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1 Abstract

Objective: Electrocardiographic imaging (ECGI) is a functional imaging modality that consists of two
related problems, the forward problem of reconstructing body surface electrical signals given cardiac
bioelectric activity, and the inverse problem of reconstructing cardiac bioelectric activity given measured
body surface signals. ECGI relies on a model for how the heart generates bioelectric signals which is
subject to variability in inputs. The study of how uncertainty in model inputs affects the model output
is known as uncertainty quantification (UQ). This study establishes develops, and characterizes the
application of UQ to ECGI.

Approach: We establish two formulations for applying UQ to ECGI: a polynomial chaos expan-
sion (PCE) based parametric UQ formulation (PCE-UQ formulation), and a novel UQ-aware inverse
formulation which leverages our previously established “joint-inverse” formulation (UQ joint-inverse for-
mulation). We apply these to evaluate the effect of uncertainty in the heart position on the ECGI
solutions across a range of ECGI datasets.

Main Results: We demonstrated the ability of our UQ-ECGI formulations to characterize the effect
of parameter uncertainty on the ECGI inverse problem. We found that while the PCE-UQ inverse solution
provided more complex outputs such as sensitivities and standard deviation, the UQ joint-inverse solution
provided a more interpretable output in the form of a single ECGI solution. We find that between these
two methods we are able to assess a wide range of effects that heart position variability has on the ECGI
solution.

Significance: This study, for the first time, characterizes in detail the application of UQ to the
ECGI inverse problem. We demonstrated how UQ can provide insight into the behavior of ECGI using
variability in cardiac position as a test case. This study lays the groundwork for future development
of UQ-ECGI studies, as well as future development of ECGI formulations which are robust to input
parameter variability.
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2 Introduction

Electrocardiographic Imaging (ECGI) is a functional imaging modality reconstructs cardiac bioelectric
actvitiy in detail using noninvasive body surface measurementsand a model of the torso volume conduc-
tor.1,2 Most ECGI formulations consist of a forward problem and its inverse, which together form the
mathematical underpinning for the process of reconstructing bioelectric sources. The forward problem
captures how cardiac bioelectric activity, described by some concise model, projects through the volume
conductor of the torso to produce body surface potential (BSP) signals on the torso.3 Key inputs to
the forward problem are the relative geometries and conductivities of the heart, torso, and any other
organs of interest (a geometric model), as well as a mathematical description of the bioelectric source
model. The forward problem is mathematically well-posed and considered to be a solved problem; many
forward solution methods show acceptable agreement with measured body surface potentials in vali-
dation datasets.4 The relationship established in the forward problem is then leveraged in the inverse
problem to estimate the cardiac bioelectric activity given body surface potential measurements.2,5, 6

The inverse problem is physically ill-posed and leads to an ill-conditioned mathematical formulation,
meaning that there may not be a unique solution and that a small perturbation in the inputs can result
in large changes in the solution. Regularization is therefore needed to produce physiologically reasonable
solutions.2 Regularization operates by imposing additional constraints on an inverse solution based on
a priori knowledge or assumptions about the cardiac bioelectric activity. Solving a regularized inverse
problem is then a trade off between a solution that fits the assumptions of the regularization and a
solution that matches the body surface potentials when projected back to the torso. The most com-
monly employed approach to regularization, called Tikhonov regularization,2 enforces global constraints
on the solution based on assumptions such as an assumption of a low amplitude bioelectric source (0
order Tikhonov regularization), an assumption of a low amplitude of spatial gradients of the bioelectric
source (1st order Tikhonov regularization), an assumption of a spatial smoothness of the bioelectric
source (2nd order Tikhonov regularization), an assumption of a sharpness of the solution (L1 Tikhonov
regularization), and many more.2

Despite decades of research, ECGI is still subject to a range of common errors and inaccuracies that
hinder its clinical adoption.1,7 Furthermore, while studies have identified the presence of lingering errors
in ECGI formulations, particularly with respect to the uncertainties of the inputs and assumptions of
the geometric models, few of these studies have rigorously examined how these uncertainties affect the
resulting reconstructions.8,9

