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Uncertainties in Noninvasive Activation-Based
Imaging of Cardiac Excitation Using
Convex Relaxation
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Abstract—Noninvasive imaging of cardiac electrical function
has begun to move towards clinical adoption. Here, we consider
one common formulation of the problem, in which the goal is
to estimate the spatial distribution of electrical activation times
during a cardiac cycle. We address the challenge of understanding
the robustness and uncertainty of solutions to this formulation.
This formulation poses a nonconvex, nonlinear least squares
optimization problem. We show that it can be relaxed to be
convex, at the cost of some degree of physiological realism of the
solution set, and that this relaxation can be used as a framework
to study model inaccuracy and solution uncertainty. We present
two examples, one using data from a healthy human subject
and the other synthesized with the ECGSIM software package.
In the first case, we consider uncertainty in the initial guess
and regularization parameter. In the second case, we mimic the
presence of an ischemic zone in the heart in a way which violates
a model assumption. We show that the convex relaxation allows
understanding of spatial distribution of parameter sensitivity in
the first case, and identification of model violation in the second.

Index Terms—Activation time imaging, biomedical imaging,
biomedical signal processing, convex relaxation, electrocardiog-
raphy (ECG), inverse problems.

I. INTRODUCTION

A FTER many years of research interest, imaging cardiac
electrical function from noninvasive measurements of
electric potentials on the body surface, via solutions of the
inverse problem of electrocardiography (ECG), has recently
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begun to move towards clinical adoption [1]-[3]!. Clinical
utility would be greatly enhanced by an understanding of
the robustness of these solutions. We address the problem of
uncertainty in this work. Specifically we treat one of the two
most common formulations of the inverse ECG problem, acti-
vation-based inverse ECG, in which cardiac electrical function
during the QRS complex is parameterized by the activation
times of equivalent electrical sources. This formulation requires
that we numerically solve a nonconvex optimization problem
that has many suboptimal local solutions. In this paper we de-
scribe a theoretical framework to relax the problem to a convex
one. We then illustrate that this convex relaxation allows us to
study parameter sensitivity and model inaccuracy in the orig-
inal problem. We want to emphasize that we are not presenting
here a new and improved inverse solution method. As will
become clear below, the method we present finds solutions that
are either not guaranteed (and are very unlikely) to be valid
solutions in the sense of the activation-based problem formula-
tion, or when modified to be valid, are not optimal solutions in
any meaningful way. Our goal rather is to provide a tool which
can help evaluate confidence in results of an important existing
method, both in terms of spatial location on the heart surface
and in terms of presence of possible pathologic conditions
which violate the underlying method’s basic assumption.

As is described in the sequel, the assumptions behind this
method and the nonlinear and nonconvex optimization it re-
quires make uncertainty quantification both particularly impor-
tant and particularly challenging. We consider here sensitivity
to two types of model assumptions. One we address in the con-
text of measured data obtained from a human subject, and the
other by means of simulated measurements and models, using
the ECGSIM software package [5].

In activation-based ECG, the reconstructed sources are typi-
cally distributed spatially on a model heart surface comprising
a union of the endocardial (inner) and epicardial (outer) sur-
faces of (typically) the ventricles [2], [6], [7]. (A 3-D formu-
lation has also been reported [8]-[10] but here we only treat
the more common surface-based formulation.) The physiolog-
ical assumption underlying this parameterization is that the sub-

'We note that a clinical device that images the electrical activity of the inner
(endocardial) heart surface from measurements with a catheter-based probe in-
troduced into the chamber has been in use for years [4]. We are not directly
concerned with such systems here.
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ject’s transmembrane potential (TMP) waveform morphology is
essentially uniform across this heart surface, and that propaga-
tion can be encoded in differences in TMP phase, referred to as
activation time. The advantage of activation-based formulations
is that the number of unknown parameters to be estimated is re-
duced to one per modeled heart surface location, and that this re-
duction is achieved by imposition of a strong electrophysiolog-
ically-inspired constraint. It has been reported to lead to greater
robustness to geometric errors and measurement noise in the
face of the sensitivity of this notoriously ill-posed problem [7].
The tradeoff is the uncertainty introduced by these model as-
sumptions. Its robustness to one key assumption was discussed
in [11]. Efforts to increase clinical acceptance of this technology
could be greatly aided by a method of identifying and character-
izing the uncertainty in a given solution. There has been other
work in characterizing uncertainty in cardiac electrophysiology
[12], [13], but to the best of our knowledge, there have not been
any published attempts to characterize the uncertainty in inverse
activation time estimates. The ability to characterize the spatial
distribution of this uncertainty could be especially useful, so that
clinicians could apply inverse solution results to guide diagnosis
or treatment with knowledge of where on the myocardial surface
these results can be expected to be more reliable and where they
might be more uncertain. Here, we present a general method for
exploring this robustness and give two specific examples.

