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Abstract

Presence of a high-dimensional stochastic parameter space with discontinuities

poses major computational challenges in analyzing and quantifying the effects

of the uncertainties in a physical system. In this paper, we propose a stochastic

collocation method with adaptive mesh refinement (SCAMR) to deal with high

dimensional stochastic systems with discontinuities. Specifically, the proposed

approach uses generalized polynomial chaos (gPC) expansion with Legendre

polynomial basis and solves for the gPC coefficients using the least squares

method. It also implements an adaptive mesh (element) refinement strategy

which checks for abrupt variations in the output based on the second order gPC

approximation error to track discontinuities or non-smoothness. In addition,

the proposed method involves a criterion for checking possible dimensionality

reduction and consequently, the decomposition of the full-dimensional prob-

lem to a number of lower-dimensional subproblems. Specifically, this criterion

checks all the existing interactions between input dimensions of a specific prob-

lem based on the high-dimensional model representation (HDMR) method, and

therefore automatically provides the subproblems which only involve interacting

dimensions. The efficiency of the approach is demonstrated using both smooth

and non-smooth function examples with input dimensions up to 300, and the
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approach is compared against other existing algorithms.

Keywords: Generalized polynomial chaos, stochastic collocation, adaptive

mesh refinement, interaction check

1. Introduction

Computer-based simulations are widely used for predicting the behavior of

physical systems. However, due to uncertainties in the system and the sim-

ulation process, such as the inherently stochastic nature of some system pa-

rameters, boundary conditions or excitations and a lack of understanding of

the true physics, predictions inevitably deviate from reality. Therefore, under-

standing and quantifying the uncertainty in simulations is necessary in order to

incorporate potential variability into these predictions.

One of the main aspects of uncertainty quantification (UQ) is uncertainty

propagation, also called forward UQ. It aims to quantify uncertainty in the

model outputs that results from uncertainty in the model inputs, which are

usually represented using random variables with an associated probability dis-

tribution. The goal is therefore to estimate the response surface, probability

density function (PDF) or statistical moments for the model outputs efficiently.

Probabilistic approaches have been relatively well-developed for forward UQ.

For example, the most popular technique is the Monte Carlo method, which

is robust, simple to understand, easy to implement, and typically serves as a

baseline against which other methods are compared. However, it may require a

large number of model evaluations to reach the desired accuracy due to its slow

convergence rate.

Other efficient methods have been proposed to achieve a higher convergence

rate and consequently reduce the computational cost. Polynomial chaos (PC)

expansion is one such method which represents the output of interest by the

expansion of orthogonal polynomials (with respect to positive weight measure)

in the stochastic input space. It is based on the homogeneous chaos theory

by Wiener [1] where a Gaussian process was essentially expressed by a set of
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Hermite polynomials. Ghanem and Spanos [2] have coupled this approach with

finite element methods to effectively model uncertainty in solid mechanics prob-

lems. The generalized polynomial chaos (gPC) [3, 4] method makes use of

different types of orthogonal polynomials in the Askey scheme [5] as the bases

to approximate random functions/processes. It is capable of reaching fast con-

vergence for smooth functions when the PDF of the random variables is iden-

tical to the weighting function of the orthogonal polynomials from the Askey

scheme. This idea has been further extended to arbitrary random distributions

[6, 7]. The gPC coefficients in the above works are determined by performing

Galerkin projection on the model equations. Its intrusive nature requires the

modification of the deterministic simulation code, which could be a difficult and

time-consuming task.

By contrast, non-intrusive methods use the deterministic simulation code

directly without requiring any modifications, which makes them more applicable

to complex systems. For example, Xiu [8] proposed a gPC scheme based on the

stochastic collocation method, where the gPC coefficients are obtained using

the discrete projection approach. Babuska et.al. [9] used Gauss quadrature

points to sample low dimensional random spaces and perform tensor product

interpolation using 1-D basis functions. Tensor grid approaches suffer from the

so-called ‘curse of dimensionality’ [10] as there is an exponential rise in the

required number of full model evaluations with the increase in dimensionality of

the input space. To alleviate this problem to some extent, sparse grid [11, 12]

based interpolations [13, 14] have been performed with the global Lagrange

polynomial basis as the interpolant in the random space. However, these global

approaches may not be suitable for tracking local steepness or discontinuities

in the random space, and the approximation may fail to converge to the true

value.

To deal with non-smooth functions, multi-element schemes have been pro-

posed for both intrusive and non-intrusive methods. Wan and Karniadakis

[15] developed a multi-element generalized polynomial chaos (MEgPC) scheme

based on the stochastic Galerkin method to handle the issue of discontinuities
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in the output response and long-term integration of stochastic differential equa-

tions. This approach adaptively splits the actual input domain into smaller

subdomains by calculating the relative error in variance along each dimension

and maintaining a relatively low polynomial order (less than 10) in critical sub-

domains. However, as an intrusive approach, it requires modification of the

deterministic simulation code. Foo et. al. [16] introduced the non-intrusive

multi-element probabilistic collocation method (MEPCM) with Lagrange poly-

nomial basis to efficiently treat problems characterized by strong non-linearities

or discontinuities and long-term integration. The criterion for adaptively split-

ting the input domain is similar to that in the MEgPC scheme.

Both the Galerkin and collocation versions of the multi-element gPC scheme

are still dimension-dependent, since both the number of subdomains and the

number of terms in the gPC expansion increase rapidly with the increase in

dimensionality of the stochastic input. To mitigate the issue of high compu-

tational cost associated with the element decomposition in high dimensional

problems, Foo and Karniadakis [17] developed the MEPCM-A method, which

combines the MEPCM with the high dimensional model representation (HDMR)

[18]. The HDMR represents a function as a hierarchical additive combination

of lower dimensional functions starting from a one-dimensional input space to

a full-dimensional input space. A way to estimate the correlation functions

is to use the cut-HDMR approach [19]. In the MEPCM-A approach, a high-

dimensional stochastic problem is reduced to a series of low-dimensional prob-

lems by truncating the terms in the HDMR up to a certain dimensionality, ν,

followed by the application of the MEPCM approach to each of these subprob-

lems with maximum dimensionality ν. Parameter ν is generally chosen to be

small enough compared to the high dimensionality of the original problem that

element decomposition is not computationally prohibitive. Another important

parameter in the MEPCM implementation is the number of points, µ, in the

interpolation rule. Parameters ν and µ are pre-fixed without regard to the ac-

tual order of interaction among the input parameters. For problems with high

nominal dimensions but low effective dimensions (i.e. only a few input variables
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strongly influence the response), the method proves to be efficient. However,

the choice of a proper value for ν of the subproblems needs more exploration.