Uncertainty quantification (UQ) is a field of study that seeks to determine how errors or uncertainties
in model inputs affect the resulting solutions.10 When the parameters of interest are well-defined and
quantifiable, the resulting UQ approach is known as ‘parametric uncertainty quantification’. Recently,
parametric UQ has seen a range of technical improvements and novel applications to the cardiac modeling
field, however much of this research has been directed at cardiac forward problems and not inverse
problems.10–14 Forward parametric UQ assumes the model functions as a black-box forward process, and
samples this process to produce a distribution of model outputs. This formulation can be mathematically
nonintrusive and computationally efficient given modern UQ tools such as polynomial chaos expansion
(PCE).15 The output distribution can also be readily manipulated to compute statistical moments such
as the mean model output, standard deviation, and sensitivities of the solution to each of the input
parameters and their combinations. However, the interpretation of the UQ results is nontrivial as the
output of such an approach is a distribution of model solutions rather than a single solution.

The challenge of applying parametric UQ, which is designed to operate on forward models, to
the inverse problem of ECGI has been the focus of recent research.8,9 However, characterization and
interpretations of the capabilities, challenges, and outputs of such UQ applications to ECGI have been
limited. Recent studies have also explored a more direct application of UQ to the inverse problem of
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ECGI by incorporating the assumption of variable input parameters into a single formulation known as
the ‘Joint ECGI formulation’.9 Such an approach does not directly yield the same statistical moments
as parametric UQ (e.g., standard deviation and sensitivity to parameters). However, the resulting ECGI
solution includes input parameter variability in the modeling assumptions, and may present a more
interpretable output than the distribution of solutions provided by convention parametric UQ. Both of
these UQ applications, parametric and joint ECGI, are missing rigorous characterization, comparisons
of their outputs, and applications to various sources of ECGI input error.8,9

A frequent source of poorly controlled input error for ECGI formulations is inaccuracy in the geo-
metric model used in the forward problem.12,16,16–21 Several studies have explored how errors in the
geometric model, particularly those introduced by uncertainty in cardiac position, negatively impact the
forward solutions.12,22–24 While several studies , including our own, have sought to reduce geometric
inaccuracy,17,19–21,25 little attention has been given to how lingering geometric error will affect the
inverse problem due to a lack of robust tools and approaches for the application of UQ to the inverse
problem.

In this study, we bring to bear recent advances in both UQ and ECGI formulations to characterize
the application of UQ to the ECGI inverse problem in the context of uncertainty in the cardiac position.
Our goals were to demonstrate the application of UQ to the ECGI inverse problem and to compare the
resulting outputs from two different UQ approaches. Using a combination of experimentally recorded
and synthetic datasets, we applied both parametric UQ and a novel UQ-based inverse formulation to
ECGI reconstruction of extracellular potential signals in the context of variability in cardiac position. We
found that parametric UQ provided useful output statistics such as parameter sensitivity and solution
standard deviation, although at times this approach produced non-physiological outlier solutions. Our
novel UQ-based inverse formulation provided a straightforward solution, a single inverse solution, as
well as possible novel insights into the behavior of the inverse problem itself via the selection of the
regularization parameter. Overall this study presents a framework for the application of UQ to the ECGI
inverse problem, and a case study of what kinds of outputs and possible complications to expect from
such an application.

3 Methods

As described in Section 2, in this study, we applied UQ to the ECGI inverse problem using two separate
approaches: parametric uncertainty quantification, and a novel UQ-aware formulation of the inverse
problem. We first explain our ECGI and UQ formulations in a general form, then describe how we have
applied these formulations to characterize UQ in the context of variability in cardiac position.

