Embedded Domain-Specific Language and Runtime System for
Progressive Spatiotemporal Data Analysis and Visualization

Cameron Christensen*
SCl Institute, University of Utah
Ji-Woo Lee?
Lawrence Livermore National Laboratory

| Multiresolution |

/

On-demand ~
data reordering e '

Shusen Liu®
SCl Institute, University of Utah
Peer-Timo Bremerl
Lawrence Livermore National Laboratory

Visualization
data server client

L&‘.cripling engine

Giorgio Scorzelli*

SCl Institute, University of Utah
Valerio Pascucci'

SCI Institute, University of Utah

/\/\/ M
Scripting engine | Data requests
Progressive

Incremental
results

Scripting enginej

original
data

multires
data
>

(a)

local
cache

Interruptible

User interruptions

(b)

Figure 1: Our interactive analysis and visualization framework exploits progressive computation and seamless local or remote
execution of embedded domain-specific language (EDSL) scripts to provide a highly flexible platform for the exploration of
large-scale, disparately located data. As illustrated in the system pipeline (a), what differentiates the proposed system from existing
techniques is the ability to utilize an embedded domain-specific language to specify data analysis workflows. The execution
model of the runtime is shown in (b). The interactive runtime continuously processes data requests, publishes incremental results,

and responds immediately to user input.

ABSTRACT

As our ability to generate large and complex datasets grows, access-
ing and processing these massive data collections is increasingly
the primary bottleneck in scientific analysis. Challenges include
retrieving, converting, resampling, and combining remote and often
disparately located data ensembles with only limited support from
existing tools. In particular, existing solutions rely predominantly on
extensive data transfers or large-scale remote computing resources,
both of which are inherently offline processes with long delays and
substantial repercussions for any mistakes. Such workflows severely
limit the flexible exploration and rapid evaluation of new hypotheses
that are crucial to the scientific process and thereby impede scientific
discovery. Here we present an embedded domain-specific language
(EDSL) specifically designed for the interactive exploration of large-
scale, remote data. Our EDSL allows users to express a wide range
of data analysis operations in a simple and abstract manner. The
underlying runtime system transparently resolves issues such as
remote data access and resampling while at the same time maintain-
ing interactivity through progressive and interruptible computation.
This system enables, for the first time, interactive remote exploration
of massive datasets such as the 7km NASA GEOS-5 Nature Run

*e-mail: cam@sci.utah.edu
fe-mail: shusenl @sci.utah.edu
*e-mail: scrgiorgio@gmail.com
Se-mail: lee1043 @1Inl.gov
fe-mail: bremer5@1Inl.gov
le-mail: pascucci@sci.utah.edu

simulation, which previously have been analyzed only offline or at
reduced resolution.

Keywords: Streaming, Analysis, Big Data, Climate, Dynamic,
Remote.

Index Terms: H.3 [INFORMATION STORAGE AND RE-
TRIEVAL]: Information Search and Retrieval—Online Informa-
tion Services; J.2 [PHYSICAL SCIENCES AND ENGINEERING]:
Earth and atmospheric sciences—Mathematics and statistics

1 INTRODUCTION

Interactivity has long been a desirable trait for most scientific visual-
ization systems. Instantaneous feedback in response to user input
enables flexible data exploration and analysis and streamlines the
hypothesis-to-evaluation loop, which is vital for data-driven scien-
tific discovery. Most previous work has focused either on fast queries
(i.e., FastBit [41]), or interactive rendering (i.e., iso-surface extrac-
tion [6]), rather than the whole process that transforms the raw data
into visualized images. Yet as our ability to generate large datasets
and our reliance on distributed storage grows, both data acquisition
and processing time can severely limit scientists’ ability to conduct
effective data-driven experiments. Describing even comparatively
simple analysis tasks such as averages or comparisons can quickly
become nontrivial when these tasks involve multiple data sources,
remote computation, or data of different formats or resolutions. The
resulting scripts and solutions are typically customized for the spe-
cific analysis, and often rely on manual steps such as file transfers.
Furthermore, due to the overwhelming size of the data, users likely
need to run analyses on a high-performance computing machine
and wait for the results. The inherent processing latencies can be
prohibitive, and the workflows can be difficult to adapt. Mistakes

at any point in these workflows can carry a heavy penalty, often
requiring repetition of significant parts of these time-consuming
processes. This toil severely limits a scientist’s ability to conduct
effective data-driven experiments.

In the proposed work, we aim to address the challenges of analysis
and visualization of massive, diaparately located datasets by utilizing
progressive algorithms in recognition of the utility of incremental
computation results for the realization of a genuinely interactive data
analysis and visualization environment. The key to streamlining the
data access and aggregation lies in the ability to allow the user to
focus on high-level logic while automating low-level data operations.
To this end, we introduce an embedded domain-specific language
(EDSL) to hide such low-level complexity from the user. For data
analysis workflows created using the proposed EDSL, the user can
focus on operations directly associated with the analysis, such as
statistical operations and comparison, whereas details such as the
source location, data transfer, file formats, and grid resolutions are
automatically handled by the language runtime system. To speed up
data processing, the system accesses and transfers the least amount
of data possible for the given computation. The generality of the
EDSL allows great flexibility in its interpretation, enabling a suit-
able runtime system to exploit task parallelism appropriate for large,
dispersed data. The design of the runtime system focuses on mul-
tiresolution storage and visualization such that preliminary results
can be obtained without significant delay, followed by progressive
refinement. Our key contributions are:

1. An embedded DSL based on JavaScript that provides a simple
and abstract description of sophisticated analysis and visual-
ization workflows;

2. The corresponding runtime system that executes a given work-
flow in an interruptible, progressive manner and enables dy-
namic selection of various computational parameters; and

3. An end-to-end pipeline for automatic conversion and caching
that enables transparent multiresolution access to distributed
datasets of different formats.

2 RELATED WORK

In this section, we examine related work and discuss how it compares
with our efforts.

General Integrated Visualization Environment. To lower the ac-
cess barriers for complex visualization techniques, integrated visu-
alization systems, such as Vislt [7] and Paraview [2], have been in-
troduced to allow domain scientists to easily visualize their datasets
using different algorithms, such as iso-surfaces, volume rendering,
and streamlines. However, even though these integrated systems
provide extensive visualization capabilities and customized scripting,
it is necessary to manually specify data types, and explicitly define
the exact data structures that will be produced by the built-in scripts.
Even simply combining data of different resolutions is nontrivial.
Furthermore, these applications are not capable of displaying incre-
mental updates necessary to maintain interactivity, and therefore
entail workflows that involve scripts and processes with many of
the same characteristics as the offline workflow. Essentially, the ex-
ploratory analysis process suffers from high “latencies” in the sense
that parameter modifications or other changes require potentially
lengthy reevaluations.