In addition, once ν is prescribed, all the interaction terms up to order ν in the

HDMR are considered. Consequently, for complex systems with strong input

interactions, ν may be chosen to be large for satisfactory error estimates and

thus the number as well as the dimensionality of the subproblems could become

prohibitively large. Even with a small value of ν, the number of interaction

terms can become very large for very high dimensional problems. Moreover, the

model output may not be sensitive to some interaction terms with order upto

ν, and thus a significant number of unnecessary sub-problems are considered

which increases the computational cost.

Approaches [20, 21, 9] based on local bases have also been proposed to deal

with non-smoothness in the random space. Klimke and Wohlmuth [22] devel-

oped a sparse grid collocation interpolation scheme based on piecewise linear

basis functions, which has the ability to resolve discontinuities in the response

surface but suffers from slow convergence rates because of global refinement of

the sparse grid. The approach is based on hierarchical sparse grid points where

points are added in successive depth levels. The error indicator is known as

the hierarchical surplus and acts as a stopping criterion for the algorithm. Ma

and Zabaras [23] used a similar approach called adaptive sparse grid collocation

(ASGC) but also incorporated an adaptive strategy that enables a local sparse

grid refinement around the discontinuity region, which helps enhance the con-

vergence rate. The ASGC approach checks the hierarchical surplus values at

each point in the current depth level and creates new points in the next depth

level only in the neighborhood of points whose surplus error exceeds the toler-

ance value. The approach is restricted to uniform grid points because of the

adaptivity criterion. For the purpose of tracking discontinuities, ASGC uses

piecewise linear basis function. This may lead to a slow convergence for the

regions where the approximating response surface are smooth. To tackle high

dimensional stochastic problems, Ma and Zabaras [24] combined a dimension-

adaptive version of HDMR with ASGC (HDMR-ASGC). Initially, the impor-
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tance of the component functions in HDMR are estimated through a weight

measure which is expressed as the integral value of a component function of

certain order with respect to the sum of the integral values of all lower order

component functions. Component functions with weight measures higher than

a predefined error threshold are the ones considered important. ASGC is then

applied to each of the lower dimensional sub-problems corresponding to the im-

portant component functions. The error indicator used in HDMR-ASGC is a

function of the integral value of the basis function as well as the hierarchical

surplus. It is different from the original ASGC approach [23] which uses only

the surplus value as the error indicator.

In this paper, we propose a method of stochastic collocation with adaptive

mesh refinement (SCAMR). Specifically, the proposed approach uses generalized

polynomial chaos (gPC) expansion with Legendre polynomial basis and solves

for the gPC coefficients using the least squares method. It also implements

an adaptive mesh (element) refinement strategy to track any discontinuities

or non-smoothness in the output. The adaptive criteria associated with the

mesh refinement strategy check for abrupt variations in the output based on

the observed error from a second order gPC approximation. SCAMR further

introduces a criterion for possible dimensionality reduction, allowing for de-

composition of the full-dimensional problem to a number of lower-dimensional

subproblems. This criterion checks all the existing interactions between input

dimensions of a specific problem based on HDMR, and consequently provides

the subproblems which only involve interacting dimensions.

The paper is organized as follows: Section 2 presents the general framework

for a stochastic problem. In Section 3, we discuss the proposed method of

stochastic collocation with adaptive mesh refinement in detail. In Section 4,

we demonstrate the effectiveness and efficiency of the proposed approach using

various numerical examples compared to the ASGC, the HDMR-ASGC as well

as the MEPCM-A approach. We finally conclude the paper with a discussion

in Section 5.
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2. Problem Definition

Let the triplet (Ω,F ,P) represent a complete probability space, where Ω

corresponds to the sample space of outcomes, F ⊂ 2Ω is the σ-algebra of

measurable events in Ω, and P : F → [0, 1] is the probability measure. Let

ξ = {ξ1(ω), ξ2(ω), . . . , ξn(ω)} : Ω → Ξ ∈ Rn be a set of n independent ran-

dom variables, which characterize the uncertainty in the system. In the cur-

rent work, we assume that the random variables ξi follow uniform distribution

with a constant PDF p(ξ) = ρξ; ξ ∈ [a1, b1] × [a2, b2] × .... × [an, bn]. Let

x ∈ D ⊂ Rd (d ∈ {1, 2, 3}) be the spatial variable, and t ∈ (0, T ] (T > 0) be

the temporal variable.

Consider a general partial differential equation
ut(x, t, ξ) = L(u;x, t, ξ), D × (0, T ]× Ξ

B(u;x, t, ξ) = 0, ∂D × [0, T ]× Ξ,

u = u0, D̄ × {t = 0} × Ξ,

(1)

where B is the operator for the boundary conditions, L is the differential opera-

tor, D is the spatial domain, and u = u0 is the initial condition. The problem is

assumed to be well-posed in parameter space Ξ. The model output u(x, t, ξ) is

the quantity of our interest. For the convenience of notation, we do not consider

the dependence of solution on the spatial and time variables x and t, and only

discuss the problem for any fixed x ∈ D and t ∈ (0, T ]. As mentioned in [25],

this is standard in the UQ literature. Our goal is to quantify the uncertainty

in the quantity of interest u(·, ξ) : Ξ → R, due to the uncertainty in the input

variables ξ. Without loss of generality, we consider scalar model output.

3. Stochastic Collocation with Adaptive Mesh Refinement

In this section, we propose a stochastic collocation method with adaptive

mesh refinement (SCAMR). Specifically, SCAMR adopts a mesh refinement

scheme with a proposed criteria that checks for discontinuities or abrupt vari-
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ations in the response surface, as well as interactions between different input

dimensions. Details are provided in the following subsections.

3.1. Generalized Polynomial Chaos Based Stochastic Collocation

Let u(ξ) ∈ L2(Ξ) be a square-integrable function of the n-dimensional ran-

dom vector ξ which can be represented using the generalized polynomial chaos

expansion as

u(ξ(ω)) =

∞∑
i=0

ûiΦi(ξ(ω)), (2)

where ûi are the gPC coefficients and Φi are the Legendre polynomials for

uniform ξ [3].

For numerical calculations, the series is truncated to N + 1 terms to approx-

imate the exact output u(ξ(ω)) with polynomial order p

up(ξ(ω)) =

N∑
i=0

ûiΦi(ξ(ω)), N + 1 =
(n+ p)!

n!p!
, (3)

where

ûi =
1

E[Φ2
i ]

∫
Ξ

u(ξ)Φi(ξ)ρ(ξ)dξ. (4)

With collocation methods, the gPC coefficients ûi can be obtained using discrete

projection as

ûi =
1

E[Φ2
i ]

M∑
j=1

u(ξj)Φi(ξ
j)αj , i = 0, 1, . . . , N, (5)

where {ξj , αj}Mj=1 are sets of quadrature points and their corresponding weights.

Another collocation method for estimating the gPC coefficients utilizes inter-

polation on the pairs {ξj , u(ξj)}N+1
j=1 . The gPC coefficient vector û = {û0, . . . , ûN}

is estimated by solving the following linear system

N∑
i=0

ûiΦi(ξ
j) = u(ξj),∀j = 1, 2, . . . , N + 1.