In particular, as a consequence of its underlying model
assumptions, the activation-based formulation leads to a non-
linear, and nonconvex, optimization problem, which is solved
iteratively. These iterative solutions have been found to depend
strongly on a suitable initialization [2]. The existence of many
local minima and the resulting sensitivity to initialization com-
plicates achieving the goal of spatial uncertainty quantification.
In this work, we address the difficulties posed by the local
minima by formulating an inverse problem which is derived
from, and closely related to, the original problem but which
is convex and has a single global minimum. In particular we
present a convex relaxation of activation-based inverse ECG
obtained by relaxation of a single constraint. The relaxation
has a clear interpretation in terms of the electrophysiological
assumptions of the activation-based model, and its solution is
closely related to that of the original problem, but guaranteed to
be a unique and independent of initialization. We illustrate how
this convex relaxation can be used as a framework to explore
model inaccuracy and solution uncertainty.

More specifically, the two model assumptions we treat are
typical of activation-based methods. To describe these partic-
ular assumptions, first we quickly summarize some aspects of
the forward model upon which inverse solutions depend; more
mathematical detail is given below in Section II. The forward
model for activation-based formulations is an explicit mapping
of timing parameters (wavefront arrival, i.e., activation time) to
body surface potentials. This mapping is generally constructed
in two steps: first activation time parameters are mapped to time-
shifted fixed-morphology TMPs, then the TMPs are mapped to
body surface potentials. Since the first of these mappings is in-
herently nonlinear, iterative solutions typically minimize a regu-
larized nonlinear least-squares (NLLS) fit of the activation time
parameters to the measured body surface potentials, mediated

by the forward model, which “predicts” body surface potentials
from a given candidate set of activation times. The regulariza-
tion involved typically requires the choice of a scalar regular-
ization parameter.

NLLS algorithms typically depend on an initialization, and
for the problem at hand it has been found that the initializa-
tion strongly influences the specific locally-optimal minimum
to which the iterations converge. Thus, there has been consid-
erable recent effort towards devising more effective initializa-
tions [2], [14]-[18]. The fastest route algorithm (FRA) [2] is one
such initialization method that has been reported to be particu-
larly effective. It chooses an initialization from a collection of
candidate activation patterns that simulate the spread of activa-
tion wavefronts from one or more foci, based on the similarity
of their predicted body surface potentials to the measured ones.
Like all such initialization algorithms, FRA depends on some
parameter choices; for FRA this includes assumptions about
propagation speed in the myocardium. In this work, we look
at the spatial distribution of solution sensitivity across the heart
surface to this parameter choice. We show that our convex re-
laxation approach predicts and illuminates this sensitivity. We
compare this sensitivity to sensitivity of the convex solution to
regularization parameter choice to elucidate these relationships.
Thus, this example is a study of parameter robustness.

A second model assumption inherent in the activation-based
method is the uniformity of TMP morphologies. In settings
where pathology may be present, however, regions of the heart
with tissue damage or genetic abnormalities may have TMPs
with different (typically lower) amplitudes, for example due
to ischemia, Brugada syndrome, or arrhythmogenic right ven-
tricular dysplasia/cardiomyopathy [18]-[24]. When available
for segmentation, magnetic resonance imaging (MRI) or X-ray
computed tomography (CT) images of the heart may allow
identification of such regions, but this imaging may not always
be available, or it may not be possible to determine the true
amplitudes, or such regions may be missed in the images or ap-
pear only after the time of imaging. It turns out that our convex
relaxation specifically relaxes this TMP uniformity assumption.
As a result, as we show, it can lead to direct identification of
regions with lower TMP amplitude, and thus to localization of
model error in the activation-based results. Thus, this second
part of our study looks at detection of violations of model
assumptions.

We derive the convex relaxation by first reformulating the
NLLS problem in a way that allows us to identify mathe-
matically the precise source of the nonconvexity. Indeed we
show that there is a single nonconvex constraint implicit in the
method. This identification leads to a simple relaxation of that
constraint, resulting in a “close-by” convex problem which can
be easily solved using modern convex optimization algorithms,
leading to a unique minimizer of the relaxed problem. We then
suggest a simple method to find a “feasible” solution to the orig-
inal problem (one that obeys the original nonconvex constraint)
that is close to the global minimum of the relaxed problem.
We explore the relationships between the global minimum,
the nearby feasible solution, the FRA initialization, and the
resulting NLLS solution, by varying first one and then the other
of the two parameters described above—propagation speed in
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FRA initialization and local TMP amplitude. We also look at
sensitivity of the convex relaxation to regularization parameter
choice, which helps us to uncover solution uncertainties.

The optimization problem we propose in this work takes a
similar form to the one introduced by Messnarz et al. for TMP
imaging [25]. Although the authors of that work motivated
their approach as an attempt to ease the restrictions of the
activation-based inverse problem, they did not elaborate on an
explicit mathematical relationship between the two problems.
Since here we derive the convex relaxation directly from the
activation-based problem, we are able to study the activa-
tion-based problem directly.

In Section II, we review the activation-based inverse
problem and its initialization with the FRA. We also show
how the NLLS problem can be restated within a constrained
optimization framework and that it has a single nonconvex
constraint. In Section III, we use that framework to formulate
a relaxation of the NLLS problem with a convex objective
function and convex constraints, and then present one approach
for extracting activation times from its solution. Experiments
are presented in Section IV, along with a brief description of
results, which are then discussed in greater detail in Section V.