Domain-Specific Visualization Systems. Besides the general inte-
grated visualization environment, many systems focus on a specific
domain such as climate analysis (UV-CDAT [35], DV3D [27]). By
concentrating on a more specific application, these systems usually
have fewer but more specialized capabilities. For example, UV-
CDAT is designed for climate data visualization. By incorporating
many standard analysis and visualization techniques for climate

data, the scientists have an easy-to-use tool that is adequate for most
visualization needs. However, for a modified workflow, as pointed
out by our collaborator, the scientists are often required to write
customized code to fill in missing features in these domain-specific
visualization systems. He suggests the proposed embedded domain-
specific language can tremendously simplify and streamline such a
process.

Remote Data Access. Scientific analysis tools such as Vislt and
Paraview enable complex workflows but struggle with remote data,
and setting up the workflows can be difficult. Local data analysis
tools can benefit from protocols such as OPeNDAP [1] that provide
local access to remote data, but these protocols are tied to the same
limitations as the underlying fixed-resolution data formats they serve,
and do not do anything to facilitate the hierarchical access needed to
scale interactive systems to extremely large data sizes.

Workflow Management Systems. There exist sophisticated dis-
tributed workflow management systems like Pegasus [11] and Ke-
pler [25], but these are defined largely for offline use for which
robustness to failures, data provenance, workflow abstraction, and
reliability are the key concerns, and their use is not amenable to the
requirements of an interactive system.

Domain-Specific Languages. Languages such as Diderot [18] and
ViSlang [33] are specialized DSLs designed for visualization and do
not handle remote data. Our work is intended for data processing
of possibly remote data often used for the analysis and comparison
of scientific datasets, rather than focused purely on visualization-
specific tasks. Other DSLs, such as Ebb [3] and Simit [19], are
designed for physical simulation while abstracting execution envi-
ronments to enable CPU, GPU, and parallel execution of common
code. Others, such as Vivaldi [8], combine a specialized DSL for
visualization with a mixed execution model. Our DSL and asso-
ciated runtime enable interactive exploration through progressive
remote data access and interruptible analyses rather than reducing
total computation time by utilizing such hybrid execution back-
ends. The results of our processing nodes could be used as input
for visualization-specific DSLs such as Vivaldi or Diderot, enabling
these languages to be used for the visualization of a wider range of
local and remote data. Languages such as Ebb or Simit could be
useful to perform more efficient server-side computation for which
interruptibility may be less desirable than fast computation.
Runtime Loop Optimizations. Portability and optimization of
analysis programs is an issue that has been addressed with the use of
directives such as provided by OpenACC [5] and OpenMP [10],
cross compilers that create optimized versions of some other
code [13,26], and wrappers to provide a specific specialized set of
portable optimized functions. Thrust [17], RAJA [32]. Kokkos [14]
provides vector libraries to manage multidimensional arrays with
polymorphic layouts and map those operations to fast manycore
implementations. Overall, these works focus on providing specific
optimizations of existing code rather than enabling a simple semantic
for scientists to express iterative computations.

3 BACKGROUND

In this work, we strive to present the user with intermediate or par-
tial results quickly and then progressively refine them. One aspect
we exploit is the spatial resolution of data. As a result, we build
the proposed system on top of an existing multiresolution data stor-
age and visualization framework. The ViSUS Visualization Frame-
work [30,31] enables streaming access to arbitrarily high-resolution
imagery through the use of an efficient multiresolution data reorder-
ing based on the hierarchical Morton Z-order space-filling curve [29].
As illustrated in Fig. 2, by utilizing a multiresolution data layout,
data can be loaded and visualized at coarse resolution, then succes-
sively refined as more data is streamed into the system. Without
loading the full dataset, preliminary results can be rapidly obtained.

Localized queries are also optimized using the Morton data order,
the layout of which naturally favors queries of rectilinear subregions.

Multiresolution data formats range from simple octrees to more
complex or distributed schemes such as [16,37]. The proposed
DSL and runtime of this work are logically separated from the
underlying multiresolution data format used by the system. The
data format could be replaced by one of these other multiresolution
approaches and the work would still retain most of the benefits
provided by the proposed DSL. Details of the multiresolution and
data reordering algorithms are outside the scope of this work, and
readers are encouraged to explore the references above for more
information. Similar to other integrated visualization systems (e.g.,
Vislt or Paraview), the ViSUS framework also includes a set of
common visualization algorithms, such as volume rendering and iso-
surface extraction. The framework is multithreaded and implements
a directed acyclic graph, message-based dataflow pipeline such
that messages can be “published” by a given node to connected
nodes. The multithreaded implementation enables visualization and
computation tasks to be carried out simultaneously.

time to load

Figure 2: Illustration of multiresolution data loading compared to
loading from a “flat” row-major format. Using multiresolution IDX,
coarse resolution data can be loaded in much less time, providing
quick preliminary results.

4 METHOD

In this section, we discuss the design and implementation of the
embedded domain-specific language (EDSL) and complementary
runtime system. The overall system is illustrated in Fig. 1(a). The
pipeline works as follows. An EDSL script is executed incrementally
on the visualization client. When data is needed by the script, the
client requests it from the multiresolution server, which first checks
its local cache and if found immediately fulfills the request. If cached
data is not found, the server requests the on-demand data reordering
service to produce a multiresolution version of the data, which is
cached and sent to the client. The visualization client produces
results incrementally as they are computed. What differentiates the
proposed system from existing progressive visualization techniques
is the ability to utilize an embedded domain-specific language to
specify data analysis workflows that hide the complexity originating
from combining multiple input sources and spatial resolutions, and
an interruptible script processing engine that facilitates progressive
computation. Such a design provides the user tremendous expressive
power to write custom, reusable analysis workflows suitable for rapid
data exploration.

The embedded language introduced next is designed to permit the
types of interpretation necessary for an interactive system without
compromising expressiveness or accuracy, and the runtime system
and scripting engine introduced in Section 4.2 enable interactive
execution of these scripts.

4.1 Data Processing Embedded DSL

Our goal is to provide a simple and abstract language for describing
rich data processing tasks that relieves users from having to deal

with mundane tasks such as data import and resampling (also called
“regridding”) and allows for incremental execution suitable for an
interactive environment. We assert that necessary modifications
to the host language can be limited to three aspects, discussed in
the following sections, which are sufficient to facilitate interactive
evaluation of generic data processing scripts.

1. A new built-in data type that abstracts the common modalities
of scientific data (e.g., scalar or vector field data) and can be
used directly as a first class citizen of the language without
regard to format, resolution, or location of the underlying data;

2. A hinting mechanism to facilitate incremental production of
the results of ongoing computations (i.e., long-running scripts)
by indicating to the runtime system appropriate opportunities
at which the current state of the computation can be shown;
and

3. A generic multidimensional iterator for loops that can be per-
formed in any order (e.g., for computing an average) that
permits nonlinear evaluation of the loop body by the runtime
system such that incremental results potentially converge faster
toward the final result, and allows for parallelization of these
loops.

In the remainder of this section, we will explain each language

addition in detail and present a simple example script to illustrate
them.
Abstract Data Type. An abstract data type is necessary in order
to enable spatiotemporal data manipulation using a uniform and
generic interface without regard to format, resolution, or location.
The use of this type avoids embedding details in the data processing
scripts concerning the management of the underlying data. The
runtime system will handle data loading, resampling, and conversion
to a common format. We chose to make this a built-in type of the
EDSL to enable features such as operator overloading that otherwise
might not be feasible in the host language.

