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Abstract— In many image segmentation problems involving
limited and low-quality data, employing statistical prior infor-
mation about the shapes of the objects to be segmented can
significantly improve the segmentation result. However, defining
probability densities in the space of shapes is an open and
challenging problem, especially if the object to be segmented
comes from a shape density involving multiple modes (classes).
Existing techniques in the literature estimate the underlying
shape distribution by extending Parzen density estimator to
the space of shapes. In these methods, the evolving curve may
converge to a shape from a wrong mode of the posterior density
when the observed intensities provide very little information
about the object boundaries. In such scenarios, employing both
shape- and class-dependent discriminative feature priors can
aid the segmentation process. Such features may involve, e.g.,
intensity-based, textural, or geometric information about the
objects to be segmented. In this paper, we propose a segmentation
algorithm that uses nonparametric joint shape and feature priors
constructed by Parzen density estimation. We incorporate the
learned joint shape and feature prior distribution into a max-
imum a posteriori estimation framework for segmentation. The
resulting optimization problem is solved using active contours.
We present experimental results on a variety of synthetic and real
data sets from several fields involving multimodal shape densities.
Experimental results demonstrate the potential of the proposed
method.

Index Terms— Nonparametric joint shape and feature priors,
Parzen density estimator, multimodal shape density, image
segmentation, shape prior.

I. INTRODUCTION

SEGMENTATION of images based on limited and low
quality data is a challenging problem and requires

prior information about the shape to be segmented for an
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acceptable solution. For example, given a training set of car
shapes, a partially occluded car object in an image can be seg-
mented by exploiting prior shape information obtained from
the training set. The problem becomes more complex when
the training set of shapes involves examples from multiple
classes (e.g., car, truck, plane, etc.) leading to a multimodal
shape density. In this paper, we focus on segmentation prob-
lems in which shape distributions are multimodal and complex,
but just the shape prior information is not sufficient for
effective segmentation due to severe occlusion. The proposed
approach deals with the problem by incorporating discrim-
inative class-dependent feature priors together with shape
priors into the segmentation process. We demonstrate that
the proposed approach overcomes the limitations of existing
segmentation methods that use only shape priors.

A. Related Work

One of the earliest attempts to include a prior information
in image segmentation is the active contour model, also called
“snakes”, by Kass et al. [1]. Snakes use a general regularity
term as the prior, where the roughness and length of the
curve serve as a penalty, which is based on the assump-
tion that smoother and shorter curves are more likely [2].
However, in many applications a more informative object-type
specific shape prior can be learned from training samples.
In this regard, active shape models (ASM) proposed by
Cootes et al. [3] are powerful techniques for segmentation
using shape priors. Variants of the ASM, their applications to
different image segmentation areas, and a review can be found
in [4]–[8].

In the original ASM, a training set of shapes repre-
sented by landmarks is used to construct allowable shape
variations via principal component analysis (PCA). The use
of linear analysis tools such as PCA in ASMs limits the
domain of applicability of these techniques to shape pri-
ors involving only unimodal densities. That is, the origi-
nal ASMs assume that the training shapes are distributed
according to a unimodal, Gaussian-like distribution; hence,
the technique cannot model more complex (multimodal) shape
distributions.

Several methods have been proposed to handle multimodal
distributions of shapes by extending ASMs [9]–[11]. These
approaches include the use of mixture of Gaussians [9],
manifold learning techniques [10] and kernel PCA [11], [12].
However, these approaches use parametric probability dis-
tributions, which may not model very complex shape
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Fig. 1. Toy example that demonstrates motivation of the proposed method. (a) Training Set. (b) Test Image. (c) Kim et al. [2]. (d) Foulonneau et al. [20].
(e) Chen and Radke [22]. (f) Proposed.

variations [13]. In addition, the explicit (landmark-based)
shape representation used in ASMs has two major shortcom-
ings. First, annotating landmark points with correct correspon-
dences across all example shapes can be difficult and time
consuming. Second, the extensions of the technique to handle
topological changes are not straightforward. To overcome
the limitations of landmark-based representation, level set
based shape priors were proposed [14], [15]. Because of their
implicit nature, level set methods do not need landmarks
and can easily handle topological changes [16], [17]. In [14]
and [15], shape variability is captured using PCA on signed
distance functions of level sets. However, these techniques
work well only when the shape variation is small due to their
use of PCA. Therefore, they cannot handle multimodal shape
densities.

