Eurographics Symposium on Parallel Graphics and Visualization (2016)

W. Bethel, E. Gobbetti (Editors)

Dynamically Scheduled Region-Based Image Compositing

A.V.Pascal Grosset, Aaron Knoll, & Charles Hansen

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

Abstract

Algorithms for sort-last parallel volume rendering on large distributed memory machines usually divide a dataset
equally across all nodes for rendering. Depending on the features that a user wants to see in a dataset, all the
nodes will rarely finish rendering at the same time. Existing compositing algorithms do not often take this into
consideration, which can lead to significant delays when nodes that are compositing wait for other nodes that are
still rendering. In this paper, we present an image compositing algorithm that uses spatial and temporal awareness
to dynamically schedule the exchange of regions in an image and progressively composite images as they become
available. Running on the Edison supercomputer at NERSC, we show that a scheduler-based algorithm with
awareness of the spatial contribution from each rendering node can outperform traditional image compositing

algorithms.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing 1.3.2 [Computer Graphics]: Graphics Systems—Distributed/network graphics

1. Introduction

Visualization is increasingly important in the scientific com-
munity. Several High Performance Computing (HPC) cen-
ters, such as the Texas Advanced Computing Center (TACC)
and Livermore Computing Center (LC), now have clus-
ters dedicated to visualization. Most clusters in HPC cen-
ters are usually distributed memory machines with hundreds
or thousands of nodes, each of which has a very powerful
CPU and/or GPU with lots of memory, connected through a
high-speed network. The most commonly used approach for
parallel rendering on these systems is sort-last [MCEF94].
In sort-last parallel rendering, the data to be visualized is
equally distributed among the nodes. Each node loads its as-
signed subset of the dataset that it renders to an image. Dur-
ing the compositing stage, the images are exchanged, and
the final image is gathered on the display node. In this paper,
our focus is on the compositing stage of distributed volume
rendering.

Image compositing has two parts: computation (blend-
ing) and communication. Many algorithms, such as Binary
Swap [MPHKO93] and Radix-k [PGR*09], have been de-
veloped for image compositing. These algorithms try to
evenly distribute the computation among the nodes. How-
ever, as shown by Grosset et al. [GPC*15], image composit-
ing algorithms should pay more attention to communica-

(© The Eurographics Association 2016.

tion than to computation. Nowadays, the computing power
of nodes in a supercomputer greatly exceeds the communi-
cation speed between nodes. Trying to minimize communi-
cation and overlapping communication with computation is
more important than focusing on evenly balancing the work-
load. In this paper, we focus specifically on communication,
and threads and auto-vectorization are used to fully benefit
from the computational power of CPUs.

The time each node takes to finish rendering its assigned
region of a dataset in sort-last parallel rendering is rarely
the same. There are several reasons for this, first, it is rare
for datasets to have a uniform distribution of data. Figure 1
shows two commonly used test volume datasets that have
numerous empty regions after a transfer function has been
applied to extract interesting features in each dataset. The
nodes assigned to rendering these empty regions have much
less work to do and will finish early. Second, when us-
ing perspective projection, nodes closer to the camera pro-
duce a larger image compared to nodes far from the cam-
era. Rendering a larger image takes more time than render-
ing a smaller image. Finally, if the user zooms in on one
specific region of a dataset, part of the dataset might fall out-
side the viewing frustum and not need to be rendered. More-
over, the difference in rendering speed is further increased
if lighting is used and normals need to be calculated, and if
the rendering takes place on a medium-sized cluster where

P. Grosset, Aaron Knoll & C. Hansen / Dynamically Scheduled Region-Based Image Compositing

there are hundreds rather than thousands of nodes, the time
taken to render a large image can be substantially greater
than the time to render a small image. If we do not want
the uneven rendering to slow down compositing, nodes that
are done rendering should exchange images only with nodes
that are also done rendering, and not wait on nodes which are
still rendering. In this paper, we keep track of which nodes
are done compositing, and only schedule compositing when
nodes have completed rendering.

kY
3

7

Figure 1: Two commonly used test datasets: the Bonsai
dataset on the left and Backpack dataset on the right.

One of the common approaches for load balancing in dis-
tributed volume rendering is to split and distribute the dataset
based on how long each region will take to render, the ap-
proach used by Marchesin et al. [MMDO6] and Fogal et
al. [FCS*10], rather than just diving the data equally using,
for example, a k-d tree. However, arbitrarily assigning data
to nodes may not be an effective strategy when considering
in situ visualization. Data movement, between nodes or writ-
ing to disk, is very costly in large scale simulations. As men-
tioned by Yu et al. [YWG™10], for in situ visualization, it
is the simulation code that dictates the data partitioning and
distribution among nodes. Thus, in situ visualization uses the
same nodes for visualization as those generating the data in
the simulation and is best performed without requiring data
movement between nodes or disk. In this paper, we propose
that work is scheduled at the compositing stage and does not
require data redistribution for balanced rendering. Since the
image compositing only transfers sub-images, our proposed
technique would be easily integrated with existing in situ vi-
sualization and analysis software.

The main contribution of this paper is an image composit-
ing algorithm that uses a scheduler with both spatial and
temporal awareness of the compositing process. We start by
dividing the final image into a number of regions r and create
a depth-ordered list of nodes for each region. Based on the
data loaded by each node and the properties of the camera,
the contribution of each node to regions of the final image
can be determined. Nodes not contributing to a region can
then be removed from that region’s list. The scheduler also
updates the region list after each node is done rendering by
eliminating nodes that rendered nothing for a region. This
process ensures that a node not contributing to a region is

never made to receive data for that region, thus minimizing
communication. The algorithm then schedules the exchange
of images and ensures that no nodes wait for a node that
is still rendering if another option for compositing is avail-
able. Thus, when the slowest node is done rendering, most of
the regions of the final image have already been composited
and there is minimal overhead to assemble the final image.
The algorithm uses one MPI rank per node and threads for
CPU cores, which Howison et al. [HBC10] showed to be bet-
ter than one MPI rank per core. Auto-vectorization is also
used to fully leverage the compute capabilities of modern
CPUs, and asynchronous MPI communication is also used
to overlap communication with computation. We compare
this scheduling-based image compositing algorithm against
TOD-Tree on the Edison supercomputer at NERSC using a
box and sphere artificial dataset and a combustion dataset.