II. BACKGROUND

In this section, we review how the activation-based inverse is
posed as an unconstrained optimization problem. We establish
our framework by showing how the original NLLS problem
can be equivalently expressed as a constrained optimization
problem. We then use this framework to show that the optimiza-
tion problem is nonconvex, leading to the convex relaxation
proposed in Section III.

For the remainder of the paper we assume that our electrocar-
diographic measurements are regularly sampled in time and we
only consider those samples that correspond to the QRS com-
plex of a single heartbeat. At any of these sample times, the
linear relationship between a vector of body surface potentials,
y € RM, and a vector of TMP sources on the heart, € R,
is y = Ax, where A is the forward matrix that results from
assuming that the volume conductor model of both the torso
and myocardium are homogeneous and isotropic in conductivity
[26], [27], and then solving a quasi-static approximation of the
linear part of the forward problem on spatially discretized heart
and body surface domains [16], [17], [28]. When TMP ampli-
tudes are assumed to be known (represented here by a vector
v), we assume that these have been multiplicatively absorbed
into the linear forward model by the substitution A «+ Adiag(v)
(where diag(v) places the elements of the vector v in the main
diagonal of a square matrix). As a result, all “normal” TMP
waveforms are assumed to have unit amplitude.

A. Constrained Optimization Problem

To reformulate the NLLS problem as a constrained optimiza-
tion problem, first we state the NLLS problem itself, and then
reformulate it in terms of an alternative set of constraints to de-
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scribe the nonlinearly parameterized waveforms. To start, a dis-
crete time unit step function, (%), is defined piecewise as

u(t) = {(1)

The nonlinear TMP source parameterization is such that
every equivalent source, x,,, has the waveform

t<0
t>0.

ra() = u(t - 7.)

where 7, is the activation time. We use x(#; 7) to denote the
parameterization of TMP sources x(t) = [z1(¢) -+ zx(#)]T
by activation times 7 = [r1 --- 7x]". Then the original NLLS
problem is

miniTmize Z ly(t) — Ax(t; 7)||3 + M| Lx(t; 7)]|2
t

where L is a Tikhonov regularization matrix, A is the regulariza-
tion parameter, and the optimization variables are the activation
times. The Gauss-Newton algorithm and similar nonlinear least
squares solvers require that the objective function is differen-
tiable, so a smoothed step function (with a specified width for
the smoothed step transition) is typically used and the resulting
approximate version of the original NLLS problem is solved in-
stead [11], [29].

We can also define the set of discrete-time step functions by
mathematically describing the set of constraints that they must
obey. To accomplish this, let QRS correspond to the sample
times t = 1,....7, and define a source matrix X that con-
tains all of the temporal samples of each TMP, such that X, ; =
2, (t). Key characteristics of this matrix, which reduce its de-
grees of freedom to specification of the activation times, are
that its element values are either 0 or 1, are nondecreasing as
the column index increases, are 0 in the first column, and are 1
in column 7'.

To define constraints for the reformulated optimization
problem, we create sets whose elements must obey these key
characteristics. In anticipation of the convex relaxation that we
will describe in the sequel, let us define the two sets, R and &,
such that R will be known as the relaxed constraint set, and
R N & will be known as the full or exact constraint set. Let D
be a first-order temporal differencing matrix (i.e., D is 7 x T
with 1s on the diagonal and —1’s on the subdiagonal). If we
define the sets R and £ as

R:{XEIR(NXT)OSXSI, XDT >0,

XD gy = 1(Nx1)}
E={X e R | t2(XTX) = 1€VX1)X1(T><1)}

(where 1(;y ;) denotes a ¢ X j matrix of ones) then X € RN E.
Thus, we can express the original NLLS problem as a con-
strained optimization problem

Y — AX [ + A|LX |7
subject to X € RNE&

minimize
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Fig. 1. Example TMP waveforms: the NLLS problem can be equivalently re-
stated as a constrained optimization problem whose constraint set, R N &, con-
sists of TMPs resembling the blue waveform shown here. On the other hand,
an example of a similar waveform in the set R (but not in R N &) is shown in
red. In general, waveforms in R may increase from 0 to 1 more gradually than
those in R N E.

where the optimization variable is the matrix X and ||-||r de-
notes the Frobenius norm. As shown in the Appendix, with these
constraints, the only feasible waveforms have the shape of a
TMP and thus the only free variables are the timing of their
() — 1 transition, that is the activation times. In other words, the
intersection of R and £ contains only valid TMP waveforms,
and all valid TMP waveforms are in that same intersection. In
Fig. 1, we show an example of one such waveform from the
exact constraint set, i.e., X € R N &, in blue, and, to illustrate
the relationship between the sets, an example from the relaxed
constraint set, R, in red. The red curve is in fact the result of
solving the activation based problem over a domain consisting
of only the set R, as we describe in the sequel. Note that it has
all the characteristics of a valid model TMP except the jump
discontinuity. The set £ imposes that constraint, so that its in-
tersection with R contains only TMP waveforms like the blue
curve in Fig. 1.