In order to learn multimodal shape densities, Kim et al. [2]
and Cremers et al. [18] proposed nonparametric density esti-
mation based shape priors using level sets. These methods
estimate the prior shape density by extending Parzen density
estimator over the distances between the level set repre-
sentations of the evolving curve and training shapes. These
ideas have also been extended to the problem of segmenting
multiple objects through the use of coupled shape priors [19].
An interesting usage of nonparametric shape priors proposed
by Foulonneau et al. [20] computes Legendre moments from
binary images as shape descriptors and uses distances between
descriptors instead of level sets for estimating the prior shape
density. The approach also exploits appealing properties of
Legendre moments for intrinsic alignment. The approaches of
Kim et al. [2], Cremers et al. [18] and Foulonneau et al. [20]
use a simple data term that assumes the foreground and
the background intensities are piecewise-constant [21]. In the
literature, there are also methods that combine nonparametric
shape priors with learning-based data terms [22]–[24]. Using
a more sophisticated data term significantly improves the
segmentation quality when the object foreground and back-
ground have complex densities. Some other recent work that
exploits nonparametric shape priors and a more detailed review
of the level set based segmentation methods can be found
in [25]–[31].

B. Motivation

The methods [2], [18], [20], [22]–[24] that use nonparamet-
ric shape priors performs well in the presence of occlusion
and missing data. They also capable of handling multimodal
shape densities. However, the shortcomings of these methods
arises when the level of occlusion and missing data increases
and when the underlying shape density is multimodal. This
is due to the fact that the prior density is estimated by
extending Parzen density estimator over the distances between
the evolving curve and training shapes. These methods use
gradient descent to minimize an energy function including
data and shape priors terms. During gradient descent, a curve
represented by level sets is evolved by a data-driven force
together with the weighted average of the training shapes
where the weight of each training shape is usually inversely
proportional to its distance to the evolving curve (the exact
form of the weights is determined by the specific metric used
to measure distances between shapes). Therefore, when the
observed data are very limited, the evolving curve can be more
similar to training shapes from a different class based on the
distance metric. In these cases, the evolving curve is driven
toward a shape from a different mode of the shape density,
which yields inaccurate segmentation results.

We illustrate the aforementioned drawback of Kim et al. [2],
Foulonneau et al. [20] and Chen and Radke [22] through
the example shown in Figure 1.1 In this example, we use a
training set that contains samples from two different leaf shape
classes as shown in Figure 1(b). Note that the boundaries of
the leaf shapes are uneven in class 1 and smooth in class 2.
We have 2 test images from each class as shown in Figure 1(b).
Note that the test images are severely occluded; almost half
of the leaf shapes do not appear. Since the curve found
by the data term is more similar to class 2 based on the
distance metric, Kim et al. [2] produce segmentation results

1Note that these three methods are representative ones; Kim et al. [2]
estimate prior density using distances between shapes, Foulonneau et al. [20]
estimate prior density using distances between Legendre moments and
Chen and Radke [22] use intensity prior-based data term together with the
shape prior term. The other nonparametric shape prior-based methods exhibit
a similar behavior with one of these methods.
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that are more similar to the shapes in class 2 in both test
images. The major difference between Kim et al. [2] and
Chen and Radke [22]is the design of the data term. Since
the data provide very little information in the test images,
the effect of the data term is very limited in the segmentations.
Therefore, Chen and Radke [22] produce very similar results
with Kim et al. [2] as shown in Figure 1(e). The method
of Foulonneau et al. [20] produces segmentation results that
are more similar to the shapes in class 1 (see Figure 1(d)).
This means that estimating the prior shape density based on
the distances between Legendre moments does not help to
have segmentation results from the correct mode of the shape
density in the presence of severe occlusion.

This motivates us to deal with the shortcomings of the exist-
ing methods by incorporating discriminative class-dependent
features to the kernel density estimation process. For example,
circularity of the shapes in Figure 1 is an important feature
for identifying different leaf classes. In such cases, jointly
estimating feature and shape prior density can yield more
accurate segmentations as shown in Figure 1(f).

C. Contributions

Our contribution in this paper is a segmentation algorithm
that performs segmentation by exploiting nonparametric joint
shape and feature priors. Unlike the state-of-the-art methods
that perform segmentation using nonparametric shape density
estimation, we exploit learned discriminative class-dependent
features (geometric or appearance-based) extracted from spe-
cific parts of the scene relative to the object of interest and
incorporate the joint shape and feature prior density into the
segmentation process. In particular, we combine a data term
and a joint shape and feature prior term within a Bayesian
framework to form the energy functional for segmentation.
To the best of our knowledge, nonparametric joint shape and
feature priors have not been proposed for image segmentation
in the literature. By estimating a more discriminative prior
density, our algorithm is able to find better segmentations
based on the shape posterior density.

Our approach may seem similar to the methods proposed by
Cremers et al. [32] and Chan and Zhu [33]. However, these
approaches and the proposed approach focus on completely
different problems. In [32] and [33], given a scene with
multiple different types of objects, the problem is to segment
a particular object that is included in the training set. In this
paper, we focus on the problem of segmenting an object using
the correct shape priors when the training set contains shapes
from different classes.

