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Abstract. In multiatlas segmentation, one typically registers several atlases to the novel image, and their
respective segmented label images are transformed and fused to form the final segmentation. In
this work, we provide a new dynamical system perspective for multiatlas segmentation, inspired
by the following fact: The transformation that aligns the current atlas to the novel image can
be not only computed by direct registration but also inferred from the transformation that aligns
the previous atlas to the image together with the transformation between the two atlases. This
process is similar to the global positioning system on a vehicle, which gets position by inquiring
from the satellite and by employing the previous location and velocity—mneither answer in isolation
being perfect. To solve this problem, a dynamical system scheme is crucial to combine the two
pieces of information; for example, a Kalman filtering scheme is used. Accordingly, in this work,
a Kalman multiatlas segmentation is proposed to stabilize the global/affine registration step. The
contributions of this work are twofold. First, it provides a new dynamical systematic perspective
for standard independent multiatlas registrations, and it is solved by Kalman filtering. Second,
with very little extra computation, it can be combined with most existing multiatlas segmentation
schemes for better registration/segmentation accuracy.
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1. Introduction. Multiatlas segmentation is a widely adopted method due to its accu-
racy, ease of user intervention, and robustness. The basic idea underpinning the atlas-based
segmentation methodology is to drive segmentation by registration; in order to segment a
novel image, one registers an already segmented image (training image, atlas image) to this
novel image, and utilizes the resulting transformation to deform the corresponding segmen-
tation (training label image) to the space of the novel image. We should note that several
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Registration Fusion

Figure 1. Sketch of multiatlas segmentation. The label images J; are deformed by the transformations T;
and fused to form the segmentation.

authors also use the term “atlas” for the pair consisting of the training image together with
its corresponding label image.

Ideally, registering a single training image to the novel image and deforming the label
image using the derived transformation should suffice to produce a segmentation of the novel
image. However, since the registration is never perfect, multiple training images are employed
where each of their respective deformed label images will provide a consensus on the final
segmentation. Such a multiatlas technique, which is briefly reviewed in the next section, has
been shown to be more accurate and robust [46, 26, 5, 38, 49, 55].

1.1. Multiatlas framework. Typically, the process of multiatlas segmentation consists of
two steps. First, several training images are independently registered to the novel image and
the transformations, usually nonlinear, are recorded. Then, all the segmented label images are
transformed and fused to form the final segmentation. This is shown in Figure 1. The efforts
for improving the segmentation accuracy naturally focus on finding either better registration
techniques or better label fusion methods.

Indeed, any improvement in the registration technique would improve the performance of
the procedure indicated by each horizontal arrow in the left panel of Figure 1. The study of
registration constitutes its own challenges and is not the subject of the present study. After
performing registration, the label images are deformed using their respective transformations,
and then they are fused to form the final segmentation. Most fusion techniques can be
categorized as statistical frameworks for classifier combination; see [34] and the references
therein. Some researchers choose training images according to their similarity with the novel
image [46, 2]. Weighted averaging is also a commonly adopted strategy [26, 47]. Furthermore,
instead of assigning a weight for an entire (transformed) label image, local weighting schemes
many times achieve better accuracy [5, 27, 10, 48]. In particular, Sabuncu et al. introduced a
generative model and showed that several previous voting schemes were special cases of such a
model [48]. More recently, Wang et al. proposed a regression-based fusion technique [55, 56].
One of the key insights of the latter study is that the correlated redundancy in the training
images can be reduced by the negative weighting obtained from regression analysis.

Some researchers first build single or several representative images out of all the training
images and perform multiatlas segmentation with this new set of atlases [17, 31, 3, 7, 48]. This
approach not only reduces the computation time, but may also improve the overall accuracy
due to the fact that some outliers are avoided in these representatives.
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From the above brief review and referring to Figure 1, we can observe that most previous
research has attempted to improve the fusion step, or each individual registration in the
registration panel. In this study, we propose a new perspective for the registration panel by
adopting the insights of dynamical system estimation [52], an approach that is motivated in
the next section.

1.2. Our contributions. The core novelty of our approach is that the relationship between
the training images has been utilized in order to reduce the registration time [13]. We provide
a new dynamical system perspective for multiatlas segmentation, inspired by the following
fact: There are (at least) two solutions for the registration between the current training image
to the novel image. The first is by direct optimization; the second can be computed as
the composition of the two registration transformations, one of which is between the previous
training image and the novel image, and the other is between the previous and current training
images. Unfortunately, due to various factors, neither transformation produces a perfect match
of the two images. However, we can combine them to get a better solution.

This approach is similar to that of a global positioning system (GPS) on a vehicle. In
order to get the current location, it gathers two pieces of information: directly inquiring
from the satellite and via inference from the previous location and velocity. Similar to the
two registration solutions, neither of the two positions is 100% accurate. To solve such a
problem in GPS, the dynamics of the vehicle are modeled as a linear system and an optimal
trajectory in the least square sense is estimated by combining those pieces of information with
the Kalman filter [52]. In the image analysis field, it has also been shown that incorporating
the concept of dynamical systems into a deterministic process has improved the accuracy and
robustness for both registration [39, 43, 51, 21] and segmentation [22].

In this work, a dynamic model of the multiatlas segmentation procedure is constructed
by exploiting the relationships among the training images in the transformation group. As
shown in Figure 2, we propose to treat the registration panel as an entire system.

Most previous literature divide the entire registration into two stages: a linear (affine)
registration step performs the global alignment, which is followed by a deformable step that
addresses the local mismatching. In theory, a full filtering approach that stabilizes both the
affine and the deformable stages of the registration is possible. However, in the current settings
we only perform the filtering in the affine step for the following reasons.

Registration Fusion

Figure 2. The conceptual diagram of the Kalman multiatlas. Note that the only difference is we treat the
multiple registration as an entire dynamical system. The fusion panel is the same as in Figure 1.
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Figure 3. Result of the affine registration. The red contour is the “ground truth” of the left atrium in the
heart MR images. The green contour is the result of the proposed method without the Kalman filtering. This
demonstrates the global errors after the affine step. The yellow contour is the result of the proposed method
with the Kalman filtering, in which the global drifting has been corrected.