The interpolation method may not produce a proper approximation if u(ξj) is

corrupted by observational or measurement errors. The projection method, on

the other hand, produces the best approximation in the weighted L2 norm [26].
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However, the quadrature nodes used in the discrete projection method have

restrictions, such as the structure of the nodes and the number of the nodes.

To allow more flexibility, in terms of the location and the number of nodes,

we estimate the vector of gPC coefficients by solving the following least squares

problem using M ( > N + 1) sets of points:

û = arg min
ũ
‖
N∑
i=0

ũiΦi(ξ)− u(ξ)‖2 (6)

where ũ = {ũ0, ũ1, . . . , ũN} is an arbitrary gPC coefficient vector which con-

verges to the desired vector û = {û0, û1, . . . , ûN} through the minimization in

Eq. (6). Consequently, the approximated output up is estimated using Eq.

(3). It is to be noted here that the set of M points may have an unstructured

arrangement in the input space.

3.2. Decomposition of Random Space

In this section, we introduce the standard decomposition method for random

input space, where the L2 error of the global approximation has been proven

to be bounded by the local L2 error approximations in the elements [15]. We

assume a hypercube input domain in our present work. Without the loss of

generality, we consider the original stochastic space as Ξ = [−1, 1]n. It is then

decomposed into ne non-overlapping and space-filling elements Ξk: ∪ne

k=1Ξk = Ξ,

Ξm ∩ Ξk = ∅ for m 6= k and m, k ∈ [1, 2, . . . , ne]. If aki and bki denote the

minimum and maximum bounds of element Ξk along dimension i (1 ≤ i ≤ n),

Ξk is the tensor product given by

Ξk = [ak1 , b
k
1)× [ak2 , b

k
2)× ..........× [akn, b

k
n). (7)

Let the local input random vector in each element be defined as ξk =

[ξk1 , ξ
k
2 , . . . , ξ

k
n]. For the purpose of applying the gPC formulation on each el-

ement locally, the local random vector can be transformed to a new random

vector η ∈ [−1, 1]n such that η = Fk(ξk) = [η1, η2, . . . , ηn]. The transformation

is a simple scaling relationship between the [−1, 1]n domain and the particular
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Ξk domain:

Fk : ηi = −1 +
2

bki − aki
(ξki − aki ), ∀i = 1, 2, ..., n (8)

3.3. Adaptive Criteria

The SCAMR algorithm uses adaptive approaches for two purposes: detec-

tion of abrupt variations in the output function for non-smoothness and reduc-

tion of the high-dimensional input parameter space to a subset of interacting

dimensions. Each of these are described in the following subsections.

3.3.1. Criterion for Detecting Abrupt Variation in One Dimension

In the current work, we propose to use first or second order Legendre polyno-

mials to efficiently approximate any general response function with local abrupt-

ness or discontinuities. In any domain where the function deviates significantly

from a second order polynomial approximation, we decompose the domain fur-

ther. Specifically, we consider the output variation along the centerline (straight

line passing through the center of the domain) along each dimension one at a

time with the rest of the dimensions fixed at their midpoints. For example, let

Γ be a given n-dimensional domain (element) such that Γ = [a1, b1)× [a2, b2)×

..... × [an, bn). For the i-th dimension, let z = {z1, . . . , zm} be m Chebyshev

points of depth level l in the range [ai, bi) such that m = 2l + 1. In this study,

depth level l = 2 is taken and hence m = 5. Then the set of input points along

the centerline in the i-th dimension is ξ(i) = {ξ(i)
1 , ξ

(i)
2 , . . . , ξ

(i)
m }, where each n-

dimensional point is ξ
(i)
j = {a1+b1

2 , . . . , ai−1+bi−1

2 , zj ,
ai+1+bi+1

2 , . . . , an+bn
2 },∀j ∈

{1, 2, . . . ,m}. Let u(i) = {u(i)
1 , u

(i)
2 , . . . , u

(i)
m } be the corresponding set ofm exact

outputs and u
(i)
p = {u(i)

p,1, u
(i)
p,2, . . . , u

(i)
p,m} be the corresponding 1-D second-order

gPC approximation along the i-th dimension for the current domain. The model

output can then be reasonably approximated as quadratic if

‖u(i)
p − u(i)‖∞ < ε1, (9)

where ε1 is an error tolerance parameter. If criterion (9) is not satisfied, the

i-th dimension is considered critical. All the critical dimensions are then stored
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in descending order of the error magnitude obtained from criterion (9) and

the domain is further decomposed along the center of the two most critical

dimensions. The domain subdivision is repeated for every newly formed element

until the stopping criteria are satisfied.

3.3.2. Criterion for Dimensionality Reduction

The second criterion helps in achieving dimensionality reduction. It decom-

poses the original full-dimensional problem to a number of lower dimensional

problems by identifying the absence of interactions between input dimensions

with respect to the output of interest. This criterion is checked at two levels and

takes advantage of the significant gains in computational efficiency by dealing

with low-dimensional functions.

First level criterion. At the first level, a dimension i is assumed non-

interacting with others if

||u(i) − uc||∞ < ε1, (10)

where u(i) is the centerline output vector along the i-th dimension (introduced

earlier) and uc is the exact output value at the center point of the input domain

Ξ. By implementing this first level criterion, the full-dimensional problem will be

decomposed to a r ≤ n dimensional and n− r one-dimensional problems, where

the one-dimensional problems depend on the input random variables which do

not interact with others.

Second level criterion. At the second level, we further decompose the

r-dimensional problem to a number of lower-dimensional sub-problems by veri-

fying
(
r
2

)
pairwise interactions in the r-dimensional domain. All higher dimen-

sional interactions between the input dimensions are derived from the pairwise

interaction results. This second level criterion is derived from the HDMR rep-

resentation [19, 27] and the details are provided in the following.

Pairwise non-interaction criterion derivation. Let f(Y ) = f(Y1, Y2, ...., Yn) be

an n-dimensional function. Following the notation in [24], the general expres-

sion of the High Dimensional Model Representation (HDMR) for the function
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is given by

f(Y ) = f0 +

n∑
i=1

fi(Yi) +
∑

1≤i1<i2≤n

fi1i2(Yi1 , Yi2) + . . .

+
∑

1≤i1<..is≤n

fi1....is(Yi1 , ..., Yis) + ......+ f12...n(Y1, Y2, ...Yn) (11)

where f0 is a constant zeroth order function, fi() denotes a one-dimensional

function, fi1i2() is a two-dimensional function and so on.