B. Nonconvex Optimization Problem

Now we can show precisely how the constrained optimiza-
tion problem in the previous section is nonconvex. A convex
optimization problem is one that can be expressed as the min-
imization of a convex function whose domain is a convex set
[30]. The objective function in our problem

FX) =Y — AX[g + M LX ||

is the sum of two convex quadratic functions, which is also
convex. The intersection of the constraints of the optimization
problem define the domain of the objective function. In the
problem at hand, the set R is convex because it is defined as
the nonempty intersection of linear equality and inequality con-
straints which are all convex. However, the set £ is defined by a
nonconvex quadratic equality constraint and the constraint set,
R N &, is discrete and therefore also nonconvex [30]. Conse-
quently, the constrained optimization problem, which is equiv-
alent to the NLLS problem, is nonconvex.

C. Fastest Route Algorithm

The FRA is an initialization method for the NLLS problem
which we use in our experiments to explain the results of the ro-
bustness analysis method proposed in the sequel [18]. The FRA
produces an initialization for the NLLS problem by synthesizing

wavefront propagation patterns originating from one or more
foci and choosing the most suitable one. We only describe the
most basic form of the method here, which is sufficient to un-
derstand the algorithm’s dependence on the parameters which
we will vary in Section IV, and refer the reader to the literature
for a more extensive description [2].

Given a tessellated surface representation for the epicardial
and endocardial surfaces, the FRA forms a graph data structure
whose vertices are the corners of the triangles in the surface,
with vertices connected by edges if they are part of the same
triangle, and whose edge weights are the Euclidean distances
between connected triangle corners. The FRA supplements the
set of edges of this graph with transmural edges that connect
vertices on the epicardial surface to nearby vertices on the en-
docardial surface. Existing edge weights are then replaced by
“propagation times,” computed by dividing the edge distances
by the propagation velocities along each edge. These propaga-
tion velocities are a set of parameters that must be specified a
priori. The shortest path algorithm is then applied to the graph,
which computes the minimum travel time between every pair of
vertices in the graph, effectively yielding activation times for a
set of candidate propagation patterns, each originating from one
of the vertices in the tessellated surface.

In the most basic form of the algorithm, the forward problem
is solved for each such propagation pattern and its correlation
with measured body surface potentials is computed. The FRA
then chooses as its initialization the activation times for the
propagation pattern with the highest correlation. In the full al-
gorithm, the set of propagation patterns is extended to simulate
propagation originating from more than one site.

III. CONVEX RELAXATION OF THE ACTIVATION-BASED
FORMULATION

We formulate a convex relaxation of the original optimization
problem by relaxing the domain of the problem to a convex set.
Once the resulting convex optimization is solved, we will have
found a unique global solution to the relaxed problem but, in
general, it will not be feasible according to the original problem
specification. In other words, it will not be a set of valid model
TMP waveforms. However, one can always look for a set of
valid waveforms which is “close” to that solution. We describe
one approach to find such a feasible solution, which we will use
in the sequel. This approach may be used to extract activation
times or, if desired, used to initialize the original NLLS problem.

A. Convex Relaxation

A convex relaxation of an optimization problem removes
nonconvex constraints or terms in the objective function or
approximates them with convex ones [30]. In Section II-B, we
narrowed the nonconvex part of the activation-based inverse
problem to a single equality constraint. Our convex relaxation
of this problem simply removes the restriction to the nonconvex
constraint, £, and keeps the objective function, f(X), along
with the remaining convex constraint set, 2. Therefore, the
convex relaxation is

minimize

F(X)

subject to X € R.
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Nearest Neighbor to Convex Relaxation Solution

ms

5 105 341 559 705 85

FRA-initialized Solution

W |

7.92 28.1 483 78.5 98.7 118.8

Fig. 2. Healthy male subject: nearest neighbor activation times obtained from the convex relaxation solution (left), and activation-based inverse solution obtained
by initializing with the fastest route algorithm (right). Each column shows an isochronal map of the full ventricular heart surfaces (top row) along with a cutaway
view to better show the endocardial surfaces (bottom row). We show each solution from two views, rotated approximately 180°, and have labeled the locations of
the LV and RV, respectively, to indicate the orientation of the heart in each view. Color shows activation time relative to the start of the QRS complex.

This problem can be solved globally by any number of nu-
merical optimization methods regardless of initialization. For
this work, we have developed our own custom solver based on
the alternating directions method of multipliers (ADMM) [31]
which we have validated against the well-known CVX mod-
eling environment [32]. We note that, in our experience, our
method is two orders of magnitude faster than straightforward
application of CVX for this problem. A detailed convergence
proof and analysis of the ADMM can be found in [31].

Theoretically, if the solution X* to the convex relaxation is
feasible for the original problem (i.e., it satisfies X* € &), it
is the global solution to the nonconvex problem as well. How-
ever, as noted, in general this is not the case, and the value of
the objective function, f(X*) for the convex relaxation is in-
stead a lower bound on the objective function values over the
nonconvex constraint set, ® N &£. That is, if X* is infeasible,
the objective value for any feasible point in the nonconvex set
is guaranteed to be greater than f(X ™).