First, affine registration controls the major component of the alignment. Being the first
step of the registration pipeline, its performance determines the deformable step and the over-
all results. A robust estimation of this step would therefore improve the overall segmentation
performance. It is observed that while the affine registration in general works quite well for
brain images, for chest and pelvic images, unfortunately, huge variances exist. For brain im-
ages in which the content is at least a coarse approximation of an ellipsoid, if the two ellipsoids
are registered well, then the internal structures roughly align. Unfortunately, for the chest
or pelvic images, not only are there huge variances in the content of the images (e.g., leg
versus no leg, arm versus no arm, only top of the liver versus more liver region, etc.), but
also the organ positions and shapes vary significantly inside the body (e.g., lung/heart shapes
in different phases). For example, in Figure 3, there is a global mismatch of the heart after
the affine registration step. This mismatch may be due to the large organ position and shape
variability inside the body. The Kalman filter effectively addresses such discrepancies in the
affine step, giving a much better initial state for the deformable registration.

The second rationale for applying the Kalman filter only on the affine but not on the de-
formable step is because of nonlinearity and computational cost. The deformable registration
step is a nonlinear process. In order to harness the full potential of filtering, the Kalman filter
is not sufficient and one needs computationally more intensive approaches. Techniques that
address this weakness include, for example, unscented Kalman filtering (UKF) and particle
filtering (PF). However, if we denote the dimension of the deformable registration as D (for
example D = 3000 in the case of 10 x 10 x 10 control nodes in the B-spline registration),
then we will perform approximately 6000 extra full deformable registrations if UKF is used,
and much more for PF. While the extended Kalman is able to handle a certain level of non-
linearity with moderate extra computation, it does not fit the current scenario since there is
no closed form expression for the nonlinear process and therefore the derivative of the process
is difficult to evaluate.

Because of these reasons, the filtering is performed only on the affine step. In such a way,
the Kalman filter may be utilized with negligible extra computational cost. This situation is
different from the approach described in [21, 22] in two ways. First, the goal of the statistical
estimation there is to improve a single optimization /registration process. In our approach, the
goal is to use filtering to harness the correlation among different training images. Moreover,
from a computational load perspective, we have a linear process model. As a result, the
proposed Kalman filter-based multiatlas has effectively no added computational load.
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Therefore, the contribution of the current work is twofold. First, it provides a new sys-
tematic perspective for the multiatlas segmentation task. In particular, we treat it as a
dynamical system and solve it using Kalman filtering. Second, with very little extra com-
putation, it can be combined with most existing multiatlas segmentation schemes for better
registration /segmentation accuracy.

2. Method: Kalman multiatlas segmentation. In this section, we first set up the nota-
tion necessary to explain the multiatlas segmentation method and then detail the proposed
Kalman filter multiatlas algorithm.

2.1. Multiatlas segmentation. We denote the novel image to be segmented as I : Q C
R3 — R*. The training images, the multiatlas, are denoted as I; : @ - RT,i=0,...,N —1,
and their respective manually segmented binary images as J; : Q — {0,1};i =0,..., N—1 with
1 indicating being inside the target. The basic scheme of the original multiatlas segmentation
can be divided into two steps: registration and label fusion. First, each of the I; images is
registered to I, and the optimal transformation ¥; : R3 — R? minimizes the cost function,

(2.1) U, = argmin d(I(z), L;(¥(x))),
T:R35R3

where the (dis-)similarity measurement d(-,-) may be chosen to be the mean square er-
rors (MSE), if the training images are of the same modality of the novel image, or mutual
information, when the training images are of different modalities of the novel image.

In practice, the computation of ¥; is often achieved in two consecutive steps. First, ¥;
is decomposed into two transformations, an affine transformation 4; € R3*3 ¢; € R3 and a
nonlinear deformable transformation 1; : R? — R3, and two optimization problems,

(2.2) A= argmin d(I(x),[;(Ax +t))
A:€R3%3 tcR3

(2.3) ¥ = argmin d(I(x), I;(Y(Ax + t;))),
PR3 R3

are solved consecutively. Then, each optimal W, is recorded. Usually, the first of these
two steps heavily determines the overall registration quality. Indeed, after the first affine
registration step, if the transformed training label image is not covering the target region well,
it is very difficult for the subsequent nonlinear step to provide a necessary correction. After
the registration, in the second stage of the multiatlas segmentation, each training label image
J; is transformed with ¥; and the transformed training label images, J; o V;, 1 =0,..., N — 1,
are fused to form the segmentation.

Based on these steps, most of the approaches try to improve the segmentation performance
by improving either the individual registration accuracy or the fusion process after individual
registration. However, one point that has not been considered in much of the literature is that
the registrations of the training images can be correlated. As a result, the registration step
may be viewed as a dynamical system estimation problem. By adopting this point of view, the
dynamical system framework can be utilized to obtain better segmentation results. Indeed,
after Uy has been computed by optimizing (2.1), the subsequent ¥;,i > 2, can be computed
directly by transformation composition without the optimization. This is because I;11 can
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be registered to I;, in an offline manner, with the optimal transformation being denoted as
i +1- As a result, the transformation from I;;1 to I can be computed as the composition of
v, o \Ifﬁﬂ, which is denoted as \ii+1.

Unfortunately, neither ‘iz‘+1 nor the direct computed transformation W;, 1 may be suitable.
That is, neither J;yi o ‘I’i-l—l nor J;y1 o W11 gives the perfect segmentation of the target in
I. A natural question is, how should the two transformations be combined in a way that the
resulting transformation is a better choice?

Fortunately, such a problem has been encountered and tackled in other fields of study.
For example, the GPS on a vehicle gets the current location from two sources: by directly
inquiring the satellite(s) and by computing the previous position and speed. Neither source
gives a 100% accurate position. In order to solve such a problem on the GPS, a dynamical
system estimate is crucial to combine them for the final output using the Kalman filter.
Inspired by such an idea, the registration of multiple images can be viewed as an estimation
of a dynamical system, and Kalman filtering can be employed for better overall results. To
aid further discussion, we give a brief review of the Kalman filter in the next section.