3.1 ECGI Framework

Our application of UQ to ECGI begins with an inverse problem formulation, in this case a Tikhonov
regularized inverse problem,26 selected for its common use in clinical and research ECGI systems.1,6, 8, 9, 27

Tikhonov reconstruction of cardiac bioelectric sources can be written as

argminH ||AH−B||2F + λ||RH||2F , (1)

where H is the H ×T matrix of cardiac bioelectric sources at H electrodes over T time instances, B is
the M ×T matrix of body surface potentials at M electrodes at the same T time instants, and A is an
M×H forward transfer matrix. The forward transfer matrix is the output of the forward problem in which
cardiac and torso geometry are related to each other electrically.. The ill-posed inverse problem described
in Equation 1 is regularized using the H × H regularization matrix R. Regularization can be applied
by selecting different matrices for R, such as the identity matrix (zero-order regularization), a surface
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gradient operator (first-order regularization), a surface Laplacian operator (second-order regularization),
or others.2 The regularization term of the equation is weighted by the regularization weight λ > 0.
Typical Tikhonov-regularized inverse problems are formulated for vector unknowns and utilize the squared
2-norm on these vectors ||·||22.6 Equation 1 describes the matrix form of the Tikhonov inverse formulation
where the squared 2-norm is replaced with the squared Frobenius-norm || · ||2F . This matrix form is an
alternative approach to the vector form which solves and regularizes simultaneously over all T time
instants rather than for a single time instant.

3.2 Parametric Uncertainty Quantification

Parametric UQ creates a distribution of model solutions resulting from a distribution over input
parameters given some model f . This model is parameterized according to the j-dimensional random
parameter p such that Yk is the model output for some kth value of the parameter (f(pk) = Yk). An
ensemble of model outputs can be analyzed to yield statistics of interest, and various approaches have
been developed to generate the output distribution.

In this study, we employ the polynomial chaos expansion (PCE) method to approximate the output
distribution due to its computational efficiency, the availability of open-source PCE tools, and the
use of PCE in previous ECGI studies.8–10,12,15 PCE treats the model of interest f(p) as a black-
box process converting parameter (p) to output (Y) and trains a j-dimensional, d-degree polynomial
emulator of the model via N polynomial functions ψ1 . . . ψN . This emulator can be efficiently analyzed
to produce a distribution of the model outputs as well as statistical moments of interest such as means,
standard deviations, and sensitivities from given input parameter distributions. The emulator is trained
using a weighted least-squared fitting of K training parameter samples, weights, and the associated
model outputs. These K parameter samples and sample weights can be generated using a variety of
methods such as Monte Carlo, grid search, and others. Here, we used weighted approximate Fekete
(WAF) sampling,28,29 as this approach provides the benefit of reduced sampling (and thus reduced
computational overhead), while also stabilizing the variability that can result from random sampling by
optimizing the sample choices.

The primary input for the WAF sampling is the distribution defined for the parameters, which we
represent as the probability density v. WAF sampling begins with an initial set of G̃ randomly chosen
samples which we denote as p̃g. These samples are drawn from an importance sampling density, vN ,
which promotes stability and accuracy of the least squares procedure used in latter sample optimization.10

For each of the G̃ samples we assign a weight wg which is the ratio of the derivative of the probability of
that particular sample in the original parameter probability distribution v with respect to the derivative
of the probability of that particular sample in the importance sampling density vN . The number of
samples, G̃, is selected such that given failure probability 0 < δ < 1 and a relative accuracy 0 < ϵ < 1,
the samples obey

p̃g ∼ vN , wg =
dv(p̃g)

dvN (p̃g)
, and G̃ ≥ 3 log(4N/δ)

ϵ2
N, (2)

where wg is the weight for the gth parameter p̃g. These randomly selected samples are used as a
first-guess initialization to solve a weighted D-optimal design problem to identify the final set of K
parameters. This design problem is solved via volume maximization in the form

max
{pk}Kk=1⊂{pG}G̃g=1

(det(DTD))

K∏
k=1

dv(pk)

dvN (pk)
, (3)

where D is a K × N design matrix Dk,n = ψn(pk). Once the optimal K parameters (p1 . . .pK) are
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chosen, their associated weights (w1 . . . wK) can be computed using Equation 2. A more complete
formulation of WAF sampling as it applies to PCE can be found in Narayan et al.10

3.3 PCE-Based UQ of ECGI

In this study, f(p) is a solution to Equation 1 for a particular value of p. More specifically, we
assume that the parameters of interest only affect the forward matrix and resulting inverse estimate,
and thus reformulate Equation 1 to define f(p) as the solution to

argminH(p) ||A(p)B−H(p)||2F + λ||RH(p)||2F , (4)

which now depicts the forward matrix and the resulting inverse estimation as a function of the input
parameters p. Extensions of this formulation to the case in which the parameters of interest affect more
than H and A would be straightforward.

