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ABSTRACT

The dynamical structure of electrical recordings from the

heart or torso surface is a valuable source of information

about cardiac physiological behavior. In this paper, we use

an existing data-driven technique for manifold identification

to reveal electrophysiologically significant changes in the

underlying dynamical structure of these signals. Our results

suggest that this analysis tool characterizes and differentiates

important parameters of cardiac bioelectric activity through

their dynamic behavior, suggesting the potential to serve

as an effective dynamic constraint in the context of inverse

solutions.

Index Terms— Manifold Learning, Differential Geome-

try, Cardiac Dynamics, Bioelectric Signal Processing

1. INTRODUCTION

There are several current clinical and research problems in

which improved automated analysis of multichannel cardiac

electrical recordings would be desirable. One example is de-

ducing propagation parameters and tissue health from multi-

electrode catheter electrograms during cardiac intervention

procedures. Another is the inverse problem of electrocardio-

graphy, that is, localizing features of cardiac electrical activ-

ity from recordings by body surface electrodes or non-contact

intra-chamber probes. A third is improving our understand-

ing of the basic electrophysiology of disease states such as

myocardial ischemia.

One major source of information in such recordings is the

dynamical structure embedded in relationships between time

waveforms, which stems from the electrophysiological con-

straints of cardiac bioelectric behavior. In particular, with

data simultaneously recorded from many electrodes (typically

10’s to 100’s of electrodes may be used), the high data di-

mension can obscure lower-dimensional dynamical structure
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stemming from these constraints. Mapping (i.e. visualiza-

tions of these signals mapped to computer representations of

the original anatomical surfaces) is commonly used to inspect

and visually analyze the recorded data for such interdepen-

dencies. However, visual inspection is inherently subjective,

and because of intrinsic variability in patterns from beat to

beat, condition to condition, and individual to individual, it is

a considerable challenge to identify subtle differences across

multiple recordings.

In this paper, we start from the supposition that these sig-

nals follow trajectories traversing a much lower-dimensional

nonlinear manifold in the measurement signal space. In par-

ticular, it is well known that electrical activity of the heart

can be modeled by nonlinear reaction-diffusion partial differ-

ential equations (PDE) [1]. Our assumption of manifold be-

havior in the measured signals derives from this fact, but we

avoid positing and solving an explicit PDE model. Instead we

present an application of an existing data-driven technique for

manifold identification and show how it can be used to reveal

electrophysiologically significant changes in the underlying

dynamics. We note that linear methods – mainly principal

component analysis (PCA) – have long been used to extract

dominant features of cardiac map data [2, 3], but are intrinsi-

cally unable to capture the nonlinear features that are critical

to cardiac electrophysiology (e.g. refractory periods imply in-

tersecting cardiac wavefronts annihilate rather than superim-

pose). A more recent example of a linear approach is the

Isotropy method [4], which assumes statistical separability of

spatial and temporal behavior and then uses a linear decom-

position to find the dominant basis of the temporal correlation

on the heart directly from body surface potentials.

In contrast, the method presented here directly identifies

the dominant underlying nonlinear structure. Although there

is no guarantee that this structure is electrophysiologically

meaningful, we believe that the results we present here pro-

vide convincing initial evidence that this approach may be a

compact and powerful way to identify those dynamics. We

suggest that this method is not only useful in its own right to

characterize and distinguish important aspects of cardiac bio-

electric activity, but has the potential to serve as an effective

dynamic constraint in the context of inverse solutions.
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Fig. 1. Heart Signal Manifolds: three orthogonal views of points in the first three relevant coordinates of Laplacian eigenmaps

from a collection of canine ventricular surface (epicardial) recordings during QRS. The mapping of each time instant in each

beat is represented as a single red sphere.

2. BACKGROUND AND METHODS

We first establish our nonlinear dynamical systems model,

then describe the manifold learning algorithm employed and

how we use it to reveal cardiac dynamics.

