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A B S T R A C T

Background: Computational models of myocardial ischemia often use oversimplified ischemic source rep-
resentations to simulate epicardial potentials. The purpose of this study was to explore the influence of
biophysically justified, subject-specific ischemic zone representations on epicardial potentials.
Methods: We developed and implemented an image-based simulation pipeline, using intramural recordings
from a canine experimental model to define subject-specific ischemic regions within the heart. Static epi-
cardial potential distributions, reflective of ST segment deviations, were simulated and validated against
measured epicardial recordings.
Results: Simulated epicardial potential distributions showed strong statistical correlation and visual agree-
ment with measured epicardial potentials. Additionally, we identified and described in what way border
zone parameters influence epicardial potential distributions during the ST segment.
Conclusion: From image-based simulations of myocardial ischemia, we generated subject-specific ischemic
sources that accurately replicated epicardial potential distributions. Such models are essential in under-
standing the underlying mechanisms of the bioelectric fields that arise during ischemia and are the basis for
more sophisticated simulations of body surface ECGs.

© 2018 Elsevier Inc. All rights reserved.

Introduction

The electrocardiogram (ECG) is the most commonly used clini-
cal tool for detecting and diagnosing myocardial ischemia, yet errors
in ECG-based diagnosis [1] suggest a general lack of understanding
regarding its underlying electrophysiology. Myocardial ischemia is a
potentially life-threatening condition [2] that arises in response to a
blood supply deficit within cardiac tissues leading to electrophysio-
logical changes within the heart. Reduced blood flow within ischemic
tissues inhibits the ability of cells to produce ATP. Reductions in
available ATP, in turn, lead to depressed Na+/K+ and Ca++ pump
activity—resulting in altered local ionic concentrations and caus-
ing subsequent changes in tissue electrophysiology, such as reduced
action potential amplitude, decreased action potential duration,
and less-negative resting membrane potential [3,4]. The resulting
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extracellular potential differences that arise between healthy and
ischemic tissues cause ECG recordings that deviate from normal.
Clinically, ST segment shift is used as a marker for detecting the pres-
ence of ischemia [5-7]; however, ECG-based detection exhibits wide
sensitivity and specificity ranges [1], resulting in diagnostic error.
In an effort to avoid the potentially severe consequences of misdiag-
nosis [2], medical professionals have adopted aggressive admissions
policies at the expense of elevated false positives, with only 50–60%
of admitted patients actually experiencing an ischemic event [1,8].

Errors associated with the clinical detection of myocardial
ischemia stem, at least in part, from an incomplete understand-
ing of its mechanistic origins. Current clinical dogma assumes that
ischemia develops as geometrically simple, contiguous regions of
injured tissue that are anchored along the endocardial wall [7].
While the presence of a single, fixed ischemic region provides a sim-
ple approach for interpreting ischemic disease, it is often a gross
oversimplification of a far more complex condition. Recent exper-
imental studies, for example, showed that subendocardial patterns
of ischemia were not common—appearing in only 6% to 13% of
all observed cases [9]. In all other cases, ischemia formed over
numerous, spatially distributed regions within the thickness of the
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myocardium, creating multiple isolated zones that expanded inde-
pendently of each other under conditions of prolonged stress [9].

These novel findings led us to develop an equally novel,
experiment-based simulation pipeline to more fully elucidate the
effects of ischemic disease on cardiac potentials [10]. To this end,
we previously constructed a subject-specific, image-based model
of the heart, using, as a source, measured intracardiac potentials
sampled from the anterior left ventricle, to simulate epicardial
potential distributions during the ST segment for multiple ischemic
episodes. Simulated epicardial potentials correlated strongly with
those measured during experimentation [10]. However, a partial
sampling of the extracellular potentials of the intramyocardial space
is only one possible representation of the ischemic source, and,
although it closely resembles our experimental findings, a more nat-
ural and potentially more powerful option is to represent the injury
in terms of ischemic zones. Once adequately characterized, such
zones offer a path to parametrization, forming a much simpler rep-
resentation of ischemia than a distributed set of potentials in space,
much like a propagating wave encapsulates important behavior that
is both intuitive and more easily interpreted than a set of electro-
grams. The result would be a reduction in complexity of the ischemic
source descriptions from our previous model [10] that offers a com-
pletely novel, physiologically motivated approach to locating and
visualizing the impact of ischemic stress on the heart. The goal of
this study, therefore, became to characterize ischemic zone sources,
based on measured intramyocardial potentials, and to evaluate the
ability of zone-based simulations to replicate measured epicardial
potentials.

