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Abstract—Modern supercomputers have thousands of nodes, each with CPUs and/or GPUs capable of several teraflops. However,
the network connecting these nodes is relatively slow, on the order of gigabits per second. For time-critical workloads such as
interactive visualization, the bottleneck is no longer computation but communication. In this paper, we present an image compositing
algorithm that works on both CPU-only and GPU-accelerated supercomputers and focuses on communication avoidance and
overlapping communication with computation at the expense of evenly balancing the workload. The algorithm has three stages: a
parallel direct send stage, followed by a tree compositing stage and a gather stage. We compare our algorithm with radix-k and
binary-swap from the IceT library in a hybrid OpenMP/MPI setting on the Stampede and Edison supercomputers, show strong scaling
results and explain how we generally achieve better performance than these two algorithms. We developed a GPU-based image
compositing algorithm where we use CUDA kernels for computation and GPU Direct RDMA for inter-node GPU communication. We
tested the algorithm on the Piz Daint GPU-accelerated supercomputer and show that we achieve performance on par with CPUs.
Lastly, we introduce a workflow in which both rendering and compositing are done on the GPU.

Index Terms—Distributed volume rendering, image compositing, parallel processing.

1 INTRODUCTION

A S the power of supercomputers increases, scientists are
running more and more complex simulations that use
thousands of nodes and generate huge amounts of data.
Moving these datasets is often inconvenient due to their
sheer size, and so analysis and visualization are increasingly
done on the same High Performance Computing (HPC)
system where the data was generated. Distributed volume
rendering on HPC systems usually involves three stages:
loading, rendering and compositing. In the loading stage,
the data is divided among the nodes, using, for example, a
k-d tree [1] or the domain decomposition of the simulation.
Each node renders the data it has to an image, using an
algorithm such as direct volume rendering; finally in the
compositing stage, the nodes exchange and blend the im-
ages they have to create one image representing the whole
dataset. The I/O stage is usually very expensive when
visualizing data [2] and is a big problem in its own right.
This is beyond the scope of this paper. Here, our focus is on
rendering and especially compositing. When few nodes are
being used, the rendering stage is usually slower than com-
positing but as the number of nodes increases, compositing
becomes the dominant cost. Thus, fast rendering requires
a fast compositing algorithm. This is especially important
for in-situ visualization where supercomputing time is a
precious resource [3] and visualization should add minimal
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overhead. In this paper, our focus is on the compositing
stage of distributed volume rendering on HPC systems.

Increases in computing power are no longer being
achieved through faster clock speed but rather through
extensive parallelism. Nodes in supercomputers now have
CPUs with at least 8 cores, many-core co-processors with
60 cores and GPUs with hundreds of cores (blocks). These
nodes have peak performances on the order of several hun-
dreds of gigaflops or even teraflops. Also, although cores on
a chip can share data very quickly using threads and shared
memory, inter-node communication through the network is
much slower. Minimizing inter-node communication is one
of the major challenges of exascale computing [4].

To adapt to this change in architecture, algorithms are
being developed that minimize inter-node communication.
Previously it was common to have one MPI process per
core, but now the trend is to have one MPI process per
node and use threads and shared memory inside a node.
Work by Mallon et al. [5] and Rabenseifner et al. [6], sum-
marized by Howison et al. [7], [8], shows that the hybrid
MPI model results in fewer messages between nodes and
less memory overhead, eventually outperforming MPI-only
at every concurrency level. With multi-core / many-core
CPUs, Howison et al. found that using threads and shared
memory inside a node and MPI for inter-node commu-
nication is much more efficient than using MPI for both
inter-node and intra-node for visualization. However, the
two most commonly used compositing algorithms, binary-
swap [9] and radix-k [10], focus on load balancing and not
on communication avoidance. When these algorithms were
developed, load balancing was of prime importance. But
with modern systems, it is more important to minimize
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communication at the expense of equally balancing the
workload, given the massive amount of computing power
that a node has and the comparatively low bandwidth
between nodes. Radix-k and binary-swap can be split into
two stages: compositing and gathering. Moreland et al. [11]
show that the compositing time decreases as the number
of processes grows, but the gathering time increases even
more, therefore the total overall time increases.

It is hard to predict what the architecture of future
supercomputers will be: it could be many-core CPU-only
systems or GPU-accelerated systems. Having an algorithm
that can work on both CPU-only and GPU-accelerated su-
percomputers is thus very important. Currently (October
2015), 2 of the top 10 of the Top 500 supercomputers [12]
are equipped with Nvidia GPUs. GPUs have been so suc-
cessful for General Purpose computing on GPU (GPGPU)
that although they were initially developed for accelerating
graphics, they are now mostly used in supercomputers for
computing rather than for graphics. Until recently, GPUs
could be used only for compute or graphics, but not both.
However, Nvidia Tesla class GPU K20 and above can run
both graphics and compute at the same time. Moreover,
whereas inter-node communication between GPUs previ-
ously had to go through the CPU, with the introduction of
GPU Direct Remote Direct Memory Access (RDMA), GPUs
can communicate directly over a network with minimal
latency. These two changes allow us to do both rendering
and compositing on the GPU since GPUs are at least twice
as fast as CPUs for raycast rendering [13].

In this paper, we introduce the Task Overlapped Direct
send Tree (TOD-Tree) image compositing algorithm, which
minimizes communication and focuses on overlapping com-
munication with computation. This paper is an extension
of our previous work [14] where we compared the per-
formance of this algorithm with radix-k and binary-swap
on an artificial and combustion dataset and showed that
we generally achieve better performance than these two
algorithms in a Hybrid OpenMP /MPI parallelism setting on
the Stampede and Edison supercomputers. Here, we extend
this algorithm to GPU-accelerated supercomputers.