2.2. Kalman filter. The Kalman filter is a recursive least square estimation method [52].
Given a linear discrete-time dynamical system, whose state variable is «j and observation
variable is 3;, (both at time k), the objective of the Kalman filter is to provide the a posteriori
estimate for the state oy, d:, given the observations 3, 3q,...,08; =: B, i.€.,

(24) dz_:E(aMBIHB%MBk) :E(ak|ﬁlk)
With this goal, the process and observation models are given as

(2.5) o = Fp_1ap_1 + up_y,
By = Hrouy + vy,

where the system dynamics are represented by the matrix F}, and the observation is repre-
sented by the matrix Hi. The system noise u; and observation noise vy are white, zero-mean,
and uncorrelated. Moreover, their covariance matrices @ and Ry of u;, and vy, respectively,
are assumed to be known.

In order to initialize the Kalman filter, we have

(2.8) B = E (a0 — &f)(ao— &) T
where POJr is the a posteriori estimate for the covariance matrix, representing the uncertainty
in our initial estimate of cpy. Then, the recursive estimation of d: consists of two steps,

namely, prediction and update. Assuming d:—1 is available, the prediction step gives the a
priori estimate of «y, and its covariance matrix at time k as

(2.9) &, = Fpag

(2.10) Py = Fe 1P B+ Qs
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At time k after the observation 3, is available, it can then be used to update the estimate in
order to obtain the a posteriori estimate:

-1
(2.11) B@::R;HJ(EQR;H[—%RQ :
(2.12) &f =a; + Ky, (B — Hiéy,)
(2.13) Pl = (Id — KiHy) Py,

where K, the Kalman gain and Id is the identity matrix.

The above two steps are iterated, and the a posteriori estimate for « is obtained recur-
sively. In the subsequent sections, we detail how the multiatlas segmentation may be cast
under the Kalman filtering framework.

2.3. Kalman multiatlas segmentation. The computation of the transformations from
Ii;i = 0,...,N — 1, to I can be viewed as a dynamical system and solved via Kalman
filtering. More specifically, the Kalman filter is able to provide the optimal recursive least
square solution for the estimates of the ¥;,7 =0,..., N — 1.

However, directly applying the Kalman filtering to a nonlinear transformation group is not
a feasible solution due to the following reasons. First, the composition of two registrations,
v, 10 \If::_l, is not a linear operation. This violates the linear requirement of using the
Kalman filter. Moreover, while other techniques, such as the extended Kalman filter [52],
unscented Kalman filter [32], or particle filter [50], may handle such nonlinear situations, the
dimensionality of ¥, is huge due to its representing the entire nonlinear deformation field.
This makes the computation intractable.

In practice, the accuracy of the overall nonlinear registration depends heavily on that of
the affine component. Indeed, when the affine registration does not produce satisfying global
matching, it is very difficult for the subsequent deformable step to obtain high accuracy.
Therefore, improving the affine registration is crucial for the overall registration results.

For & = (21,22,23)" € R3, writing  in the homogeneous coordinates, we have & =
(21, 29,23,1)" and the transformation

At

)@:A@,

where A4; € R*** is the homogeneous representation of the affine transformation pair (Ag t;).
Hence, we have the transition concatenation equation:

(2.15) A1 =A; - Al

Furthermore, we define the system state variable a;; € R0 as

(2.16) Ai(p,v) =roi(4- (p—1)+v), p,ve{l, 23,4},

which is the rowwise vectorization of A;, and the system transition equation can be written
as

(2.17) o; = Fi o1 + U1,
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where u;_1 € NRlﬁ is the normally distributed noise and F;_; € R16%16 is a block-diagonal
matrix with (A:"1)T on its diagonal blocks:

(2.18) F_y =

In (2.17), the noise term u;—; models the nondeterministic factors in the registration
process, which may include factors such as local minima and/or the discrepancy between the
registration metric and the visual appearance.

The observation matrix is an identity matrix, that is, H; = Idigx16 Vi. This indicates
the fact that the registration parameters can be directly observed by the usual optimization
process.

Having cast the multiatlas registration problem as a dynamical system, and having set
up the system and observation models, the Kalman filter is applied to solve this estimation
problem, which is detailed in Algorithm 1.

ALGORITHM 1. KALMAN MULTIATLAS SEGMENTATION.

1: Affine register J; to J;—1 for ¢ = 1,..., N — 1 by minimizing the MSE, and record the

transformations flﬁ_l. This can be done offline before I is available

2: Initialize P0+ , Q,and R

3: When [ is available, register Iy to I and record the transformations Aq ()

4: fori=1,2,...,N —1do

5:  Predict transformation: a; = Fl-cua;r_1

6:  Covariance matrix: P, = Fi_lPitlFiT_l +Q

7. Get observation: affine register I; to I by minimizing the dissimilarity measure and
record the transformation 3;
Kalman gain: K = P (P + Ri)_1
. Update state: of =a; + K (8; — o)
10:  Update covariance matrix: P;" = (Id — K)P,
11: end for

© ®

This algorithm is a general-purpose scheme and can be combined with any advanced reg-
istration method. Furthermore, it adds very little extra (online) computation (the additional
matrix computations) as compared to the independently registered multiatlas algorithms, and
the extra running time is less 1%.

Furthermore, the choice of filtering the affine transformation, instead of the entire nonlin-
ear transformation, can further be justified from a prediction accuracy perspective. Evidently,
if the prediction is of poor accuracy, incorporating such information may even impair the over-
all performance. To solve such a problem and achieve better accuracy in the prediction step,
as can be observed in Algorithm 1, the computation of flé—l’s should be based on the reg-
istration between J; and J;_1, rather than I; and I;_;. This is due to two reasons. First,
it is commonly recognized that the registration of binary images can often be solved with
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ALGORITHM 2. DEFORMABLE KALMAN MULTIATLAS SEGMENTATION.