Preliminary results of this work were presented in [34].
This paper advances its preliminary version in several major
ways. In particular, (1) while [34] was focused on the specific
problem of spine segmentation, in this paper we significantly
expand the domain of applicability of this new idea; (2) we
consider and use new types of features in our framework;
(3) we present the results of an expanded experimental analysis
on a variety of data sets, together with quantitative comparison
to the results of several state-of-the-art methods; (4) we
provide a more detailed technical development and discussion

of the proposed method; (5) we present an expanded coverage
of related work.

The implementation of the proposed approach is available
at https://github.com/eerdil/.

II. THE PROPOSED METHOD

A. The Energy Function

In this section, we propose an energy function that exploits
nonparametric joint shape and feature priors for image seg-
mentation. Let C be the evolving curve, f be the feature
vector and data be the intensity image. Then, the posterior
probability density function of C and f can be written using
Bayes’ rule as follows:

p(C, f |data) = p(data|C, f )p(C, f )

p(data)
(1)

where,

p(data|C, f ) = p( f |data, C)p(data|C)

p( f |C)
. (2)

Plugging in Equation (2) into (1) yields

p(C, f |data) ∝ p( f |data, C)p(data|C)p(C) (3)

and p(C) can be written as

p(C) =
∫

p(C, f ) d f. (4)

Then, Equation (3) becomes

p(C, f |data) ∝ p(data|C)p( f |data, C)

∫
p(C, f )d f.

(5)

Let us assume that we observe a feature vector f̂ either from
data or from boundary. Such features could involve geometric,
textural, or appearance-based information about the object
to be segmented. From this point on, one can proceed with
various assumptions on the probability densities involved. For
feature extraction, we assume that features can be extracted
perfectly based on the data as well as information about the
boundary when it reaches a reasonable state. This leads to the
degenerate density:

p( f |data, C) = δ( f − f̂ ) (6)

where, δ(.) is the Dirac delta function. Also, we learn p(C, f )
nonparametrically from the training data. Since f̂ is already
observed, Equation (5) can be written as follows:

p(C, f̂ |data) ∝ p(data|C)p(C, f̂ ). (7)

Note that, p(C, f̂ ) is also equivalent to the slice of p(C, f )
at f̂ which is p(C| f = f̂ ). Therefore, Equation (7) and the
following equation are identical.

p(C, f̂ |data) ∝ p(data|C)p(C| f = f̂ ). (8)

Hence, given the simplifying perfect feature extraction
assumption in Equation (6), the learned joint shape and
feature density is used through conditioning on the extracted
feature. This conditioning guides the segmentation process,
possibly towards the correct mode of the multimodal shape
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density. If needed, one could certainly relax this assumption
in our framework, and develop an optimization algorithm for
maximizing the posterior density in Equation (1) to infer both
the feature and the shape based on the data and the learned
joint prior.

The data term we use is the piecewise-constant version of
the Mumford-Shah functional [21], [35]. We use this data
term as a representative one, since it has been previously
used in a variety of applications [18], [36]. One can consider
using more sophisticated data terms such as those involving
mutual information [37], J-Divergence [38], and Bhattacharya
distance [39]. We discuss estimating the joint shape and feature
prior density, p(C, f̂ ), in the following section.

By simply taking the negative logarithm of Equation (7),
we can define the following energy function to be minimized
for segmentation.

E(C, f̂ ) = − log p(data|C) − log p(C, f̂ )

= β
[ ∫

Cin

(I (x) − min)2dx

+
∫

Cout

(I (x) − mout )
2dx

]
− log p(C, f̂ ) (9)

where I (.) is the intensity image, Cin (Cout ) is the region
inside (outside) of the segmenting curve C , min (mout ) is the
average intensities in these regions, and β is a constant that
determines the balance between the data and the prior terms
which we set β = 1.

B. Building Joint Shape and Feature Priors

Let us assume that we have n aligned training shapes
C = {C1, C2, . . . , Cn} and a corresponding set of feature
vectors f = { f1, f2, . . . , fn} extracted from intensity images.
The basic idea we use is that the segmenting curve C will
be more likely if it is similar to the training shapes and f̂ is
similar to the training feature vectors. In order to measure
the similarity between curves, we need to compare C with the
training shapes in C. However, when C and the training shapes
in C are not aligned, a direct comparison of C with the shapes
in C includes not only shape differences but also artifacts due
to pose difference such as translation, rotation, and scaling.
In order to remove pose artifacts, we align C with the shapes in
C into C̃ , where C̃ is the aligned version of C . Also, recall that
shapes in C are already aligned. Similarly, in order to extract
pose invariant features, all feature vectors should be extracted
after alignment. Any kind of rigid alignment approach can
be used to obtain an aligned training set of shapes from its
unaligned version for which we use the approach proposed by
Tsai et al. [14]. Then, the joint shape and feature density is
estimated using Parzen density estimation as follows2

p(C̃| f = f̂ ) ∝ p(C̃, f̂ )= 1

n

n∑
i=1

k(d(C̃, Ci ), d( f̂ , fi ), σC , σ f )

(10)

2Note that in Parzen density estimation, class labels of the shapes in the
training set are not available.

where d(·, ·) is a distance metric, k(·, ·, σC , σ f ) is a 2D kernel
with shape kernel size σC and with feature kernel size σ f .
For the kernel sizes σC and σ f , we use an ML kernel with
leave-one-out [40]. Note that, the composite of the 2D kernel
and the distance metrics plays the role of an infinite dimen-
sional kernel. A variety of distance metrics can be used in
Equation (10) [2]. In our experiments, we use the template
distance metric [2], dT , for shape distance and the L2 distance
metric, dL2 , for feature distance.