The new contributions are:

o development of a multi-GPU compositing algorithm
based on TOD-Tree that takes advantage of modern
GPU capabilities.

e scaling to 4096 GPUs on Piz Daint, a GPU-accelerated
supercomputer.

o a workflow that allows seamless transfer, with min-
imal latency, of renderings from an OpenGL context
to a CUDA context and uses GPU Direct RDMA for
compositing.

Whereas volume rendering is often done on GPUs,
compositing is usually done on the CPU [15], [16]. In this
work, we do both on the GPU. The only image compositing
algorithm that we have found for GPUs is parallel direct
send in the vI3 system [17], which has been scaled to 128
GPUs on the Tukey computer cluster at Argonne. In this
paper, we scaled to 4096 GPUs on the GPU-accelerated
supercomputer Piz Daint. As far as we know, this is the
most an image compositing algorithm has been scaled using
GPUs. We compared the performance of TOD-Tree scaled

to 4096 nodes on two CRAY XC30 systems: Edison, a
CPU-only supercomputer; and Piz Daint, a GPU-enhanced
supercomputer. We show that GPU compositing achieves
performance on par with CPU compositing for 2K x 2K and
4K x 4K images, and even better performance for 8K x 8K
images.

Most visualization software uses OpenGL and shaders
to do volume rendering on GPU. However, GPU Direct
RDMA, which allows GPUs to talk across a network, does
not work in OpenGL; it only works using CUDA. So after
rendering in OpenGL, we need to switch over to CUDA
for image compositing. Transferring data from OpenGL to
CUDA can be easily done using the CUDA OpenGL Inter-
operability runtime. The usual render target for OpenGL off-
screen rendering are textures, which are mapped to CUDA
arrays using the CUDA OpenGL Interoperability. CUDA
arrays reside in texture memory but GPU Direct RDMA
does not work with texture memory, only device memory.
Moving data from texture memory to device memory can
be quite expensive, so we instead render to an OpenGL
buffer object that can be mapped to device memory. The
workflow we introduce shows how to do rendering and
image compositing using the GPU and what is required
to modify existing systems to do all the visualization on
the GPU. This could be very useful for in-situ visualization
where simulation and visualization can proceed in parallel
on the CPU and GPU, respectively. As far as we know, this
is the fist time this workflow has been used.

The paper is organized as follows: in Section 2, the
previous work section, different compositing algorithms
that are commonly used and GPU volume rendering sys-
tems are described. In Section 3, the TOD-Tree algorithm is
presented, its theoretical cost is described and we present
a workflow for visualization of GPUs that do not involve
CPU. Section 4 shows the results of strong scaling for an
artificial dataset and a combustion simulation dataset, and
the results obtained are explained. Section 5 discusses the
conclusion and future work.

2 PREvVIOUS WORK

Volume rendering is now commonly used for visualization.
Many supercomputers such as Piz Daint and Stampede
allow their users to use software such as Paraview [18]
and Vislt [19] for distributed volume rendering. There are
three main approaches to parallel rendering: sort-first, sort-
middle and sort-last [20]. Sort-last is the most commonly
used approach. In sort-last, each process loads part of the
data and renders it to an image. A depth value is associated
to each image. In the compositing stage, the processes
exchange and blend images according to the depth informa-
tion to create a final representation of the dataset. There is
no communication in the loading and rendering stages, but
the compositing stage is very communication intensive, and
therefore many different algorithms have been developed to
address compositing.

2.1 Image compositing

The most commonly used compositing algorithms are direct
send, binary-swap and radix-k.
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Direct send is the oldest of the three and can refer to
serial direct send or parallel direct send. In serial direct
send, all the processes send their data to the display process,
which blends them in a front-to-back or back-to-front order.
There is a massive load imbalance in serial direct send that
makes it quite slow. Parallel direct send [21], [22] is a two-
stage process. In the first stage, each process is made re-
sponsible for a different section of the final image. Processes
then send any sections for which they have data, but for
which they are not responsible, to their rightful owners,
and receive sections for which they are responsible. These
sections are then blended in the correct order. During the
gather stage, all processes send their authoritative section to
the display process, which puts them in the right position in
the final image. The SLIC compositing algorithm by Stompel
et al. [23] is essentially an optimized direct send. Pixels
from the rendered image from each process are classified to
determine if they can be sent directly to the display process
(non-overlapping pixels) or will require compositing. Then
processes are assigned sections of the final image for which
they have data, and pixel exchanges are done through direct
send.

Binary-swap, introduced by Ma et al. [9], is an improve-
ment on binary tree compositing techniques. In binary tree
compositing, processes are paired and arranged in a tree
structure. The number of stages required for compositing
corresponds to the depth of the tree. At each stage, a leaf
sends its data to the other leaf in its pair, which means
that half of the processes become inactive at each stage,
thereby creating load imbalance. In binary-swap, all pro-
cesses remain active until the end. Initially, each process is
responsible for the whole image. The processes are sorted
by depth and arranged in pairs, and at each stage, each leaf
becomes responsible for half of the section for which it was
initially responsible. They exchange the sections they do not
need and blend the section they receive, which continues
until each process p has 1/p of the whole image. The display
process then gathers sections from each process to create the
final image. Yu et al. [24] extended binary-swap to deal with
non-power of 2 processes.

Radix-k was introduced by Peterka et al. [10]. Here, the
number of processes p is factored in r factors so that k is a
vector where k = [kq, k2, ..., k-]. The processes are arranged
into groups of size k; and exchange information using
parallel direct send. At the end of a round, each process
is authoritative on a different section of the final image for
its group. Processes with the same authoritative section are
arranged in groups of size k; 1 and exchange information.
This goes on for r rounds until each process is the only one
authoritative on a section of the image. The display process
then gathers data from all the other processes in the gather
stage. If the vector k has only one value equal to p, radix-k
behaves like direct send. If each value of k is equal to 2, it
behaves likes binary-swap.