We, therefore, augmented our original simulation pipeline [10]
to explore the influence of biophysically justified, subject-specific
ischemic zone representations on computed epicardial potentials.
Using experimental measurements from canine models of induced
ischemia, we extracted subject-specific ischemic zone geometries
from measured intramural extracellular potentials during condi-
tions of elevated ischemic stress. We imposed these zones within
our image-based cardiac models, which we tuned to replicate mea-
sured epicardial potentials. This tuning consisted primarily of semi-
empirically adjusting the various parameters of the ischemic bor-
der zone, i.e., the thin layer of hypoperfused tissue that separates
healthy from ischemic tissues. Border zone tuning led to consis-
tent and predictable changes in simulated outcomes. Our results
showed improved accuracy in terms of epicardial potential distribu-
tions for simulations using zone-based source representations when
compared to our previous studies, which incorporated directly mea-
sured, distributed, intracardiac potential values as boundary condi-
tions [10]. These results suggest that it is, indeed, possible, and in
many ways preferable, to represent ischemia in terms of discrete
zones. These findings encourage further exploration of zone-based
modeling approaches, particularly with respect to the parameter

space used to define them, in order to increase our understand-
ing of the underlying biophysical mechanisms that drive myocardial
ischemia and, consequently, to improve noninvasive localization and
monitoring of acute myocardial ischemia.

Material and methods

The overall approach in this study was to simulate static epi-
cardial potentials associated with subject-specific ischemia mod-
els using an augmented implementation of our previously defined
image-based modeling pipeline [10,11]. Fig. 1 illustrates our overall
approach in which image-based geometries, physical properties, and
time-signal data were extracted from experimental canine models of
acute ischemia [9]. These were used to create subject-specific com-
putational models, from which simulated epicardial potentials were
computed and validated [10].

Experimental methods and data processing

Unipolar intramural and epicardial electrograms were collected
from open-chest canine models in which controlled, acute ischemia
was induced, as described previously [9,12]. In brief, we regulated
coronary blood flow through the left anterior descending artery
(LAD) of anesthetized canine models (supply ischemia) while inde-
pendently elevating heart rate and metabolic demand (demand
ischemia), via right atrial pacing, to generate episodes of acute,
transient ischemia. Our data includes examples of both supply and
demand ischemia, which, for purposes of simulation, we consider to
be equivalent. Electrogram recordings were concurrently captured
using both a high-resolution customized sock (epicardial poten-
tials) [13] and plunge needle electrodes (intramural potentials) [14]
placed within the anterior portion of both ventricles. Potential values
were extracted from each electrogram, using the Pfeifer open-source
software package [15], at ST40%—a lead-independent time point
defined as 40% of the interval between the end of the QRS com-
plex (QRSoff) and the peak of the T wave (Tpeak) of the global root
mean squared signal, which considered all sock and needle electro-
grams together. ST40% was chosen to capture deflections in the ST
segment while avoiding interference from T wave upstroke. Six dis-
tinct episodes, or interventions, of induced ischemia, acquired from
two canine subjects, were considered for this study. Each episode
lasted 6–8 min and consisted of stepwise increases in ischemic stress.
ST40% potentials were corrected against control recordings taken
prior to each induced ischemic episode to isolate the acute affects of
ischemia [9,12].

Each heart was excised postexperiment and scanned using mag-
netic resonance imaging (MRI) and Diffusion Weighted MRI (DW-
MRI) modalities (7 Tesla Bruker BIOSPEC 70/30, Billerica, MA) to
identify cardiac geometries and fiber directions, respectively [10].

Fig. 1. Ischemia simulation pipeline. Electrogram and imaging data were extracted from experimental preparations of induced acute ischemia in dogs. From imaging data, subject-
specific geometric models were generated that contained conforming, subject-specific cardiac fibers definitions and ischemic zone geometries. Intramural electrical potentials
were mapped within the geometric models. Intramural and epicardial electrical potentials (recorded from plunge needle and sock electrodes) were also mapped in order to define
subject-specific ischemic regions and to validate simulation results, respectively.
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Cardiac and blood volume geometries were segmented using the
Seg3D open-source software package (www.seg3D.org) as were
plunge needle electrode locations. DW-MRI images were used to
define principal eigenvectors associated with each voxel within the
heart volume, which corresponded to fiber orientation within the
heart [16].