As seen from Eq. (11), the HDMR breaks down the function f(Y ) into

individual contributions from all possible orders of interactions among the di-

mensions. For example, fi(Yi) represents how input Yi influences f(Y ) keeping

the other input dimensions fixed. The third term fi1i2(Yi1 , Yi2) represents the

combined contribution of inputs Yi1 and Yi2 towards f(Y ) after their individual

contributions have been accounted for through fi(Yi). All dimensions except Yi1

and Yi2 are kept fixed in this case. Similarly, f12...n(Y1, Y2, ...Yn) denotes the

contribution of all inputs taken together towards f(Y ) after having accounted

for all lower dimensional function contributions.

Cut-HDMR [28, 29] is an efficient technique for estimating the component

functions in f(Y ) which involves evaluating f(Y ) on lines, planes and hyper-

planes (or cuts) passing through a cut center c which is a point in the input

variable space. The choice of c is important as it influences the convergence of

the HDMR expansion. It has been shown [30] that a suitable choice of c can be

the mean of the input random vector.

The component functions [31] are given by:

f0 = f(c) (12)

fi(Yi) = f(Yi, c
{i})− f0 ∀i ∈ {1, 2, . . . , n} (13)

fi1i2(Yi1 , Yi2) = f(Yi1 , Yi2 , c
{i1,i2})− fi1(Yi1)− fi2(Yi2)− f0, (14)
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∀i1, i2 ∈ {1, 2, . . . , n}, such that i1 < i2

fi1i2i3(Yi1 , Yi2 , Yi3) = f(Yi1 , Yi2 , Yi3 , c
{i1,i2,i3})− fi1i2(Yi1 , Yi2)− fi1i3(Yi1 , Yi3)

− fi2i3(Yi2 , Yi3)− fi1(Yi1)− fi2(Yi2)− fi3(Yi3)− f0,

(15)

∀i1, i2, i3 ∈ {1, 2, . . . , n}, such that i1 < i2 < i3
...

f12...n(Y1, Y2, . . . , Yn) = f(Y )− f0 −
n∑
i=1

fi(Yi1)−
∑

1≤i1<i2≤n

fi1i2(Yi1 , Yi2)

− . . .−
∑

1≤i1<..in−1≤n

fi1...in−1
(Yi1 , . . . , Yin−1

) (16)

where c{i} = c\{Yi}, c{i1,i2} = c\{Yi1 , Yi2}, c{i1,i2,i3} = c\{Yi1 , Yi2 , Yi3}. For

sets A and B, A\B denotes a set with only those elements in A that are not

included in B.

Using the HDMR representation, we will now derive the non-interaction

criterion for dimensionality reduction. In the proposed method, we consider

only pairwise interactions of inputs. We thus concentrate on the second order

(2-dimensional) component function given by Eq. (14). Combining Eq. (13)

with Eq. (14), we can write,

fi1i2(Yi1 , Yi2) = f(Yi1 , Yi2 , c
{i1i2})− f(Yi1 , c

{i1})− f(Yi2 , c
{i2}) + f0, (17)

For a given error tolerance ε2, dimensions i1 and i2 can be considered non-

interacting if the second order component function fi1i2(Yi1 , Yi2) is considered

negligible, i.e., fi1i2(Yi1 , Yi2) ≤ ε2. This implies,

f(Yi1 , Yi2 , c
{i1,i2})− f(Yi1 , c

{i1})− f(Yi2 , c
{i2}) + f0 ≤ ε2. (18)

Eq. (18) is the pairwise non-interaction criterion.

Let us take a two-dimensional input domain as an example (see Fig. 1),

where the input domain is projected from a higher n-dimensional input space

with all the dimensions fixed at the mean of their respective ranges except those

two dimensions (i1 and i2). The cut center is given by c = {0, 0, . . . , 0} and is

13



Dimension i1

D
im

en
si
on

i 2

A2 A gAi1i2gAi2

gAi1A1g0O

(0, 0, 0, .., 0)

(ai1 , ai2 , c
{i1 ,i2})(ai2 , c

{i2})

(ai1 , c
{i1})

Figure 1: Square points denote new points introduced for the interaction check between

dimensions

denoted by point O in Fig. 1. All the square points in Fig. 1 are used to

test for interaction between the two dimensions. The exact values at all the

square points are calculated by full model evaluations and compared with the

values at those points obtained assuming both dimensions are non-interacting.

For example, assume the exact value at point A is gAi1i2 and the approximated

value at A assuming non-interaction is given by gapprox,Ai1i2
= gAi1 + gAi2 − g0.

The output values gAi1 and gAi2 correspond to input points at A1 and A2 which

are orthogonal projections of A on axes i1 and i2 respectively passing through

point O and g0 is the corresponding output value. Let g true
i1i2

be the true output

vector corresponding to the square points and g approx
i1i2

be the corresponding

approximate output vector obtained from the outputs at the circular points

such that g approx
i1i2

= gi1 + gi2 − g0. Then, Eq. (18) is considered satisfactory if

‖gtruei1i2 − gapproxi1i2
‖∞ ≤ ε2, (19)

As mentioned earlier, using the knowledge about each of the pairwise (2-

dimensional) interactions, we derive all the possible higher dimensional inter-

actions. For example, we consider a 5-dimensional stochastic function where

{Y1, Y2, . . . , Y5} are the input dimensions. If only pairs {Y1, Y2}, {Y2, Y3} and
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{Y3, Y1} out of total
(

5
2

)
= 10 pairs are interacting based on the criterion Eq.

(18), we decompose the full five-dimensional problem into a three-dimensional

problem in the space of {Y1, Y2, Y3} and two one-dimensional problems in the

space of Y4 and Y5, respectively.

Sub-dimensional representation. After checking criteria in Eqs. (10)

and (18), an n-dimensional problem can be potentially reduced to a set of lower

dimensional problems as mentioned in the beginning of this section. We discuss

next the effects of applying the two criteria in successive steps and how to

represent the full-dimensional function in terms of a number of lower dimensional

functions. At first, using criterion (10), an n-dimensional input domain Ξ of

dimension index set D = {1, 2, ..., n} can be potentially reduced to a group

of NR non-interacting lower dimensional input domains of dimension index set

R = {R1, R2, R3, ...., RNR
} with |R1| = r, |Rj | = 1 (∀j = 2, ...., NR), ∪NR

i=1Ri =

D, ∩NR
i=1Ri = Ø and NR = n− r + 1.

In the next step, using criterion (18), the R1 sub-dimensional problem can

be further reduced to a group of NQ lower dimensional input domains with

dimension index set Q = {Q1, Q2, ......, QNQ
} such that ∪NQ

i=1Qi = R1. Thus, in

total, an n-dimensional problem can be reduced to NS lower dimensional input

domains with dimension index set S = {R2, R3, ....., RNR
, Q1, Q2, ...., QNQ

} =

{S1, S2, ....., SNS
} such that NS = NR + NQ − 1. The NS index sets can be

overlapping such that ∩NS
i=1Si 6= Ø. In case of overlapping, common dimension

indices will be present among different elements in S. These common dimension

indices form NT additional low dimensional domains of dimension set T =

{T1, T2, ..., TNT
}, where T = {Si ∩ Sl} \Ø, ∀i, l ∈ {1, ...., NS} such that i < l.