Radix-k, binary-swap and direct send are all available in
the IceT package [25], which also adds several optimizations
such as telescoping and compression, described in [11].

Also, recognizing that communication is the main bot-
tleneck in image compositing, Pugmire at al. [26] used a
Network Processing Unit (NPU) to speed up the communi-
cation while Cavin et al. [27] used shift permutation to get

the maximum cross bisectional bandwidth from InfiniBand
Fat-Trees to speed up communication. These improvements
tie compositing algorithms to specific hardware network in-
frastructure, rather than providing a more general software
solution.

Howison et al. [7], [8] compared volume rendering using
only MPI versus using MPI and threads, which can be seen
as a predecessor to this work. They clearly establishe that
using MPI and threads, is the way forward as it minimizes
exchange of messages and results in faster volume render-
ing. However, for compositing, Howison et al. used only
MPI_Alltoallv but do mention in their future work the need
for a better compositing algorithm. Our work presents a
new compositing algorithm for hybrid OpenMP/MPL

2.2 Rendering and compositing on the GPU

Many systems, such as Chromium [28] and Equalizer [29],
have been developed for parallel rendering on GPUs. Direct
volume rendering using either a slicing [30] or raycast-
ing [31] approach has been done on the GPU. Muller et
al. [32] and Fogal et al. [33] have developed distributed
memory volume renderers for GPU that use shaders and
OpenGL. For compositing, Fogal et al. used a tree-based
compositing from IceT and Muller et al. used direct send.
In both cases, compositing involved copying data out of the
GPU before inter-node communication with MPI. Recently,
Xie et al. [15] used up to 1024 GPUs for rendering on the
Titan supercomputer, a Cray XK7 system, at Oak Ridge
National Laboratory, but they used the CPU for image
compositing. The only instance we found where it was
explicitly mentioned that compositing was done on GPUs
is the vI3 system by Rizzi et al. [17]. They compared the
performance of serial and parallel direct send scaling up to
128 Nvidia Tesla M2070 GPUs but do not mention the use
of GPU Direct RDMA for image compositing.
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Fig. 1: Inter-node GPU communication with and without
GPU Direct RDMA.

Currently, the only way for GPUs to communicate di-
rectly across a network is through CUDA. In 2011, Wang et
al. [34] proposed an MPI design that integrates CUDA data
movement with MPI; they achieve a 45% improvement in
one-way latency. GPU Direct RDMA [35] was then intro-
duced in CUDA 5.0. Potluri et al. [36] mentioned a MPI 69%
and 32% for 4 Byte and 128 KB messages, respectively, for
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Send /MPI Recv using GPU Direct RDMA on infiniband sys-
tems. Now, GPU Direct RDMA is available in MVAPICH?2,
OpenMPI and CRAYMPI. In the worst case, without GPU
Direct RDMA, 5 copies are needed, as shown in figure 1, to
transfer data between GPUs found in different nodes. The
data is first copied from the GPU’s memory to the CUDA
driver buffer’s memory found in main memory. Another
copy transfers the data to the network driver buffer, also
in main memory. The next copy takes the data across the
network to the network driver buffer in the destination
node. There, another copy is needed to transfer the data
to the CUDA driver buffer and, finally, a last copy sends the
data to the GPU’s memory [37]. However, using GPU Direct
RDMA, only 1 copy is required to transfer data between
GPUs across nodes.

Since rendering is mostly done in OpenGL rather than
CUDA, the CUDA OpenGL interoperability, provided as
part of the CUDA Runtime API, can be used as a bridge
between CUDA and OpenGL. Initially, it was not possible
on Tesla class Nvidia GPUs used in supercomputers to
run both CUDA and OpenGL at the same time but this
capability is now available in the the Nvidia K20m, K20X,
K40 and K80 GPUs [38]. The only additional requirement
for running OpenGL is to have an X Server, which is needed
to create an OpenGL context. Klein and Stone [39] describe
how to get OpenGL working on a Cray XK7 accelerator.
Also, some GPU-accelerated supercomputers, such as the
Piz Daint supercomputer in Switzerland, have an X Server
module that can be loaded as needed.

3 METHODOLOGY

As mentioned before, distributed volume rendering has
three stages: loading, rendering and compositing. At the
end of the rendering stage, each node has an image with
an associated depth. To ensure correct visualization, the
images need to be blended in the correct depth order.
Therefore, image and depth are provided to TOD-Tree and
other compositing algorithms such as direct send, binary
swap and radix-k.

3.1 Algorithm

The TOD-Tree (Task-Overlapped Direct send Tree) algo-
rithm has three stages. The first stage is a grouped direct
send. It is followed by a k-ary tree compositing stage. The
display process then gathers data in the display stage. In
all stages, asynchronous communication is used to overlap
communication and computation. We first describe the al-
gorithm conceptually.

Each node has a list of nodes sorted from smallest to
largest depth. In the first stage, the nodes are arranged into
groups of size r, which we will call a locality, based on their
position in the depth-ordered list. Each node in a locality
will be responsible for a region equivalent to 1/r of the final
image. If r is equal to 4, there are 4 nodes in a locality,
as shown in stage 1 of figure 2, and each is responsible
for a quarter of the final image. The nodes in each locality
exchange sections of the image in a direct send fashion so
that at the end of stage 1, each node is authoritative on a
different 1/ of the final image. The colors red, blue, yellow

and green in figure 2 represent the first, second, third and
fourth quarters of the final image on which each node is
authoritative on. Also in figure 2, there are 25 processes
initially. In this case, the last locality will have 5 instead
of 4 nodes, and the last node, colored orange in the figure,
will send its regions to the first 7 node in its locality but
will not receive any data. In the second stage, the aim is to
have only one node that is authoritative on a specific 1/r
region of the final image. The nodes having the same region
at the end of stage 1 are arranged in groups of size k based
on their depth information. Each node in a group sends its
data to the first node in its group, which blends the pixels,
similar to k-ary tree compositing [40], [24], [9]. This stage can
have multiple rounds. For example, in stage 2 of figure 2, 6
processes have the same quarter of the image, therefore two
rounds are required until only one node is authoritative on
a quarter of the image. Finally, these nodes blend their data
with the background and send it to the display node, which
assembles the final image, stage 3 in figure 2.