The paper is organized as follows: Section 2 describes the
commonly used compositing algorithms and techniques that
are used to achieve load balance in distributed volume ren-
dering. Section 3 describes our algorithm and the implemen-
tation details. The results are presented in section 4 where
we also discuss the results of strong scaling on three types
of datasets. Finally, the paper is wrapped up in section 5 with
the conclusion and future work.

2. Previous Work

Many algorithms have been designed to tackle image com-
positing in distributed volume rendering. The simplest algo-
rithm is serial direct send in which all the processes involved
in rendering send their rendered image to the display node,
which then blends them together. This approach results in a
massive load imbalance and can be quite slow for large im-
ages and many nodes. Parallel direct send [Hsu93], [Neu94]
improves on serial direct send by dividing the workload
among all the processes. Each process is responsible for one
section of the final image and gathers that section from all
other processes. In the gathering stage, each process sends
its authoritative section to the display node.

Tree-based algorithms have also been used for image
compositing. In binary tree compositing, each node is rep-
resented as a leaf of the tree. The height & of the tree is
logon where n is the number of nodes in the tree. In each
subtree, a child sends its data to its sibling for blending and
becomes inactive. This exchange goes on for each level of
the tree until the final image is at the root (display node)
of the tree. Binary Swap [MPHKO93] improves on this ap-
proach by keeping all nodes active until the gathering stage.
Initially, each node is responsible for the whole image. At
each level of the tree, nodes responsible for the same region
are paired in a subtree and exchange information so that each
is responsible for half of the image for which it was initially
responsible for. This process continues until there is only
one node responsible for each 1/n section of the final im-
age. Then the display node gathers these sections from all

(© The Eurographics Association 2016.

P. Grosset, Aaron Knoll & C. Hansen / Dynamically Scheduled Region-Based Image Compositing

n nodes. Binary Swap has been extended for non-powers of
2 by Yu et al. [YWMO8]. In Radix-k [PGR*09], instead of
grouping nodes in pairs for a round, the size of regions to
be grouped is determined by a vector k where k = ky,kp,
In each k;-sized group, the nodes exchange information, in
a parallel direct send way, so that each node in a k;-sized
group is responsible for 1/k; of the final image. All nodes
with the same authoritative section of the image are then col-
lected into groups of size k; |, which continues for i rounds,
followed by a gather stage in which each authoritative sec-
tion is assembled on the display node. These algorithms
have been implemented by Moreland et al. [MKPHI11] in
ICET [Morl11] along with some optimizations for communi-
cation.

To account for the much faster compute speed com-
pared to communication speed in supercomputers, Grosset
et al. [GPC*15] developed the TOD-Tree algorithm, which
focuses on reducing and overlapping communication with
computation. TOD-Tree has a parallel direct send stage to
balance the workload, followed by k-ary compositing to re-
duce communication. Also, Howison et al. [HBC12] showed
that parallel rendering is faster when one MPI rank is used
per node instead of per core. Therefore, we also use one MPI
rank per node, and we use threads and auto-vectorization on
the CPU.

However, although these algorithms are fast, they do no
take into account the contents of the image from each ren-
dering process. They all decide statically for which region a
computing process should be responsible and stick to that al-
location. A process, then, may be responsible for a region for
which it does not have any initial content, which needlessly
increases communication. However, some algorithms take
into account the image contents of a node. The Scheduled
Linear Image Compositing (SLIC) algorithm of Stompel et
al. [SML*03] ensures that the region to which a process is
assigned is the one to which it contributes. The contribution
to the final image from each process is computed based on
the data extents loaded by a process and the camera posi-
tion. Scan lines of the overlapping regions are assigned to
processes contributing to them in an interleaving fashion.
Also, image regions that do not overlap with other images
are directly sent to the display node without any blending.
Strengert et al. [SMW*04] used the SLIC algorithm for im-
age compositing on GPU clusters. However, although SLIC
has spatial awareness of the contribution of each rendering
process, it does not have any temporal awareness, that is, it
does not know when a process will finish rendering and is
ready to participate in compositing.

Load balancing approaches to distributed volume render-
ing usually take rendering time into account when composit-
ing. Fang et al. [FSZ*10] use a pipeline approach in which
they overlap rendering and compositing. Systems that pro-
vide a complete solution to rendering and compositing, such
as Equalizer system [EMP09] and Chromium [HHN*02],

(© The Eurographics Association 2016.

have knowledge of both compositing and rendering that
gives them more flexibility to balance the workload. The
Equalizer framework uses the direct send technique of Eile-
mann et al. [EPO7] that splits images into tiles to improve im-
age compositing. Other approaches, such as that of Moloney
et al. [MWMSO7], use an estimate on the cost to ren-
der a pixel to do dynamic load balancing using a sort-first
rendering approach, and Muller et al. [MSEOQ7], Fogal et
al. [FCS*10], and Marchesin et al. [MMDO6] use the previ-
ous rendering time in a time varying datatset to estimate the
cost of rendering the current timestep. Frey and Ertl [FE11]
redundantly distribute blocks of volume data across the ren-
dering nodes to allow for easier load balancing. In this pa-
per, we do not try to move the data between nodes and esti-
mate the rendering time. Instead, we communicate with the
rendering nodes to schedule compositing accordingly. Being
able to move the data between nodes may help reduce the
rendering imbalance among nodes, but in the case of in situ
visualization, data movement is often too costly and we have
to use the data decomposition dictated by the simulation. In
these situations, the only place to deal with load imbalance
would be at the compositing stage.