Geometric processing and model setup

Meshing
To enable numerical simulation, we implemented a two-phase

meshing protocol to generate subject-specific tetrahedral meshes
containing conforming geometries representing the heart, blood
pool, and ischemic zones [10]. Phase I meshes were generated using
the open-source BioMesh3D software package [17] and consisted of
three-dimensional tetrahedral representations of cardiac and blood
pool geometries. Recorded intramural electrograms were registered
to, and interpolated within, phase I meshes using a thin-plate-spline,
radial basis interpolation algorithm (Fig. 2A). Interpolated electro-
grams that registered elevated intramyocardial ST40% potentials
were classified ischemic and thresholded to identify ischemic zone
geometries within each phase I mesh (Fig. 2B). Thresholded phase I
meshes provided inputs to the BioMesh3D package with which phase
II meshes were generated—containing heart, blood, and ischemic
zone geometries. Fig. 2C contains an example of the resulting mesh,
with conformal heart tissues, blood volumes, and subject-specific
ischemic regions.

Anisotropic conductivities
Subject-specific anisotropic conductivities, which represented

both intracellular and extracellular spaces, were identified and
assigned within each phase II mesh in a manner similar to that in
our previous studies [10]. Briefly, fiber orientation vectors were iden-
tified on a voxel-by-voxel basis within each cardiac volume using
DW-MRI images. These vectors were mapped to each element of
their respective phase II meshes and used to define longitudinal
and transverse conductivity values that were scaled to reflect both
intracellular (s̄il and s̄it) and extracellular (s̄el and s̄et) spaces [18]
(see Table 1). We assumed that cross-fiber components (s̄it and s̄et)
were radially isotropic in all transverse directions. Conductivities
within ischemic regions were also altered to reflect bulk conductiv-
ity changes resulting from ischemia as reported by Stinstra et al. [18].
Table 1 summarizes the resulting conductivity ratios we used for
both healthy and ischemic tissue regions.

Ischemic source model
We defined ischemic source models by assigning fixed trans-

membrane potential differences between the ischemic regions of
phase II meshes and the otherwise healthy tissues surrounding them.
A piecewise continuous border zone (BZ) representing hypoperfused,
or partially ischemic, tissues [19] was defined by decaying trans-
membrane potentials that varied as a function of distance, d, from

Table 1
Ratios applied to tensor conductivity values within healthy and ischemic regions.
The first subscript indicates the tissue domain (e = extracellular, i = intracellular,
b = blood) and the second subscript the direction (l = longitudinal, t = transverse)
relative to the local fiber direction.

Conductivity labels Healthy conductivity values Ischemic conductivity values

sel 1 1/2
s il 1 1/10
set 1/3 1/4
s it 1/10 1/1000
sb 3 3

the edge of the ischemic region. We assumed that as the distance
from the boundary increased, the profile of the BZ voltage, VBZ, tran-
sitioned from a Gaussian to a linear decay function as proposed by
Swenson et al. [20]

VBZ(d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vme
−d2

2s2 d < S1

Vme
−(S1)2

s2
(

1 − d−S1
S2−S1

)
S1 ≤ d < S2

0 d ≥ S2

(1)

where Vm represents the transmembrane potential relative to that
of the healthy tissue, S1 corresponds to the distance at which the
BZ function transitions from Gaussian to linear, and S2 defines the
distance at which the border zone ends. The values of Vm, S1, S2,
and the Gaussian variance, s2, were expected to vary for each
episode of ischemia. Accordingly, we estimated each value using
a semi-empirical, multi-variate approach, which consisted of, first,
providing an initial guess for each variable based on values extracted
by Swenson et al. [20]. We then applied an automated perturba-
tion scheme to each parameter to create 625 unique, uniformly
distributed collocated parameter sets. Finally, for each parameter set,
we compared simulation outcomes against their respective exper-
imental epicardial measurements. In this manner, we generated
individualized parameter sets for each ischemic episode that were
optimized against experimental findings.