Note that, we compute the joint shape and feature prior
density for the aligned curve, C̃ , in Equation (10) to remove
the pose artifacts as we mentioned above. We explain how to
relate p(C̃, f̂ ) to p(C, f̂ ) in our segmentation method in the
following section.

C. Segmentation Algorithm

The aim of the proposed segmentation approach is to
minimize the energy functional in Equation (9) by gradient
descent, and the task comes down to computing the gradient
flow for the curve C . The overall gradient flow is the sum of
the two terms, one based on the data term and the other based
on the shape and feature prior term. The gradient flow for the
data term is given by

−∂ log p(data|C)

∂C
=β

[
−(I (x)−min)

2+(I (x)−mout)
2
] �N ,

(11)

where �N is the outward curve normal [21].
However, we cannot compute ∂ log p(C, f̂ )

∂C directly from the
shape and feature prior term due to the need for removing
pose differences mentioned in Section II-B. Instead, we first

compute ∂ log p(C̃, f̂ )

∂C̃
and relate it to ∂ log p(C, f̂ )

∂C . The gradient

flow ∂ log p(C̃, f̂ )

∂C̃
for the joint shape and feature prior term is

given by

∂ log p(C̃, f̂ )

∂C̃
= 1

p(C̃, f̂ )
× 1

n
× 1

σC × σ f

×
n∑

i=1

(
k(dT (C̃, Ci ), dL2( f̂ , fi ), σC , σ f )

× dT (C̃, Ci )×(dL2( f̂ , fi ))
2×(1−2H (φCi)

)
.

(12)

where H (·) is the Heaviside function and φC is the corre-
sponding signed distance function of curve (shape) C . We use
the sign convention of φ < 0 for inside the curve and φ > 0
for outside the curve. The derivation of the gradient flow in
Equation (12) is a straightforward extension of the derivation
in [2] and is given in Appendix.

In order to compute ∂ log p(C, f̂ )
∂C from ∂ log p(C̃, f̂ )

∂C̃
, we need

a pose parameter, p, that aligns C with the shapes C into
C̃ in each iteration of the gradient descent (see line 10 in

Algorithm 1). After ∂ log p(C̃, f̂ )

∂C̃
is computed (see line 12 of

Algorithm 1), ∂ log p(C, f̂ )
∂C is obtained by applying reverse

transformation with pose parameters p to the force ∂ log p(C̃, f̂ )
∂C̃
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Algorithm 1 Segmentation Using Nonparametric Joint Shape
and Feature Priors

(see line 13 in Algorithm 1). In other words, gradient of the
shape and feature prior is computed for C̃ , gradient force is
reverse back to its original pose and the whole gradient update
is performed. Note that the alignment process can be done
intrinsically during the curve evolution as in [18] and [20].
We choose to perform this process explicitly as in [2].

Finally, the proposed segmentation method that exploits
nonparametric joint shape and feature priors is given
in Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results on 4 differ-
ent data sets using various discriminative class-related features.
In the MNIST and the aircraft data sets, features are synthet-
ically generated. The remaining 2 data sets, the Swedish leaf
and the dendritic spines, are completely real data sets.

We compare the performance of the proposed
approach with three different methods: Kim et al. [2],
Foulonneau et al. [20] and Chen and Radke [22]. We obtain
quantitative results by comparing segmentation results
with ground truths using Dice scores [41] and Hausdorff
distance [42]. Dice score takes values between 0 and 1 where
1 indicates a perfect match whereas low values of Hausdorff
distance indicate better results.

A. MNIST Handwritten Digits Data Set

In this section, we present experimental results on
3 different settings of the MNIST handwritten digits data set.
We use the shapes in the training set shown in Figure 2 in all

Fig. 2. Training set of shapes for the MNIST handwritten digits data set.

Fig. 3. Training sets that are used to obtain feature vectors. First row: the first
training setting in which each digit class contains gray-level intensities drawn
from a Gaussian distribution with different means in foreground region, second
row: the second training setting in which each digit class contains different
colors in foreground region, third row: the third training setting in which
each digit class contains different colors in background region. Note that our
training sets to obtain feature vectors contain 10 samples for each class and
we display only one sample from each class for the sake of brevity.

experimental settings. Experimental settings differ from each
other in terms of the feature vectors that are exploited for
segmentation. This experiment demonstrates that our approach
can learn effectively from a relatively small training data set.
The approach could also exploit information in larger data sets
when available.