3. Methodology

It is rare for rendering on all the nodes of a distributed mem-
ory machine to finish at the same time. Improving composit-
ing time, therefore, requires minimizing the time between
when the slowest process finishes rendering and composit-
ing is complete; the orange region in figure 2. For that to
happen, processes still rendering should not delay composit-
ing.

Total Compositing

l

[Rendering Starts

Fastest Rendering Ends
Slowest Rendering Ends
Time To Minimize
Compositing Ends
Figure 2: Rendering + Compositing timeline.

One of the issues with compositing algorithms such as
parallel Direct Send, Binary Swap, Radix-k, and TOD-Tree
is their lack of awareness of which processes have finished
rendering and which processes are still rendering, which
sometimes delays image compositing as some processes
wait for images from other processes that are still rendering.
Figure 3 shows an example of eight processes doing com-
positing using Radix-k. Let us assume that two rounds are
needed and vector k = 4,2. To get the correct final image,
partial images need to be blended in the correct depth order
(front-to-back or back-to-front). So, if processes 6 and 0, in
figure 3, are still rendering while the remaining processes are
compositing, Radix-k will have to wait for 6 and 0 to finish
rendering and be stuck in round 1 of parallel direct send for

P. Grosset, Aaron Knoll & C. Hansen / Dynamically Scheduled Region-Based Image Compositing

all regions. The same delay would occur in Binary Swap and
TOD-Tree if some nodes waiting to exchange images with
nodes that are still rendering since they too lack temporal
awareness.

w
o
EN

A

!
LBl

o

M

1

=

Figure 3: The first round of Radix-k for eight processes and
four regions. The green rectangle shows the region for which
each process is responsible and the blue region shows the
data from each process. Process 6 and 0 have more data to
render and will finish rendering after the other processes.

The same set of processes can be represented as a graph
as shown in figure 4. If we blend exclusively based on depth,
processes 4, 1, 7, and 5 can start compositing while waiting
for 6 and O to finish rendering. Also, since there are never
any cycles in the graph, we will refer to it as a chain.

This procedure, however, can still be improved upon. If 6
and 0 do not contain information relevant to the whole im-
age, they should not delay compositing for the whole image.
It is common for compositing algorithms to divide an image
into regions and allocate each region to a process. If, for ex-
ample, four regions are used as shown in figure 3, processes
6 and 0 do not contribute to the first and last regions, and
so they should not delay compositing for these regions of
the image. If we use a chain to represent each region, pro-
cess 6 and O will be omitted from the first and last chain. As
the number of processes increases to hundreds or even thou-
sands, the contribution of one process to the whole image de-
creases. Therefore, stalling the whole compositing because
of a few slow rendering processes can be avoided; we need
to stall a only few regions. Having spatial awareness will
help mitigate this issue. Moreover, spatial awareness will
prevent the algorithm from making a process authoritative
on a region for which it has no data! For example, in fig-
ure 3, process 2 is responsible for the last region but has no

ER A

Figure 4: Nodes sorted by depth in a chain. The red nodes
are still rendering while the green nodes are done rendering.

data contributing to that region. This increases communica-
tion as process 2 has to transfer all its data to other regions
and needs to get all the data for its responsible region from
other processes.

For our algorithm, we divide the image into a set of r re-
gions with a depth-sorted chain for each region. To create
the chains for each region, we can obtain information about
the data extents each process is loading using MPI Gather,
or if a k-d tree is used to partition the data, this informa-
tion can be obtained programmatically for each region from
the k-d tree. Using the extents and camera information, we
can compute the depth of each process and the position and
area contributed by each process in the final image. For each
chain, we also need to decide which processes will be re-
sponsible for gathering information. To try to ensure that dif-
ferent nodes are used to collect information for each chain,
the first collector node in the chain for region i is the i node
in the chain. The second is the (i +)" node. If a chain has
fewer than r nodes, the last node is made the collector node
for that region. The collector processes are marked with a
black circle inside, as in figure 5. The number of regions in
this case is 4. The first chain, chain O colored pink, has only
three nodes. So the last node is set as the collector. The sec-
ond chain, chain 1 colored cyan, has seven nodes. Therefore,
node 1 and node 5 are set as collectors.

[
o-0-@
-0~
0000

Figure 5: Four chains, one for each of the four regions (pur-
ple, blue, yellow, and gray) into which the final image is split.

—

©-®-0-0 ®—-0
O—-0—-®—-0O OiO®

This approach will only work for depth-orderable de-
composition. Many simulations use block-structured AMR
grids which are depth-orderable. If, for example, unstruc-
tured grids are used, concave regions could be generated,
through domain decomposition, where sorting by depth and
then compositing the various subdomains would result in in-
correct images. In this paper, our focus is on block struc-
tured grids with the block-structured decomposition already
imposed by the simulation.

3.1. Algorithm

For our algorithm, we have set aside one process that is not
involved in compositing and rendering to act as a scheduler.
The scheduler builds a chain for each region, and the com-
positing processes contact the scheduler to determine with

(© The Eurographics Association 2016.

P. Grosset, Aaron Knoll & C. Hansen / Dynamically Scheduled Region-Based Image Compositing

Algorithm 1: Initialize Scheduler

Algorithm 2: Scheduler

Collect the depth and extents for each process
Sort the processes based on depth
Construct a chain based on depth

for each region do
Use the computed depth chain as the starting point

Compute and store the extents for that region

for each process in the chain do
Compute the extents of the process

if extents of process does not overlap the
chain’s then
Delete the process from the chain

Adjust the to and from neighbor for the
deleted process

if length of chain < number of regions r then
| Set the last process as a collector

else
| Setevery r process to be a collector

C;eate a buffer for final receive
Launch asynchronous MPI receive for final image

which processes they should exchange images. The chain
for each region is constructed as indicated in algorithm 1.