B. Nearest Feasible Neighbor to Convex Relaxation Solution

When the convex relaxation solution is infeasible for the orig-
inal problem, we can quantify its infeasibility by measuring the
degree to which the nonconvex constraint has been violated.
Going one step further, we can apply the violated constraint after
solving the convex relaxation. This can be done, for example,
by finding the nearest neighbor to the convex relaxation solu-
tion, X*, in the original feasible set, ® N £. Such an approach
does not guarantee an optimal solution to the NLLS problem, in
general, but provides a point of comparison for solutions of the
original NLLS problem.

The nearest feasible neighbor is found by solving

111ini%nize | X* - X2

XeRNE.

subject to

This problem is row-wise separable, meaning that we can
solve for each row of X independently. In other words, we can
find the closest valid TMP to the convex solution at each heart
surface node separately. Doing so involves testing a small set
of possible waveforms to find the minimizer. Specifically, for
each row of X, we consider each of the 7" possible step func-
tions shifted to sample times and choose the one that minimizes
the sum of squared differences from the corresponding row of
X*. Then the activation time for each row is the phase shift from
which the minimizing waveform was generated.

IV. EXPERIMENTS

In this section, we describe our experiments on both mea-
sured and simulated electrocardiographic data and present re-
sults. Discussion of those results is deferred to the following
section. First, we present a case of data measured from the body
surface of a healthy male subject, whose heartbeats are expected
to be normal. Second, we consider a synthetic case created using
ECGSIM where the model assumptions of the original NLLS
problem have been violated by introducing heterogeneous TMP
waveform amplitudes.

A. Healthy Male Subject

Our first experiment uses data recorded from a healthy male,
40 years old, whose heartbeats are expected to be normal. Body
surface potentials were measured from 65 electrodes, sampled
at a rate of 1000 samples/s. Segmentations of MRI images of
the subject’s torso were used to discretize the surfaces of the
heart, lungs, and torso, and numerically solve the linear part of
the forward problem using a boundary element method [33]. We
first computed nominal solutions, that is solutions using a “stan-
dard” set of parameters used to estimate normal activation in
previous studies, as specified in the next few sentences, to both
the FRA-initialized NLLS problem and the nearest-neighbor
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Nearest Neighbors to Convex Relaxation Solutions

Mean Activation Times Standard Deviations

9.62 35.0 65.4 1.00 8.82 18.2
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Standard Deviations
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Fig. 3. Isochronal maps of means and standard deviations of activation times: for a number of assumed surface propagation velocities, 0.6-1.4 m/s, the FRA was
used to initialize and then solve the NLLS optimization problem. The mean and standard deviation of the resulting sets of activation times (FRA initializations and
FRA-initialized solutions) for each spatial location were computed. The spatial distribution of these means and standard deviations are shown as isochronal maps
(columns 1 and 2: FRA initializations, columns 3 and 4: FRA-initialized solutions). Additionally, the convex relaxation was solved for a number of regularization
parameters, A = (0.1 & 0.01, and nearest neighbor activation times were computed. The means and standard deviations of these activation times were computed
and are also shown as isochronal maps in columns 5 and 6. The top two rows of isochronal maps show the ventricles from a view that is rotated approximately 180°
from the view shown in the bottom two rows. Labels indicate the orientation of the LV and RV above and below the dashed line. Rows 1 and 3 show isochronal
maps of the epicardial surface, and rows 2 and 4 show cutaway views of the endocardial surfaces.

convex relaxation problem. Specifically, for FRA we used typ-
ical parameter values for propagation speed: 0.8 m/s for sur-
face propagation and 40% of that value, 0.32 m/s, for transmural
propagation (i.e., in the direction normal to the surface) [2]. The
convex relaxation was solved using our custom solver and ac-
tivation times were obtained using the method in Section I1I-B.
Both methods used A = 0.1 for the regularization parameter.
In Fig. 2, we show isochronal maps of the activation times re-
sulting from both methods. We show four maps for each case:
the top two show epicardial surfaces and the bottom two a cut-
away view revealing the chamber walls. For each surface we
show two views, rotated approximately 180° from each other, so
that both left ventricle (LV) and right ventricle (RV) epicardial
freewalls, and the corresponding chamber walls, can be seen.
The LV and RV are noted on the plots for greater clarity. Color
shows activation time relative to the start of the QRS complex,
which was determined manually from the waveform of the rms
values of the body surface potential maps.

To explore the dependence of the NLLS problem on initial-
izations, we computed nine different FRA initializations with
surface propagation velocities chosen in increments of 0.1 m/s
from the interval [0.6, 1.4] m /s, while keeping the surface/trans-
mural velocity ratio constant. The means and standard devi-

ations of the activation times of the equivalent sources were
computed over the set of FRA initializations, and are shown as
isochronal maps in the first two columns of Fig. 3. Each ini-
tialization was supplied to the NLLS solver to find its corre-
sponding local minimum, and again means and standard devi-
ations over the initializations were computed, as shown in the
middle two columns of Fig. 3. As in Fig. 2, every epicardial
view is accompanied by a cutaway view below it. Results shown
above and below the dashed line are rotated approximately 180°
from each other, with the orientation of the heart indicated by
the placement of the “LV” and “RV” labels.