Mathematical modeling

Acute ischemia was modeled using a passive bidomain descrip-
tion of the heart

∇ • (s̄e + s̄i)∇0e = −∇ • s̄i∇Vm, (2)

where s̄e and s̄i represent extracellular and intracellular anisotropic
conductivity tensors, respectively, and Vm and 0e represent trans-
membrane source potentials and extracellular potential throughout
the heart. Boundary conditions that define the physical constraints
of the model included a no-flow Neumann boundary condition along

Fig. 2. Region identification and conformal mesh generation. Intramural measurements were mapped within phase I meshes (A) on which thresholds were applied to extract
potential zone volumes (B), which we merged to generate the final conformal phase II meshes (C) for use in finite element simulations.

http://www.seg3D.org
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Fig. 3. Model boundary conditions. The passive current flow bidomain equation
(Eq. (2)) governed the cardiac tissue YH , which was bounded by the epi- and
endocardium—∂YH,epi and ∂YH,endo with their respective surface normal unit vectors
�nepi and �nendo . Extracellular currents were allowed to flow into the blood volume YB

along the endocardial boundary. All other currents along the boundaries maintained
no-flow conditions (Eq. (3)).

the epicardial surface and Cauchy boundary conditions (i.e., nor-
mal current flow coupled with continuity of potentials) along the
endocardium as shown in Fig. 3 and Eq. (3):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�nepi • (s̄e + s̄i)∇0e = 0 x ∈ ∂YH,epi

�nendo • (s̄e∇0e) = �nendo • (s̄b∇0b) x ∈ ∂YH,endo

0e = 0b x ∈ ∂YH,endo

0i = 0 x ∈ Yb,

(3)

where 0e and 0b are the potentials within the extracellular car-
diac tissue and blood domains, respectively, and YH represents the
cardiac volume, which is bounded by the epicardial (∂YH,epi) and
endocardial (∂YH,endo) surfaces with their respective surface normal
unit vectors �nepi and �nendo (Fig. 3). We assigned conductivity val-
ues (Table 1) [18] for each domain to the labeled phase II mesh and
defined transmembrane potentials (Vm) throughout the cardiac vol-
ume. A Vm value of 0 mV was assigned to healthy tissues to reflect
control-corrected values as described previously [9]. The epicar-
dial subset of the computed 0e values was subsequently compared
to measured values from the sock electrodes in order to validate
simulated solutions.

Numerical methods

By applying Green’s divergence theorem to Eq. (2), the following
finite element, weak formulation was generated:

∫
((s̄e + s̄i)∇0e(x̄)) • ∇x(x̄)dx̄ = −

∫
(s̄i∇Vm(x̄)) • ∇x(x̄)dx̄, ∀x ∈ Y,

(4)

where Y represents the linear finite element mesh of the heart
(Geometric Processing and Model Setup) that consisted of x̄ elements
represented by local basis functions, x. By applying this formulation
to the mesh, we reduced Eq. (4) to a system of linear equations:

A0e = −RVm, (5)

where A and R represent stiffness matrices defined by Aj,k =
〈∇xj, (s̄e + s̄i)∇xk〉Y and Rj,k = 〈∇xj, s̄i∇xk〉Y[21]. An iterative
solver was used to compute 0e from Eq. (5) using a conjugate

gradient method with a Jacobi preconditioner within the SCIRun
problem-solving environment [22].

Validation

Simulation results were validated against experimental find-
ings, as described previously, by comparing simulated epicardial
potentials with measured sock electrodes recorded during experi-
ments [10]. Pearson’s correlation coefficient (PCC), RMS error (RMSE),
and absolute error (AE) values were used to quantify agreement
between experimental and simulation results as follows:

PCC =
E

[
(0s − l0s) (0m − l0m)

]
SD0s SD0m

RMSE =
√
E

(
(0s − 0m)

2
)

AE = |0s − 0m|, (6)

where 0s and 0m represent simulated and measured potential values,
respectively, while SD0s and SD0m are their associated standard devi-
ations. The covariance between 0s and 0m is represented in terms
of expected value, E, and the respective means, l0s and l0m , of the
simulated and observed potential fields. Absolute error, in addition
to providing the epicardial maximum error measurement (AEmax =‖
0s − 0m‖∞), was also used to determine what percentage of the epi-
cardium experienced errors larger than 1 mV as a measure of overall
prevalence of error along the epicardium (AE%).