Based on the depth information from each process, a
depth-sorted chain, as shown in figure 4, is constructed that
is used as the initial chain for each region. For each region,
processes that do not contribute to that region are removed
from the chain, which creates spatial awareness for each re-
gion and reduces the length of each chain. In software, each
chain is implemented using a hash map, unordered_map in
C++, so that access time is always O(1), and each node of
the chain stores the neighbors to and from it. The last step is
to create a buffer to receive the composited image for each
region. This step ensures that when the final image regions
are sent to the display node, they are not written to temporary
buffer but directly to the final image.

The scheduler is then started and awaits communication
from the compositing processes. Algorithm 2 shows the al-
gorithm for the scheduler. If the scheduler is receiving in-
formation from a process for the first time, it also receives
the extents of the rendered image. The chain for each region
is initialized based on the expected rendered extents from
each process, but depending on the transfer function, some
regions might not have been rendered for a process. Based
on the rendered extents, therefore, some nodes are removed
from region chains if they do not have any information for
that region. If that process p was marked as a collector pro-
cess for a specific region, its neighbor is made a collector
process and the process p is deleted to minimize unneces-
sary transfer of data to that process.

Next, the scheduler performs dynamic scheduling by
deciding which processes should communicate with each

(© The Eurographics Association 2016.

while /done do
Wait for communication from rendering processes

if first communication from a process then
Receive rendered extents from the process

for each region do
Determine extents of the region
if extents of a process does not overlap the
chain’s then
Remove the process from the chain
Adjust neighbors to and from for
deleted process

Mark the process as active in the chains where they
exists
for each active chain do
if only one process in chain then
Mark process to send information to
display node
Erase chain
else
Find neighbor for incoming node
if neighbor found then
Determine if sender or receiver
Mark receiver as busy
Delete sender from chain
Save sender and receiver information

for each active chain do

if size is 1 AND process is ready then
| Process will send data to display node

for each process marked for communication do
L Send information

if all chains are empty then
L Exit Scheduler

other. In each region for which the received process is ac-
tive, the received node in that chain is marked as ready and
the chain is checked to see if there is any neighbor process
marked as ready. If a valid neighbor is found and it is a col-
lector process, the non-collector will send its data to the col-
lector process. Otherwise, the node having the smaller image
will send data to the node with the larger image to mini-
mize communication time. In each case, the sender node is
marked for deletion and the receiver is marked as busy. The
last step of the algorithm is to check if any chains are now
empty or have only one remaining ready process. If there is
only one ready process, it is made to send its information to
the display node and the chain is erased. The next step is to
send all the information at once to each node that has work
to do. A process might need to send data to a node x for a
specific region and receive data from the same node x for
another region. All the communication to a node from the
scheduler is done in one step.

P. Grosset, Aaron Knoll & C. Hansen / Dynamically Scheduled Region-Based Image Compositing

Algorithm 3: Compositor

Get the extents of the image rendered by the process
Count the number of active regions covered by the
image (countActiveRegions)
while /done do
if first time then
| Send extents to the scheduler
else
| Tell scheduler that it is ready
Wait for the scheduler to respond
for each process to communicate with do

if Only process in chain then
Send data to display node

countActiveRegions -= 1
else

if Send then

Async send to neighbor
countActiveRegions -= 1
else

Receive image

if last round then
Create opaque image

Create alpha buffer

Blend current image with the
background

Blend in opaque buffer

Send to display node
countActiveRegions -= 1

else
| Blend with image on node

if no active regions left then
| Exit loop

Each compositing node runs the Compositor algorithm
shown in algorithm 3. The first time a process communicates
with the scheduler once it is done rendering, it sends its ex-
tents to the scheduler. As mentioned before, based on the
transfer function, a process will not always render all data it
has loaded, and as spatial awareness is a key component of
our algorithm, we want to update the region chains to reflect
the state of the rendering. Also, each process will receive in
one message all the other processes with which it needs to
communicate to keep communication in the system to a min-
imum. Information for each communication will contain the
neighbor with which to communicate, the region, blending
direction, and MPI tag. Also, each send from a process is in
the form of an asynchronous send to maximize overlapping
communication with computation.

3.2. Choosing number of regions

For the scaling run, we have set the number of regions to
be 16. This number was determined after a series of initial

test runs where we experimented with 1, 2, 4, 8, 16, and
32 regions for 4,096 x 4,096 sized images. When few re-
gions are used, a slow node impacts few regions, but since
each region occupies a substantial portion of the image, com-
positing ends up being slow. For example, if we use only
two regions for an 8K x 8K image, and there is one slow
node in the upper region, half of the compositing is delayed
by one node. If too many regions are used, one slow node
will impact many small regions, but since there are many re-
gions, the overall impact of a slow region will be less. How-
ever, many regions will result in lots of communication with
many exchanges, which we want to avoid. Sixteen regions
provided a good balance between avoiding too much com-
munication and one node having too much of an impact on
the whole compositing process.

4. Testing and Results

The test platform used is the Edison Cray XC30 supercom-
puter at NERSC. Edison uses the Cray Aries high-speed in-
terconnect with Dragonfly topology that has an MPI band-
width of about 8 GB/sec and latency in the range of 0.25
to 3.7 usec. It has 5,576 compute nodes, each of which has
two 2.4 GHz 12-core Ivy Bridge processors with 64 GB of
memory per node. We scaled up to 2,048 nodes of the 5,576
nodes of Edison.

The test datasets that we used are an artificial box and ar-
tificial sphere test dataset and a combustion dataset shown
in figure 6. The combustion dataset has 106,457,688 cells,
stored as doubles, and is split into 5,996 blocks for a total
size of 0.9 GB. It is part of combustion dataset that has 30
scalar values per timestep and about 500 timesteps. Fuel is
injected into the combustion chamber through a number of
tubes located at the bottom of the dataset. Combustion starts
above these tubes and rises to the top of the combustion
chamber, hitting the ceiling and the walls. When visualiz-
ing this dataset, much more work has to be done in the upper
regions of the dataset, thereby creating an imbalance in the
rendering workload. The artificial datasets are simpler: each
rendering process is assigned one block of uniform scalar
data per node. The box dataset is similar to what was used by
Moreland et al. [MWPO01], and we also introduced a sphere
dataset whose diameter is equal to the length of the cube.