We now describe in detail how we implement each
stage of the algorithm, paying attention to the order of
operation to maximize overlapping of communication with
computation.

Algorithm 1: Stage 1 - Direct Send

Determine the nodes in its locality
Determine the region of the image the node owns
Create a buffer for receiving images
Advertise the receive buffer using async MPI Recv
if node is in first half of locality then

| Send front to back using async MPI Send
else

| Send back to front using async MPI Send

Create a new image buffer
Initialize the buffer to 0
if node is in first half of region then
‘ Wait for images to come in front-to-back order

Blend front to back
else

Wait for images to come in back-to-front order
Blend back to front
Deallocate receive buffer

Algorithm 1 shows the setup for the direct send stage.
There are a few design decisions to make for this part. Asyn-
chronous MPI send and receive allows overlap of communi-
cation and computation. Posting the MPI receive before the
send lets messages be received directly in the target buffer,
instead of being copied to a temporary buffer and then
copied to the target buffer. To minimize link contention, not
all nodes try to send to one node. Depending on where they
are in the locality, the sending order is different. The buffer
used as the sending buffer is the original image rendered
in that node. To minimize memory use, there is only one
blending buffer and so the data must be available in the
correct order for blending to start. The alternative would be
to blend on the fly as images are received, but this requires
creating and initializing many new buffers, which can have
a very high memory cost when the image is large. The tests
we carried out revealed that the gains in performance were
not significant enough to outweigh the cost of allocating
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Fig. 2: The three stages of the compositing algorithm with r=4, k=4, and the number of nodes p=25. Red, blue, yellow and
green represent the first, second, third and fourth quarters of the image.

that much memory. The blending buffer also needs to be
initialized to O for blending, which is a somewhat slow
operation. To amortize this cost, this is done after the MPI
operations have been initialized so that receiving images
and initialization can proceed in parallel.

Algorithm 2: Stage 2 - Tree Region

Determine if the node will be sending or receiving
Create a buffer for receiving images
for each round do
if sending then

| Send data to destination node
else
Advertise receive buffer using async MPI Recv
if last round then
Create opaque image for blending received
images
Create alpha buffer for blending
transparency
Blend current image with the background
Receive images
Blend in the opaque buffer
else

Receive images

|_ Blend in image buffer created in stage 1

Deallocate image buffer created in stage 1
Deallocate receive buffer

The second stage is a k-ary tree compositing, shown in
algorithm 2. Again, the receive buffer is advertised early

to maximize efficiency. Another optimization that has been
added is to blend with the background color in the last
round while waiting for data to be received, thereby over-
lapping communication and computation. Also, alpha is
needed when compositing but not in the final image. There-
fore, while blending in the last round, the alpha channel
is separated from the rest of the image. It is still used for
blending in that stage but is not sent in the gather stage,
which allows the last send to be smaller and makes the
gather faster.

Algorithm 3: Stage 3 - Gather

Create empty final image

if Node has data then

| Send opaque image to display node
else

L if display node then

| Advertise final image as receive buffer

Deallocate send buffer from stage 1

Finally, the last stage of the algorithm is a simple gather
from the nodes that still have data. Since the images have
already been blended with the background in the previous
stage, no computation is needed in this stage. The display
node creates the final image, which is also the receive
buffer, and indicates where data from each of the final
senders should be placed. As soon as all the images are in,
compositing is done. Also, at the end of this stage, the send
buffer used in stage 1 is deallocated. Deallocation in earlier
stages of the algorithm often involves waiting for images to
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be sent, but in stage 3, the images should have already been
sent and so no waiting is required. This has been confirmed
in some tests we carried out.

The two parameters to choose for the algorithm are
the number of regions 7 and a value for k. r determines
the number of regions into which an image is split for
load balancing purposes. As the number of nodes increases,
increasing the value of r results in better performance. & is
used to control how many rounds the tree compositing stage
has. It is usually best to keep the number of rounds low.

3.2 Workflow for rendering on the GPU

OpenGL and shaders are the most obvious choice for doing
volume rendering on the GPU, but the only technology
that allows GPUs to talk across a network is GPU Direct
RDMA, which is available only in CUDA. In this section, we
describe the workflow that allows the seamless transfer of
data rendered from the OpenGL graphics pipeline to CUDA
using the CUDA OpenGL interoperability runtime.

All OpenGL programs need an OpenGL context. To
create a context on Linux, the operating systems that most
HPC systems use, an X server is required. The X server is a
program that sits on top of the driver and handles input
and output from an application. To create a context, the
Xlib library is used to connect to the X server, and GLX
is then used to create a context. On desktop systems, an X
server is usually started by default, but on compute nodes
of HPC systems, the X server might have to be explicitly
started using #SBATCH — —constraint = startz in the
job submission script to the job scheduling system. In the
future, once most GPU drivers in supercomputers have
support for EGL [41], we should not have to initialize an
X server anymore to create an OpenGL context. Figure 3
shows the interaction that goes on with the GPU, driver, X
server, libraries and application.