These additional low dimensional functions can be called “corrective” dimension

index sets introduced in order to account for the overlapping in S. Each of the

“corrective” sets has an associated constant factor Uj (∀j = 1, 2, ..., NT ), which

equals the difference between frequency of its occurrence in S and the frequency

of its occurrence in T . The frequency of occurrence of an index set in S or T

is the number of times an index set features in S or T by itself or as a subset

in a larger index set. There is also a constant factor V associated with f0, the
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function value at the cut center. In case of no overlapping of elements in S,

i.e., ∩NS
i=1Si = Ø, then T = {Ø} and NT = 0. The function can thus have an

HDMR-like representation and is given by

f(Y1, Y2, ....Yn) =

NS∑
i=1

hi(YSi
, cSi)−

NT∑
j=1

Ujpj(YTj
, cTj )− V f0, (20)

where YSi is the set of input variables with the elements in Si as the indices,

YTj is the set of input variables with the elements in Tj as the indices, hi() is

an |Si|-dimensional function, pj() is a |Tj |-dimensional function, Uj and V are

integer constants where V = NS −
∑NT

j=1 Uj − 1.

As an example, consider an 8-dimensional function f(Y ). It is assumed

that from criterion (10), each of the last r = 3 dimensions is identified to be

non-interacting with the remaining (n − 1) = 7 dimensions. We thus have the

following set of non-interacting group of dimensions:

R = {{1, 2, . . . , 5}, {6}, {7}, {8}},

and the function can now be described by:

f(Y ) = f(Y1, Y2, . . . , Y8)

= g0(Y1, Y2, . . . , Y5, c
{1,2,...,5}) + h1(Y6, c

{6})

+ h2(Y7, c
{7}) + h3(Y8, c

{8})− 3f0. (21)

Eq. (21) thus shows that the 8-dimensional problem has been reduced to a

maximum dimensionality of r = 5 using the first level check. Criterion (18)

is then tested on the r (= 5) dimensional system with
(

5
2

)
= 10 cases. The

set of interacting pairs of dimensions obtained from the interaction check is

given by I = {{1, 2}, {1, 3}, {2, 3}, {1, 4}}. Using information from the set I,

R1 = {1, 2, . . . , 5} is reduced to the following dimension set Q:

Q = {Q1, Q2, Q3} = {{1, 2, 3}, {1, 4}, {5}}

We note that the presence of the 3-dimensional interaction {1, 2, 3} have been

derived from the interacting pairs {1, 2}, {1, 3} and {2, 3}. This is how higher
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level interactions are derived from pairwise interaction results. Dimension set

S will then be given by

S = {S1, S2, S3, S4, S5, S6}

= {{6}, {7}, {8}, {1, 2, 3}, {1, 4}, {5}}

Let T be a collection of sets, which are the non-empty intersections between Si

and Sj . We then have

T = {{1}}

with U = [1] and V = 4. The function g0() will now be given by:

g0(Y1, Y2, ....Y5) = h4(Y1, Y2, Y3, c
{1,2,3}) + h5(Y1, Y4, c

{1,4})

+ h6(Y5, c
{5})− p1(Y1, c

{1})− f0

= h4(YS4
, cS4) + h5(YS5

, cS5)

+ h6(YS6 , c
S6)− p1(YT1 , c

T1)− f0 (22)

Thus function f(Y ) is given by:

f(Y ) = h4(YS4 , c
S4) + h5(YS5 , c

S5) + h6(YS6 , c
S6)− p1(YT1 , c

T1)− f0

+ h1(Y6, c
{6}) + h2(Y7, c

{7}) + h3(Y8, c
{8})− 3f0

= h1(YS1 , c
S1) + h2(YS2 , c

S2) + h3(YS3 , c
S3) + h4(YS4 , c

S4)

+ h5(YS5
, cS5) + h6(YS6

, cS6)− p1(YT1
, cT1)− 4f0

=

6∑
i=1

hi(YSi
, cSi)−

1∑
j=1

pj(YTj
, cTj )− 4f0 (23)

3.3.3. gPC Approximation Error

Let us consider a d-dimensional domain where 1 ≤ d ≤ n. Let ξa =

{ξa,1, ξa,2, . . . , ξa,m} be an array of m Clenshaw-Curtis sparse grid points in

dimension d of depth level 2. There may also exist an additional array of q

unstructured points ξb = {ξb,1, ξb,2, . . . , ξb,q} which have been previously eval-

uated. They correspond to sparse grid points in all “predecessor” elements that

are contained in the current domain. Let up be the second-order gPC approxi-

mation for the current domain corresponding to input points ξ where the gPC
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coefficients are calculated by solving a least squares problem given by Eq. (6)

such that ξ = {ξa, ξb} and q+m = M . Assuming u is the corresponding exact

solution vector, the domain can be suitably approximated by the second-order

gPC approximation if

‖up − u‖∞ < ε1 (24)

If criterion (24) is not satisfied, the domain is further subdivided into smaller

elements along the center of its two most critical dimensions.

3.4. Numerical Implementation

The proposed algorithm is discussed below:

Initialization and stopping criteria. The dimension n of the problem is

first determined by the number of input random parameters considered in the

model problem. Niter is the maximum number of iterations in the adaptive

mesh refinement algorithm. Vmin is a minimum hyper-volume fraction of the

non-converged elements below which the subdivision into smaller elements is

stopped. When Niter is reached or the total hyper-volume fraction of the non-

converged elements is less than Vmin, the remaining non-converged elements are

approximated by a first order gPC expansion and the algorithm terminates. Er-

ror tolerance parameters ε1 and ε2 are related to criteria (9), (10), (18) and (24).

With decrease in the values of the chosen tolerance parameters, the approxima-

tion error also has a decreasing trend but with an increase in the computational

cost because of more number of full model evaluations.

Checking global smoothness and possible dimensionality reduction.

This step initiates with the implementation of a first order gPC approximation

in the original n-dimensional input space. The gPC coefficients are evaluated

using the discrete projection method given by Eq. (5) using Clenshaw-Curtis

sparse grid points of depth level 1. The accuracy of the approximation is tested

using criterion (24). If the criterion is not satisfied, we go to the step of per-

forming a one-dimensional (1-D) abrupt variation check. Otherwise, the first
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order gPC approximation is considered satisfactory and the algorithm skips to

the surrogate value extraction step.

The 1-D abrupt variation check is now performed on the input domain to iden-

tify the influence of each dimension towards the output of interest. Criterion

(9) is used to identify the critical dimensions while criterion (10) helps to re-

duce the n-dimensional problem to a number of problems with a maximum of

r dimensions where r < n. The interaction check is performed next, again on

the global input domain using criterion (18) to further reduce the maximum

dimensionality to w(< r) where w = max(|Si|),∀Si ∈ S.