The parameter samples provided via WAF sampling are used to compute the associated model output
by evaluating Equation 4 for each parameter sample. These samples, weights, and outputs are used to
train the PCE emulator, which is then used to compute the following statistical moments for further
analysis: mean inverse solution, standard deviation, and sensitivity to each parameter combination.
Note that, in contrast to standard ECGI solutions, we treat the solutions as a stochastic ensemble; we
compute optimally selected samples of this ensemble via the sampling procedure described and then
evaluate the results via estimated statistics of the ensemble. We refer to this application of UQ to
ECGI as the PCE-based UQ ECGI formulation, and we refer to the mean solution as the PCE-UQ
mean solution. Pseudocode for the preparation of the PCE-UQ ECGI formulation is presented in the
supplemental section.

3.4 UQ-Aware ECGI Inverse Formulation

The UQ approach described above treats the inverse problem as a black box, noninvasively assessing
the effect of parameter variability. In this section, we instead establish an invasive application of UQ to
the inverse problem which produces a single inverse solution as its output.

The baseline inverse formulation established in Equation 1 assumes fixed inputs for all parameters.
The PCE-UQ implementation derived in Equation 4 is one approach to the application of UQ to the
inverse problem. Here we describe an alternative approach that considers an inverse problem whose
solution minimizes the effects due to parameter variations. To that end, we reformulate the Tikhonov
inverse problem into whatwe have previously called a Joint Inverse formulation.30 The joint inverse
formulation extends the standard Tikhonov inverse formulation by incorporating multiple realizations of
the inverse problem into one equation that solves for a single estimate of the cardiac source. In particular,
we optimize over an estimate of the expectation of the objective in Equation 4 via an ensemble estimator
using multiple realizations of the parameter p. In this case, the multiple realizations come from sampled
parameter values and weights.

To implement this approach, we again apply WAF sampling to generate these parameter samples
and weights. We incorporate p1 . . .pK and w1 . . . wK by first constructing the block matrices B and
A as

B =


B · √w1

B · √w2

B · √w3
...

B · √wK

 ,A =


A(p1) ·

√
w1

A(p2) ·
√
w2

A(p3) ·
√
w3

...
A(pK) · √wK

 , (5)
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where each BSP matrix in B is a copy of B weighted by
√
w1 . . .

√
wK . Each forward matrix in A is

a function of the heart position A(pK) for (p1 . . .pK) weighted by
√
w1 . . .

√
wK . We then combine

these block matrices into a Tikhonov inverse formulation that solves for a single cardiac source given
this sampling of the cardiac position parameter distribution in the form

argminH ||AH−B||2F + λ||RH||2F . (6)

We call this our UQ joint-inverse formulation, and the resulting H × T matrix H is a UQ joint-inverse
solution representing an expected value of the ECGI inverse solution given our sampling of the variability
in the parameter of interest, p. This inverse solution, H has the same dimension as H from Equation 1.
Pseudocode for the preparation of the UQ joint-inverse formulation is also presented in the supplemental
section.