Results

Ischemic zone characterization

Each ischemic region extracted from intramyocardial electro-
grams exhibited spatial complexity that did not reflect the sim-
ple schematic geometries that are the basis for the clinical dogma
described in the Introduction. Figs. 4 and 5 support this assertion and
demonstrate the implications of modeling ischemia with subject-
specific zone geometries. Each image shows: 1) subject-specific
ischemic regions derived from intramurally measured extracellular
potentials, 2) simulated solutions produced using each region, and 3)
measured epicardial potentials taken from the same experiment (i.e.,
true epicardial potentials).

Fig. 4 depicts results from three distinct ischemic episodes within
a single experiment (experiment 1) [9]. Each simulation is ordered
sequentially, that is, episode A occurred before episode B, which
occurred before episode C. The heart was allowed a 30-min recov-
ery period between episodes. Simulated epicardial potentials (Fig. 4
middle) produced elevations that mirrored the major appendages of
each ischemic region, particularly those that approached, or broke
through to, the epicardial surface. Regions that were distant from the
surface (i.e., more subendocardial) tended to produce weaker eleva-
tions. Experimental measurements (Fig. 4 bottom) also revealed ele-
vated potentials overlying subepicardial ischemic zone appendages;
however, the more endocardial areas, such as those observed near
the septoapical region, did not produce equally strong elevated
potentials as were observed in simulations.

Slightly depressed potentials (dark blue) were also present in
both simulated and measured electrograms. In both cases, epicar-
dial depressions flanked the ischemic zone, manifesting in the basal
regions and along the lateral, or free wall, areas of the left and
right ventricles. Similar depressions were also observed along the
inferoapical region of the heart, which are not visible in Fig. 4 but
are apparent in Fig. 5. Measured depressions over the lateral and
inferoapical areas, in particular, were also present in sock recordings.
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Fig. 4. Subject-specific simulation results for experiment 1. Subject-specific ischemic regions from experiment 1 (row 1) are shown in yellow and were used to generate simulated
epicardial potentials (row 2), which were subsequently validated against measured epicardial potentials (row 3). Columns A, B, and C depict samples acquired during 3 different
interventions, each separated by a 30 min recovery period.

Fig. 5, like Fig. 4, shows ischemic zones, simulated results,
and measured epicardial potentials associated with a sequence
of ischemic episodes from a second experiment (experiment 2).
Again, the epicardial-most regions of the ischemic zones produced
the largest simulated epicardial potentials. However, the measured
potentials showed a different pattern as ischemic episodes were
repeated (row 3 of columns A–C in the figure). Large elevated regions
overlying the ischemic zone in early stage episodes (column A)
dropped in amplitude and were encroached on by deep flanking
depressions (column C).

Border zone characterization

Border zone construction relied on four major parameters, as
dictated by Eq. (1). These parameters consisted of the initial trans-
membrane potential difference between healthy and ischemic tis-
sues (Vm), the variance of the Gaussian transitional region (s2),
the distance from the ischemic zone boundary to the edge of the
Gaussian transitional region (S1), and the total width of the border
zone (S2), where S2 was, by definition, greater than S1. Manipulation
of these parameters produced consistent and predictable changes
to epicardial solutions. We generated and analyzed 625 possible
BZ parameter sets for each ischemic episode in order to identify
simulations that were strongly correlated with measured epicardial
electrograms and produced the least amount of RMS error as defined
by Eq. (6).

Fig. 6 shows the influence of each parameter on simulated epi-
cardial potentials. In observing the trends of each of the parameters,
we assumed that all other parameters remained static. That is, as
we analyzed the affect of Vm, we assumed that s2, S1, and S2

remained unchanged. As expected, changes in Vm scaled the epi-
cardial potential ranges meaning that, as Vm increased, epicardial
maxima increased while minima decreased. Gaussian variance was
inversely related to both epicardial minimum and maximum values
i.e., a smoother transition of potential reduced the gradient in the
border zone and hence the epicardial potential amplitudes. Changes
in S1 produced no significant changes in the epicardial potential
range; however, it provided essential blurring, which improved cor-
relation between simulated and measured potentials (Quantitative
Analysis). S2 values were directly proportional to epicardial min-
ima and inversely proportional to epicardial maxima, but in varying
measure. Epicardial minima were strongly influenced by S2 whereas
maxima were only weakly affected. In short, border zone parame-
ters were used to scale (Vm), translate (s2), and fine tune (S1 and S2)
simulation outcomes to match measured epicardial potentials. Using
the optimal border zone definitions obtained from each simulation
(N=6), we generated Table 2, which provides a list of averages and
standard deviations for each parameter.