Figure 6: The datasets: box (left), sphere (middle), and
combustion (right).

(© The Eurographics Association 2016.

P. Grosset, Aaron Knoll & C. Hansen / Dynamically Scheduled Region-Based Image Compositing

The algorithm we compared against is the TOD-Tree al-
gorithm of Grosset et al. [GPC*15]. Grosset et al. have
shown that TOD-Tree generally performs better than Radix-
k and both TOD-Tree, and our algorithm uses threads and
auto-vectorization compared to the ICET library [Morl1],
which does not use threads.

Combustion Dataset ~ Rendering + Compositing ~ 2K x 2K

—@— DSRB

—— TOD-Tree

o
E 3
£
o
T
Nodes
Combustion Dataset ~ Rendering + Compositing ~ 4K x 4K
250
—®— DSRB
—— TOD-Tree
200
15
2
o
£
=
100
5
32 64 128 256
Nodes
Combustion Dataset ~ Rendering + Compositing ~ 8K x 8K
1000
—®— DSRB
—#— TOD-Tree
80r
_ 60
o
£
£
400
208
——=3
32 64 128 256 512 1024 2048

Nodes

Figure 7: Scaling of the combustion dataset on Edison -
showing rendering and compositing.

(© The Eurographics Association 2016.

4.1. Scheduler Cost

Building and running the scheduler is fast: the time it took to
construct the region chains and using MPI Gather to collect
the depth and extents information from each node, for 2,048
nodes, was measured to be on average 0.5 millisecond. The
time it took the scheduler to respond to a compositing node
if neighbors were available was on average 0.2 millisecond.
With a latency of at most 3.7 millionth of a second, the cost

Combustion Dataset ~ Compositing ~ 2K x 2K

0.025|

—®— DSRB
—— TOD-Tree
—
0.02 "
I
Z0.015]
P
£
IS
0.01
\ o
N ~_ .
0.005 ~_
~—
32 64 128 256 512 1024 2048
Nodes
Combustion Dataset ~ Compositing ~ 4K x 4K
—®— DSRB
0.08
—— TOD-Tree
0.07 T
- P T
—e . —
0.06] -
3 0.05
o
£
= 0.04
0.03
0.02
77”’”*f077,,,,7777.7777,,,,770—7,,,,77777
0.01 —*
32 64 128 256 512 1024 2048
Nodes
Combustion Dataset ~ Compositing ~ 8K x 8K
0.35 —®— DSRB
—— TOD-Tree
03
—
0.25 =
5 02
£
E
0.15
0.1
—
0.05 —
32 64 128 256 512 1024 2048

Figure 8: Scaling of the combustion dataset on Edison -
showing compositing only.

P. Grosset, Aaron Knoll & C. Hansen / Dynamically Scheduled Region-Based Image Compositing

of communicating with the scheduler is minimal compared
to the cost of exchanging data among nodes.

4.2. Scaling Studies

For each of the three datasets, and for each of the three im-
age sizes used (2,048 x 2,048, 4,096 x 4,096, and 8,192 x
8,192 pixels), we performed 10 runs after an initial warm-up
run, and the results are the average of these runs after some
outliers have been eliminated.

Figure 7 shows the total time it takes to render and com-
posite the combustion dataset for up to 2048 nodes on Edi-
son. As expected, as the number of nodes increases, the total
time it takes to render the dataset decreases. The focus of
this paper is image compositing and so, for the remainder of
this section, we focus on compositing.

Depending on the amount of rendering work each node
has to do, compositing will start at different times on each
node. The compositing time that needs to be minimized is
the time interval between when the slowest rendering job
finishes and the final image is ready on the display node;
the orange region in figure 2. Any compositing done in the
interval of time between the fastest rendering node and the
slowest rendering node does not slow down the entire com-
positing process. Therefore, the compositing time that we
measured and plotted in figures 8 and 9 is the time interval
between the slowest rendering job and the image being ready
on the display node.

Figure 8 shows the compositing time for the combustion
dataset for 2,048 x 2,048 (2Kx2K), 4,096 x 4,096 (4Kx4K),
and 8,192 x 8,192 (8Kx8K) sized images for TOD-Tree
and our Dynamically Scheduled Region-Based (DSRB) al-
gorithm. When there are few nodes, each node renders a
larger region and so influences many regions of the chain.
We therefore do not gain much from overlapping render-
ing with compositing since compositing, in most regions, is
stalled by waiting for other nodes. As the number of nodes
increases and the contribution of each node to regions de-
creases, the overlapping of compositing and rendering al-
lows us to perform better than the TOD-Tree, which does
not have any spatial or temporal awareness of the image be-
ing rendered from each node. We also see that there is more
variation for the 2K x 2K image compared to the 4K x 4K
image and 8K x 8K image since it is more communication
bound. The 8K x 8K image has the least variation as it is
more computation bound.

The Dynamically Scheduled Region-Based compositing
algorithm also performs faster than TOD-Tree on the artifi-
cial dataset. The difference in compositing times between
the sphere and box is minimal in most cases. However,
since there is less data for the sphere dataset, it takes less
time to render compared to the box dataset and so has less
"free compositing time" compared to the box dataset. This is

translated in the chains by the box having a faster composit-
ing time since what we are showing as compositing time
is the time interval between the slowest rendering and final
image being ready. For TOD-Tree, the sphere is generally
faster since there is overall less data to process. As with the
combustion dataset, compositing gets faster as the number
of nodes increases. Here again, when more nodes are used,
each node has a smaller share of the entire image, and a slow
node impacts fewer regions, resulting in faster compositing.