The specific methods provided by our EDSL include statistical
summary operations such as mean and variance, multifield opera-
tions that perform element-wise amalgamation such as average and
maximum, and operations such as convolve that involve some degree
of global dataset-wide access. A complete listing of the abstract data
type methods is provided in the addendum. Operator overloading
is provided to enable natural expression of element-wise operations
between fields of the new data type or with scalars. These methods
are sufficient for constructing arbitrarily sophisticated scripts for the
computation of temporal averages, rank correlations, image segmen-
tations, maximum intensity projections, and other types of output
used in scientific data analyses.

Explicit Data Publishing Hints. Streaming algorithms provide in-
cremental results based on incoming data that represent the best pos-
sible computation for the currently available input. These snapshots
of ongoing computations present the user with an approximation
of the final results of long-running operations, enabling errors to
be caught and addressed much sooner. Feedback is particularly
desirable for users of an interactive system, but for script-driven
analysis the best times to show these incremental results are not
always apparent. Attempting automatic determination could result
in showing incorrect or undesirable results, such as when a script
utilizes an output variable as a temporary. In order to show pro-
gressive results for streaming computations while avoiding output
at the wrong time, we introduce the doPublish primitive operation,
which indicates appropriate times for the scripting engine to send
the current computation results, designated output in Listing 1 be-
low, to the visualization system. Using this primitive enables the
corresponding workflows to be progressive with partial results being
computed and updated continuously. The doPublish primitive has no

effect on the computation itself, and can be safely ignored, enabling
the runtime system to refresh output presented to the user at intervals
suitable to maintain interactivity.

Generalized Multidimensional Iterators. To complement the pro-
gressive asynchronous updates enabled by doPublish, we introduce
an iterator for order-independent loops called unordered. This gen-
eralized facility allows for a variety of beneficial execution methods
to be utilized by the runtime system, and provides for the expression
of multidimensional loops that is both elegant and flexible. The
unordered primitive accepts as parameters the name of the variable
to be used as an index inside the loop and the extents of the loop
iterator. Loop indices are considered constant within the body of the
computation. The result of the loop should be the same regardless
of the order of execution (except for floating point differences that
would be expected to occur anyway), and it is considered a bug for
the user to construct an unordered loop body that depends on some
particular order of execution. In addition to parallelization, other
useful interpretations of unordered loops are described in detail in
Section 4.2.

The proposed EDSL described in this section primarily consists of
JavaScript extended with these carefully chosen primitives and a new
built-in data type for scientific data. This new EDSL allows users
to express common workflows in an abstract manner, suitable for
interactive execution. In Section 4.2, we introduce a runtime script-
ing engine designed for progressive, interactive execution of these
EDSL scripts for computations over arbitrarily large, disparately
located datasets. An example script is presented next that illustrates
the EDSL features described above.

Listing 1: EDSL script for incremental computation of a temporal
average using hourly data from the 7km GEOS-5 Nature Run simu-
lation. Notice the ability to succinctly express a significant operation
without explicitly addressing input format, resolution, dimension, or
output type.

// Computes running average
field = *TOTSCATAU’ ;

start = query-time;

width = 720;

//aerosol scattering
//current time
//720 hours (30 days)

output=Array .New(); //initialize output

var i=0;
unordered (t,[start , start+width]) //1d iterator, index t
{

f=input[field+”?time="+t]; //read field at time t

//critical section for running average:
//average and count must be updated atomically

{{
output += (f—output)/(i+1); // Welford’s method
i++;

1}

doPublish (); //show current result

}

Example Script. Listing 1 shows an example of a basic incremental
computation using the proposed EDSL. The script makes use of
Welford’s method [20,40] to compute a monthly average of hourly
temporal climate data. The script is able to express in very terse
terms a significant operation without the user needing to explicitly
address input formats, data resolution, or output type. Notice the
use of the overloaded arithmetic operators +, -, += in the statement
output += (f-output) / (i+1). For this expression, output and f are
members of our new abstract data type representing the current state
of the incremental average computation and the field at the current
timestep of the iteration, respectively. The unordered loop could be
interpreted just like a normal for loop, but using this facility enables
other execution methods as described in Section 4.2. The double
opening and closing brackets around the two statements designate a

critical section. If the loop were executed in parallel by the runtime
system, this delineation would be necessary to ensure correctness by
atomically updating the current output and running count. The call
to doPublish allows for incremental display of the result.

For comparison, a similar computation in the Vislt expressions
Python-based EDSL would require creating a specific class template
structure in which the user must explicitly define output type and
dimensions and manually create the VTK arrays to be computed
by the script. The Vislt EDSL contains a specific function for
computing temporal averages, average_over_time, but this type of
specialization, in addition to being unnecessary in the proposed
EDSL, does not facilitate progressive display of in-progress results
that are a focus of the proposed system in order to provide quick and
preliminary visualization.

Please refer to the Appendix of this work for a comprehensive
specification of the EDSL.

4.2 Progressive Runtime System

Now we present the complementary runtime system for the EDSL
presented in section 4.1, which incorporates an interruptible script
processing engine to evaluate scripts in an interactive manner by
enabling tuning of any necessary parameters in order to enable com-
putations to be performed quickly and incrementally. Through the
genericity of the EDSL, the runtime system also enables direct and
transparent transition from a local execution to a distributed work-
flow, including server-side execution and caching. To demonstrate
the scripting engine presented here, we wrote our own JavaScript
interpreter, used by the engine to directly execute scripts without any
compilation to byte code or significant optimization. Type-checking
is enabled at runtime using exceptions, which display the problem-
atic line of the script and a detailed error message to the user to
enable debugging. The presented runtime system utilizes techniques
such as multiresolution streaming and low-discrepancy sampling to
produce progressive results from streaming input data. The goal of
the system is to minimize the tradeoffs between accuracy and speed
while continuously providing useful results during interactive data
exploration.

The following paragraphs describe the features of the runtime
system that enable practical data exploration through interactive
interpretation of EDSL scripts, including implementation of the built-
in scientific data type, design of the progressive scripting engine,
making effective use of order-independent loops and parallelization,
and our method for remote or distributed script processing.
Multiresolution Streaming. Our runtime system reads and caches
input data using a lossless multiresolution format that provides ef-
ficient coarse-to-fine data loading and much faster access to local
regions of interest compared to traditional row- or column-major
order data [29]. In order to provide transparent access to multiresolu-
tion data from other data formats, an on-demand reordering facility
is presented in section 4.3. Multiresolution data can be used to
provide fast cursory computations by displaying the result of an
initial coarse-resolution execution while refining it to provide more
details when they are needed. The results of computation using
coarse-resolution data can also be surprisingly accurate. One of our
case studies in section 5 compares these results by performing the
same computation at different resolutions. See Fig. 11 in that section
for more details.