To induce variability in the convex relaxation solutions, we
computed solutions using 50 regularization parameters regu-
larly sampled from the interval [0.09,0.11], centered on the
nominal value of 0.1 used initially and also in all NLLS solu-
tions. Nearest neighbor activation times were computed from
these solutions, and maps of their means and standard devia-
tions over the regularization parameter values are shown in the
last two columns of Fig. 3. We also computed NLLS solutions
using each of those regularization parameters, all starting from
the same FRA initialization (using 0.8 m/s for surface propa-
gation and 0.32 m/s for transmural propagation), and computed
their means and standard deviations. In this case, of the 1200
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Standard Deviations
15.8
ms

LV RV

1.00 33.5

FRA-initialized Solutions
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Fig. 4. Standard deviations of activation times with a global colormap: stan-
dard deviation maps from the first row of Fig. 3 are shown here again, but
rescaled to a global colormap.

modeled sources on the heart surfaces, 1198 of them had stan-
dard deviations below 0.04 ms, and the remaining two had stan-
dard deviations of 0.83 and 3.8 ms. Maps of these results were
omitted from Fig. 3 because these values were much smaller
than the other induced variabilities and thus did not provide any
insights into the sensitivity of the problem to this type of pertur-
bation.

Finally to emphasize the difference in scales between the dif-
ferent standard deviation maps, we have selected a subset of the
standard deviation maps to show in a global colormap in Fig. 4.

B. Synthesized Low-Amplitude Transmembrane Potentials

Our second case consists of simulated electrocardiographic
data using a computerized model of a 22-year-old healthy male,
distributed with the ECGSIM software package [5]. We reduced
the TMP amplitude parameter of this model by 40% of the de-
fault values in a region on the epicardial surface of the right
ventricle near the apex. This region can be clearly seen in the
“Ground Truth” isopotential map in Fig. 5, which shows the
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end of QRS when all sources have activated. The goal was to
mimic one electrocardiographic effect of an ischemic zone [34].
Obviously the heterogeneity of the TMP waveform amplitudes
after this modification violates one of the default assumptions of
the original NLLS inverse problem formulation. Using the for-
ward model provided with ECGSIM, we computed potentials
at 65 body surface electrodes from the TMPs and added pseu-
dorandom noise with an average signal-to-noise ratio of 30 dB
with reference to the QRS complex. The convex relaxation was
solved using this data and then compared to the ground truth
from which it was synthesized. Fig. 5 shows isopotential maps
of the convex relaxation solution and ground truth at the same
sample time (t = 103 ms) at the end of the QRS complex as
well as examples of normal (blue, left) and low-amplitude (red,
right) waveforms from the ground truth and the convex relax-
ation solution. We also designed a simple classifier of “low-am-
plitude” and “normal” sources for this particular experiment by
thresholding the reconstructed source amplitudes of the convex
relaxation solution at t = 103 ms, the same time as the snap-
shot shown in Fig. 5. We tested thresholds in the interval, [0, 1],
of normalized TMP values, and compared the classification re-
sults with the ground truth on a source-by-source (or, equiva-
lently, node-by-node) basis. The results of using this approach
as a “low-amplitude” source detector over the range of possible
thresholds are shown in Fig. 6 as a receiver operator character-
istic (ROC) curve, which shows the performance trade-off in
terms of the true and false positive rates.

V. DISCUSSION

Our results suggest that solutions to the convex relaxation
formulation are closely related to those of the original NLLS
problem and can be used to study its solution uncertainties and
to identify violations of its underlying model assumptions.

For example, in Section IV-A, we compared the NLLS solu-
tion to the convex relaxation in the case of a healthy male sub-
ject who can be expected to exhibit normal sinus rhythm prop-
agation. In Fig. 2, we show isochronal maps of the activation
times extracted from the convex relaxation solution, by finding
its nearest feasible neighbor, along with the NLLS solution, ini-
tialized by the FRA, where both methods used the same regu-
larization parameter (A = 0.1). Both the nearest neighbor to the
convex relaxation solution and NLLS solution showed earliest
activation sites on the endocardial surface of the septum in the
LV, closely followed by the RV septum and the endocardial LV
free wall (see bottom row of isopotential maps in Fig. 2). These
sites are in agreement with those reported in the classic study
of Durrer et al. [35]. In addition, both methods find early epi-
cardial breakthroughs, but they differ substantially in their sizes
and shapes. Although the NLLS and nearest neighbor convex
relaxation solutions are not the same, their similarities suggest
that they are mathematically “close” and therefore also close to
the convex relaxation solution.