Compute nodes in supercomputers are rarely con-
nected to displays. OpenGL rendering is, therefore, usu-
ally offscreen targeted to a framebuffer object or render-
buffer object, both of which are usually mapped to tex-
ture memory in OpenGL. When using CUDA OpenGL
interoperability, they will be mapped to texture memory
in CUDA, but GPU Direct RDMA does not work from
texture memory. There are two ways to map data from
texture memory to device memory in CUDA. It can be
copied to device memory using cudaMemcpyFromArray
and cudaMemcpyDeviceToDevice or through a CUDA
kernel. However, in some tests that we ran, we found
both approaches to be slow for large textures. Using
cudaMemcpyFromArray, it took about 5 ms for a 4,096
x 4,096 RGBA32F image and about 21 ms for 8,192 x
8,192 RGBA32F image. Therefore, instead of rendering to a
framebuffer object, we render to an OpenGL Buffer Object,
more specifically to a GL_TEXTURE_BUFFER, which
is mapped to device memory when using CUDA OpenGL
interoperability.

A GLTEXTURE_BUFFER can store up to
134,217,728 million pixels (a maximum image size of 8,192
x 16,384 pixels) and behaves like a regular OpenGL texture
but is only one-dimensional. To store the output of a frag-
ment shader to it, we need to map the (x,y) screen coordi-
nates to a one-dimensional position in GLSL as follows:

Interop API

GL_TEXTURE_BUFFER

CUDA Device Memory

*

Graphics Pipeline
(OpenGL)

OpenGL Context

libGLX

X Server

Fig. 3: OpenGL and CUDA interaction with the GPU.

Listing 1: Computing fragment location
int index;
index = (int(floor(gl_FragCoord.y)) — minY)x
width +(int(floor (gl_FragCoord.x)) — minX));

where width is the width of the screen, minX and minY are
the minimum x and y coordinate, and gl_FragCoord is an
OpenGL variable that stores the coordinates of a fragment
in screen space.

The steps to render to a GL_ TEXTURE_BUFFER
instead of a framebuffer in OpenGL are:

1) initialize a GL_TEXTURE_BUFFER and bind
it to a texture

2) pass the texture, its width and height and minimum
x and y values to the shader

3) to receive the uniform in the shader:
layout(rgba32f,binding = X) coherent uniform
imageBuf fer imgOut;
(where X is the texture number and imgOut is the
name of the texture)

4) compute the index of where to store the fragment as
shown in listing 1

5) use imageStore to store the fragment

Once rendering is done, the texture buffer object
can be mapped to CUDA device memory using the
cudaGraphicsGLRegister Buf fer function. Then CUDA
kernels are used for blending and GPU Direct RDMA for
communication. Rendering to an OpenGL buffer object
instead of the usual framebuffer is key in the workflow,
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shown in figure 4, since it allows latency to be kept to a
minimum by not having to copy any data. Also, changing
the rendering target to a texture buffer object in an existing
program should be quite straightforward.

Setup:
Activate X Server
Create OpenGL Context using GLX

Volume Rendering (OpenGL):
Setup OpenGL Buffer Object
Write offscreen Buffer Object in shaders

CUDA - OpenGL Interop:
Map OpenGL Buffer Object to CUDA

Compositing (CUDA):
CUDA Kernels - Blending
GPU Direct RDMA - Communicating

Fig. 4: Workflow for GPU rendering.

3.3

The same compositing algorithm, presented in the algo-
rithm section, is used for both CPU and GPU. The only
changes needed are blending and memory allocation. For
blending, CUDA kernels are used on the GPU instead
of OpenMP with vectorization on the CPU, and mem-
ory allocations and deallocations are through cudaMalloc
and cudaFree. No change is needed to use GPU Di-
rect RDMA in the program; the same MPI calls are
made but the buffers used are in CUDA device mem-
ory. In the job script submitted to job scheduling system,
export MPICH_RDMA_ENABLED CUDA = 1 is
needed to activate GPU Direct RDMA, which is verified in
the program by checking the environment variable using
getenv(“MPICH_RDMA_ENABLED_CUDA”).

For the rendering stage, on the GPU, OpenGL 4.4 and
GLSL shaders were used to implement ray casting volume
rendering. The same algorithm was implemented in C++ for
the CPU.

Implementation

3.4 Theoretical Cost

We now analyze the theoretical cost of the algorithm using
the cost model of Chan et al. [42], which has been used by
Peterka et al. [10] and Cavin et al. [27]. Let the number of
pixels in the final image be n, the number of processes be
p, the time taken for blending one pixel be v, the latency

for one transfer be o and the time for transferring one pixel
be [3. Stage 1 is essentially several direct sends. The number
of sends in a group of size r per process is (r — 1) and the
number of compositings is 7 — 1. Since each of the r groups
will do the same operation in parallel, the cost for stage 1 is:
(r=Dl(a+8) + 2]

The second stage is a k-ary tree compositing. r tree
compositings are taking place in parallel. Each tree has p/r
processes to composite. The number of rounds is logy (p/r).
For each round, there are at most k — 1 sends. The cost for
the k-ary compositing is: logs 2[(k — 1)[(a + 2 3) + 27]]

The cost for the final gather stage is: r(a + 7 3).

The final total cost would thus be:

(2r+(k—=1Dlogr? —1)(a+25) 4 (r+ (k= 1)logp 2 — 1) %~

The cost for radix-k, binary-swap and direct send is
available in the work of Cavin et al. [27] and Peterka et
al. [10].