Built-in Data Model. The runtime scripting engine utilizes a fast
C++ Array type to provide efficient implementations of the opera-
tions defined for the EDSL built-in data type, similar to the numpy
package for Python [39]. Since datasets can be manipulated without
regard to their location, the runtime system uses additional metadata
associated with a script to map its inputs to their corresponding local
or remote data locations. Data read from remote locations is auto-
matically cached on the local system, and the results of a given script

execution can be cached as well, allowing comparison of new results
with previously computed data. Finally, the EDSL specifies element-
wise operations that can be performed independent of the resolution
of the operands. Variables of this type must be implicitly resampled
to the same resolution to be combined or compared. By default, the
scripting engine uses upsampling to the largest resolutions in each
dimension of the given operands and linear interpolation for resam-
pling. These methods, however, can be changed by the user at any
time without modification to the original script. Resampling data in
order to perform computations among different models is a serious
impediment for scientists, and we present a powerful case study
in section 5 that demonstrates our system’s ability to effortlessly
facilitate comparison of multiple climate ensembles.

Progressivity and Incremental Results. When the runtime script
interpreter encounters doPublish in a script, it can produce, or “pub-
lish”, the current state of an ongoing computation to provide the
user with important and timely feedback. Such a call can be safely
ignored by the downstream visualization without adverse effects
to the computation, enabling results to be displayed at suitable in-
tervals to maintain interactivity. The scripting engine implements
doPublish as an asynchronous callback that creates a copy of the cur-
rent computation output to be displayed by the visualization client.
If a previously published result has not yet been displayed by the
visualization system, that result is simply replaced with the new
output, ensuring smooth performance of the rest of the system while
allowing script execution to continue uninterrupted.

Convergence of Different Loop Orderings
3-month average of hourly total aerosol scattering
7km Nature Run, 5760x2881 resolution

0.12
o1 \\/\—Iinear sequence —low discrepancy sequence
0.08
w

Lo0s

o
0.04

0.02
-

0
1 201 401 601 801 1001 1201 1401 1601 1801 2001
Iteration

Figure 3: Results of a temporal average computation (Listing 1)
via two orderings for the inner loop. The error (plotted as RMSE)
between the precomputed result and the incremental result decreases
quickly when utilizing the low-discrepancy van der Corput sequence
of timesteps versus a simple linear sequence.

Loop Order and Parallelization. The EDSL presented in section
4.1 introduced the unordered primitive to allow explicit declaration
of order-independent multidimensional loops. These calculations
are common in scientific data analyses, yet their properties are rarely
exploited. For many iterative calculations, using an input ordering
with low discrepancy can lead to faster convergence of successive
iterations to the final solution compared to a simple linear sequence.
The desirable qualities of a low-discrepancy ordering are uniformity
and incrementality, such that samples are evenly distributed over
the given range, and decent coverage will have been achieved if the
processing is terminated at any point in the sequence [24].
Consider the incremental average script from Listing 1. This
script could simply use a for loop, but since the final result of the
computation does not depend on the order of loop iterations, we can
choose a superior ordering that converges significantly faster. Fig. 3
illustrates the difference of using a linear ordering compared to the
low-discrepancy sequence introduced by van der Corput [12] for
the incremental result of this computation. For higher dimensional
iterators, the Halton sequence [15] can be used. Fundamentally, any
evaluation order can be chosen at runtime for these loops, allowing

the flexibility to choose different orderings, for example to maximize
the use of cached data.

(@)

Figure 4: Result of 100 iterations (of 1000 total) for calculating
maximum intensity projection of microscopy volume. Each iteration
adds a 2d slice. (a) Linear order. (b) Low-discrepancy order. (c)
Final MIP.

Another example of the utilization of low-discrepancy loop or-
derings is shown in Fig. 4. High-resolution microscopy is used
by neuroscientists to examine cortical tissue samples to study the
connectivity of the brain. To aid in clarifying the imaged neurons,
which may not always be obvious from the 3d visualization, a max-
imum intensity projection is often used. This type of projection
accumulates the maximum intensity value of each voxel along a
given axis and presents a 2d image of the result. The incremental
computation of this projection is demonstrated using both linear
and low-discrepancy orderings. The results after processing the first
100 slices using each ordering are shown in Fig. 4 along with the
final result of the computation. Note in this case how much faster
the results of the incremental computation approach the final result
when using the low-discrepancy sequence. Using this technique
interactively enables faster and more dynamic comprehension of
custom regions of interest within massive microscopy volumes.

Scaling Unordered Loops
1000000

—max intensity projection ~ —zonal y-t correlation
100000 -

i —
£
£ 10000
£

1000

1 2 4 8 16

num_threads

Figure 5: Comparison of parallel unordered loop execution for
increasing thread counts for two algorithms: maximum intensity
projection and zonal rank correlation. Dashed lines indicate perfect
scaling. Tests conducted on a 16-core Intel Xeon E7-8890 v3 @
2.50GHz running openSUSE 13.1 using locally cached data.

Finally, parallelization of unordered loops potentially enables
faster evaluation by executing multiple iterations simultaneously.
Parallel execution may require more delicacy in the implementation
of an analysis script, and the double bracket {{ ... }} notation was
incorporated into the EDSL in order to denote a critical section.
Code within these sections will be executed atomically with respect
to the other threads, ensuring correct functionality of parallel code
without overly complicating or cluttering the resultant scripts. The
number of threads is controlled by the runtime system and provided
to the EDSL script, so scripts can be scaled to the available system
resources without modification.

Parallel loop execution is implemented in the scripting engine
using a thread pool for each unordered loop and assigning the work
of one iteration to each thread, with a shared context of global
variables and a thread-local context for variables introduced in the
iteration block. Critical sections are facilitated by using a shared

lock per loop. This strategy enables nested unordered loops, but
one should beware of the potential explosion of tasks and consider
rewriting the loop to instead utilize a multidimensional version of the
unordered iterator. As shown in Fig. 5, parallelizing the execution
of order-independent loops can provide a modest speedup even for
relatively naive algorithms. Permitting simple scripts to make better
use of processing resources is a benefit to the user that permits more
practically useful interactive data exploration.
Server-Side Processing. The multiresolution data server contains
an identical version of the scripting engine used by the visualization
client (see Fig. 1). Server-side processing can be utilized to perform
computations using remote resources and thereby reduce data trans-
mission. For example, when combining many ensemble members
into a single average, the amount of data to be sent to the client can
be dramatically reduced by first combining the inputs on the server
and then sending only the result to the client. On the other hand, if
server-side resources are scarce or in high demand, it may be more
efficient to transmit data directly to the client, perhaps at lower reso-
lution to reduce network bandwidth. The runtime system specifies
whether or not to perform a computation remotely without requiring
any modification to the input script, enabling a single script to be
executed on either the client or the server. Multiple scripts can be
incorporated within larger dataflows to mix both client- and server-
side processing. The location on which to execute a computation is
currently specified by the user on a per-script basis, but future work
will aim to address automatic selection based on available resources.
For the implementation of the runtime system, we extended the
ViSUS framework mentioned in section 3 to include a new scripting
engine that enables execution of generic EDSL scripts in a manner
that is both progressive and accurate by making effective use of
multiresolution data, asynchronous output, flexible iterator orderings,
remote computation resources, and parallelization. A novel data
ingest system was also added to automatically resample the various
input datasets specified in the script to a common domain during
I/0. High-level support was added to the UI for the selection of
the various runtime parameters, such as the default order used for
multidimensional iterators.