: fori=0,2,....,N —1do
Compute the affine registration o (4;) using Algorithm 1
Register I; o A; to I by minimizing NNC with respect to B-spline deformation field
Record the final deformation field v; and registration cost ¢;

end for

: Sort ¢;’s so that ¢, < ¢,

o Vi=0,...,N -2
: Define wy, = exp(cg, — ¢k, )Vi =0,..., N — 1 and normalize w;’s s.t. Zz‘]\i_ol w; =1
Pa) = 32005 wi i, (Y, (A, (2)))

I I A v

higher accuracy than the registration between two grayscale images, which may even be of
different modality with different fields of view. Second, for the multiatlas segmentation task,
the ultimate concern is the segmentation of the target. Hence the registration transformation
should provide good matching on and around the target region. This is naturally achieved by
registering the binary images but is not emphasized in the registration between I; and I;_;.
Due to these reasons, filtering the affine transform is a good choice not only because of its low
extra computational load, but also it is a natural choice from the point of view of accuracy.

In order to address the nonlinear deformation between the novel image and the train-
ing images, in addition to the affine registrations, a further nonlinear registration is per-
formed after the aforementioned affine registration. More explicitly, B-splines are used to
model the free-form deformation and the image dissimilarity measure (e.g., negative nor-
malized correlation (NNC)) is minimized. Indeed, we usually have available several training
images with the same modality as the novel image. Therefore, NNC is found sufficient in
practice to balance the computation load and the capability of handling the intramodality
variation. Nevertheless, the proposed framework does not preclude the use of other reg-
istration metrics. After the nonlinear registration, the transformed label images are com-
bined, weighted by the final accuracy of the registration (w; as in Algorithm 2), to form
a prior probability map P(x). The detailed algorithm is given in Algorithm 2. Finally,
the prior probability map P(x) represents the relative likelihood of a certain point @ be-
ing inside the target object. In what follows, such prior information is combined with the
likelihood, computed from the intensity distribution, to form a posterior map and the final
segmentation.

2.4. Bayesian framework to incorporate novel image information and multiatlas. Since
P(x) represents the likelihood of a point @ being inside the target object, we defined Pp(x) =
1 — P(x) to represent the probability of the point @ being in the background.

The likelihood map is computed from the intensity information. Specifically, the intensity
distribution function I(z) (defined in step 2 of Algorithm 3) within the target regions of all
the training images may be learned by the nonparametric kernel density estimation technique
with the kernel density automatically estimated as in [8]. Before the density estimation, the
histograms of all the grayscale images are matched with that of the first training image Ij.
This is because although the images are of the same modality, different imaging settings may
cause discrepancy among them.
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While the original Bayesian decision theory involves the comparison of the posterior be-
tween two (or more) categories, many previous methods only learn and utilize the likelihood
within only one group (the target region) to guide segmentation [11, 24, 41]. This may be
partially due to the fact that the information outside the target can be very heterogeneous,
since it contains everything other than the target. As a result, learning is severely unbalanced
and the learned “background characteristics” may become so varied that everything may look
like background, which does not provide useful inference. To treat such a difficulty, and to
take full advantage of Bayesian decision theory, in this work only the information in the local
background region is utilized. Moreover, because the approximate location of the target has
already been represented by P(x), we therefore only have to distinguish the target from its
surroundings. To that end, for each J;, the distance map is constructed from the target region
utilizing the method in [12]. Then, a threshold is chosen so that the narrow banded surround-
ing region has the same volume as the target region in J;. The threshold is applied and those
intensity values in I; in this banded region are collected, from which the distribution function
of the local background, lp(z) (defined in step 3 of Algorithm 3), is computed.

With all the prior and likelihood information, the final segmentation decision is drawn by
the Bayesian decision rule:

(2.19) D(z) = {(1) gt}ii?iéele) > Pp(x) - Ig(x);

The overall segmentation algorithm is summarized in Algorithm 3.

ALGORITHM 3. OVERALL SEGMENTATION ALGORITHM.
1: Match the histogram of I and I; to I fori=1,..., N —2
2: Compute the distribution I(z) of the set {I;(z) : J;(x) = 1Vx € R%i=0,...,N — 1}
3: Compute the distribution ip(x) of the set {I;(x) : x in local background V& € R3;i =
0,...,N -1}
4: Compute target prior P(x) using Algorithm 2
5. Compute background prior Pp(x) =1 — P(x)
6: Compute segmentation using (2.19)

2.5. Estimation of covariance matrices. In the Kalman filtering framework, one impor-
tant issue is the determination of the covariance matrices, which is in general a very difficult
task. In our specific situation, in Algorithm 1, three covariance matrices POJr , @, and R have
to be determined.

Among them, POJr and R characterize the performance of the grayscale image registration.
In order to estimate them, we assume the registration of the binary images gives the “ground
truth” and then measure the uncertainty of the grayscale image registration. Specifically,
we perform M affine registrations between I; and I; with i,j € {1,...,N} and i # j and
record the resulting parameters {&; C R'6;k = 1,...,M}. Given N training images, there
are N(N — 1)/2 distinct pairs of images. However, registering all those pairs is tedious work,
even if this is carried out offline. As a result, M pairs are randomly chosen (with uniform
distribution) from the N (N —1)/2 pairs. Similarly, M registrations between J; and J; are also
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performed and the results are recorded as {&, C R':k =1,..., M}. Therefore, we estimate
POJr and R as

| M
(2.20) £:= 7 > (6w — ),

k=1
| M
+_p._ Y Y T

(2.21) P, —R.—M;(ak—ak—g)(ak—ak—g) .

The covariance matrix (), however, represents the certainty of the prediction for the regis-
tration between I;;1 with I;, based on the registration between I; with I and the registration
between J; with J; 1. Since the novel image I is involved, one may not be able to estimate Q)
offline when I is not available. To solve this issue, I}, j # i, is used to take the place of I. By
doing this, the estimate of @) is the same as that for P0+ and R.

