation for functional outputs: Applica-

tion to two-dimensional inviscid flows.Journal of Computational Physics, 176:40–

69, 2002.



Chapter 8 131 BIBLIOGRAPHY

[80] C. H. Venner.Multilevel solution of the EHL line and point contact problems. PhD

thesis, School of Mech. Eng., University of Twente, Enschede, the Netherlands,

1991.

[81] C. H. Venner and A. A. Lubrecht. Transient analysis of surface features in an EHL

line contact in the case of sliding.J. Tribology, 116:186–193, 1994.

[82] C. H. Venner and A. A. Lubrecht. Numerical analysis of the influence of waviness

on the film thickness of a circular EHL contact.J. Tribology, 118:153–161, 1996.

[83] C. H. Venner and A. A. Lubrecht.Multilevel Methods in Lubrication. Elsevier,

2000.

[84] Webpage.http://www.engineersedge.com/lubrication/frictionknowledgemenu.shtml.

January 2008.

[85] Webpage.http://www.chevrontexacoursa.com/glossary/l.html. September 2005.

[86] J. L. White and A. B. Metzner. Development of constitutive equations for polymeric

melts and solutions.Journal of Applied Polymeric Science, 7:1867–1889, 1963.

[87] Y. Wijnant. Contacts Dynamics in the field of Elastohydrodynamic Lubrication.

PhD thesis, School of Mech. Eng., University of Twente, Enschede, the Netherlands,

1998.

[88] M. F. Workel, D. Dowson, P. Ehret, and C. M. Taylor. The influence of mean contact

pressure on the friction coefficient of a traction fluid at high pressure.Proceedings

of the Institute of Mechanical Engineers Part C, Journal of Mechanical Engineering

Science, 214:309–312, 2000.

[89] M.F. Workel, D. Dowson, P. Ehret, and C.M. Taylor. Measurements of the co-

efficients of friction of different lubricants during impact under high pressure and

shear. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of

Engineering Tribology, 217(2):115–124, 2003.

[90] S. R. Wu. A penalty formulation and numerical approximation of the Reynolds-

Hertz problem of elastohydrodynamic lubrication.Int. J. Engng. Sci., 24(6):1001–

1013, 1986.

[91] S. R. Wu and J. T. Oden. Convergence and error estimates for finite element so-

lutions of elastohydrodynamic lubrication.Comput. Math. Applic., 13(7):583–593,

1987.



Chapter 8 132 BIBLIOGRAPHY

[92] S. R. Wu and J. T. Oden. A note on applications of adaptivefinite elements to

elastohydrodynamic lubrication problems.Communications in Applied Numerical

Methods, 3:485–494, 1987.

[93] S. R. Wu and J. T. Oden. A note on some mathematical studies on elastohydrody-

namic lubrication.Int. J. Engng. Sci., 25(6):681–690, 1987.

[94] P. Yang and J. Shen. On the theory of time-dependant micro-TEHL for a non-

Newtonian lubricant in line contacts.Lubrication Science, 8(3):297–312, 1996.

[95] P. Yang and S. Wen. A forward iterative numerical methodfor steady-state elas-

tohydrodynamically lubricated contacts at high loads.J. Tribology, 108:411–420,

1986.

[96] D. Zhu. Effect of surface roughness on mixed EHD lubrication characteristics.Tri-

bology Transactions, 46(1):44–48, 2003.



Appendix

In this appendix are copies of the previously published papers of the candidate.

133