If any of the dimensions are found to be critical based on the criterion of global

abrupt variation, we directly go to the step of adaptive mesh refinement. Oth-

erwise, a second order gPC approximation is now performed in the original

n-dimensional input space using the discrete projection method. The function

at the Clenshaw-Curtis sparse grid points of depth level 2 used for this ap-

proximation has already been evaluated in previous step of interaction check.

Therefore, there is no extra computational cost involved for function evalua-

tions in this step. The accuracy of the approximation is tested using criterion

(24). If the criterion is satisfied, the second order gPC approximation is con-

sidered satisfactory and the algorithm skips to the surrogate value generation

step. Otherwise, we go to the next step.

Adaptive mesh refinement. This part of the algorithm in general deals

with (NS+NT ) low dimensional subproblems as mentioned in section 3.3.2. For

a subproblem Pi (1 ≤ i ≤ NS +NT )}), the algorithm initiates with the subdivi-

sion of the original domains into elements along its two most critical dimensions.

The iteration count Iter starts here. For each of the EPi
elements formed in

Pi in a certain iteration, an abrupt variation check is performed as was done on

the original n-dimensional domain. If the second-order approximation criterion

(9) is not met, the element EjPi
(j ∈ {1, 2, ..., EPi}) is again subdivided into

subelements along its two most critical dimensions. Satisfaction of criterion (9)

implies there are no abrupt variations in the current element. This leads to
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Algorithm 1 : Summarized steps

Initialization

Set n, Niter, Vmin, ε1, and ε2.

Global checks and dimensionality reduction

perform first order gPC approximation using Eq. (5)

if ||up − u||∞ < ε1 (see Eq. (24)) then

go to the Surrogate value extraction step

else

perform abrupt variation check using criterion (9)

perform dimensionality reduction using criteria (10) and (18) to form lower

dimensional sub-problems.

if ||u(i)
p − u(i)||∞ < ε1 (see Eq. (9)) for all dimensions then

perform second order gPC approximation using Eq. (5)

if ||up − u||∞ < ε1 (see Eq. (24)) then

go to the Surrogate value extraction step

else

go to the Adaptive mesh refinement step

end if

else

go to the Adaptive mesh refinement step

end if

end if
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Algorithm 1 : Summarized steps (continued)

Adaptive mesh refinement

for all sub-dimensional problems do

check abrupt variations using criterion (9)

if criterion (9) is satisfied then

check gPC approximation using criterion (24)

if criterion (24) is not satisfied then

subdivide the element along the center of its two most critical dimen-

sions

end if

else

subdivide the element along the center of its two most critical dimensions

end if

end for

Surrogate value extraction

extract output values corresponding to query inputs from the approximate

model obtained.
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checking criterion (24) for second order gPC approximation in the whole ele-

ment. If that criterion is met, the element EjPi
is said to have converged for

the given tolerance ε1 and can be suitably approximated by a second order gPC

approximation. The polynomial order, the coefficient vector and the range of

the converged element is then stored for future surrogate retrieval. If criterion

(24) is not satisfied, then the element is also subdivided into smaller elements.

This procedure is performed for all EPi
elements and all the new subelements

formed undergo similar operations at the next iteration Iter = Iter+ 1. At the

end of each iteration, the hyper volume V of the subelements created and the

number of iterations Iter are compared with the corresponding critical values

Vmin and Niter respectively to check if either of the two stopping criteria is met.

If the stopping condition gets satisified, then all the remaining subelements are

approximated by a first order gPC approximation. After meeting the stopping

criteria, the next subproblem is taken up and we repeat the process of charac-

terizing it.

Surrogate value extraction. After having characterized the n-dimensional

problem through the various steps mentioned, the final step is to generate out-

put values corresponding to arbitrary query input points in the n-dimensional

domain and also output statistics, such as, mean. Output value estimation cor-

responding to a query input involves locating the element in which the query

point lies in each subproblem. The stored information for that element is then

retrieved to generate the local surrogate output values in each subproblem,

which are then combined together to get the global output value. Mean value

estimation is performed by evaluating the integration in each of the elements in

each subproblem. For each subproblem, the global mean is calculated by the

weighted average of local means corresponding to each element, and the weight

is based on the ratio of the hyper-volume of the elements and the hyper-volume

of the whole domain.

A summary of the all the above steps is given in Algorithm 1.
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4. Numerical Results

In this section, SCAMR is applied to a variety of functions with smoothness

as well as discontinuities and input dimensions as high as 300. Through these

examples, its performance is tested against existing efficient algorithms, like,

ASGC [23], HDMR-ASGC [24] and MEPCM-A [17].

4.1. Demonstration of SCAMR Performance

We first demonstrate the effectiveness and efficiency of the proposed SCAMR

method using simple smooth functions with random input spaces of different di-

mensions. Then, we will focus on functions with non-smoothness or discontinu-

ities in random space, as well as a high-dimensional stochastic elliptic problem.

Our results are compared to those from ASGC method since both approaches

use low order polynomials as a basis and both use adaptivity to track disconti-

nuities. Specifically, we compare the root mean squared error calculated using

N = 105 randomly generated samples, given by

ε =

√√√√ 1

N

N∑
i=1

(f(xi)− f̃(xi))2, (25)

where f is the exact function and f̃ is the numerical approximation using ASGC

or SCAMR.

4.1.1. Performance of SCAMR on Smooth Functions

We first implement the proposed method on a few simple smooth functions

with random inputs in different dimensions. The two-dimensional test functions

are quadratic and sine functions defined as follows.

f1(x1, x2) = x2
1 + x2

2, (26)

f2(x1, x2) = sin(4x1) sin(4x2), (27)

where xi are i.i.d. uniform random variables in [0, 1] (i = 1, 2). The exact

functions are provided in Fig. 2(a,b) for f1 and f2 respectively. Clearly, the

product of sine functions f2 exhibits more abrupt variations than the summation
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Figure 2: Results for 2D smooth functions: (a) exact function output for f1; (b) exact function

output for f2; (c) error of estimated f1 using SCAMR and the ASGC method; and (d) error

of estimated f2 using SCAMR and the ASGC method.

of quadratic functions f1 in the [0, 1]2 domain; therefore, one would expect

slower convergence of the numerical approximation for f2. The numerical errors

of SCAMR method are provided in Fig. 2(c,d), and compared to those from

ASGC method. From the results, one can observe that i) both SCAMR and

ASGC methods have slower convergence for f2 compared to f1 as we expected,

and ii) our proposed SCAMR approach converges faster than ASGC for both

the functions.