2.6. Effect of different orders. In the original independent registration
scheme, there is no difference in performing the registration in different orders. However,
with the Kalman filter, we impose some sequential order for the training images. Usually all
the training images are available during the segmentation and an arbitrary order could be
used. Therefore, a natural question is whether the order would affect the final results.

Unfortunately, we did not find a way to theoretically characterize the influence of different
orderings. However, in section 3, we perform some experimental tests and found that though
order affects the final outcome, they all improve the results quite significantly over the scheme
without Kalman filtering. We will return to the point in subsection 3.5.

3. Experiments and results. We used the Kalman filter multiatlas method as a core
component in the proposed segmentation framework and tested the segmentation on three
sets of images: striatum, prostate, and left atrium. Furthermore, by removing the Kalman
filtering and leaving everything else the same, the altered method is also tested on the same
data sets and statistically significant improvements are observed. By doing this, we show not
only the value of the proposed Kalman multiatlas framework but also the applicability of such
a method as a component in other multiatlas techniques, hence its potential of being included
in more application-specific methods.

3.1. Striatum. The striatum is a subcortical structure in the forebrain which contains
the caudate nucleus, putamen, and fundus. It has been shown that the striatum is associated
with several neural psychiatrical diseases such as Parkinson’s disease [33], schizophrenia [37],
and Huntington’s disease [45]. A key step in evaluating the patient involves the segmenta-
tion of the striatum from magnetic resonance (MR) imagery. While manual delineation is a
time-consuming process, automatic segmentation from the MR imagery is a very challeng-
ing task due to the complex convolved shape of the striatum and the low contrast with the
surrounding tissue. In this section, we report the results of 27 spoiled gradient-recalled vol-
umetric T1-weighted images acquired at Brigham and Women’s Hospital (BWH), Harvard
Medical School. The image resolution is 1 x 1 x 1 mm?®. Fortunately, we have all the images
segmented by a radiologist at BWH. In order to make full use of all the data, we choose the
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Figure 4. Coronal slices (every three image slices) of the segmentation result whose DC is the median
among all. The yellow contours are generated by the proposed automatic segmentation algorithm, while the red
contours are drawn manually by an expert radiologist at BWH, and the green contour is where the automatic
ones coincide with the manual ones.

leave-one-out strategy to perform the shape training and segmentation. The segmentation is
fully automatic, so that no human interaction is needed.

In Figure 4, we show the segmentation result of one data set in coronal slice views. The
coronal view is used because it better shows the complexity of the target shape. In this result,
the striatum boundary generated by the proposed algorithm is colored yellow, whereas the
manual boundary, drawn by an expert radiologist, is colored red and used as the reference.
We use green when the two results meet. As can be observed from the comparison, the two
sets of contours match very well in all the slices. Due to space constraints, only one subject
from which every third coronal slice is shown here. However, note that all the 27 experiments
work consistently, and the detailed statistical analysis is given below.

Moreover, in order to quantify the differences between the two sets of results, the distance
maps are computed. Given any point on the manually segmented surface, the distance map
value is the closest distance to the automatically extracted surface. Altogether, they form a
scalar function defined on the manually generated surface. The distance maps are illustrated
as the colors on the manual surfaces. Given any location on the surface, red (respectively,
blue) means that there exists a relatively large (respectively, small) difference between the
surface generated by the expert and the algorithm. As can be seen in Figure 5, except at a
few isolated regions, the automatic results are very consistent with the expert manual results.
It is also noted that due to space limits, we only show the surfaces of five uniformly randomly
chosen results.

In order to further analyze the results quantitatively, the Dice coefficients (DC) [14] and the
95% Hausdorff distances [25, 4] with respect to the expert segmentation results are provided in
Table 1. The accuracy is higher than the previously reported results on the same structure [18].

ALAVALALAS

Figure 5. The surfaces of five randomly selected striatums. On the surfaces, the color shows the difference
between the automatic and manual surfaces.
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Table 1
DCs and the 95% Hausdorff distances (HD) between the expert segmentation and the automatic result
generated by the proposed method for the striatums. The unit for the Hausdorff distance is mm.

Subject ID | #1 | #2 | #3 | #4 | #b5 | #6 | #7 #3 #9 | #10
DCx102 | 91.5 | 91.0 | 92.0 | 89.5 | 89.1 | 90.1 | 90.0 | 90.6 | 91.5 | 91.6
95% HOD | 3.78 | 1.07 | 2.85 | 1.88 | 2.10 | 1.66 | 3.38 | 1.49 | 3.90 | 3.82

Subject ID | #11 | #12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20
DCx102 | 91.5 | 89.9 | 91.5 | 90.4 | 91.7 | 91.9 | 91.8 | 90.8 | 91.5 | 91.5
95% HD | 1.11 | 3.090 | 2.86 | 3.79 | 3.22 | 1.54 | 1.50 | 1.85 | 2.41 | 1.59

Subject ID | #21 | #22 | #23 | #24 | #25 | #26 | #27 | Mean STD
DCx 102 91.1 91.4 | 90.8 | 91.0 | 91.5 91.4 | 91.5 91.1 0.91
95% HD 1.17 1.23 | 240 | 3.52 | 2.99 | 3.49 1.21 2.40 0.99
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Figure 6. DCs of the striatum segmentation using the proposed Algorithm 3 without the Kalman filtering
(black bars). The increment of DC with the Kalman filtering is in gray. Therefore the total bar heights
correspond to the values in Table 1. Note that the vertical axis starts from 0.8 to clarify the increment so the
gray/black bar height ratios do not represent relative increments.

Since the main theme of the present work is to propose a new approach to multiatlas
segmentation, keeping the overall scheme relatively simple is useful in isolating the effect of
adopting such a perspective with respect to the “normal control.” As a result, the fusion step
here does not involve state-of-the-art techniques such as those introduced in [49, 55, 56|, nor
did we further combine the atlas segmentation with shape-based active contour evolution to
fine tune the results [19, 23, 16].