2.1. Nonlinear Dynamical Systems

We start with a combined model for time-variation of cardiac

electrical potentials and observations on a remote surface (for

convenience here we assume this is the outer surface of the

body) using a standard nonlinear state-space formulation:

ẋ(t) = f(x(t)) (1)

y(t) = Ax(t) + η(t) (2)

where x describes the state of the electrical potentials on the

relevant heart surface at any time t, f(·) describes their time

evolution as governed by cardiac electrophysiology, A con-

tains a numerical solution to Laplace’s Equation (the relevant

PDE) and is thus the “forward model” relating heart surfaces

potentials to body surface measurements, and η is IID noise.

A is ill-conditioned as a consequence of the ill-posedness of

the associated inverse problem [5]. Similar models have been

used in the context of Kalman filtering approaches, either with

a linear state evolution model [6, 7] or with our own group’s

Wavefront Based Curve Reconstruction method [8]. However

here, rather than posit an explicit state evolution model, we

infer its dynamic properties from the differential geometric

structure of heart surface or body surface measurements.

Since f defines a nonlinear dynamical system, if f is a

diffeomorphism, then at each time instant the heart signals lie

on a smooth manifold N such that x(t) ∈ N ⊆ R
N . Despite

A being ill-conditioned, if it is also a diffeomorphism, then

the torso signals (perturbed by noise) also lie near a smooth

manifold M ⊆ R
M .

2.2. Manifold Dynamics using Laplacian Eigenmaps

In recent years, the problem of learning manifolds from data

has been an active area of research. Here we use a well-

known method called Laplacian eigenmaps for this purpose

[9]. Specifically, given a set of points P = {pk}K
k=1, we have

implemented the following version of this algorithm:

1. Calculate a matrix of pairwise distances between points

Ri,j = ‖pi − pj‖2 and choose a tuning parameter, σ
(here set equal to the mean of R’s lower triangle).

2. Calculate a matrix Wi,j = exp(−R2
i,j/σ2) and a de-

gree matrix D = diag(
∑

i Wi,:) (where Wi,: denotes

the i-th row of W ).

3. Solve for the singular value decomposition of D−1W =
USV ′. The columns of V are the new coordinates for

the input points. That is: row i of V contains the

Laplacian eigenmaps coordinates of the point pi.

The singular values rank the significance of the new coordi-

nates. The first column is typically discarded because it is

constant. Here we refer to coordinates starting from the sec-

ond column of V as the “relevant coordinates”.

To apply this method to high-dimensional cardiac elec-

trical signals, measured either on the surface of the heart or

on the surface of the torso, we simply define our points P
as a collection of K time samples pooled across multiple

beats. That is, for heart surface measurements we use P =
{x(tk)}K

k=1, and for body surface measurements we use y(tk)
instead of x(tk). In what follows, we report our results by vi-

sualizing the first three relevant coordinates of the resulting

Laplacian eigenmaps. In general, it may be useful to include

more than just the first three in an analysis. Since we can trace

each point on the manifold to its pre-image in the measure-

ments, we can easily isolate subsets of P , such as recordings

from a particular heartbeat or pacing site.

3. EXPERIMENTS

For our experiments, we applied our analysis technique to two

datasets, one recorded on the ventricular surface of a canine

heart, and the other on the torso of a human subject.
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Normal beats Ischemia Intervention 5 Ischemia Intervention 8

Fig. 2. Ischemia on Manifolds: comparison of activation times and trajectories on the manifold for three stages of a supply

ischemia experiment. A total of 10 ischemia interventions were conducted, from which we show (left to right): normal beats,

intervention 5, intervention 8. For each stage, the top row shows two opposite views of the average activation times as isochronal

maps on the epicardial surface of the canine heart. These are level-set contours of activation wavefront arrival times, relative

to the start of the QRS interval (blue is early, red is late). The bottom row shows manifold trajectories as yellow points for the

corresponding stages of the experiment, along with the entire manifold in red, shown as in Fig.1, but with transparency.