3.5 Datasets

We applied UQ ECGI techniques to data collected from large-animal experiments using a torso-tank
preparation described in Bergquist et al.31 All details of the study were approved by the University of
Utah IACUC (Protocol #17-04016) following all institutional animal care guidelines. This experimental
model consisted of isolating a canine heart in Langendorff perfusion mode supported by a second canine.
The isolated heart was instrumented with a pericardiac cage, a rigid 3D-printed frame equipped with
256 Ag-AgCl electrodes.31 The isolated heart was then suspended in a torso-shaped tank with 192
embedded Ag-AgCl electrodes. The torso tank was filled with electrolyte solution set to a conductivity
of 500 Ω· cm to mimic human torso conductivity. We recorded continuously at 1 kHz from both
the pericardiac cage and torso electrodes during sinus rhythm and during stimulated ectopic beats
paced at 171 bpm from both the anterior and posterior left ventricle. Signals were recorded using
custom acquisition hardware described in Zenger et al.32 We then baseline corrected, noise filtered, and
segmented the recorded signals into individual beats using PFEIFER, an open-source software tool for
processing time series data from electrocardiographic experiments.33 Noise filtering was achieved using
a rational transfer function as described previously.33,34 We segmented 40 heartbeats (from QRS onset
to the end of the T wave) from the series of recorded beats for each of the three activation sequences
(sinus, anterior ventricular paced, and posterior ventricular paced) which we refer to as sinus, aVP, and
pVP, respectively. After electrical recordings, the position of the pericardiac cage within the torso tank
was recorded using a mechanical digitizer. This relative position was used to register the pericardiac
cage geometry into the torso tank geometry using a rigid transformation. This registered pericardiac
cage geometry was then considered an adequate surrogate for the heart surface and was referred to
as the nominal cardiac position. These experiments were replicated twice to produce two datasets of
recorded body surface and pericardiac cage signals along with nominal heart positions relative to the
torso tank geometry. Each of these datasets (Dataset 1 and Dataset 2) consisted of 120 heartbeats (40
sinus, 40 aVP, 40 pVP).

During such experiments, there will be some degree of geometric error in the registration of the
pericardiac cage, which complicates our analysis of the effects of UQ in the context of heart position
uncertainty. To address this limitation, we designed a third, synthetic dataset based on Dataset 2 and
the nominally registered pericardiac geometry. We computed 50 different synthetic heart positions by
generating random translation vectors using Monte Carlo samples of X, Y, and Z values between 0 and
40 mm. These 50 heart positions were designated as ‘ground-truth’ geometries from which we computed
body surface potentials for each of the three activation sequences using the boundary-element-method
forward problem for epicardial potentials. We then added Gaussian noise to the computed body surface
signals at an SNR of 30 dB. Of these 50 positions, two produced BSP and EGM pairs that resulted in
unacceptably poor ECGI solutions and were therefore excluded. The result was a dataset consisting of
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48 different ground truth heart positions, each with body surface and pericardiac cage signals for three
different activation sequences (144 total), named ‘Dataset 3’.

3.6 Implementation

In this study we parameterized heart position in terms of the UQ parameters of interest with j = 3
according to pk = [xk, yk, zk], where xk is the scalar translation of the heart from its nominal position
along the x-axis for the kth parameter sample, and yk and zk are similiar translations along the y- and
z-axes respectively. For each of these three parameters, we assumed a beta distribution with α = 2,
β = 2. An example of such a beta distribution can be seen in Figure 1 for a parameter with a range
of ±1. We selected α = 2, β = 2 to produce a distribution with a shape similar to that of a normal
distribution (higher probability near the mean), but also with fixed bounds (values drawn from the beta
distribution will not ever be outside of the specified bounds). This was done to prevent sampling of
heart positions which were translated out of the torso, which can lead to non-physiological solutions.
To investigate the effect of increasing uncertainty in the position of the heart we defined six uncertainty
ranges (Range 1–Range 6) for these parameter distributions as follows: ±1 mm, ±5 mm, ±10 mm,
±15 mm, ±20 mm, and ±25 mm, respectively. A sufficient number of WAF samples were selected for
each uncertainty range to satisfy the training of a d = 5 PCE emulator. These same samples and weights
were utilized in both the construction of PCE emulators as well as computation of the UQ joint-inverse
solutions.

The following groups of inverse solutions were computed:

• Nominal: inverse solutions based on the nominal heart position for each heartbeat for each dataset
according to Equation 1.

• Ground truth: inverse solutions based on the ground-truth heart position for each beat in Dataset
3 according to Equation 1.

• WAF sample solutions: inverse solutions for all the WAF parameter samples over each uncer-
tainty range for each heartbeat for each dataset according to Equation 4.

• UQ joint-inverse: the UQ joint-inverse solutions over each uncertainty range for each beat in
each dataset according to Equation 6.

The WAF sample solutions, along with the associated WAF weights and parameter values, were used
to train a PCE emulator for each parameter range. From these emulators we extracted the statistical
moments of the mean solution, standard deviation, and sensitivities to each parameter and parameter
combination (7 sensitivities in total given 3 parameters in p = [X,Y, Z]). For each uncertainty range,
the mean solution was considered to be the UQ inverse solution for the PCE-UQ approach.