In the first experimental setting of the MNIST data set,
each training shape in Figure 2 is obtained from an intensity
image which contains gray-level intensities drawn from a
Gaussian distribution with different means for different classes
in foreground regions. One exemplary intensity image from
each digit class is shown in Figure 3. We estimate the mean
intensity value in the foreground region using the correspond-
ing intensity images of each training set. We use the mean
values to form the training set of feature vectors f . We perform
experiments on the test images shown in the second row of
Figure 4. In all test images, we first segment the apparent
part of the object using only the data term (lines 2 - 8 in
Algorithm 1). Then, the feature vector f̂ is extracted as
the mean intensity value in the foreground region of the
initial segmentation. Note that, in this experimental setting
the feature vector f̂ and the feature vectors in f contain
a scalar value. Also, note that the extracted feature value
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Fig. 4. Test images for the MNIST data set. First row: ground truth, second
row: the first experimental setting, third row: the second experimental setting,
fourth row: the third experimental setting.

Fig. 5. Visual results of the first experimental setting of the MNIST data
set. First row: the proposed method, second row: Kim et al. [2], third row:
Foulonneau et al. [20], fourth row: Chen and Radke [22].

strongly depends on the data driven (initial) segmentation.
Then, we keep evolving the curve using the nonparamet-
ric shape and feature priors together with the data term
(lines 9 - 15 in Algorithm 1). We also perform experiments on
the same test images using the approaches of Kim et al. [2],
Foulonneau et al. [20] and Chen and Radke [22]. Visual
segmentation results of all approaches are shown in Figure 5.
The visual results demonstrate that the proposed approach
generates segmentations that are closer to the ground truths
whereas the other methods converges to a wrong mode of
the posterior shape density in most test images. We also
provide quantitative comparisons of the segmentation results
with respect to ground truth using Dice score (see Table I)
and Hausdorff distance (see Table II). The quantitative results
with both metrics demonstrate the potential of the proposed
approach.

In the second experimental setting of the MNIST data set,
intensity images of the training shapes in Figure 2 contain
different colors in foreground regions for different classes as
shown in the second row of Figure 3. In this experiment, each
feature vector is obtained by concatenating RGB histograms

TABLE I

DICE SCORE RESULTS ON THE FIRST EXPERIMENTAL
SETTING OF THE MNIST DATA SET

TABLE II

HAUSDORFF DISTANCE RESULTS ON THE FIRST EXPERIMENTAL
SETTING OF THE MNIST DATA SET

Fig. 6. Visual results of the second experimental setting of the MNIST data
set. First row: the proposed method, second row: Kim et al. [2], third row:
Foulonneau et al. [20], fourth row: Chen and Radke [22].

computed from the foreground region of the corresponding
intensity image. All training feature vectors in f are con-
structed by following the same procedure. We use 5 test
images shown in the third row of Figure 4 in this experiment.
Similar to the previous experiment, we find the apparent part of
the digits using only the data term. Then, we compute the RBG
histograms from the intensities that lie inside the segmenting
curve and form f̂ by concatenating the histogram of each
color channel. Then, we continue the curve evolution using
our shape and feature-based segmentation approach. Visual
segmentation results of the proposed approach and the all
competing approaches are shown in Figure 6. We also provide
the Dice score results in Table III and Hausdorff distance
results in Table IV. The results clearly show the superiority of
our approach with respect to other approaches.

Finally, in the third experimental setting, we design an
experimental setting similar to the second one. In this setting,
background regions contain different colors for each digit
classes as shown in the third row of Figure 3. Similar to
the second experimental setting, we construct f by exploiting
the RGB histograms from the intensity images that correspond
to background regions. We use the test images given in
the fourth row of Figure 4. In all test images, once we
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TABLE III

DICE SCORE RESULTS ON THE SECOND EXPERIMENTAL
SETTING OF THE MNIST DATA SET

TABLE IV

HAUSDORFF DISTANCE RESULTS ON THE SECOND EXPERIMENTAL

SETTING OF THE MNIST DATA SET

Fig. 7. Visual results of the third experimental setting of the MNIST data
set. First row: the proposed method, second row: Kim et al. [2], third row:
Foulonneau et al. [20], fourth row: Chen and Radke [22].

TABLE V

DICE SCORE RESULTS ON THE THIRD EXPERIMENTAL

SETTING OF THE MNIST DATA SET

find the apparent boundaries using the data term, we extract
f̂ by computing the RGB histograms from the background
region and concatenating them into a single feature vec-
tor. As in the above experiments, the proposed approach
achieves better segmentation results than the approaches we
compete both visually (see Figure 7) and quantitatively (see
Tables V and VI).