3.1. Heart Surface Signals

We analyzed electric potentials measured on the surface of

a canine heart at the Cardiovascular Research and Training

Institute (CVRTI) at the University of Utah. In this experi-

ment, the electric potentials were recorded (1000 Hz sampling

rate) from 247 “sock electrodes” that were wrapped around

the ventricles of an in situ canine heart which was paced by

electrically stimulating the right atrial appendage. After an

initial rest period, 10 sequential ischemia interventions were

conducted, each by total occlusion of blood flow in the left an-

terior descending artery, inducing supply ischemia, each fol-

lowed by a recovery period. The duration of interventions

increased as the experiment progressed. A total of 315 beats

were analyzed.

We restricted our analysis of the data to time samples dur-

ing the QRS intervals. Fig. 1 shows each QRS time sample of

the 315 beats as a solid red point in the first three Laplacian

eigenmaps coordinates. We also show groups of beats cor-

responding to different stages of the ischemia experiment in

Fig. 2 (bottom row), with the points of interest shown in solid

yellow, and the remainder of the points from the experiment

shown in semitransparent red. The average activation times

for the same groups of beats are shown as isochronal maps in

Fig. 2 (top row). Isochronal maps were produced by map3d,

and manifold visualizations by SCIRun [10, 11].

3.2. Torso Surface Signals

To demonstrate the method on torso surface measurements,

we applied it to electric potentials recorded from a subject at

the Charles University Hospital in the Czech Republic during

a clinical procedure. The heart was paced by applying elec-

trical stimuli to the interior wall of the left ventricular blood

chamber at multiple sites with the tip of a CARTO ablation

catheter. Measurements were recorded (2048 Hz sampling

rate) from 120 torso leads. Multiple beats were recorded and

averaged for each pacing site and our method was applied to

the resulting data. Fig. 3 shows a volume visualization of the

left ventricular blood chamber, along with the different pac-

ing sites, as localized by the CARTO XP system. The pacing

sites in Fig. 3 were separated in four groups, by spatial loca-

tion, before our analysis, and labeled with a different color.

The corresponding manifold trajectories in Fig. 3 have been

colored according to the same pre-determined colors.

4. DISCUSSION

Fig. 1 suggests that points sampled from the canine heart data

indeed do lie on a nonlinear manifold structure, as represented

in the first three Laplacian eigenmaps coordinates. For exam-

ple, the fact that trajectories end QRS near where they started

reflects this structure. In Fig. 2, beats from different stages of

the ischemia experiment clearly traverse different regions of

the manifold. Indeed the changes between the trajectories at
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Fig. 3. Torso Signal Manifold: visualizations of left ventricular (LV) sites paced in four groups, labeled by color (center), along

with two views of the manifold trajectories (left, right) from the correspondinge torso surface data, with the same correspon-

dence in color labels. Pacing as applied to the inner wall of the LV blood chamber, which is rendered as a gray volume, with

pacing sites superimposed (#17 is behind the volume). The two manifold views were rotated to show pacing/trajectory groups

more clearly (left: yellow, and right: red, green, blue).

each stage of the ischemia experiment are quite pronounced.

By comparison, in the activation isochrone maps, changes be-

tween normal beats and intervention 5 are negligible, with the

damage due to supply ischemia only becoming apparent in in-

tervention 8. Intervening states, not shown, traverse interven-

ing regions of the manifold. Thus the results indicate that we

may be able identify signs of ischemia-induced damage via

dynamic changes during QRS. This is in contrast to accepted

clinical wisdom that relies only on changes later in the beat,

in the ST segment, and at lower damage level in comparison

to activation maps.

Perhaps even more intriguing, in Fig. 3 we also see a de-

fined structure with torso surface data, including obvious sim-

ilarities among manifold trajectories arising from the same

pacing regions. We note that this separability of manifold tra-

jectory groups is a result of differences between whole beats,

and not just differences between locations of pacing sites,

emphasizing the importance of using dynamics to compare

beats. The forward model defines a map between heart and

torso surface manifolds, suggesting that manifold constraints

on dynamics in heart potentials based on torso measurements

may be useful to regularize the inverse problem of electrocar-

diography.
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