We selected epicardial surface potentials as our bioelectric source model due to their wide use in
clinical and research ECGI systems, and for ease of comparison with our measured experimental signals.
We used the boundary element method to calculate all forward matrices, as it does not require re-
meshing of the torso geometry when moving the heart. In all cases, the regularization weight λ was
chosen using the Frobenius L-curve criterion at the maximum curvature (κ) of the L-curve over the
range of λ = 10−10 . . . 1010.17 The regularization matrix R was selected to approximate the surface
Laplacian of the epicardial potentials (2nd order regularization). The resulting Laplacian matrix was
badly conditioned and required regularization which we carried out by adding 10−3 to the singular values
of the Laplacian matrix which were less than 10−3.30 All inverse solutions were computed using the entire
QRST segment of the ECGs. All PCE and UQ calculations were performed using UncertainSCI, an open
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Figure 1: Beta distribution for a parameter with bounds of ±1.
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source python package for UQ we have published previously.10,35 ECGI solutions were computed using a
combination of in-house software and the open-source SCIRun Forward Inverse Toolkit.36 Figures were
generated using SCIRun (37), MATLAB (Mathworks, Inc), and Illustrator (Adobe, Inc).

3.7 Analysis

We compared the resulting inverse solutions (nominal, ground-truth, PCE-UQ mean solution, and UQ
joint-inverse) to the corresponding measured ground-truth electrical recordings using several established
metrics.17,31 These metrics consisted of the root-mean-squared error (RMSE) over the QRST between
inverse solutions and ground truth EGMs, the mean temporal correlation (TC) (i.e., the correlation
between inverse solutions and ground-truth EGMs over the QRST on an electrode by electrode basis
averaged across all electrodes), and the mean spatial correlation (SC) (i.e., the correlation between
reconstructed and measured cardiac surface potential distributions averaged over all time instances in
the QRST). For nominal, ground truth, and UQ joint-inverse solutions we also compared the curvature
(κ) of the L curve, the value of λ chosen, and the shapes of the L curves. We also visually compared
the reconstructed and measured potential maps. This was done by plotting the potential maps onto a
flattened projection of the cardiac geometry, as described in detail previously.17 Briefly, this flattened
geometry was constructed by cutting the cardiac geometry along the right side and projecting the
unrolled point mesh onto a plane using an approach that preserved interelectrode spacing.

The PCE-UQ ECGI formulation also provided us with standard deviation and sensitivity values for
every electrode at every time instant. We visualized both the standard deviation and each sensitivity
metric (one for each parameter and combination of parameters) in the same way we visualized the
potential distributions, by plotting their spatial maps on the flattened cardiac geometry.

4 Results

4.1 Ground-Truth Synthetic Data (Dataset 3)

The results based on forward-computing the potentials from known heart locations (Dataset 3)
provided the most accessible evaluation of the behavior of the inverse problem in a setting where the
level of localization error of the heart was known. Figure 2 shows the statistics summarizing the error
/ correlations of the inverse results for each heartbeat in Dataset 3 compared to both the ground-truth
heart position and the nominal heart position as a function of shifts in heart location. For the nominal
position, as geometric error increased, the inverse solution accuracy (according to RMSE, SC, and TC)
decreased. As expected, the accuracy of inverse solutions in which heart shift was accounted for in
generating the solution—the ground-truth heart position case—remained consistent.

The application of PCE-based parametric uncertainty quantification to the ECGI inverse problem
produces a distribution of inverse solutions, and for this study, we chose to focus on the mean of this
distribution as a representation of the PCE-UQ solution distribution. Figure 3 shows the accuracy of the
PCE-UQ mean solution for each uncertainty range and activation sequence in Dataset 3. In uncertainty
ranges 4 through 6 we observed outlier PCE-UQ solutions with RMSE well over 4.5 mV, and spatial
and temporal correlations near zero.