These equations are useful but fail to capture the overlap
of communication and computation. It is hard to predict
how much overlap there will be as communication de-
pends on the congestion in the network, but from empirical
observations, we saw that the equation acts as an upper
bound for the time that the algorithm will take. For ex-
ample, the total time taken for 64 nodes on Edison was
0.012s for a 2048x2048 image (64MB). We now calculate
the time using the equation and performance values for
Edison on the NERSC website [43]: « is at least 0.25210 %5
and the network bandwidth is about 8GB/s, so for one
pixel (4 channels each with a floating point of size 4 bytes)
B = 1.862107%s. The peak performance is 460.8 Gflop-
s/node, so v = 8.12107125. The theoretical time should
be around 0.015s. The model effectively gives a maximum
upper bound for the operation, but more importantly this
calculation shows how much time we are saving by over-
lapping communication with computation. In the tests we
carried out, we never managed to get 8GB/s bandwidth; we
always got less than 8GB/s, and yet the theoretical value is
still greater than the actual value we are measuring.

— L

- - Ml =
]

= . e —a
= .

e

= -.___
. Thp—

m

Fig. 5: Profile for 64 nodes for 2048x2048 (64MB) image on
Edison at NERSC with r=16, k=8. Red: compositing, green:
sending, light blue: receiving, dark blue: receiving on the
display process. Total time: 0.012s.

Figure 5 shows the profile for the algorithm using an in-
ternally developed profiling tool. All the processes start with
setting up buffers and advertising their receive buffer, which
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Fig. 6: Breakdown of different tasks in the algorithm.

is shown colored yellow in the diagram. This is followed
by a receive/waiting to receive section, colored blue, and
blending section, colored red. All receive communication is
through asynchronous MPI receive whereas the sends for
stage 1 are asynchronous and the rest are blocking sends.
The dark green represents the final send to the display node,
and the dark blue indicates the final receive on the display
node. As can be clearly seen, most of the time is being spent
communicating or waiting for data to be received from other
nodes. A breakdown of the total time spent by 64 nodes on
Edison is shown in figure 6.

As previously mentioned, the most time-consuming op-
erations are send and receive, which is one of the reasons
why load balancing is not as important anymore, and using
tree style compositing is not detrimental to our algorithm.

4 TESTING AND RESULTS

Most supercomputers have CPUs with many cores, and
some are also enhanced by coprocessors such as Nvidia
Tesla GPUs, which have thousands of cores. In this paper,
we run our algorithm on both types of systems. On CPU
many-core architectures, we have compared our algorithm
against radix-k and binary-swap from the IceT library [11].
We are using the latest version of the IceT library, from the
IceT git repository (http://public kitware.com/IceT.git), as
it has a new function icetCompositelmage, which, compared
to icetDrawFrame, takes in images directly and is thus faster
when provided with pre-rendered images. This function
should be available in future releases of IceT. Since IceT
was not built to run on GPU, we could not extend our
performance comparison directly on Piz Daint. Instead, we
compared the performance of TOD-Tree between CPU and
GPU compositing on Edison and Piz Daint, since both are
CRAY XC30 systems.

The three systems used for testing are the Stampede su-
percomputer at TACC, the Edison supercomputer at NERSC
and the Piz Daint supercomputer at CSCS. Stampede uses
the Infiniband FDR network and has 6,400 compute nodes,
which are stored in 160 racks. Each compute node has an
Intel SandyBridge processor, which has 16 cores per node
(two sockets and one Intel Xeon E5-2680 per socket) with a
peak performance of 346 GFLOPS. Each node also has an
Intel Xeon Phi SE10P. The peak performance of Stampede
is 8.5 PFLOPS [44] [12]. Since IceT has not been built to
take advantage of threads, we did not build with OpenMP
on Stampede. Both IceT and our algorithm were compiled
with g++ and O3 optimization. Edison is a Cray X30 su-
percomputer that uses the dragonfly topology for its Aries

interconnect network. The 5,576 nodes are arranged into 30
cabinets. Each node is an Intel IvyBridge processor with 12
cores (Intel Xeon E5-2695v2) and has a peak performance
of 460.8 GFLOPS/node. The peak performance of Edison
is 2.57 PFLOPS [43] [12]. To fully utilize a CPU and be
as close as possible to its peak performance, both threads
and vectorization should be used. Both SandyBridge and
IvyBridge processors have 256 bit wide registers that can
hold up to eight 32-bit floating point values; only when
doing 8 floating point operations on all cores can we at-
tain peak performance on one node. Crucially, IvyBridge
processors offer the vector gather operation, which fetches
data from memory and packs them directly into SIMD lanes.
With newer compilers, this can improve performance dra-
matically. On Edison, we fully exploit IvyBridge processors
using OpenMP [45] and auto-vectorization with the Intel15
compiler. Finally, Piz Daint is a Cray X30 supercomputer
that uses the dragonfly topology for its Aries interconnect
network. The 5,272 nodes are arranged into 28 cabinets.
Each node has an Intel SandyBridge processor with 8 cores
(Intel Xeon E5-2670) that has a peak performance of 211
GFLOPS and an Nvidia Tesla K20X GPU that has a peak
performance of 3.95 TFLOPS [46]. The peak performance
of Piz Daint is 7.787 PFLOPS [47] [12]. On Piz Daint, we
ran TOD-Tree on the GPU using GPU Direct RDMA for
communication and CUDA kernels for computation. The
GPU on Piz Daint is much more powerful than the CPU on
Edison: the Tesla K20X on Piz Daint has a peak performance
of 3.95 TFLOPS compared to the 460.8 GFLOPS on Edison.

Fig. 7: Left: Synthetic dataset, Right: Combustion dataset.

The two datasets used for the tests are shown in figure 7.
The artificial dataset is a square block where each node is
assigned one sub-block. The simulation dataset is a rectan-
gular combustion dataset where the bottom right and left
regions are empty. The artificial dataset is a volume of size
512x512x512 voxels, and the images sizes for the test are
2048x2048 pixels (64 MB), 4096x4096 pixels (256 MB) and
8192x8192 pixels (1 GB). The combustion dataset is a volume
of size 416x663x416 voxels. For the image size, the width has
been set to 2048, 4096 and 8192. The heights are 2605, 5204
and 10418 pixels, respectively.