Box & Sphere ~ Compositing ~ 2K x 2K

0.025]

> = o —©
o — _— —~—
0.02] ~o e
—- Box:DSRB
20015, Box:TOD-Tree
E —@— Sphere:DSRB
—©~ Sphere:TOD-Tree
0.01)
n
LS —
0.005 \}7717”:, - — o !
i -
- m
32 64 128 256 512 1024 2048
Nodes
Box & Sphere ~ Compositing ~ 4K x 4K
0.08 =0
A —o—
~B<
0.07 ~_ =f —©
—o—
0.06|
—B- Box:DSRB
% 0.05 Box:TOD-Tree
£
£ 004 ~@- Sphere:DSRB
—~&— Sphere:TOD-Tree
0.03f
LS =
0.02] =
0.01)
32 64
Nodes
Box & Sphere ~ Compositing ~ 8K x 8K
0.35]
0.3] T
© = o
~— ——8
0.25 —— L —
= —M- Box:DSRB
- 02
[Box:TOD-Tree
" o5 —@- Sphere:DSRB
P PN —©— Sphere:TOD-Tree
0.1 .
-« —°
e
0.05 E— = .
32 64 128 256 512 1024 2048

Nodes

Figure 9: Scaling of the artificial box and sphere datasets
on Edison - showing compositing only.

(© The Eurographics Association 2016.

P. Grosset, Aaron Knoll & C. Hansen / Dynamically Scheduled Region-Based Image Compositing

5. Conclusion and Future Work

In this paper, we have introduced an image compositing
algorithm that has both spatial and temporal awareness of
compositing. Spatial awareness ensures that no compositing
processes will ever receive data for a region to which it does
not contribute, thereby minimizing communication. Tempo-
ral awareness ensures that processes do not try to commu-
nicate with processes that are still rendering, thereby min-
imizing delays. Combining spatial and temporal awareness
streamlines compositing by allowing several regions of an
image to be fully composited fairly quickly. Compositing is
delayed only for data-intensive regions of an image. This
gives us a substantial gain compared to TOD-Tree, which
lacks spatial and temporal awareness. The DSRB algorithm
can also beneficial in situ visualization scenarios where the
domain decomposition is dictated by the simulation.

As future work, we would like to run the scheduler as
a thread on one of the compositing nodes instead of on a
separate node. Also, we would like to try to find a way to
estimate the time it takes to render on each node and see
how this approach can be used to reduce communication.
More complex visualization workloads involving polygons,
glyphs, and mixed non-volumetric data may require a more
sophisticated scheduler, perhaps employing directed graphs
instead of chains. Also, we would like to run the DSRB al-
gorithm on a GPU-accelerated supercomputer where the ren-
dering times are likely to be shorter than on a CPU-only ac-
celerated supercomputer.

One of the limitations of the DSRB algorithm is where the
load is perfectly balanced. Having the extra communication
with the scheduler will decrease the performance of DSRB
algorithm. Also, as the number of nodes we use to render
increases, there will be a point at which each node will fin-
ish rendering, even with lighting and imbalance in workload,
nearly at the same time, and the differences in rendering
completion time will become negligible. We would like to
run experiments on large supercomputers to determine when
this will happen for various data and image sizes. This will
help establish the architecture dependent crossover point at
which we should switch over to algorithms, such as TOD-
Tree and Radix-k, which minimize communication. Another
limitation is the depth-orderable requirement described in
Section 3. While DSRB performs well for block-structured
decompositions, including block-structured AMR grids, un-
structured grids are not guaranteed to be depth-orderable due
to the potential of concave regions. This could be overcome
with some limited data replication and would be interesting
future research.

6. Acknowledgments

The authors would like to thank the National Energy Re-
search Scientific Computing Center (NERSC) for providing
access to the Edison supercomputer and the support staff at
NERSC for helping resolve compilation issues.

(© The Eurographics Association 2016.

This research was partially supported by the Department
of Energy, National Nuclear Security Administration, un-
der Award Number(s) DE-NA0002375, the DOE SciDAC
Institute of Scalable Data Management Analysis and Visual-
ization DOE DE-SC0007446, NASA NSSC-NNX16AB93A
and NSF ACI-1339881, NSF IIS-1162013.

References

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.: Equal-
izer: A Scalable Parallel Rendering Framework. IEEE Transac-
tions on Visualization and Computer Graphics 15, 3 (May 2009),
436-452. URL: http://dx.doi.org/10.1109/TVCG.
2008.104,do1:10.1109/TVCG.2008.104.3

[EPO7] EILEMANN S., PAJAROLA R.: Direct send compositing
for parallel sort-last rendering. In Proceedings of the 7th
Eurographics Conference on Parallel Graphics and Visualiza-
tion (Aire-la-Ville, Switzerland, Switzerland, 2007), EGPGV
’07, Eurographics Association, pp. 29-36. URL: http:
//dx.doi.org/10.2312/EGPGV/EGPGV07/029-036,
doi:10.2312/EGPGV/EGPGV07/029-036. 3

[FCS*10] FoGAL T., CHILDS H., SHANKAR S., KRUGER J.,
BERGERON R. D., HATCHER P.: Large data visualization on dis-
tributed memory multi-gpu clusters. In Proceedings of the Con-
ference on High Performance Graphics (Aire-la-Ville, Switzer-
land, Switzerland, 2010), HPG ’10, Eurographics Association,
pp. 57-66. URL: http://dl.acm.org/citation.cfm?
1d=1921479.1921489.2,3

[FE11] FREY S., ERTL T.: Load Balancing Utilizing Data Redun-
dancy in Distributed Volume Rendering. In Eurographics Sym-
posium on Parallel Graphics and Visualization (2011), Kuhlen
T., Pajarola R., Zhou K., (Eds.), The Eurographics Association.
doi:10.2312/EGPGV/EGPGV11/051-060. 3

[FSZ*10] FANG W., SUN G., ZHENG P., HE T., CHEN G.:
Network and Parallel Computing: IFIP International Confer-
ence, NPC 2010, Zhengzhou, China, September 13-15, 2010.
Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010, ch. Efficient Pipelining Parallel Methods for Image Com-
positing in Sort-Last Rendering, pp. 289-298. URL: http:
//dx.doi.org/10.1007/978-3-642-15672-4_25,
doi:10.1007/978-3-642-15672-4_25.3