The influence of adopting the dynamical system perspective and solving it using the
Kalman filter is further quantified in Figure 6. In the figure, we show the DCs of the seg-
mentations generated with a single change in the entire algorithm: we replace the Kalman
filter scheme with conventional independent registration. The improvement of the Kalman
filtering over the normal control can be clearly seen. In addition to visual inspection, we
perform the single side ¢-test on the DCs of the segmentation methods with and without the
Kalman filtering. The null hypothesis that the difference between the two sets of DCs are due
to random perturbation is rejected at a significance level of 0.01.

3.2. Prostate. Prostate cancer ranks among one of the most widespread of all cancers
for the U.S. male population [29]. MR imaging is an attractive method for guiding and
monitoring interventions since it provides superior visualization of the prostate as well as its
substructures. Extracting the prostate from MR imagery is a challenging and important task
for prostate cancer assessment and surgical planning [22].
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Table 2
DCs and 95% HD (in mm) using the proposed Kalman multiatlas method for the prostate MR images. It
is noted that the patient IDs are taken from the clinical study and they are not contiguous.

Patient ID 29 35 36 41 45 49 54 55 56

DCx10? 788 | 782 | T1.1 | 72.5 | 70.3 | 75.8 81.9 77.5 | TL.T
95% HD 9.75 | 9.07 | 12.2 | 13.2 | 13.9 | 6.44 12.7 12.3 | 4.68

Patient ID 60 64 69 73 85 88 Mean STD
DCx10? 74.5 | 76.2 | 81.0 | 80.5 | 73.9 | 79.1 76.2 3.8
95% HD 4.01 | 9.89 | 17.0 | 743 | 11.2 | 5.63 9.96 3.7

Figure 7. The surfaces of siz randomly picked prostates. On the surfaces, the color shows the difference
between the automatic and manual surfaces.

In this work, 30 data sets from 15 patients were downloaded from the online publicly
available repository [42]. Both T1 and T2 MR prostate images were performed on each
patient from a 1.5T MR scanner. However, given that only the expert segmentations for T2
images are provided, in order to compare with the expert segmentation, we opted to segment
the 15 T2 images. The ages of the patients range from 50 to 80 with a mean age of 63.7. After
applying the proposed method (leave-one-out scheme), the DCs with respect to the expert
segmentation results given on the website are provided in Table 2. The distance map on six
randomly chosen manual surfaces is shown in Figure 7.

Comparing with [22, 23, 53], the performance is not necessarily higher. However, in the
present study, we ignore those aspects of other methods that are not relevant to the main theme
of Kalman filtering to elucidate our approach to multiatlas segmentation. By doing this, the
impact of adopting the new Kalman filtering perspective in the multiatlas segmentation can
be justified more clearly, as shown in the gray increment bars of the plots in Figure 8. The
single side t-test on the hypothesis that the difference between the two sets of DCs is due to
random perturbation is rejected at a significance level of 0.01. Consequently, it is believed that

0.9

mDice without Kalman filtering Dice increment with Kalman filtering
0.8
L
00.7
il 111001
05 H
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
subjects

Figure 8. DCs of the prostate segmentation using the proposed Algorithm 3 without the Kalman filtering
(black bars). The increment of DC with the Kalman filtering is in gray. Therefore the total bar heights
corresponds to the values in Table 2.
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most of the current multiatlas segmentation schemes can benefit from adopting the dynamical
system perspective which utilizes the intercorrelation among the training images, though a
thorough testing with all the many methods is beyond the scope of this work.

3.3. Left atrium. Atrial fibrillation is the most common cardiac arrhythmia and is char-
acterized by unsynchronized electrical activity in the left atrium (LA) of the heart. One of the
first-line treatments for atrial fibrillation is radiofrequency (RF) ablation therapy. RF ablation
attempts to isolate spurious sources of electrical activity in the LA by selectively scarring the
LA wall tissue using RF energy that is delivered with an intracardiac catheter [28]. Successful
ablation can eliminate the problematic sources of electrical activity and, often, completely
cure atrial fibrillation. Typically, RF ablations are performed under guidance by a combina-
tion of real-time fluoroscopy and a preoperatively acquired LA wall segmentation, obtained
from either CT or MRI. The latter provides the ablationist with a three-dimensional context
for catheter navigation and, potentially, the location of diseased heart tissue and previous LA
scarring, which may be important in planning repeat RF ablation procedures. Late gadolin-
ium enhancement MR (LGE-MR), for example, has recently been shown to be effective for
identification of fibrotic and scarred LA wall tissue, which appear as brighter regions in the
wall, due to differential diffusion rates of gadolinium through these tissues [54]. Quantitative
assessment of fibrotic regions has also been show to be useful in planning treatment for atrial
fibrillation patients and assessing the likelihood of successful ablation outcomes [1, 40].

While the LGE-MR sequence is highly useful for planning and guidance of RF abla-
tions, the noise level and bias field effect in these images are higher than typical cardiac
MR sequences, which is not ideal for structural tissue segmentation and makes the segmen-
tation/registration of LGE-MR images an especially challenging task [20]. Indeed, the regis-
tration may be misled by artifacts in the images that can cause misalignment of the training
images with the novel image to be segmented. Similar to the situation where the satellite sig-
nal is corrupted by the clutter of buildings and becomes less reliable, with Kalman filtering,
the combination of the prediction and observation effectively improves the registration and
hence the segmentation.

In this work, we tested the algorithm on the LGE-MR images available from [9]. In total,
there are 32 subjects, each of which has the preablation and postablation LGE-MR images.
We tested our algorithm on the both the pre- and postablation sets separately. That is, only
preablation (respectively, postablation) images are used as training images for segmenting
preablation (respectively, postablation) images. The results for preablation images are shown
in Figure 9 and Table 3 and those for postablation images are shown in Figure 10 and Table 4.

L4 X AR 4

Figure 9. The surfaces of siz randomly chosen preablation LAs. On the surfaces, the color shows the
difference between the automatic and manual surfaces.
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Table 3
DCs and the 95% Hausdorff distances between the expert segmentation and the automatic result generated
by the proposed method for the preablation LA image. The unit for the Hausdorff distance is mm.