We extend two-dimensional quadratic and sine functions to four and ten
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dimensions as follows.

f3(x1, x2, x3, x4) =

4∑
i=1

x2
i , (28)

f4(x1, x2, x3, x4) =

4∑
i=1

sin(4xi), (29)

f5(x1, x2, x3, x4) = sin(4x1) sin(4x2) + sin(4x3) sin(4x4), (30)

f6(x1, x2, . . . , x10) =

10∑
i=1

sin(4xi), (31)

where xi are i.i.d. uniform random variables in [0, 1] (i = 1, 2, . . . , 10). The

functions f3, f4 and f6 are independent of the interaction terms between the

inputs, while f5 depends on some interaction terms between the inputs. The

numerical errors of both the SCAMR and the ASGC methods are provided in

Fig. 3 with respect to number of function evaluations. The numerical approx-

imation from both methods converges slower as the complexity of the function

increases, such as, from a polynomial function to a sine function, from an ad-

ditive function to a multiplicative function or from a lower dimensional (4-D)

function to a higher dimensional (10-D) function. Fig. 3 shows that SCAMR

converges faster than ASGC for all four smooth functions.

Having tested the SCAMR approach on smooth functions with random in-

puts in different dimensions, we will next discuss its performance on non-smooth

functions.

4.1.2. Performance of SCAMR on Functions with Line Singularity

Here we adopt the same 2D function with line singularity as in [23].

f7(x1, x2) =
1

|0.3− x2
1 − x2

2|+ 0.1
. (32)

The function is plotted in Fig. 4. Clearly, the function has a C1 discontinuity

going across both x1 and x2 directions.
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Figure 3: Error analysis of SCAMR and ASGC methods for 4D and 10D smooth functions:

(a) 4D f3, (b) 4D f4, (c) 4D f5, and (d) 10D f6.

Figure 4: Surface plot of function f7(x1, x2).
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The 4D and 10D extensions of the above function are defined as

f8(x1, x2, x3, x4) =
1

|0.3− x2
1 − x2

2|+ 0.1
+

4∑
i=3

xi, (33)

f9(x1, x2, . . . , x10) =
1

|0.3− x2
1 − x2

2|+ 0.1
+

10∑
i=3

xi (34)

where xi are i.i.d. uniform random variables in [0, 1] (i = 1, 2, . . . , 10). No-

tice that the added dimensions in f8 and f9 are not interactive with x1 and

x2. Therefore one would expect that the computational cost will not increase

dramatically as the dimension increases.

The proposed SCAMR approach is implemented for the above 2-D, 4-D and

10-D functions. The locations of function evaluations for the 2-D function f7

are plotted in Fig. 5a. The plot shows that the line singularity is well captured

by the approach and more function evaluations are required in the area of line

singularity as expected. The error analysis of the numerical approximations

are provided in Fig. 5(b-d) for functions f7, f8 and f9, respectively. From the

figure, one can observe that the convergence rates of SCAMR are similar for the

three functions with different dimensions as expected. The SCAMR approach

converges faster than ASGC for all three functions.

4.1.3. Performance of SCAMR on Functions with C0 discontinuity

SCAMR is tested on another 2-D function, this one with a C0 discontinuity

as in [32]:

f10(x1, x2) =

0, if x1 ≥ 0.5 or x2 ≥ 0.5,

sin(πx1) sin(πx2), otherwise

The function is plotted in Fig. 6.

Similarly, we extend it to 4-D and 10-D functions with discontinuity as

f11(x1, x2, x3, x4) =


∑4
i=3 xi, if x1 ≥ 0.5 or x2 ≥ 0.5,

sin(πx1) sin(πx2) +
∑4
i=3 xi, otherwise
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Figure 5: Input domain and error analysis for functions with line singularity: (a) input

domain for function f7, (b) numerical error as a function of the number of samples for 2D f7,

(c) numerical error as a function of the number of samples for 4D f8, and (d) numerical error

as a function of the number of samples for 10D f9.

Figure 6: Surface plot of function f10(x1, x2).
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Figure 7: Input domain and error analysis for functions with discontinuty: (a) input domain

for function f10, (b) numerical error for 2D f10, (c) numerical error for 4D f11, and (d)

numerical error for 10D f12.

and

f12(x) =


∑10
i=3 xi, if x1 ≥ 0.5 or x2 ≥ 0.5,

sin(πx1) sin(πx2) +
∑10
i=3 xi, otherwise

where x = {x1, x2, . . . , x10}.

The proposed SCAMR approach is implemented for these 2-D, 4-D and 10-D

functions. The function evaluation locations for 2-D function f10 are plotted in

Fig. 7a, and the error analysis of the numerical approximation from SCAMR for

f10, f11 and f12 are provided in Fig. 7(b-d). The numerical approximations are

compared to those from ASGC method. From the results, similar conclusions

to the previous example can be drawn.
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4.1.4. SCAMR in a Stochastic Elliptic Problem

Finally, we apply the SCAMR approach to a stochastic elliptic problem as

in [14, 23]. The model problem is given as

−O(an(ω, x)Ou(ω, x, y)) = f(x, y), in D × Γ

u(ω, x, y) = 0, on ∂D × Γ (35)

where spatial variable (x, y) ∈ D = [0, 1]2, random variable ω ∈ Γ, f(x, y) =

cos(x) sin(y).

The diffusion coefficient an(ω, x) is assumed to be a random field that can be

approximated in a finite n-dimensional stochastic space as:

log(an(ω, x)− 0.5) = 1 + Y1(ω)(

√
πL

2
)1/2 +

n∑
i=2

ξiφi(x)Yi(ω), (36)

where Yi(ω) [i = 1, 2, . . . , n] are independent random variables which are uni-

formly distributed in [−
√

3,
√

3], and

ξi = (
√
πL)1/2 exp(

−(b i2cπL)2

8
), if i > 1 (37)

and

φi(x) :=

sin(
b i
2 cπx
Lp

), if i is even,

cos(
b i
2 cπx
Lp

), if i is odd

where Lp = max{1, 2Lc}, and L = Lc

Lp
where Lc = 0.5 is the correlation length.

Without loss of generality, we consider the uncertainty in the output at a

fixed point in space x = y = 0.5, which is the center of the spatial domain.

Figure 8 displays two realizations of the output contour in the spatial domain

for n = 50 using the deterministic code of the elliptic problem. The proposed

SCAMR approach is implemented for the stochastic elliptic problem with dif-

ferent dimensions n in the random space. The error analysis of the numerical

approximations are provided in Fig. 9(a-e) for n = 2, 11, 25, 50, 75 respectively.

The numerical approximations from SCAMR are compared to those from the

ASGC method. From the figure, one can observe that the numerical approxi-

mation from SCAMR converges faster for very low dimension such as n = 2, but
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Figure 8: Two realizations of the output u for n = 50 and correlation length Lc = 0.5.

it achieves similar convergence rates for large dimensions such as n = 25, 50, 75.

The reason is that the tail terms of Eq. 36 for n > 25 could be negligible due

to the fast decay of the eigenvalues ξi. As with the previous examples, SCAMR

converges faster or at a similar rate as ASGC for this problem.