Client Viewer

[original data]

Figure 6: Data server with on-demand conversion. Data movement
is shown with thick arrows, requests with thin arrows. When data
is requested (a), the data server first checks the cache (i), and if not
cached the requested data is converted on-the-fly (ii) and sent to the
client (b).

4.3 On-Demand Data Reordering

Although some simulation frameworks have adopted multiresolution
formats as their default output [21], many existing datasets are not
stored in this fashion and must be converted prior to use.
On-Demand Conversion. We propose a data reordering service
that converts requested data on-the-fly to the multiresolution format
utilized by our data analysis runtime system. This system operates
transparently to the client, enabling access to data from other formats
without requiring explicit preprocessing.

Fig. 6 shows an overview of the system. When a data request is
made by the client application to the multiresolution IDX data server
(a), the server first checks its cache for the data (i), and if found, the
request is fulfilled directly (b). Otherwise, the server makes a call to

the on-demand service (ii), which reads the full-resolution data and
writes the multiresolution version to the data cache. This lossless
reordering of the original data is now sent to the requester (b) and is
also available for future requests by other users. The cache size is
maintained by periodically removing least recently used data when
the size grows beyond a specified maximum level. Data reordering
is a computationally light task, and the time required to convert a
given volume is dominated by the time to read the original data and
to write the reordered version. In general, the on-demand conversion
system does not introduce a significant overhead, since the data
would have to be downloaded anyway, and the initial conversion
time may be amortized over many future requests. Reordered data
facilitates interactive analysis and visualization that would in many
cases be impossible if the data remained in its original format. The
transparent, on-demand data reordering service described in this
section is utilized for climate analysis in the examples described in
Section 5. This implementation is briefly described next.

On-demand Conversion
B On-demand M Cached

4

4 o I ——

S Serial

o

& P

& parallel

s |

©

o 0 50 100 150
Time (sec)

Figure 7: Computation time when input data is converted on de-
mand versus already cached on the server. Temporal average of
daily data (90 timesteps) from NIMR HadGEM2-AO “Historic”.
Local caching disabled. Each timestep is 32-bit floating point, res-
olution 192x143x8. Our progressive environment revealed serious
and previously unnoticed errors in the original data.

On-demand Reordering for Climate Data. We have integrated
the proposed on-demand service at part of the Earth System Grid
Federation (ESGF) at Lawrence Livermore National Laboratory
(LLNL). The service provides for converting both local and remote
climate datasets to the multiresolution IDX format. The reordering
service is implemented as a python-based web service with read-
only access to hundreds of terabytes of (possibly remote) climate
data stored in the NetCDF format [34]. The typical method by
which a user of climate data federated by ESGF acquires new data
is to first search for the desired dataset using the ESGF search page,
then to manually select and download the datasets to be studied.
These data may be very large and contain many fields not needed
for the desired experiment, wasting time and local storage space.
The multiresolution datasets provided by our service incorporate
all fields and the entire time span of a given dataset, but no actual
data is converted until it is specifically requested. This efficiency
makes it simple for scientists to add or remove an unexpected field
from their computations without converting unnecesary data. Fig. 7
shows the time required to compute a seasonal temporal average
(see Listing 1) when data is converted on-demand versus when it
already exists in the server cache. Note that client-side caching was
disabled for this test.

5 RESULTS

In this section, we demonstrate the usability of the proposed system
for various analysis scenarios in real-world scientific applications.
All scripts for constructing these workflows can be found in the
Appendix of the paper.

5.1 Climate Simulation

Global climate research has become a major undertaking of many
governments and organizations in order to understand the primary

causes of the unusual warming observed over the past several
decades, as well as to determine the extent to which this warming
can be mitigated by changes in human behavior such as a reduction
in carbon dioxide emissions.

According to domain scientists, as computational capability in-
creases, these models become more sophisticated and the size of
climate simulation output grows dramatically (up to Petabytes for
simulations with extremely high spatial and/or temporal resolution).
The increasing size and complexity of climate datasets have placed a
huge burden on scientists to effectively perform analysis and visual-
ization tasks. By utilizing the proposed system, scientists can stream-
line and automate large amounts of manual operations such as down-
loading, converting, or resampling. The analysis tasks themselves
can be concisely expressed in the reusable and easy-to-understand
EDSL. For each type of analysis task, the same script can be used
directly with only minor changes (or none at all). The significant
time-savings and convenience provided by our framework enables
scientists to focus on core analysis tasks, and encourages them to
experiment more. This experimentation allowed an error in a widely
used public dataset to be discovered (see Fig. 9 from the Annual
Zonal Average example below).

T >
AR — »

(a) FGOALS Model Average (b) MIROCS5 Model Average

(c) Two Models Average

(d) Two Models Difference

Figure 8: The comparison between climate simulation model ensem-
bles.

Multimodel Ensemble Comparison. There are numerous climate
models from different countries and institutions. One of the impor-
tant tasks of climate research is to validate these models against
historical observations as well as compare them with each other [36].
These models can then be used in experiments that try to predict
future climate under a variety of conditions such as increased or
decreased anthropogenic emissions. For each model (and a given
experiment), a collection of runs is generated, each with different
parameters and/or initial conditions. Such a collection is often re-
ferred to as an ensemble. These models are created by different
institutions with different computational resources, and therefore the
grid resolution of the output data is usually different. As a result,
resampling is necessary for comparison. Compared to the tedious
manual workflow that is often adopted by domain scientists, our
system utilizes remote data directly, streaming even very large data
interactively at reduced resolutions, refining as necessary, and im-
plicitly resampling the requested datasets to a common resolution
for proper comparison.

In Fig. 8(a), we visualize the temperature average from an en-
semble of the FGOALS model (12-run ensemble). The average of
the same experiment for the MIROCS model (12-run ensemble) is
shown in Fig. 8(b). The average and difference of these two mod-
els are illustrated in Fig. 8(c) and (d). As we can easily see from
Fig. 8(d), these two models demonstrate the greatest divergence
in the area between the Tibetan plain and the Indian subcontinent.
By using our system, such observations can be obtained on-the-fly
without tedious data conversion and grid resampling.

Annual Zonal Average. Another interesting analysis called a zonal

average can be applied to climate data. The temperature field zonal
average in Fig. 9(a) shows the daily data for a whole year summa-
rized in one figure. The average for the entire line of longitude is
computed at each latitude for daily data. In the plot, along the x-axis
each vertical line corresponds to one day’s planetary average. As we
can see in Fig. 9(a), the temperature corresponding to each latitude
changes over time, indicating seasonal variation.

(a) Temperature field

Latitude

Days in a year

Latitude

30-days band (b) Humidity field

Figure 9: Annual zonal average of temperature and humidity. In
(a), the daily spatial temperature average changes as we move along
the temporal axis, which illustrates the change of seasons in a year.
In (b), the duplication error in the humidity data is indicated by the
bands along the temporal axis.