On Edison at NERSC and Piz Daint at CSCS, we were
able to get access to up to 4,096 nodes whereas on Stampede
at TACC, we scale only to a maximum of 1,024 nodes. In the
next section, we show the performance on the three systems.
Each experiment is run 10 times after an initial warm-up
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Fig. 8: Scaling on Stampede.
run, and the results are the average of these runs after some The left column of figure 8 shows the strong scaling
outliers have been eliminated. results for artificial data on Stampede. The TOD-Tree algo-
rithm performs better than binary-swap and radix-k. The
4.1 Scalability on Stampede sawtooth-like appearance can be explained by our use of

When running on Stampede, threads are not being used for ~the same value of 7 for pairs of time steps; r=16 for 32
the TOD-Tree algorithm. Both IceT and our implementation ~and 64 nodes, r=32 for 128 and 256 and, r=64 for 512 and
are compiled with g++ and O3 optimization to keep the 1024, and' only 1 round' was used for the k-ary tree part of
comparison fair and also to point to the fact that it is the the algorlthm. Thus with r=32, for 256 nodes, there are 8
overlapping of tasks rather than raw computing power 8roUps of direct sends whereas there are only 4 groups of
that is most important here. Also, we are not using any direct sends at .128 nodes. Therefore the tree stage must r}ow
compression as most image sizes commonly used are small gather. from 7 instead (_)f. fror.n 3 processes-a.nd so the time
enough that compression does not make a big difference. At taken increases. In addltlon,. instead of waiting for. 3. nodes
8192x8192 pixels, an image is now 1GB in size, and having 0 complete th_elr grouped direct send, now the wait is for 7
compression would likely further reduce communication. nodes. Increasing the value of r helps balance the workload
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Fig. 9: Scaling for artificial dataset on Edison.

in stage 1 of the algorithm and reduces the number of nodes
that have to be involved in the tree compositing, and hence
decreases the sending time.

For images of size 2048x2048 pixels, compositing is heav-
ily communication bound. As we increase the number of
nodes, each node has very little data and so all 3 algorithms
surveyed perform with less consistency as they become
even more communication bound and so more affected by
load imbalance and networking issues. Communication is
the main discriminating factor for small image sizes. For
8192x8192 images, there is less variation as the compositing
for 8192x8192 images is more computation bound. Also, at
that image size, IceT’s radix-k comes close to matching the
performance of our algorithm. On analyzing the results for

TOD-Tree on Edison and Piz Daint: 2048x2048 Image - Artifical Dataset

—e— Edison

—#- Piz Daint

0.017,

0.016

0.015

0.014

Time (s)

0.013

0.012

0.011

0.01 32 64 128 256 512 1024 2048 4096

Nodes

TOD-Tree on Edison and Piz Daint: 4096x4096 Image - Artifical Dataset

0.07|

0.065] [\

0.045]

0.04]

0.035]

32 64 128 256 512 1024 2048 4096

TOD-Tree on Edison and Piz Daint: 8192x8192 Image - Artifical Dataset

0.4

0.3]

Time (s)

0.25

0.2]

0.15 32 64 128 256 512 1024 2048 4096

Fig. 10: Comparing scaling for Edison and Piz Daint.

TOD-Tree, we saw that the communication, especially in the
gather stage, was quite expensive. A 2048x2048 image is
only 64 MB, but a 8192x8192 image is 1GB and transferring
such big sizes is expensive without compression, which
is when IceT’s use of compression for all communication
becomes useful.

The right column of figure 8 shows the results for the
combustion dataset on Stampede. One of the key charac-
teristics of this dataset is the empty regions at the bottom
that create load imbalances. Also, the dataset is rectangular
and not as uniform as the artificial dataset, but it resembles
more closely what users are likely to be rendering. The load
imbalance creates some situations different from those in
the regular dataset that affect the IceT library more than
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they affect the TOD-Tree compositing because both binary-
swap and radix-k give greater importance to load balancing
and if the data is not uniform, they are likely to suffer from
more load imbalances. Load balancing is less important to
the TOD-Tree algorithm.

4.2 Scalability on Edison

On Edison, we managed to scale up to 4,096 nodes. The
results for strong scaling are shown in figure 9. The perfor-
mance of IceT’s binary-swap was quite irregular on Edison.
For example, for the 4096x4096 image, it would suddenly
jump to 0.49 seconds after being similar to radix-k for lower
node counts (around 0.11 s). We therefore decided to ex-
clude binary-swap from these scalings graphs. The sawtooth
pattern is similar to what we see on Stampede for TOD-Tree.
Both TOD-Tree and radix-k show less consistency on Edison
compared to Stampede. On Edison, 8192x8192 images at
2048 and 4096 nodes are the only instances where radix-k
performed better than the TOD-Tree algorithm. Again, the
main culprit was communication time and TOD-Tree not
using compression. In the future, we plan to extend TOD-
Tree to have compression for large image sizes.

4.3 Scaling on Piz Daint

On Piz Daint, we had access to 3,000 node hours, which did
not allow us to run as many tests as on the other platforms,
but we still managed to scale up to 4096 nodes/GPUs
using the TOD-Tree algorithm for 2048x2048, 4096x4096 and
8192x8192 images for the artificial dataset.

The 2048x2048 image, topmost graph in figure 10, has
numerous fluctuations. These fluctuations, however, all take
place within 6 milliseconds, meaning that they will barely
affect the rendering frame rate. For 2048x2048 images, the
overall size of the full image is only 64MB, and the many
variations can be explained by the fact that performance is
mainly communication bound. These fluctuations decrease
as the size of the image increases, and the compositing starts
to be more computation bound than communication bound.
The average coefficient of variation for compositing time
is 10.3% for 2048x2048 images, 3.7% for 4096x4096 images
and 1.8% for 8192x8192 images. The sawtooth appearance is
similar to what we see on Edison and Stampede since the
same values are used for the parameters r and k for the
same number of MPI processes on all three systems.