Patient ID #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
DCx102 68.8 | 61.4 | 85.2 | 80.9 | 783 | 68.3 | 70.8 | 80.3 | 81.4 | 81.4
95% HD 447 | 3.29 | 2.01 | 2.62 | 236 | 5.12 | 2.72 | 3.82 | 3.06 | 3.94

Patient ID | #11 | #12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20
DCx102 839 | 83.0 | 674 | 67.6 | 689 | 8.6 | 63.5 | 70.5 | 70.3 | 81.5
95% HD 2.60 | 2.08 | 2.07 | 3.62 | 3.08 | 3.06 | 4.37 | 3.46 | 3.38 | 4.51

Patient ID | #21 | #22 | #23 | #24 | #25 | #26 | #27 | #28 | #29 | #30
DCx102 83.3 | 73.8 | 73.8 | 80.3 | 75.2 | 76.5 | 82.1 | 64.8 | 781 | 71.1
95% HD 2.57 | 3.78 | 3.89 | 3.02 | 3.39 | 2.27 | 2.29 | 3.30 | 3.80 | 5.31

Patient ID | #31 | #32 Mean STD
DCx102 64.8 | 60.7 74.4 7.35
95% HD 2.67 | 3.37 3.29 0.86
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Figure 10. The surfaces of siz randomly chosen postablation LAs. On the surfaces, the color shows the
difference between the automatic and manual surfaces.

Table 4
DCs and the 95% Hausdorff distances between the expert segmentation and the automatic result generated
by the proposed method for the postablation LA images. The unit for the Hausdorff distance is mm.

Patient ID | #1 #2 H3 | #4 | #5 | #6 | #7 | #8 | #9 | #10
DCx102 69.6 | 61.6 | 81.8 | 76.9 | 83.6 | 64.2 | 81.6 | 80.7 | 79.2 | 71.4
95% HD | 3.15 | 1.65 | 2.86 | 1.76 | 3.90 | 2.50 | 3.30 | 2.77 | 3.46 | 2.73

Patient ID | #11 | #12 | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20
DCx102 84.9 | 83.6 | 63.5 | 69.7 | 63.7 | 71.2 | 66.8 | 52.8 | 62.8 | 86.0
95% HD | 3.61 | 3.81 | 4.60 | 3.06 | 1.48 | 2.53 | 4.31 | 2.35 | 3.99 | 3.32

Patient 1D | #21 | #22 | #23 | #24 | #25 | #26 | #27 | #28 | #29 | #30
DCx102 76.6 | 79.0 | 782 | 79.6 | 77.5 | 72.4 | 72.0 | 73.8 | 84.9 | 69.7
95% HD | 4.38 | 1.63 | 3.05 | 2.24 | 5.57 | 3.88 | 433 | 2.36 | 2.84 | 2.99

Patient ID | #31 | #32 Mean STD
DCx102 76.6 | 73.6 74.0 8.11
95% HD | 4.10 | 2.99 3.17 0.95

The improvement from adopting the new view for the multiatlas segmentation is evident
from the gray bars in Figures 11 and 12. The single side t-test on the hypothesis that the
difference between the two sets of DCs are due to random perturbation, for either pre- or
postablation, is rejected at a significance level of 0.01.

3.4. Comparison with other registration methods. In this work, the main idea is to
view the multiatlas segmentation as a dynamical system and use the Kalman filtering to
stabilize the estimation. Adopting such a perspective, the Kalman filtering can be inserted
as a component to most of the existing segmentation-by-registration schemes. Because of
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Figure 11. DCs of the preablation LA image segmentation using the proposed Algorithm 3 without the
Kalman filtering (black bars). The increment of DC using the Kalman filter is in gray. Therefore the total bar
heights corresponds to the values in Table 3.
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Figure 12. DCs of the postablation LA image segmentation using the proposed Algorithm 3 without the
Kalman filtering (black bars). The increment of DC using the Kalman filter is in gray. Therefore the total bar
heights corresponds to the values in Table 4.
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this, we compare a scheme without such filtering and with such filtering, in order to have
a controlled evaluation of the added value of such a component. For the same reason, we
did not treat it as yet another standalone multiatlas algorithm. That said, the proposed
algorithm is also compared with different state-of-the-art registration packages: ANTs [6],
DRAMMS [44], FSL [30], and Elastix [35]. For the groupwise registration, we used GLIRT
(Groupwise and Longitudinal Image Registration Toolbox) [57]. Both affine and deformable
registrations are performed using the above packages. Then Bayesian fusion is computed with
our own program. Since we have the ground truth of manual segmentation (striatum, LA,
and prostate), a leave-one-out validation is used. The results of the compared packages are
shown in Table 5. From the comparison, several aspects of the proposed framework can be
observed.

First, while the Kalman multiatlas achieves good overall accuracy, the standard deviations
of the DCs remain the smallest in all tests. Indeed, modeling the entire registration process
with a dynamical system whose state is estimated using the Kalman filter is the key component
that brings such robustness.

Second, in the striatum segmentation, the performances of different algorithms do not
differ much. This may be caused by the fact that brain images have less variability both in
their content as well as in the imaging conditions. Once the entire brain is registered, the
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Table 5
DC's between the expert segmentation and the automatic result generated by all the packages. The largest
mean DCs and smallest standard deviations are in bold face.

Striatum Prostate Pre-op LA Post-op LA

Mean | STD | Mean | STD | Mean | STD | Mean | STD

ANTs 92.0 1.37 717 3.58 71.3 8.04 | 71.10 | 9.34

Elastix 90.7 1.55 76.1 6.15 2.7 7.69 72.5 9.15

DRAMMS 91.1 1.19 71.1 4.66 72.6 7.96 72.5 8.32

FSL 88.1 2.24 70.6 4.53 71.1 8.19 72.1 8.28

GLIRT 90.9 1.17 75.9 5.72 74.5 7.95 73.8 8.57
Proposed without

Kalman filtering 89.8 2.17 2.7 6.71 71.0 8.39 71.13 | 9.18

Proposed with
Kalman filtering 91.1 0.91 76.2 3.8 74.4 7.35 | 74.0 | 8.11

internal structures are relatively well aligned. In such cases, the statistical estimation does
not provide much extra benefit. This is the same as other optimal estimation tasks, such as
object tracking. When the observation step alone already achieves good accuracy, the dynamic
modeling and prediction step does not add too much to the overall accuracy and robustness.