By utilizing our system for cursory exploratory analysis, the sci-

entist also revealed a serious set of errors in the daily 3d data from
NIMR (the Korean National Institute of Meteorology Research). As
illustrated in Fig. 9(b), the zonal average shows unnatural bands
in the horizontal (temporal) direction, which indicated unchanging
daily data for each 30-day period. In this particular ensemble, it
turns out that for each month, a single day’s data was erroneously
duplicated for the entire month. Once we observed the flaw in one
field, it was trivial to check the other 3d fields that also exhibited
the error by simply changing the variable name in the script. The
on-demand data conversion system transparently converted these
additional fields, which would have otherwise required manual down-
load to be examined. In addition, the low-discrepancy ordering of
the unordered loops used to generate the zonal averages ensured that
incoming data provided the best possible incremental representation
of the entire zone. What might have required significant manual
effort and hours of computation was able to be achieved in minutes
and at a glance.
Rank Correlation Analysis. Next we demonstrate the efficacy of
our EDSL and runtime for performing a more complicated type of
analysis. Studying correlation plays an important role in analyzing
climate data. Rank correlation can be used for measuring relevance
between different variables, examining a model’s performance by
comparing its variables to corresponding observations, and even
comparing different regions in a single model. According to our
collaborator, rank correlation [4,23,28] is a widely used but relatively
new technique for climate analysis that is rarely implemented in
domain-specific analysis tools. Instead, scientists must manually
write code to compute these correlations. Listing 2 shows the main
loop of an EDSL script that incrementally computes rank correlation.
Notice the use of overloaded operators for summation (+=) and
scaling (/) of the 3d fields. The algorithm is based on Welford’s
method to compute the running variances of the two fields that are
necessary to calculate the rank correlation.

Listing 2: EDSL script for incremental computation of Pearson’s
rank correlation using hourly 3d data from the 7km GEOS-5 Nature
Run simulation.

//Pearson’s rank correlation of two variables over time
var i = 0;
unordered (t,[start ,start+width])

f

g

datasetl [fieldl+”?time="+t[0]];
dataset2 [field2+”?time="+t[0]];

//critical section:
// update running average, variance, and correlation
// w.r.t. their current values and the given index
{{

var oldMf = Mf;

var oldMg Mg;

//running average
Mf += (f-Mf)/(i+1);
Mg += (g-Mg)/(i+1);

//running variance
Vf += (f-Mf) = (f—oldMf);
Vg += (g-Mg)+(g-oldMg);

// running correlation

Vfg += ((oldMf—f)x(oldMg—g))*((i+0.0)/(i+1.0));
var Sf = Array.sqrt(Vf/i);

var Sg = Array.sqrt(Vg/i);

output = Sfg/(Sf=Sgx*i);

i++;

1}

doPublish (); //display incremental result

The combined power of the EDSL and progressive runtime system
enables interactive visualization and analysis of extremely massive
climate simulation data.

(b) Full resolution

Figure 10: Pearson rank correlation between hydrophilic and hy-
drophobic black carbon on the 7km GEOS-5 Nature Run dataset. (a)
Coarse resolution rank correlation. (b) Full-resolution rank correla-
tion.

The two-year Non-hydrostatic 7-km Global Mesoscale Simula-
tion “Nature Run” [9] created by NASA is one of the largest climate
simulation datasets to date and an example of the future of global
climate modeling. The full-resolution raw data is available in the
standard NetCDF4 format, but the time and space required to down-
load it locally seriously inhibit access and analysis. We rely on the
on-demand conversion system described in Section 4.3 to handle the
complexity of data loading and format conversion. The on-demand

system utilizes the OPeNDAP protocol to load requested compo-
nents of the massive 7km GEOS-5 “Nature Run” simulation residing
at NASA. The converted multiresolution data are stored in the data
cache at LLNL. The large fields of this dataset require more time to
convert, but such time would have been spent downloading the data
anyway. Furthermore, once converted, the fields can be accessed
interactively at different resolutions by any future users.

In this example, we try to understand the relationship between
hydrophilic and hydrophobic black carbon (both important environ-
mental pollutants [38]). Hydrophobic black carbon is believed to
transform into its hydrophilic sibling shortly after emission from
various sources, especially industrial. In order to quickly evaluate
this theory, we apply rank correlation between these two fields us-
ing remote data cached at LLNL. Each timestep of the 3d fields
is approximately 1.5 GB, and our cursory analysis considered 744
timesteps, over 1.1 TB of data. Other data analysis systems would
be unable to handle a volume of data this large. Yet by specifying
a diminished resolution and utilizing an incremental algorithm, our
script was able to start showing the results of the calculation almost
immediately, and complete it for an interactively selected subregion
in only a few minutes. As illustrated in Fig. 10 (a), a coarse reso-
lution of the data was selected by the user to rapidly identify the
preliminary result. The final result using the full dataset is illustrated
in Fig. 10 (b).

Resolution vs Overall Error
one month rank correlation, hourly SO2 vs SO4

. 12000 0.006

[Size (MB) —Time (sec)

» 10000 0.005
Py -~—MAPE RMSE

£ 8000 0.004
F S
~~ 6000 0.003 &
o w
= 4000 0.002
.q!J 2000 0.001
wv

Resolution

Figure 11: Comparison of data size, computation time, and root-
mean-square error (RMSE) for various resolution levels in the com-
putation of the Pearson rank correlation.

The results of computation using coarse-resolution data can be
surprisingly accurate. Fig. 11 shows the root mean squared error
(RMSE) between the full-resolution and several partial-resolution
calculations of a 2d rank correlation within the NASA Nature Run
simulation. The graph shows the relationship among error metrics,
total computation size, and total computation time for each resolu-
tion level. The full-resolution computation requires nearly 100 GB
of data, but at low resolutions, the error is still quite reasonable and
the computation time is dramatically faster.

5.2 Combustion Simulation

Combustion simulation is crucial for modeling and analyzing com-
plex chemical and physical processes in the search for more efficient
energy utilization. One such environment is S3D [42], which has
been integrated with the PIDX library [22] to directly produce mul-
tiresolution output that can be utilized by our runtime system. These
simulations can produce up to terabytes of data per timestep and
involve extremely large domains and hundreds of fields. However,
by utilizing the multiresolution and progressive refinement, scien-
tists can rapidly explore preliminary result instantaneously before
committing to a final static analysis.

One standard analysis of combustion simulation data is to explore
discrete regions of burning flame within a specific range of mixed
fuel. The optional burning condition is usually achieved within

such a range. Typically, scientists will compute a derived field of-
fline by iterating through the full-resolution volumes of both the
mixture fraction and OH field and mask the OH field by mixture
fraction thresholds. Despite being a simple operation, this process
is computationally intensive due to the sheer size of the data. As
a result, scientists often cannot repetitively experiment with differ-
ent thresholds to select the best one. Compared to the commonly
used workflow, our system enables scientists to interactively explore
different threshold values using a simple script. Fig. 12 illustrates
the process of applying the threshold. The OH field is shown in
Fig. 12(a), and the masked OH field where the mixture fraction of
fuel and oxygen is between 36%-40% is illustrated in Fig. 12(b).
Utilizing coarse-resolution data allows very rapid cursory explo-
ration that can be refined as necessary. The interactive exploration
facilitated by this work ensures that important data is not missed nor
resources wasted with unnecessary computation.