Quantitative analysis

After establishing the best set of BZ parameters for each ischemic
episode, we compared PCC, RMSE, and absolute error metrics across
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Fig. 5. Subject-specific simulation results for experiment 2. Subject-specific ischemic regions from experiment 2 highlighted in yellow (row 1) were used to simulate epicardial
potentials (row 2) that were subsequently validated against measured epicardial potentials (row 3). Columns A, B, and C depict samples acquired during 3 different interventions,
each separated by a 30 min recovery period.

Fig. 6. Effects of border zone parameters on epicardial potentials. Epicardial potentials can be scaled and translated by manipulating Vm and s values, respectively. Manipulating
BZ edge definitions (S1 and S2) can be used to fine tune simulated outcomes to more accurately reflect epicardial potentials.

the entire epicardium and computed errors between simulated and
measured epicardial potentials, as summarized in Table 3. These val-
ues are also juxtaposed against equivalent quantitative measures
extracted from simulations, described previously [10], that were

Table 2
Optimal values in border zone construction.

Label Definition Value

Vm Transmembrane potential 15 ± 5.5 mV
s Gaussian variance 4.9 ± 0.8
S1 Gaussian transition width 8 ± 2.3 mm
S2 Total BZ width 10.5 ± 2.1 mm

generated using the intracardiac potentials measured with needle
electrodes as boundary conditions.

Considering only zone-based models (i.e., the leftmost columns in
each experimental pairing of Table 3), PCC values indicated a strong
correlation between simulation results and measured potentials—
agreement that was also qualitatively evident in Figs. 4 and 5. Half
of the simulated episodes produced correlation values greater than
0.8, and none produced PCC values less than 0.65, which is indicative
of strong overall correlation. RMSE was also relatively low among all
simulations. Error values lay between 11 and 13 % of the total epi-
cardial potential range. Absolute error (AE) was less predictable in
isolation, but when considered as a percent error of the entire epicar-
dial surface (AE%), it provided a spatial metric for assessing the size
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Table 3
Quantitative validation metrics for simulations of epicardial potentials produced during ischemia using source models generated from both subject-specific ischemic zones
(Zone-Based) and measured intracardiac potentials from needle electrodes (Needle-Based) [10].

Statistical measure Experiment 1A Zone-Based Experiment 1A Needle-Based Experiment 2A Zone-Based Experiment 2A Needle-Based

PCC 0.86 0.73 0.84 0.68
RMSE 1.20 mV 1.54 mV 0.80 mV 0.79 mV
AEmax 7.78 mV 7.61 mV 4.56 mV 5.43 mV
*AE% 15.1% 52.6% 12.3 % 15.0%

Statistical
measure

Experiment
1B
Zone-Based

Experiment
1B Needle-
Based

Experiment
2B
Zone-Based

Experiment
2B Needle-
Based

PCC 0.81 0.59 0.68 0.47
RMSE 0.59 mV 0.88 mV 0.94 mV 0.78 mV
AEmax 3.27 mV 4.58 mV 6.54 mV 6.13 mV
AE% 6.3% 21.8% 16.0% 15.1%

Statistical
measure

Experiment
1C
Zone-Based

Experiment
1C Needle-
Based

Experiment
2C
Zone-Based

Experiment
2C Needle-
Based

PCC 0.65 0.44 0.65 0.49
RMSE 0.63 mV 0.69 mV 0.90 mV 0.43 mV
AEmax 3.96 mV 3.96 mV 5.22 mV 3.47 mV
AE% 6.3% 12.6% 11.1% 6.3%

* AE% represents the percentage of the epicardial surface with 1 mV of absolute error or greater.

of regions with error that exceeded 1 mV. Spatially, AE was generally
low across the epicardium, rising above 1 mV primarily in regions
that flanked sites with the most elevated ST potentials (not shown).