We then considered the dependence of this result on the sen-
sitivity of the FRA initialization to assumed propagation veloc-
ities. To try to separate sensitivity of the initializations them-
selves from sensitivity of the NLLS algorithm to initialization,
we presented the activation time means and standard deviations
of both the initializations (Fig. 3, columns 1 and 2, respectively)
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Fig. 5. Synthesized low-amplitude transmembrane potentials: A comparison of the convex relaxation solution with the ground truth, simulated with ECGSIM.
Example TMP waveforms are shown in the top row, and isopotential maps from the end of the QRS complex (t = 103 ms) are shown in the bottom row. The
example TMP waveforms from the convex relaxation solution, plotted as blue (normal) and red (low-amplitude) curves, are from sources located at the blue and
red dots, respectively, on the isopotential map of the convex relaxation solution. The equivalent locations on the ground truth isopotential map have been marked
using black dots, with their corresponding normal and low-amplitude TMP plots shown in black.
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Fig. 6. Detection of synthesized low-amplitude transmembrane potentials: the
convex relaxation solution at ¢ = 103 ms, shown in Fig. 5, was thresholded at
different values within the range, [0, 1], of normalized TMP values to classify
reconstructed sources as either “low-amplitude” or “normal.” Comparing these
results to the synthesized ground truth, also shown in Fig. 5, the ROC curve was
computed by varying the threshold of the detector over the full range, and shows
the resulting relationship between the false positive and true positive rates for
detecting “low-amplitude” sources.

and NLLS solutions (Fig. 3, columns 3 and 4). If the NLLS
method were robust to the range of initialization variation tested,

the standard deviations shown in column 4 of this figure would
be quite small, but this is clearly not the case. Indeed, the sim-
ilarities between columns 1 and 3 suggest that the means of
the solutions remain largely unchanged from those of the ini-
tializations, both in terms of their spatial distributions and their
values. Furthermore, columns 2 and 4 reveal that the standard
deviations also change very little after NLLS optimization, with
the maximum standard deviation reduced only moderately, from
33.5 ms to 27.2 ms. This is direct evidence of the sensitivity of
the NLLS formulation to initialization, and therefore to the FRA
model’s assumed propagation velocity.

Another interesting finding is that this sensitivity is highly
variable over the heart surface, since some spatial regions of
both the FRA initializations and the FRA-initialized solutions
exhibited much smaller standard deviations than others. On both
the endocardium and epicardium, the standard deviations near
the apex were relatively low, whereas those near the base were
higher.

Because the convex relaxation solution is independent of ini-
tialization it may be more useful for characterizing the intrinsic
uncertainty of the NLLS solution, without compounding varia-
tion in initialization with intrinsic uncertainty in the rest of the
model. To simulate this uncertainty, we studied its dependence
on the regularization parameter value. The means and standard
deviation maps of the nearest neighbor activation times, over
the range of regularization parameters described, are shown in
columns 5 and 6 of Fig. 3. We note that regions near the apex
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have lower standard deviations than those near the base. There-
fore, it is not surprising that the earliest activations in the septum
and LV free wall which are near the apex are similar in the nom-
inal solution for A = 0.1 (shown in Fig. 2) and the mean solu-
tion in column 5 of Fig. 3). Interestingly, the FRA-initialized
results (in both Figs. 2 and 3) are also similar to those nearest
neighbor means. This reinforces the relative stability of the un-
derlying activation-based formulation in these regions. On the
other hand, the high standard deviations of the nearest neighbor
solutions near the base suggest considerably greater uncertainty
in any solution to this problem in that region (e.g., the early
activations near the base on the epicardium). This stems from
the observation that the two different perturbation analyses were
performed independently on different sets of variables, yet re-
sulted in similar spatial patterns of solution variability. Thus,
using the convex relaxation we are able to predict and better
understand this variability in the NLLS problem. We note that
here the NLLS problem is not sensitive to regularization param-
eters, because there is so little change from initializations to so-
lutions. As reported in Section IV-A, the perturbation analysis of
the NLLS solution over regularization parameters yielded stan-
dard deviations below 0.04 ms for all but two of the modeled
heart surface sources. Our results indicate that this sensitivity is
absorbed into that of the initialization instead.

In the experiment described in Section IV-B, we also con-
structed a simulation in which the NLLS model assumptions
about TMP amplitudes were violated. We chose this partic-
ular modification to mimic one electrocardiographic effect of
ischemic zones. We solved the convex relaxation using these
simulated body surface measurements without prior knowledge
of the nonuniformity of the TMP amplitudes. We note that,
despite the violation of its underlying assumption, it may be
possible for a NLLS solution to correctly estimate activation
times under such circumstances. However, such a solution
may not be clinically useful because it is not sensitive to the
physiological irregularity due to the strict constraints it places
on true waveform amplitudes. When we solved the convex
relaxation optimization, we were able to detect evidence of
the presence and location of the lowered TMP amplitudes.
Fig. 5 reveals that, although the constraints force the signal to
reach an incorrect maximum amplitude at the very end of the
QRS complex, the reconstructed waveforms show a sustained
nonzero amplitude lower than that maximum until just before
the QRS endpoint. Therefore, it may be possible to identify and
localize an ischemic zone by inspecting the convex relaxation
solution at just a few samples before the end of the QRS
complex (when most tissue is expected to be activated) for
regions of low amplitude. The isopotential map of the convex
relaxation solution in Fig. 5 is an example of what one would
see using such a strategy. Although our result does not exactly
identify the boundaries and values of the ground truth ischemic
zone, the broad region with lowered TMP amplitudes in the
convex relaxation is roughly collocated with the ground truth
region at its center, and therefore may be useful for localization
of these inaccurate model assumptions. To test this, we built a
simple “low-amplitude” source detector based on thresholding
the reconstructed values, which we described in Section IV-B,
and whose ROC curve over the range of possible thresholds is
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shown in Fig. 6. A perfect true positive rate could be achieved
with a false positive rate of less than 2.5% by classifying
sources with normalized TMPs below a threshold of 0.5926
as “low-amplitude” (as compared to the ground truth value of
0.6). This suggests that localization of low-amplitude TMPs
indeed may be possible, although a more extensive evaluation
on a larger number of cases would be necessary before making
any stronger claims. An interesting implication of these results
is that it may be possible to estimate ischemic zones using
only data acquired during the QRS complex, whereas typical
analysis of ischemia is predominantly performed using the
ST segment. It may also be possible to improve localization
by modeling the amplitudes of the roughly-localized ischemic
zone in this solution, adjusting the assumed waveform am-
plitude endpoints accordingly, and then rerunning the convex
relaxation solution.