B. The Swedish Leaf Data Set

In this section, we present evaluations of the proposed
approach on the Swedish leaf data set [43]. The Swedish leaf
data set contains leaf images obtained from 15 different tree
classes. We choose two classes among them: Acer and Populus
tremula. The data set is designed for classification purposes

TABLE VI

HAUSDORFF DISTANCE RESULTS ON THE THIRD EXPERIMENTAL
SETTING OF THE MNIST DATA SET

Fig. 8. Training set of shapes for the Swedish leaf data set. First row:
Acer, second row: Populus tremula.

Fig. 9. Test images for the Swedish leaf data set. First row: Acer, second
row: Populus tremula.

and it only contains RGB leaf images. We obtain binary
images that are used for training by manually segmenting
10 leaf images from each class as shown in Figure 8. In order
to construct a training set of feature vectors f , we compute
circularity of the boundaries in each binary training shape.
Circularity of the boundary is a discriminative geometric
feature for Acer and Populus tremula classes.

We perform experiments on 10 test leaf images (5 test
images from each class and none of which is included in
the training set), shown in Figure 9. Similar to the previous
experiments, we find the apparent boundaries using only the
data term and set f̂ as the circularity of the boundary. Visual
segmentation results of all approaches are shown in Figure 10.
The visual results demonstrate that the approaches of
Kim et al. [2] and Chen and Radke [22] tends to drive
the segmenting curve toward a shape from Populus trem-
ula class in all test images. Unlike Kim et al. [2] and
Chen and Radke [22], the method of Foulonneau et al. [20]
converges to the mode that corresponds to Acer class in all
test images. With the aid of using the discriminative feature
priors along with the shape priors, the proposed approach
achieves segmentations from the correct mode of the shape
density. The Dice score results are 0.9409 for the proposed
method, 0.9456 for the method of Kim et al. [2], 0.9030 for the
method of Foulonneau et al. [20] and 0.9335 for the method of
Chen and Radke [22] on average of 10 test images. The aver-
age Hausdorff distance results are 10.5742 for the proposed
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Fig. 10. Visual segmentation results on the Swedish leaf data set. First row: proposed method, second row: Kim et al. [2], third row: Foulonneau et al. [20],
fourth row: Chen and Radke [22].

Fig. 11. The airplane data set. First row: F-14 wings opened, second row:
Harrier.

method, 12.7036 for the method of Kim et al. [2], 17.0145 for
the method of Foulonneau et al. [20] and 13.6214 for the
method of Chen and Radke [22]. Note that Dice score results
are close to each other even the competing methods produce
segmentations from a wrong mode of the shape density. Since
the shapes in different classes are very similar and Dice score
measures the overlap between the segmentation and the ground
truth, these results are expected. Hausdorff distance better
quantifies the difference in the visual results in this experiment.

C. The Airplane Data Set

In this section, we evaluate the performance of our segmen-
tation approach on the airplane data set [44]. The airplane data
set contains 7 different airplane classes. In our experiments,
we take a subset of two of them: F-14 wings opened and
Harrier. We use 10 airplane shapes from each class for
training as shown in Figure 11. Each airplane training shape
in Figure 11 is obtained from an intensity image as shown
in Figure 12. Note that, in Figure 12, airplane shapes from
different classes contain different textural foreground regions.
This means that textural features obtained from the foreground
region can be discriminative class-dependent features for this
data set. For each training shape, we extract 3 different textural
features from the foreground region: correlation, energy, and
homogeneity. We form each feature vector fi in f by concate-
nating these values into a single vector.

We compare the performance of the proposed approach with
Kim et al. [2], Foulonneau et al. [20] and Chen and Radke [22]

Fig. 12. Training set that are used to obtain the feature vectors. Note that
each airplane shapes from different classes contain different textures.

Fig. 13. Test images for airplane data set. First row: F-14 wings opened, sec-
ond row: Harrier.

on 10 test images shown in Figure 13. Note that the test images
are not included in the training set. When segmenting test
images, we extract three textural features (correlation, energy,
and homogeneity) after the data driven segmentation and
concatenate into a single vector f̂ . Visual segmentation results
on the airplane data set are shown in Figure 14. According to
the visual results, the proposed approach drives the segmenting
curve toward the correct mode of the shape density in all test
images. When the tail of an Harrier type airplane is occluded,
it looks more similar to the F-14 wings opened airplane type.
In such cases, Kim et al. [2], Foulonneau et al. [20] and
Chen and Radke [22] converges to a F-14 wings opened type
airplane. Such results can be observed in the first, the second
and the fifth test images of the Harrier class. The average
Dice score (Hausdorff distance) results on all test images with
respect to ground truths are 0.9153 (1.7899) for the proposed
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Fig. 14. Visual segmentation results on the airplane data set. First row: proposed method, second row: Kim et al. [2], third row: Foulonneau et al. [20],
fourth row: Chen and Radke [22].