[GPC*15] GROSSET A. V. P., PRASAD M., CHRISTENSEN C.,
KNOLL A., HANSEN C.: Tod-tree: Task-overlapped direct send
tree image compositing for hybrid mpi parallelism. In Proceed-
ings of the 15th Eurographics Symposium on Parallel Graph-
ics and Visualization (Aire-la-Ville, Switzerland, Switzerland,
2015), PGV ’15, Eurographics Association, pp. 67-76. URL:
http://dx.doi.org/10.2312/pgv.20151157, doi:
10.2312/pgv.20151157. 1,3,7

[HBC10] HowisoN M., BETHEL E. W., CHILDS H.:
MPI-hybrid Parallelism for Volume Rendering on Large,
Multi-core Systems. In Proceedings of the 10th Euro-
graphics Conference on Parallel Graphics and Visualiza-
tion (Aire-la-Ville, Switzerland, Switzerland, 2010), EG
PGV’10, Eurographics Association, pp. 1-10. URL: http:
//dx.doi.org/10.2312/EGPGV/EGPGV10/001-010,
doi:10.2312/EGPGV/EGPGV10/001-010. 2

[HBC12] HOWISON M., BETHEL E., CHILDS H.: Hybrid Paral-
lelism for Volume Rendering on Large-, Multi-, and Many-Core
Systems. Visualization and Computer Graphics, IEEE Trans-
actions on 18, 1 (Jan 2012), 17-29. doi:10.1109/TVCG.
2011.24.3

http://dx.doi.org/10.1109/TVCG.2008.104
http://dx.doi.org/10.1109/TVCG.2008.104
http://dx.doi.org/10.1109/TVCG.2008.104
http://dx.doi.org/10.2312/EGPGV/EGPGV07/029-036
http://dx.doi.org/10.2312/EGPGV/EGPGV07/029-036
http://dx.doi.org/10.2312/EGPGV/EGPGV07/029-036
http://dl.acm.org/citation.cfm?id=1921479.1921489
http://dl.acm.org/citation.cfm?id=1921479.1921489
http://dx.doi.org/10.2312/EGPGV/EGPGV11/051-060
http://dx.doi.org/10.1007/978-3-642-15672-4_25
http://dx.doi.org/10.1007/978-3-642-15672-4_25
http://dx.doi.org/10.1007/978-3-642-15672-4_25
http://dx.doi.org/10.2312/pgv.20151157
http://dx.doi.org/10.2312/pgv.20151157
http://dx.doi.org/10.2312/pgv.20151157
http://dx.doi.org/10.2312/EGPGV/EGPGV10/001-010
http://dx.doi.org/10.2312/EGPGV/EGPGV10/001-010
http://dx.doi.org/10.2312/EGPGV/EGPGV10/001-010
http://dx.doi.org/10.1109/TVCG.2011.24
http://dx.doi.org/10.1109/TVCG.2011.24

P. Grosset, Aaron Knoll & C. Hansen / Dynamically Scheduled Region-Based Image Compositing

[HHN*02] HUMPHREYS G., HOUSTON M., NG R., FRANK R,
AHERN S., KIRCHNER P. D., KLosowskI J. T.: Chromium:
A Stream-processing Framework for Interactive Rendering on
Clusters. ACM Trans. Graph. 21, 3 (July 2002), 693—
702. URL: http://doi.acm.org/10.1145/566654.
566639,d01:10.1145/566654.566639. 3

[Hsu93] HsU W. M.: Segmented Ray Casting for Data Paral-
lel Volume Rendering. In Proceedings of the 1993 Symposium
on Parallel Rendering (New York, NY, USA, 1993), PRS 93,
ACM, pp. 7-14. URL: http://doi.acm.org/10.1145/
166181.166182,d01:10.1145/166181.166182. 2

[MCEF94] MOLNAR S., Cox M., ELLSWORTH D., FucHS H.:
A sorting classification of parallel rendering. Computer Graphics
and Applications, IEEE 14, 4 (1994), 23-32. doi:10.1109/
38.291528. 1

[MKPH11] MORELAND K., KENDALL W., PETERKA T.,
HUANG J.: An Image Compositing Solution at Scale. In Pro-
ceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (New York, NY,
USA, 2011), SC ’11, ACM, pp. 25:1-25:10. URL: http://
doi.acm.org/10.1145/2063384.2063417, doi:10.
1145/2063384.2063417.3

[MMDO06] MARCHESIN S., MONGENET C., DISCHLER J.-M.:
Dynamic Load Balancing for Parallel Volume Rendering. In Eu-
rographics Symposium on Parallel Graphics and Visualization
(2006), Heirich A., Raffin B., dos Santos L. P., (Eds.), The Eu-
rographics Association. doi:10.2312/EGPGV/EGPGV06/
043-050.2,3

[Morl1] MORELAND K.: IceT Users’ Guide and Reference.
Tech. rep., Sandia National Lab, January 2011. 3,7

[MPHK93] MaA K.-L., PAINTER J., HANSEN C., KROGH M.: A
data distributed, parallel algorithm for ray-traced volume render-
ing. In Parallel Rendering Symposium, 1993 (1993), pp. 15-22,
105. doi:10.1109/PRS.1993.586080. 1,2

[MSEO7] MULLER C., STRENGERT M., ERTL T.: Adaptive load
balancing for raycasting of non-uniformly bricked volumes. Par-
allel Comput. 33, 6 (June 2007), 406-419. URL: http://
dx.doi.org/10.1016/j.parco.2006.12.002, doi:
10.1016/7.parco.2006.12.002. 3