(@

Figure 12: Exploring discrete regions of burning flame within a
specific threshold of mixed fuel. (a) Shows the original OH field.
(b) Shows the application of the mask to the original OH field where
the mixture fraction of fuel and oxygen is between 36%-40%.

6 DISCUSSION

In this work, we introduced a simple yet expressive embedded script-
ing language that abstracts the location and resolution of input data
volumes, along with a runtime system to facilitate dynamic per-
formance tuning and loop interpretations for faster convergence
of incremental in-progress results. The internal data format used
by the runtime system enables efficient multiresolution data load-
ing, very fast access to regions-of-interest, multilevel architecture-
independent caching, and transparent on-demand data conversion.
As a whole, our system enables truly interactive analysis and visual-
ization workflows for massive simulation ensembles, closing a gap
in the existing technology. While our work is focused on structured
spatiotemporal dataset, similar concepts and language extensions
could be applied to unstructured data modalities in future work. We
conclude this work with a discussion of the benefits as well as some
of the current limitations of the system.

In order to evaluate the effectiveness of the proposed system, we
had to take into account all aspects of the data analysis process,
which often involves manual steps for data download and conver-
sion and the use of multiple applications in addition to the actual
computation. Because our system is intended to facilitate cursory
data exploration, the primary focus has been on incrementality and
interruptibility rather than optimization of any single computation.
The proposed work enables many time-saving advantages over ex-
isting applications, such as transparent multiresolution data access,
automatic resampling, and remote computation. To perform sim-
ilar analyses using existing techniques typically requires users to
manually download and resample specific variables of interest to
the system that will perform the computation, and then manually
construct and execute the various scripts used for the analysis. Each
step can be tedious and time-consuming, and this cumbersome pro-
cess curtails dynamic exploration of the analysis space. In contrast,
our lightweight system enables hypotheses to be more easily tested,
and even allows for more rapid discovery and validation of errors in
the underlying data, as described in the Annual Zonal Average case
study of Section 5.

The transparent data access enabled by the on-demand data re-
ordering system provides a tremendous advantage in simplicity to
enable multiresolution data access, but this system is intended as a
measure to ease the transition for users of legacy data. Though com-
putationally efficient, reordering large datasets that are not currently
provided in a multiresolution format still requires time to read and
write the data. We hope and anticipate that the use of reordered data
formats will become more common, and our demonstration of the
use of multiresolution data access to facilitate unprecedented inter-
active analysis of massive datasets such as the 7km NASA GEOS-5
Nature Run simulation adds to the growing body of evidence to
support adoption of such formats. The settings we selected for data
conversion in this work result in cached datasets that are between
17-28% larger than the original data. However, many tuning param-
eters can be selected for data reordering such as multiresolution bit
string, block size, and methods of compression. The IDX format
utilized for this work supports variable-size blocks and different
data orderings within the blocks themselves (either row-major or
Hz order), each of which provide trade-offs in terms of disk usage,
access time, and compressibility. Data storage is an ongoing area of
research, and the methods demonstrated by this work can utilize any
similar type of data format to equal advantage. In other words, the
proposed DSL is not tied to a specific multiresolution format.

The EDSL runtime presented in this work provides an option to
perform the computation of a script using remote resources. This
flexibility can be used to manually construct dataflows that utilize a
combination of resources including remote servers, local systems,
or GPU hardware. For future work, we would like to explore using
more dynamic selection in order to make the best use of distributed
computational resources. We adopted JavaScript as our host lan-
guage because it was simple to write our own interpreter, but in the
future, we intend to explore alternatives such as Python. Finally, we
hope to extend the runtime with the ability to cache derived fields,
i.e., averages, so that they could be shared like any other data in the
system. Our system could then be utilized with other applications
such as UV-CDAT or Vislt as a preliminary data processing facility
that updates local data to be visualized by those applications.

ACKNOWLEDGMENTS

The authors wish to thank Sasha Ames and Anthony Hoang for
supporting the installation of the On-demand Data Reordering
service at LLNL. This work is supported in part by NSF:CGV
Award: 1314896, NSF CISE ACI-0904631, NSF:1IP Award:1602127,
NSF:ACI Award 1649923, DOE/Codesign P01180734, DOE/S-
ciDAC DESC0007446, CCMSC DE-NA0002375, and PIPER:
ER26142 DE-SC0010498. This material is based upon work sup-
ported by the Department of Energy, National Nuclear Security
Administration, under Award Number(s) DE-NA0002375. This
work is also supported in part by the Earth System Grid Federation
(ESGF), the Distributed Resources for ESGF Advanced Manage-
ment (DOE DREAM) project and the LLNL program on Analytics
and Informatics Management Systems (AIMS). This work was per-
formed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344.

REFERENCES

[1] OPeNDAP Data Access Protocol, http://www.opendap.org/.

[2] J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large
data visualization. 01 2005.

[3] G. L. Bernstein, C. Shah, C. Lemire, Z. DeVito, M. Fisher, P. Levis,
and P. Hanrahan. Ebb: A DSL for physical simluation on cpus and
gpus. CoRR, abs/1506.07577, 2015.

[4] S.J. Camargo and A. H. Sobel. Western north pacific tropical cyclone
intensity and enso. Journal of Climate, 18(15):2996-3006, 2005.

[5]

[7

—

[10]

(11]

[12]

[13]

[14]

[15

[16]

(17]

[18]

[19]

[20]

[21]

[22]

CAPS Enterprise, Cray Inc., NVIDIA, and the Portland Group. The
OpenACC Application Programming Interface v1.0, Nov 2011.

Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core
isosurface extraction. In Visualization’98. Proceedings, pages 167-174.
IEEE, 1998.

H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Riibel, M. Durant,
J. M. Favre, and P. Navrétil. VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data. In High Performance Visualization—
Enabling Extreme-Scale Scientific Insight, pages 357-372. Oct. 2012.
H. Choi, W. Choi, T. M. Quan, D. G. C. Hildebrand, H. Pfister, and
W. K. Jeong. Vivaldi: A domain-specific language for volume pro-
cessing and visualization on distributed heterogeneous systems. /EEE
Transactions on Visualization and Computer Graphics, 20(12):2407—
2416, Dec 2014.

W. P. da Silva, A.M. and J. Nattala. File specification for the 7-km geos-
5 nature run, ganymed release (non-hydrostatic 7-km global mesoscale
simulation), 2014.

L. Dagum and R. Menon. Openmp: an industry standard api for shared-
memory programming. Computational Science & Engineering, IEEE,
5(1):46-55, 1998.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger. Pe-
gasus: a workflow management system for science automation. Future
Generation Computer Systems, 46:17-35, 2015. Funding Acknowl-
edgements: NSF ACI SDCI 0722019, NSF ACI SI2-SSI 1148515 and
NSF OCI-1053575.