Fig. 15. Training set for dendritic spine data set. The first 8 spines from the left are mushroom and the remainings are stubby.

Fig. 16. Intensity and corresponding manually annotated binary image
examples from each spine class. From left to right: Mushroom, Stubby, Thin,
and Filopodia. (a) Intensity images. (b) Manual Segmentations.

method, 0.8746 (6.1726) for the method of Kim et al. [2],
0.8762 (5.9271) for the method of Foulonneau et al. [20]
and 0.8748 (6.5479) for the method of Chen and Radke [22].
The quantitative results indicate the positive effect of using
additional class-dependent features along with the shape
prior.

D. The Dendritic Spine Data Set

In this section, we present experimental results on a den-
dritic spine data set. The data set is obtained from Neuronal
Structure and Function laboratory of Champalimaud Neuro-
science Foundation, Lisbon.

In the literature, dendritic spines are generally grouped
into four classes: mushroom, thin, stubby, and filopodia (see
Figure 16). In our experiments, we use training samples from
mushroom and stubby classes. The dendritic spine data set
contains 88 mushroom and 27 stubby 2D spine intensity
images together with the expert’s manual segmentations. In our
experiments, we use 8 mushroom and 8 stubby dendritic spine
shapes shown in Figure 15 for training and the remaining
80 mushroom and 19 stubby spines for testing. We per-
form two different types of experiments with the dendritic
spine data set; one is by using appearance-based and the
other is by using geometric features. We also compare the

Fig. 17. Regions where a potential neck is likely to be located. (a) First
region. (b) Second region.

segmentation performance of our approach with the
approaches of Kim et al. [2], Foulonneau et al. [20] and
Chen and Radke [22].

Spine neck is an important feature that helps to distinguish
mushroom and spine classes. Spine head is common for spines
in both classes and can be segmented roughly only using the
information obtained from the data [36]. Given that spine neck
is located in the area below the spine head if it exists, we can
extract both appearance and geometric features exploiting the
information in this region. We explain how to extract both
types of features below:

First, we describe our appearance-based features. Intensity
profiles below the spine head provides distinguishable fea-
tures for spines from different classes [36]. First, we grab
a rectangular region such that the bottom point of the spine
head (shown by a red cross in Figure 17(a)) lies at the
center of the rectangle. The second rectangular region shown
in Figure 17(b)) is drawn such that it is located just below
the spine head. We fix the size of the first and the second
rectangles to 40 × 110 and 10 × 130, respectively, in a
150 × 150 ROI. Using these two rectangular regions, we con-
struct three sets of feature vectors from the training set for
classification. The first set of feature vectors are obtained by
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Fig. 18. Visualization of different sets of appearance-based feature vectors. Red indicates mushroom and blue indicates stubby spines. (a) Statistics (mean
± one standard deviation) of the first feature vector based on training data. (b) Statistics (mean ± one standard deviation) of the second feature vector based
on training data. (c) Mean of the third feature vector based on training data.

TABLE VII

AVERAGE DICE SCORE AND HAUSDORFF DISTANCE RESULTS ON 99 DENDRITIC SPINES

Fig. 19. Computed neck paths for a mushroom and a stubby spine are shown
in red. (a) Mushroom. (b) Stubby.

summing up the intensities in the first rectangle horizontally.
Similarly, the second set of feature vectors are obtained by
vertical summation of the intensities in the same rectangle.
We present the statistics of these two feature vectors extracted
from the training set for each class in Figure 18(a) and 18(b).
In these figures, error bars indicate one standard deviation
around the mean. The final set of feature vectors are the
histograms of intensities in the second rectangular region.
We present average of these histograms for each spine class
in Figure 18(c). Visual inspection of these feature vectors
indicate that they contain discriminatory information about the
spine class. Once we extract these three feature vectors from
the corresponding intensity images of each training shape,
a feature vector fi is obtained by concatenating them. f̂ is
also extracted by exploiting the intensity information in the
rectangular regions shown in Figure 17 as mentioned above.
The final segmentation is obtained by evolving the segment-
ing curve with the data and the shape and feature priors
terms.