[MWMSO07] MOLONEY B., WEISKOPF D., MOLLER T.,
STRENGERT M.: Scalable sort-first parallel direct volume
rendering with dynamic load balancing. In Proceedings of the
7th Eurographics Conference on Parallel Graphics and Visual-
ization (Aire-la-Ville, Switzerland, Switzerland, 2007), EGPGV
’07, Eurographics Association, pp. 45-52. URL: http:
//dx.doi.org/10.2312/EGPGV/EGPGV07/045-052,
doi:10.2312/EGPGV/EGPGV07/045-052. 3

[MWP0O1] MORELAND K., WYLIE B. N., PAvLAKOS C. J.:
Sort-last parallel rendering for viewing extremely large data
sets on tile displays. In IEEE Symposium on Parallel
and Large-Data Visualization and Graphics (2001), Breen
D. E., Heirich A., Koning A. H. J., (Eds.), IEEE, pp. 85—
92. URL: http://dblp.uni-trier.de/db/conf/
pvg/pvg2001.html#MorelandWP01l. 6

[Neu94] NEUMANN U.: Communication Costs for Parallel
Volume-Rendering Algorithms. IEEE Comput. Graph. Appl.
14, 4 (July 1994), 49-58. URL: http://dx.doi.org/10.
1109/38.291531,d0i:10.1109/38.291531. 2

[PGR*09] PETERKA T., GOODELL D., Ross R., SHEN H.-W.,
THAKUR R.: A Configurable Algorithm for Parallel Image-
compositing Applications. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Anal-
ysis (New York, NY, USA, 2009), SC ’09, ACM, pp. 4:1-

4:10. URL: http://doi.acm.org/10.1145/1654059.
1654064,d0i:10.1145/1654059.1654064. 1,3

[SML*03] STOMPEL A., MA K.-L., LuM E. B., AHRENS
J., PATCHETT J.: Slic: Scheduled linear image compositing
for parallel volume rendering. In Proceedings of the 2003
IEEE Symposium on Parallel and Large-Data Visualization
and Graphics (Washington, DC, USA, 2003), PVG 03, IEEE
Computer Society, pp. 6-. URL: http://dx.doi.org/
10.1109/PVGS.2003.1249040, doi:10.1109/PVGS.
2003.1249040. 3

[SMW*04] STRENGERT M., MAGALLASN M., WEISKOPF D.,
GUTHE S., ERTL T.: Hierarchical Visualization and Com-
pression of Large Volume Datasets Using GPU Clusters. In
Eurographics Workshop on Parallel Graphics and Visualiza-
tion (2004), Bartz D., Raffin B., Shen H.-W., (Eds.), The Eu-
rographics Association. doi:10.2312/EGPGV/EGPGV04/
041-048.3

[YWG*10] YU H., WANG C., GROUT R. W., CHEN J. H., MA
K.-L.: In Situ Visualization for Large-Scale Combustion Sim-
ulations. [EEE Comput. Graph. Appl. 30, 3 (May 2010), 45—
57. URL: http://dx.doi.org/10.1109/MCG.2010.
55,do0i:10.1109/MCG.2010.55. 2

[YWMOS] YU H., WANG C., MA K.-L.: Massively Parallel Vol-
ume Rendering Using 2-3 Swap Image Compositing. In Pro-
ceedings of the 2008 ACM/IEEE Conference on Supercomput-
ing (Piscataway, NJ, USA, 2008), SC 08, IEEE Press, pp. 48:1—
48:11. URL: http://dl.acm.org/citation.cfm?id=
1413370.1413419.3

(© The Eurographics Association 2016.

http://doi.acm.org/10.1145/566654.566639
http://doi.acm.org/10.1145/566654.566639
http://dx.doi.org/10.1145/566654.566639
http://doi.acm.org/10.1145/166181.166182
http://doi.acm.org/10.1145/166181.166182
http://dx.doi.org/10.1145/166181.166182
http://dx.doi.org/10.1109/38.291528
http://dx.doi.org/10.1109/38.291528
http://doi.acm.org/10.1145/2063384.2063417
http://doi.acm.org/10.1145/2063384.2063417
http://dx.doi.org/10.1145/2063384.2063417
http://dx.doi.org/10.1145/2063384.2063417
http://dx.doi.org/10.2312/EGPGV/EGPGV06/043-050
http://dx.doi.org/10.2312/EGPGV/EGPGV06/043-050
http://dx.doi.org/10.1109/PRS.1993.586080
http://dx.doi.org/10.1016/j.parco.2006.12.002
http://dx.doi.org/10.1016/j.parco.2006.12.002
http://dx.doi.org/10.1016/j.parco.2006.12.002
http://dx.doi.org/10.1016/j.parco.2006.12.002
http://dx.doi.org/10.2312/EGPGV/EGPGV07/045-052
http://dx.doi.org/10.2312/EGPGV/EGPGV07/045-052
http://dx.doi.org/10.2312/EGPGV/EGPGV07/045-052
http://dblp.uni-trier.de/db/conf/pvg/pvg2001.html##MorelandWP01
http://dblp.uni-trier.de/db/conf/pvg/pvg2001.html##MorelandWP01
http://dx.doi.org/10.1109/38.291531
http://dx.doi.org/10.1109/38.291531
http://dx.doi.org/10.1109/38.291531
http://doi.acm.org/10.1145/1654059.1654064
http://doi.acm.org/10.1145/1654059.1654064
http://dx.doi.org/10.1145/1654059.1654064
http://dx.doi.org/10.1109/PVGS.2003.1249040
http://dx.doi.org/10.1109/PVGS.2003.1249040
http://dx.doi.org/10.1109/PVGS.2003.1249040
http://dx.doi.org/10.1109/PVGS.2003.1249040
http://dx.doi.org/10.2312/EGPGV/EGPGV04/041-048
http://dx.doi.org/10.2312/EGPGV/EGPGV04/041-048
http://dx.doi.org/10.1109/MCG.2010.55
http://dx.doi.org/10.1109/MCG.2010.55
http://dx.doi.org/10.1109/MCG.2010.55
http://dl.acm.org/citation.cfm?id=1413370.1413419
http://dl.acm.org/citation.cfm?id=1413370.1413419