J. V. der Corput. Verteilungsfunktionen. i. mitt. In Proc. Akad. Wet.
Amsterdam, 38, pages 813-821, 1935.

G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark. Ocelot: A
dynamic optimization framework for bulk-synchronous applications
in heterogeneous systems. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques,
PACT 10, pages 353-364, New York, NY, USA, 2010. ACM.
Edwards, H. C., and D. Sunderland. Kokkos array performance-
portable manycore programming model. Proceedings of the 2012
International Workshop on Programming Models and Applications for
Multicores and Manycores (PMAM 12), pages 1-10, 2012.

J. Halton. On the efficiency of certain quasi- random sequences of
points in evaluating multi- dimensional integrals, 1960.

H.-C. Hege, A. Hutanu, R. Kihler, A. Merzky, T. Radke, E. Seidel,
and B. Ullmer. Progressive retrieval and hierarchical visualization of
large remote data. Scalable Computing: Practice and Experience, 6(3),
2001.

N. B.J. Hoberock. Thrust: A Productivity-Oriented Library for CUDA,
chapter 26, pages 359-371. Morgan Kaufmann, 2012.

G. Kindlmann, C. Chiw, N. Seltzer, L. Samuels, and J. Reppy. Diderot:
a domain-specific language for portable parallel scientific visualization
and image analysis. IEEE Transactions on Visualization and Computer
Graphics (Proceedings VIS 2015), 22(1):867-876, Jan. 2016.

F. Kjolstad, S. Kamil, J. Ragan-Kelley, D. I. W. Levin, S. Sueda,
D. Chen, E. Vouga, D. M. Kaufman, G. Kanwar, W. Matusik, and
S. Amarasinghe. Simit: A language for physical simulation. ACM
Trans. Graph., 35(2):20:1-20:21, Mar. 2016.

D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997.

S. Kumar, C. Christensen, J. Schmidt, P.-T. Bremer, E. Brugger, V. Vish-
wanath, P. Carns, H. Kolla, R. Grout, J. Chen, M. Berzins, G. Scorzelli,
and V. Pascucci. Fast multiresolution reads of massive simulation
datasets. InJ. Kunkel, T. Ludwig, and H. Meuer, editors, Supercom-
puting, volume 8488 of Lecture Notes in Computer Science, pages
314-330. Springer International Publishing, 2014.

S. Kumar, V. Vishwanath, P. Carns, J. Levine, R. Latham, G. Scorzelli,
H. Kolla, R. Grout, R. Ross, M. Papka, J. Chen, and V. Pascucci.
Efficient data restructuring and aggregation for I/O acceleration in
PIDX. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pages 50:1—
50:11. IEEE Computer Society Press, 2012.

(23]

[24]

[25]

(26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

(36]

(371

[38]

[39]

[40]

[41]

[42]

B. Langenbrunner and J. D. Neelin. Analyzing enso teleconnections in
cmip models as a measure of model fidelity in simulating precipitation.
Journal of Climate, 26(13):4431-4446, 2013.

S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy
lattice methods for motion planning. In Robotics and Automation, 2003.
Proceedings. ICRA '03. IEEE International Conference on, volume 3,
pages 2920-2927 vol.3, Sept 2003.

B. Ludéscher, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow management
and the kepler system. Concurrency and Computation: Practice and
Experience, 18(10):1039-1065, 2006.

G. Martinez, M. Gardner, and W. c. Feng. Cu2cl: A cuda-to-opencl
translator for multi- and many-core architectures. In Parallel and Dis-
tributed Systems (ICPADS), 2011 IEEE 17th International Conference
on, pages 300-307, Dec 2011.

T. Maxwell. Exploratory climate data visualization and analysis using
dv3d and uvcdat. In High Performance Computing, Networking, Stor-
age and Analysis (SCC), 2012 SC Companion:, pages 483—-487, Nov
2012.

M. Mnnich and J. D. Neelin. Seasonal influence of enso on the at-
lantic itcz and equatorial south america. Geophysical Research Letters,
32(21):n/a—n/a, 2005. L21709.

V. Pascucci and R. J. Frank. Global static indexing for real-time explo-
ration of very large regular grids. In G. Johnson, editor, Proceedings
of the 2001 ACM/IEEE conference on Supercomputing, Denver, CO,
USA, November 10-16, 2001, CD-ROM, page 2. ACM, 2001.

V. Pascucci, G. Scorzelli, B. Summa, P.-T. Bremer, A. Gyulassy,
C. Christensen, and S. Kumar. Scalable visualization and interactive
analysis using massive data streams. Advances in Parallel Computing:
Cloud Computing and Big Data, 23:212-230, 2013.

V. Pascucci, G. Scorzelli, B. Summa, P.-T. Bremer, A. Gyulassy,
C. Christensen, S. Philip, and S. Kumar. The ViSUS Visualization
Framework, chapter 19, pages 401-414. Chapman \& Hall/CRC Com-
putational Science, 2012.

e. a. R. Hornung, J. Keasler. The raja portability layer: Overview and
status, 2014.

P. Rautek, S. Bruckner, M. E. Grller, and M. Hadwiger. Vislang: A
system for interpreted domain-specific languages for scientific visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
20(12):2388-2396, Dec 2014.

R. Rew and G. Davis. Netcdf: an interface for scientific data access.
IEEE Computer Graphics and Applications, 10(4):76-82, July 1990.
E. Santos, J. Poco, Y. Wei, S. Liu, B. Cook, D. N. Williams, and C. T.
Silva. UV-CDAT: Analyzing climate datasets from a user’s perspective.
Computing in Science and Engineering, 15(1):94-103, Jan./Feb. 2013.
K. E. Taylor, R. J. Stouffer, and G. A. Meehl. An overview of cmip5
and the experiment design. Bulletin of the American Meteorological
Society, 93(4):485-498, 2012.

Y. Tian, S. Klasky, W. Yu, B. Wang, H. Abbasi, N. Podhorszki, and
R. Grout. Dynam: Dynamic multiresolution data representation for
large-scale scientific analysis. In Networking, Architecture and Storage
(NAS), 2013 IEEE Eighth International Conference on, pages 115-124,
July 2013.

United States Environmental Protection Agency. Report to congress
on black carbon. In Government Printing Office, EPA-450/R-12-001,
Mar 2012.

S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: a
structure for efficient numerical computation. Computing in Science &
Engineering, 13(2):22-30, 2011.

A. B. P. Welford and B. P. Welford. Note on a method for calculating
corrected sums of squares and products. Technometrics, pages 419-420,
1962.

K. Wu. Fastbit: an efficient indexing technology for accelerating
data-intensive science. 16(1):556, 2005.

C. S. Yoo, R. Sankaran, and J. H. Chen. Three-dimensional direct
numerical simulation of a turbulent lifted hydrogen jet flame in heated
coflow: flame stabilization and structure. Journal of Fluid Mechanics,
pages 453-481, 2009.

	Introduction
	Related Work
	Background
	Method
	Data Processing Embedded DSL
	Progressive Runtime System
	On-Demand Data Reordering

	Results
	Climate Simulation
	Combustion Simulation

	Discussion