The strong spatial structure of solution uncertainty identified
by our first set of results was not necessarily expected, and may
bear further investigation. It is not clear whether this is a result
of loss of geometric accuracy in the anatomic model, or change
in relative complexity of the propagation pattern towards the
end of QRS, or some combination of both, or if indeed other
factors are involved as well.

Also, to date we have only applied the convex relaxation ap-
proach to analysis of depolarization during QRS. Since NLLS
activation-based methods, with minor modifications, have been
used to identify recovery (repolarization) timing as well [2], we
intend to attempt to extend the convex relaxation method for
the recovery problem as well. We also plan to investigate pos-
sible connections between the spatial dependence of solution
uncertainty, as characterized by our method, and the structural
accuracy of our geometric representations of the heart and body
surfaces.

Finally, activation-based methods have recently been shown
to be reasonably robust even when much smaller sets of elec-
trocardiographic leads are used [36]. Whether the convex relax-
ation is similarly able to extract activation timing information
from smaller lead sets is still an open question.

APPENDIX
PROOF OF EQUIVALENCE OF CONSTRAINT SETS

Let R and & be sets as defined in Section II-A. In addition,
let X be a set defined as

X = {Xe RYXT | Xy, o = u(t — 70), ...
LVl T, T, n:l,...,N}.

Then to prove that ¥ = RNE, we must show that ¥ C RNE
and X D RnNE.

X C RnNé&: Let X € X. Then, by definition, 37 =
[T1,. ... TN]T s.t. X, = u(t — 7,). Because every value of
X, iseither Oor I, then 0 < X < 1.In addition, from its def-
inition, we have that V7’ and tg < #1, u(to — 7) < u(t1 — 7'),
and it is straightforward to verify that X DT > 0. We also know
that V1 < 7/ < T, u(l —7') = Oand u(T — 7') = 1,
and therefore X DTl(Txl) = I(nx1). Finally, to show that
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tr (XTX) = 1(TTX 1 X L(xx1), We begin by restating this con-
dition using summation notation

N T N T
2
DIPILTEDIP IR
n=1t=1 n=11{=1
N T
2 -
E E X’n,,t_)&n,t :0
n=1 t=1

To verify this condition, we consider the two applicable cases

X, =0=02-0=0
Xpe=1l=1*"-1=0.

Then because zn't 0 = 0, the condition is verified. Finally,
because we have verified that an arbitrary X € X’ also satisfies
X € RN &, we have shown that ¥ C RN €.

X D RNE: Let X € RNE. Then we must show that 37 s.t.
X =u(t—7).Given0 < X <land), , X7, — X, =
0, we have already shown that X,,; = 0 or X, = 1 wil
satisfy these conditions. In all other cases, 0 < X,,; < 1, and
X2, < X,4, so it follows that X2, — X, , < 0.If In/, ¢/
st.0< Xy < 1,thend, , X2, — X, < 0, and because
this cannot be the case, we have shown that it is necessary for
X, € {0,1}. This is also sufficient to show that R N & is a
discrete set.

Now we consider the condition that X DT > 0, which means
that Vi < 41, X, ¢, < Xy ¢, - Then if X, ;,, = 0, our previous
result requires that X,, ;,, = 0. Similarly, if X,,,, = 1, it is
required that X,, ;,, = 1. In other words, we have shown that
every row of X must satisfy one of three conditions.

1) Constant row of zeros: all of its values are equal to 0.

2) Constant row of ones: all of its values are equal to 1.

3) Phase-shifted unit step function: 37,, such that for¢ < 7,
all values are equal to 0, and for ¢t > 7,, all values are equal
to 1.

The last of these conditions may be equivalently restated as
X'n,t = u<t - Tn)-

Also consider that XDTl(Txl) = I(nx1), which may be
equivalently restated as Vn, X, r — X,,1 = 1. Clearly, again
given the previous result, the only way this can be satisfied is if
X, 7 = 1and X,,; = 0. In other words, this says that every
row of X must start from 0 in the first column and end with 1
in the last column. This rules out constant-valued rows of zeros
or ones, and the only remaining possibility is the condition that
the values of X may be parameterized as X, ; = u(t —7,,) with
1<z, <T.

This shows that X € X and therefore ¥ D RN E. [ |
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