In comparing each approach, we found that zone-based methods
consistently generated simulation outcomes that were more strongly
correlated with experimentally measured epicardial potentials than
were their needle-based counterparts. In all simulated cases, corre-
lation was significantly stronger for zone-based models (p = 0.05),
which reached levels as high as 0.86 while needle-based simulations
only reached PCC values of 0.73 and were, in general only moder-
ately correlated (i.e., 0.5 ≤ PCC < 0.7). RMSE and AE measures,
however, were less indicative of simulation improvements using
zone-based methods, with simulations failing to show a consistent
and significant differences between the two approaches (Table 3).

Discussion

The goal of this study was to characterize ischemic zone sources,
based on experimental methods, in order to develop subject-specific
simulation approaches that accurately predicted epicardial poten-
tials associated with acute myocardial ischemia. To this end, we
employed an image-based simulation pipeline that included cap-
turing both geometric (imaging) and electrogram (time-signal) data
from canine experiments in which acute transient ischemia was
induced (Fig. 1) [11,10]. These data were converted into whole-heart
geometric models within which zone-based, ischemic source mod-
els were defined and used to reconstruct epicardial ST potentials that
strongly agreed with those measured during experiments.

Errors associated with ECG-based detection of myocardial
ischemia [1], in conjunction with our own experimental findings [9],
motivated us to reevaluate long-standing theory regarding the for-
mation of ischemia within the heart and its influence on epicar-
dial potentials [10]. It is still broadly accepted that myocardial
ischemia originates as a subendocardially anchored, relatively con-
centric, region of injured tissue that extends transmurally with
prolonged ischemic stress [7]. Our recent experimental findings,
however, suggest, instead, an alternate notion that ischemia devel-
ops as a complex of smaller isolated zones—distributed within
the midmyocardium—that converge to form larger transmural
regions [9]. Such observations offer a potential explanation for the
broad deviations in accuracy recorded by ECG-based diagnosis.

Previously, we developed and validated a subject-specific sim-
ulation pipeline in which we used high-resolution, multielectrode,
needle-based, intramyocardial extracellular measurements as direct
source representations for the ischemic condition [10]. This approach
generated accurate outcomes, particularly in cases of severe ischemic
stress; however, spatial sampling of the electrodes was limited by
physical and practical constraints inherent in experimental models
and was, therefore, not sufficient to document ST deviations that
arose outside of the region occupied by our intramural electrodes
(e.g., the entire posterior aspects of the heart). In the present study,
we explored a new approach aimed at addressing this limitation by
augmenting our simulation framework to incorporate zone-based
source representations [23,24].

We found that zone-based computational simulations gener-
ated ST potential distributions that showed strong agreement, both
qualitatively and quantitatively, with measured epicardial poten-
tials. Furthermore, we compared our zone-based simulated results
with our previously developed extracellular (“needle-based”) source
potential model [10] and found that zone-based methods con-
sistently generated epicardial ST potential distributions that were
more strongly correlated with measured epicardial potentials than
those produced using needle-based sources (p = 0.05). Where
needle-based approaches failed to detect ST deviations that were
not directly recorded, zone-based models provided additional infor-
mation, e.g., predicting ST depressions along the lateral boundaries
of the ischemic zone and essentially reintroducing ST deviations
that lay outside the measured region. This occurrence is a well-
documented outcome of zone-based modeling in which anisotropic
conduction, coupled with transmembrane potential source models,
lead to elevated ischemic regions that are flanked by ST depressions
[23,24]. In our studies, we found that PCC values were significantly
and consistently higher in zone-based simulations (0.65 ≤ PCC ≤
0.86) than they were in simulations using needle-based approaches
(0.44 ≤ PCC ≤ 0.73), which reflected a strong spatial agreement that
is apparent in Figs. 4 and 5.

The improved performance of zone-based ischemic sources over
needle-based estimates was less consistent when we used statis-
tical comparisons based on potential amplitudes (i.e., RMSE and
AE) rather than spatial patterns of the epicardial potentials (i.e.,
PCC). RMSE associated with zone-based simulations reached a max-
imum value of 1.20 mV while the needle-based equivalent reported
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1.54 mV; however, as shown in Table 3, not all zone-based simula-
tions outperformed their needle-based counterparts. For example,
improvements in model outcomes, expressed in terms of RMSE, were
observed in experiment 1, but not in experiment 2. Similarly, AE%

was markedly lower using the zone-based approaches for all exper-
iment 1 simulations but not for all experiment 2 simulations where
only one of three episodes exhibited lower AE%. Differences in AE%

between zone and needle-based approaches can be attributed to the
lack of flanking ST depressions in needle-based models. The major-
ity of this error arose in the inferoapical and posterior regions (not
shown) where ST depressions that were present in both measured
and zone-based simulations were not generated in needle-based
approaches.