However, for the more challenging cases of the pelvic and cardiac registrations where much
stronger variances exist in image contents, regions of interest, intensity differences, etc., the
robustness becomes a major issue. In such cases, the Kalman filtering successfully reduces
the variation and finally provides a better segmentation.

This is consistent with the performance of the groupwise registration technique. For the
relatively less challenging striatum cases, the improvement of groupwise registration is not
significant. However, for the prostate and the atrium volumes, by unifying the costs of all
the training images together, the groupwise registration also achieves better performance,
though at much higher extra computational load when compared to the recursive least square
approach in the Kalman filter, where no additional computation cost is observed.

Last, as has been alluded to, the proposed framework stems from the perspective of treat-
ing the multiatlas construction process as a dynamical system, whose optimal estimation is
performed by the Kalman filter. Such a system perspective and filtering scheme is generic
enough and may be combined with almost any of the existing registration and fusion tech-
niques. Because of this, we believe other registration methods may also benefit from adopting
such a system perspective into their pipeline. That is, by going deep into the source code of
various packages, one may augment, for example, DRAMMS with Kalman filtering for even
better performance.

3.5. Order matters. We conducted experiments to access whether the order of the train-
ing image registration under the Kalman filtering framework would affect the final segmen-
tation performance. Given N training images, there are N! different orders. Unfortunately,
this is too many for an exhaustive test for realistic values of V. Therefore, we randomly chose
100 different permutations of the array 0,..., N and followed that sequence to perform the
proposed segmentation. The resulting mean DCs are recorded and plotted in Figure 13. In
the figure, each of the four bars records the 100 trails in different registration orders. The
arrows to the right of the barplots indicate the mean DCs found in Tables 1, 2, 3, and 4.



FILTERING PERSPECTIVE FOR MULTI-ATLAS SEGMENTATION 1025

0.9+ E"
 0-85F
()
=] .
‘s 0.8F o J
[0
5079 = = =]
0.7 - I
0.65F
Striatum Prostate LA-pre LA-post

Figure 13. Bar plots of the mean DCs for striatum, prostate, LA preablation, and LA postablation.
Each bar records 100 trials using different orders. The arrow to the right of each bar is the mean DC
reported in each of Tables 1, 2, 3, and 4.

Admittedly, since N! is a very large number, the 100 trials may be too few to reveal the
overall influence of order. Nevertheless, it can be observed for most of the orders tested that
the resulting mean DCs are greater than the DC without Kalman filtering scheme. Indeed,
finding an optimal order, even local optimal, is a topic for future research. For example,
given a novel image to be segmented, it may be possible to perform independent pairwise
registrations to compute each final cost. Then, based on the similarity measured by the final
costs, one may determine an order to perform the Kalman filtering multiatlas again. For
example, it may be preferred that the most similar training image be registered first, so that
its accurate transformation can be propagated along to improve the subsequent, possibly less
accurate registration. In addition, after certain number of registrations the algorithm may be
able to automatically determine it is sufficient to stop and discard the subsequent, presumably
not very similar training images. We, however, have not been able to prove the optimality of
such an approach and we are still working in such a direction.

4. Discussion, conclusions, and future work. In this work, we proposed a new dynamical
system perspective to the commonly used multiatlas segmentation framework. By adopting
such a point of view, the previously independently performed atlas registrations are now
carried out under a filtering scheme. As a result, the accuracy and the robustness of the
registrations and the overall segmentation have been significantly statistically improved. Fur-
thermore, this new dynamical system framework may be employed in most of the existing
multiatlas segmentation schemes and is expected to improve the overall segmentation accu-
racy by stabilizing the affine registration. However, we still need further tests to confirm
whether the performance would indeed increase with other state-of-the-art registration and
label fusion algorithms. Further, such a dynamical system point of view can be regarded as
“fusion in the registration step.” This may provide the impetus for new ideas in label fusion
as well.

Regarding the type of transformation in the nonlinear registration step, vector field based
deformation may also be employed. In this regard, we tested the diffeomorphic demon tech-
nique. However, due to the significant intensity variances among the images and within the
same image, we found optical flow based deformable registration (demons and their variants)
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not to be applicable, in particular for the heart and prostate images. As a result, the final
segmentation results have Dice values of about 40% for the LA and 50% for the prostate.
On the other hand, B-spline with normalized correlation based registration cost handles the
intensity variances robustly. In fact, regardless of the specific registration method being used,
using the dynamical system point of view and filtering may help to stabilize the registration
process. Incorporating vector field based deformable registration with various metrics is part
of our ongoing research.

It is also noted that there are many state-of-the-art fusion techniques. On the other
hand, in this work the main theme is the use of statistical filtering in order to exploit the
correlation between training images. As a result, we mentioned but did not implement more
sophisticated fusion techniques, in order to keep the overall algorithm better controlled and to
avoid implementation variations. Moreover, it has been indicated by several researchers that
the computationally more intensive fusion techniques do not necessarily give better results
than even majority voting; see, for example, Figure 4 of [15] and Figure 5 of [36]. Indeed,
it would be out of the scope of the current work to evaluate which fusion algorithm fits the
problem the best. As a result, we performed the controlled experiment with the focus on the
main filtering theme. In fact, we believe that using Kalman filtering together with different
fusion techniques, such as STAPLE, is an ongoing and future direction.

Future work includes incorporating more sophisticated registration techniques and label
fusion algorithms into the Kalman multiatlas framework. By doing so, it is expected that the
overall segmentation performance would be further improved. Moreover, as mentioned above,
finding an optimal or better order for performing the filtering is also an ongoing research
problem.
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