Next, we describe the geometric features we use in spine
segmentation. Spine neck length is an important geometric
feature for identifying different spine classes [45]. In order to
compute spine neck length, we follow a procedure consisting
of multiple steps. First, we apply Otsu thresholding [46] to get
a rough segmentation of the dendritic branch part (the part
where the spine is connected to) and apply a fast marching

distance transform [47] on this rough segmentation to com-
pute the medial axis of the dendrite. Dendrite segmentation
is refined by applying a locally adaptive sized disk-shaped
structuring element around the medial axis of the dendrite
to remove the spines. Once the head of the spine of interest
is segmented, a fast marching algorithm [47] computes paths
from the center of the spine head to a number of candidate
target locations on segmented dendrite through the spine
neck. This results in a neck path for each target location.
Further, we apply three constraints to select the neck path
from these candidate paths. These constraints are: neck path
length, path complexity (L1-norm of path derivatives), and
path smoothness (L1-norm of image intensities along the
path). We select the neck path that has collectively the lowest
value for these three constraints. Computed neck paths for
a mushroom and a stubby spine are presented in Figure 19.
Note that the computed neck path starts from the center of
the spine head. Therefore, for correct computation of the
neck length, we have to remove the path part that lies in the
spine head. To achieve this, we first compute the radius of
the spine head, r , by fitting a circle using the Hough Circle
Transform on spine head segmentation and subtract it from
the length of the computed path [45]. We compute the neck
length for each training shape to form f . When segmenting a
test image, we compute the neck length into f̂ in the same
manner.

Some visual results that are obtained using the pro-
posed approach (both for appearance-based and geometric
features) and the other competing approaches are shown
in Figure 20. We also evaluate the performance of these
segmentation methods quantitatively using Dice score and
Hausdorff distance. The average of both Dice score and Haus-
dorff distance results of all methods are shown in Table VII.
In all experiments, the best and the second best quanti-
tative results are obtained by the proposed approach with
appearance-based feature priors and geometric feature priors,
respectively.
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Fig. 20. Visual segmentation results on the dendritic spine data set. First row: proposed method with appearance-based feature priors, second row, proposed
method with geometric feature priors, third row: Kim et al. [2], fourth row: Foulonneau et al. [20], fifth row: Chen and Radke [22]. Note that the first 7 spines
from the left is mushroom, the remaining are stubby spines.

IV. CONCLUSION

We have proposed a segmentation method that exploits
joint nonparametric shape and feature priors. The proposed
method minimizes an energy function that includes a joint
nonparametric shape and feature priors term together with
the data term using level sets and gradient descent. We pro-
vide experimental results on a variety of real and synthetic
data sets involving multimodal and complex shape density
estimation problems. Experimental results demonstrate that
the proposed algorithm achieves better segmentations than
the state-of-the-art approaches that use nonparametric shape
priors and can be applied to different data sets from various
domains.

One possible future direction of the proposed method
might be developing a similar approach by using a different
shape representation than level sets, e.g. Disjunctive Normal
Shape Models [25], [48]. Our approach can also be modified
slightly and be used as a joint segmentation and classifica-
tion approach. To this end, classes (perhaps corresponding
to modes in the shape density) may be inferred during the
segmentation phase and this probabilistic inference may then
be used to update the weights of the training samples to drive
the segmentation.

APPENDIX

A. Gradient Flow of Joint Shape and Feature Density

In this section, we provide the details on how we derive
gradient of Equation (10) and obtain Equation (12). Note that
the derivation is a straightforward extension of the derivation
in [2].

Let us consider the log of the joint shape and feature prior
density

log p(C̃, f̂ )= log
(1

n

n∑
i=1

k(dT (C̃, Ci ), dL2( f̂ , fi ), σC , σ f )
)
.

(13)

Then, the derivative of log p(C̃, f̂ ) with respect to C̃ is written
in the following form

∂ log p(C̃, f̂ )

∂C̃
= − 1

p(C̃, f̂ )
× 1

n
× 1

σx × σy

×
n∑

i=1

(
k(dT (C̃, Ci ), dL2( f̂ , fi ), σC , σ f )

× dT (C̃, Ci ) × (dL2( f̂ , fi ))
2 × ∂dT (C̃, Ci )

∂C̃

)
.

(14)

Now the task comes to computing ∂dT (C̃,Ci )

∂C̃
.

Consider the template distance metric dT (φC̃ , φCi ) =
Area(inside(C̃)�inside(Ci )) where � denotes the set
symmetric difference. This metric can be written in the form
of region integrals as follows [2]

dT (φC̃ , φCi ) =
∫

�
(1 − H (φC̃(x)))H (φCi (x))dx

+
∫

�
H (φC̃(x))(1 − H (φCi (x)))dx

=
∫

inside(C̃)
H (φCi (x))dx

+
∫

outside(C̃)
(1 − H (φCi (x)))dx (15)

For the region integrals in Equation (15), the derivative is well
known [49], which is given by

∂dT (C̃, Ci )

∂C̃
= (2H (φCi ) − 1). (16)

By plugging Equation (16) into Equation (14), we obtain
the gradient flow of log p(C̃, f̂ ) with respect to C̃ :

∂ log p(C̃, f̂ )

∂C̃
= 1

p(C̃, f̂ )
× 1

n
× 1

σx × σy

×
n∑

i=1

(
k(dT (C̃, Ci ), dL2( f̂ , fi ), σC , σ f )

× dT (C̃, Ci )×(dL2( f̂ , fi ))
2×(1−2H (φCi)

)
.

(17)
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