4.2. Comparison to HDMR Guided Algorithms for High Dimensional Problems

To further illustrate the efficiency of SCAMR regarding the model reduc-

tion criterion, we implement our proposed approach for more high-dimensional

problems and compare the results to those from HDMR-ASGC and MEPCM-A

methods.

A 10-dimensional function is considered to compare the efficiency of SCAMR

and HDMR-ASGC [24]. The error estimate used here is the normalized L2

interpolation error given by

ε =

√∑N
i=1(f(xi)− f̃(xi))2√∑N

i=1 f(xi)2

, (38)

where f is the exact function, f̃ is the numerical approximation using HDMR-

ASGC or SCAMR and N = 106 randomly generated samples.

A high dimensional integration problem is then used as an example to com-

pare the SCAMR and the MEPCM-A methods. The error estimate used here
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Figure 9: Error analysis of the stochastic elliptic problem with (a) n = 2, (b) n = 11, (c)

n = 25, (d) n = 50, (e) n = 75 dimensions for correlation length Lc = 0.5.
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is the mean relative error [17] given by

ε =
|Iexact − Iapprox|

Iexact
(39)

where Iexact is the true mean of the problem and Iapprox is the numerical ap-

proximation of the mean using either MEPCM-A or SCAMR.

4.2.1. Comparison to HDMR-ASGC

We consider a 10-D function [24] given by

f13(x) = 1
1+

∑10
i=1 αixi

(40)

where parameters αi = 0.1/2i−1, random input xi = σyi and yi are i.i.d. uni-

form random variables in
[
−
√

3,
√

3
]
, i ∈ {1, 2, . . . , 10}. Parameter σ is related

to the standard deviation of the input and for this example, σ = 2. The weights

drop drastically with increase in dimensions and hence the number of effective

dimensions is low compared to 10 nominal dimensions. Table 1 shows a compar-

ison of the normalized L2 interpolation error and the number of points needed

for the HDMR-ASGC and the SCAMR approach. It can be seen from the

results that SCAMR proves to be more efficient than HDMR-ASGC in approx-

imating f13. The HDMR-ASGC results are read directly from Fig. 8 (right) in

[24]. Identification of the low effective dimensions using the interaction check

in the SCAMR approach is achieved at a lower computational cost compared

to the corresponding check in HDMR-ASGC [24]. The subsequent surrogate

construction of the sub-dimensional problems also requires lesser number of

samples when using the second order gPC approximation in SCAMR compared

to the linear basis interpolation in the HDMR-ASGC approach. For example,

the number of points needed for an L2 error of approximately 6×10−5 is around

1575 points in the case of HDMR-ASGC while the number of points needed for

an L2 error of 2.2921× 10−5 using SCAMR is 407.
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Table 1: HDMR-ASGC and SCAMR error and cost comparison for function f13

HDMR-ASGC SCAMR

L2 error Number of points L2 Error Number of points

≈ 9× 10−3 ≈ 200

≈ 1× 10−3 ≈ 700 3.9163× 10−4 101

≈ 1× 10−4 ≈ 1144 8.3553× 10−5 165

≈ 6× 10−5 ≈ 1575 2.2921× 10−5 407

4.2.2. Comparison to MEPCM-A

We consider a discontinuous Genz function given by:

f14(x) =

0, if x1 ≥ 0.5 or x2 ≥ 0.5,

exp(
∑n
i=1 cixi), otherwise

where ci = e−35i/(n−1). Using SCAMR, we evaluate the high dimensional inte-

gration Iapprox =
∫
f̃14(x)dx where f̃14 is the numerical approximation to f14.

The relative mean error is then calculated and compared with MEPCM-A results

in Table 6 given in [17] with different dimensions n = 100, 200, and 300. It can

be seen from the form of function f14 that the importance of the dimensions de-

crease exponentially with increase in dimensions. Thus this is an example where

the function has a high nominal dimensionality but low effective dimensionality

depending on the error tolerance. Table 2 shows a comparison of the mean

relative error and the number of points needed for the MEPCM-A approach

and the SCAMR approach. For the SCAMR approach, mean value extraction

is performed by generating weighted Clenshaw-Curtis sparse grid points in each

of the elements in each subproblem. Then local means are calculated for each

subproblem by assigning weights to each element according to their hypervol-

ume. Local means are finally combined together to get the global mean. It can

be seen from the results that SCAMR proves to be very efficient in identifying

the low effective dimensions. In MEPCM-A, the effective dimensions depend on

the parameter ν. Even though ν is chosen to be small (ν = 2 or 3), the number
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Table 2: MEPCM-A and SCAMR error and cost comparison for function f14

MEPCM-A SCAMR

n Relative error Number of points Relative Error Number of points

100 O(1) 103 2.1308 201

0.0197 20, 801 0.0026 2777

0.0098 4, 677, 148 0.0017 5909

200 O(1) 203 2.3705 401

0.067 81, 601 0.0105 5121

0.047 36, 714, 298 0.0021 8397

300 O(1) 303 2.5435 601

0.12 182, 401 0.7468 2507

0.09 123, 111, 448 0.01985 21904

of terms in HDMR becomes very large for high nominal dimensions. SCAMR

thus achieves much better precision with less number of points compared to the

MEPCM-A approach. For example, for the 300-dimensional case, the number

of points needed for a relative error of 0.09 is around 123 million points in the

case of MEPCM-A while the number of points needed for a relative mean error

of around 0.02 is around 22, 000.

5. Conclusion

In this paper, an efficient stochastic collocation method with adaptive mesh

refinement has been proposed. Specifically, this approach utilizes generalized

polynomial chaos as the basis and solves the gPC coefficient using the least

squares method, which provides more flexibility on the number and locations of

function evaluations. It also implements adaptive mesh refinement to track the

discontinuities, and the adaptive criteria of the mesh refinement to check for

abrupt variations in the output based on error measured from a second order

gPC. In addition, this approach uses a criterion to check possible dimension-
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ality reduction and decomposes the full-dimensional problem to a number of

lower-dimensional subproblems, based on the HDMR method. Therefore, for

a specific problem, the highest dimensionality of subproblems which involve

interacting dimensions, are automatically provided. The effectiveness of this

method has been shown using different low and high dimensional, smooth and

non-smooth examples. It is noticeable that this approach is particularly efficient

for high nominal dimensional problems, like the stochastic elliptic problem with

a large number of terms for the diffusivity coefficient, where a significant number

of dimensions can be less important (low effective dimensions) and thus non-

interacting with other more important dimensions. However, if the dimensions

are all coupled in their contribution towards the output of interest, then the

efficiency of this method decreases with the increase in the dimensionality of

the problem, especially when the response surface is highly non-linear. This is

because of the generation of a large number of high dimensional subdomains,

where new input points are to be generated according to the sparse grid quadra-

ture. When there is significant non-linearity, the subdomains generally do not

converge with the low-order gPC approximation and hence split up into further

smaller domains.
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