We compared running TOD-Tree on Edison with Piz
Daint since we ran with the same number of MPI processes
on each, and both Edison and Piz Daint are CRAY XC30
systems with the same dragonfly topology and Aries in-
terconnect network. The compositing times are very close
for 2048x2048 and 4096x4096. The difference in time is
within 5 milliseconds for 2048x2048 images and usually
within 10 milliseconds for 4096x4096 images with a max-
imum variation of 20 milliseconds at 1024 nodes. For the
8192x8192 image, TOD-Tree is much faster on Piz Daint
because we believe that for §192x8192 image, compositing is
more computation bound and computation on Piz Daint is
faster than on Edison. If we compare the increase in average
compositing time for the 2048x2048 to 4096x4096 image (for
which the size increases by 4), we see that it has increased
by, on average, 3.7 times on Edison and 3.2 times on Piz

Edison v/s Piz Daint - Artificial Dataset
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Fig. 11: Comparing scaling on Edison and Piz Daint for 4096
MP1 processes.

Daint. For 4096x4096 to 8192x8192, the average increase in
compositing time is 7.2 on Edison compared to 3.7 on Piz
Daint, again for a size increase of a factor of 4. The increase
in time on the GPU is quite consistent as shown in figure 11.

4.4 Scaling across machines

Figure 12 shows the result of TOD-Tree algorithm on Stam-
pede, Edison and Piz Daint. The values of r and k used
are the same on all three supercomputers. As expected,
the algorithm is faster on Edison and Piz Daint compared
to Stampede: the Aries interconnect on the CRAY XC30 is
faster and the nodes have better peak FLOP performance.
While on Stampede, we are not using threads; on Edison
we are using threads and vectorization and using CUDA
kernels on Piz Daint. The gap between the performance is
larger for low node counts, as each node has a bigger chunk
of the image to process when few nodes are involved, and
so a faster processor makes quite a big difference. As the
number of nodes increases, the data to process decreases
and so the difference in computing power is less important
as the compositing becomes communication bound. The
sawtooth appearance is present on all three systems. On

Stampede v/s Edison v/s Piz Daint: 4096x4096 image - Artificial Dataset
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Fig. 12: Comparing Stampede and Edison for up to 1024
nodes for the artificial dataset at 4096x4096 resolution.
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Fig. 13: Comparing Stampede and Edison for up to 1024
nodes for combustion at 8192x10418 resolution.

average, we are still getting about 16 frames per second for
a 256MB images (4096x4096 pixels). At 2048 nodes, the time
taken for TOD-Tree decreases, as can be seen in the middle
chart of figure 10.

Figure 13 shows the equivalent comparison but with
8192x10418 images for the combustion dataset on Stampede
and Edison. It is interesting to note that although the gap in
performance of TOD-Tree on these two systems is initially
quite large, it decreases as the number of nodes increases,
again because initially there is a great deal of computation
required, and so having a powerful CPU is beneficial. How-
ever, when there is less computation to do, the difference
in computation power is no longer that important. IceT
performs less consistently for this dataset, probably because
of the load imbalance inherent in the dataset.

Also, in all the test cases, we used only 1 round for the
tree compositing. For large node counts, more rounds could
be used. Figure 14 shows the impact of having a different
number of rounds for large node counts on Stampede. For
256 nodes, there is an improvement of 0.018 s but it is slower
by 0.003 s for 512 nodes and 0.007 seconds for 1024 nodes.
Therefore, having several rounds barely slows down the
algorithm and can even speed up the results.

5 CONCLUSION AND FUTURE WORK

In this paper, we have introduced an image compositing
algorithm, TOD-Tree, for hybrid OpenMP/MPI parallelism
and GPU clusters. We have also shown that TOD-Tree
generally performs better than the two leading composit-
ing algorithms, binary-swap and radix-k, in a hybrid pro-
gramming environment. TOD-Tree performs equally well
on GPU-accelerated supercomputers, which are even better
for large images due to the higher peak performance of
GPUs. There is a large difference between the computational
power available to one node compared to the speed of
inter-node communication. Computation is usually at least
one order of magnitude faster than communication, and so
algorithms must be designed to pay much more attention to
communication than to computation if we are to achieve
better performance at scale. Also, we have introduced a

Different number of rounds for tree compositing
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Fig. 14: Varying number of rounds for the artificial dataset
for 4096x4096 on Stampede.

workflow that enables us to seamlessly transfer data from
OpenGL to CUDA to allow faster overall rendering that can
be easily integrated with existing GPU volume rendering
systems.

As future work, we would like to add compression
for large image sizes. A heuristic should also be added to
determine when compression should be turned on or off
based on the size of the data. Although 8192x8192 image
sizes are quite rare right now (since we lack the ability to
display such images properly), they will likely be required
in the future, and so taking care of this will make the
TOD-Tree algorithm more robust. We would also like to
extend our testing to Blue Gene/Q systems because this
is the only major HPC platform on which the compositing
algorithm has not been tested. We plan to extend testing to
the Intel Knights Landing when they are introduced. Finally,
we would like to investigate how the change to many-core
architectures affects image compositing algorithms. Simple
image compositing algorithms such as direct send and tree
compositing have been discarded in favor of more complex
algorithms, but we probably do not need complex composit-
ing algorithms for small image sizes or few nodes, especially
with the huge computing power of CPUs and GPUs. We
would also like to study the crossover point from simple to
complex algorithms.
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