We consistently observed that errors in epicardial potentials
depended heavily on how we set border zone parameters. The distri-
butions of extracellular potentials in the border zone have yet to be
well characterized but our results support other studies [19,25,20]
that show they play an important role in ischemia simulation.
Swenson et al. proposed an ischemic border zone definition that inte-
grated two zone models with differing profiles (Eq. (1)), and which
generated more accurate outcomes [20] than models using only
linear or smooth BZ definitions. We built on this approach by opti-
mizing border zone parameters to fit measured epicardial potentials.
Our findings (Table 2) agreed approximately with those presented
by Swenson et al. [20], who estimated the thicknesses of the two BZ
regions to be S1 = 10 and S2 = 13 mm while using a constant s

value of 2 and a transmembrane potential difference of Vm = 30.
Despite general agreement with these previous findings, transmem-
brane potentials for our models were much lower than those used
by Swenson et al.; however, our Vm values fell within the range
of those used in other zone-based [24,20,26] and ionic distribution
models [27].

In characterizing the border zone, we also identified the influence
of each BZ parameter on the resulting epicardial potential mag-
nitudes. Fig. 6 illustrates the influence of each of the four border
zone parameters on epicardial potentials and further shows how a)
changes in Vm scaled the epicardial potential ranges, b) changes in
s translated those same ranges (e.g., making them globally more
negative or more positive), and c) fine tuning of epicardial poten-
tials was achievable via manipulation of S1 and S2. Swenson et al.
observed that, “most simulations fail to match the potential magni-
tudes seen in experimental data.” However, we find that by precisely
manipulating the border zone parameters to generate good align-
ment between simulated and experimental potential magnitudes,
we simultaneously improved correlation and reduced error in our
validation metrics. This is not particularly surprising for RMSE and
AE statistical measures, which, for properly registered experimental
data, would in theory, generate less error. However it is some-
what unexpected for PCC measures, which are both scale and shift
invariant.

Although our zone-based simulation approaches proved to be
generally accurate, unavoidable confounding factors contributed to
uncertainties in simulated outcomes. For example, insufficient nee-
dle coverage or missing electrodes (coverage error) may have lead
to incomplete intramyocardial zone definitions; electrode misalign-
ment (registration error) may have been the cause variations in sta-
tistical error; and uncertainty in experimental recordings (recording
errors) due to time-sensitive degradation of tissues during prolong
experimental procedures had the potential to introduce inconsisten-
cies within our experimental measurements, which would, in turn,
affect validation outcomes [10]. These limitations were mitigated in
the following ways. Coverage error was reduced by exposing as much
of the LAD perfusion bed as possible prior to needle placement and
distributing needles within the exposed region such that the perfu-
sion bed was well covered. Registration errors were reduced using
a two-phase registration process, as described previously [10], in

which both post-experiment digitized points and activation times
were used to position cardiac meshes and epicardial sock elec-
trodes to fall within 1 cm of the original, digitized positions [10].
Recording errors were mitigated by implementing sophisticated
experimental protocols that ensured accurate data acquisition and
measurement [9].

A more fundamental limitation of any zone-based ischemia
model is the selection of the zone itself. As discussed in the Intro-
duction, current clinical dogma assumes a continuous, geometrically
simple, subendocardial ischemic zone. Most computational mod-
els have adopted this paradigm, imposing spherical, hexahedral,
or semi-ellipsoidal subendocardial ischemic regions [24,26,27], sur-
rounded by narrow border zones [20]. Our previous findings suggest
that these assumptions are limited to only a small subset of possible
ischemic regions [9]. We are defined our ischemic regions by setting
thresholds based on semi-empirical processes, explained above, and
found strong agreement between measured and simulated poten-
tials. Ongoing studies will reveal the sensitivity of simulations to
these threshold assumptions. Additionally, full-torso forward simu-
lations are currently under development that further aim to char-
acterize the effect of our subject-specific ischemic models on body
surface potentials thereby relating our simulated findings to clinical
outcomes.
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