In Supplemental Tables S.1, S.2, and S.3 we see that the median solution accuracy is stable across
uncertainty ranges, which is also reflected in the distributions in Figure 3. Only nominal position and
UQ mean solutions whose nominal heart geometry had low error compared to the ground truth geometry
resulted in comparable accuracy to the ground truth position inverse solutions.

The inverse solutions themselves, which we visualized more directly as potential maps in Figure 4,
did show subtle differences between uncertainty ranges. In Figure 4 we showed inverse solutions for the
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Figure 2: Inverse solution error / correlation metrics as a function of heart location error distance for
both the nominal and ground-truth positions in Dataset 3. Each point represents a single inverse solution
using either the nominal heart position (diamonds) or the ground-truth heart position (circles). Colors
indicate the activation sequence, where red is an anterior ventricular paced beat, green is a posterior
ventricular paced beat, and blue is a sinus beat. The x-axis is the Euclidean distance (in millimeters)
between the centroid of the ground-truth heart position used to generate the synthetic body-surface
potentials and the nominal heart position. The scatter plot panels from top to bottom show the root
mean squared error (RMSE in millivolts), the spatial correlation, and the temporal correlation.
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Figure 3: Inverse solution accuracy metrics as a function of distance for the nominal, ground truth, and
PCE-UQ mean solutions in Dataset 3. Each point represents a single inverse solution using either the
nominal heart position (Nominal, column one), the true heart position (True Position, Column 2), or the
PCE-UQ mean solution for ranges 1 through 6 (columns 3 through 8). Colors indicate the activation
sequence where red is an anterior ventricular paced beat, green is a posterior ventricular paced beat,
and blue is a sinus beat. The points are sorted on the x-axis for each case according to the Euclidean
distance between the nominal and ground truth heart position for that beat. The scatter plots from
top to bottom show the root mean squared error (RMSE in millivolts), the spatial correlation, and the
temporal correlation. The RMSE y-axis is truncated to 4.5 mV maximum, which excludes outliers in
ranges 4, 5, and 6.
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aVP activation sequence using three different example beats from Dataset 3: one with low geometric
error between nominal and true heart position (5.3 mm), one with medium geometric error (24.4 mm),
and one with high geometric error (49.1 mm). We noted in particular changes in the spatial distribution
of potential depressions in the low and medium geometric error cases as the uncertainty range increases
from 1 to 6. The high geometric error case showed larger differences compared to the true position
across all the uncertainty ranges but less pronounced changes between each range than the low-error
and medium-error cases. In each case, the UQ mean inverse solutions closely resembled those from
the nominal positions. The PCE-UQ also provides output statistics such as the standard deviation and
parameter sensitivities, which are reported in Figure 5 and Figure 6. Standard deviations increased in
amplitude with the uncertainty ranges from near 0 mV at range 1 to around 5 mV for range 6. The
standard deviations also varied with the amount of underlying geometric inaccuracy, with the low and
medium beats showing larger standard deviations than those with high geometric error. The sensitivity
distributions in Figure 4 revealed only marginal differences across error levels and across uncertainty
ranges. The parameter interaction sensitivity (X and Y, X and Z, Y and Z, X and Y and Z) were all
nearly zero, indicating minimal parameter interactions.

Figure 7 shows the accuracy of the UQ joint-inverse formulation, which produced a single ECGI
solution per heartbeat, as captured by RMSE, spatial correlation, and temporal correlation. As the
uncertainty range increased from Range 1 to Range 6, these metrics improved slightly and showed slightly
less variability with the degree of heart position error. Similar results are visible in the Supplemental
Tables in Section 6. We also note the absence of the outlier beats in Figure 3, in contrast to the results
found using the UQ mean solutions.

The potential map reconstructions in Figure 8 show the joint-inverse reconstructions across the
uncertainty ranges. In contrast to the UQ mean solutions in Figure 4, the joint-inverse solutions show
more dependence on the uncertainty ranges. There were pronounced changes in potential distributions
with ranges, including to shapes of elevated and depressed areas, and a general reduction in peak
amplitude, e.g., from 13 to 9 mV (elevations) and -8 to -6 mV (depressions).

The joint-inverse approach also generates values for the regularization weight λ selected and the
curvature of the L-curve at the corner. Figure 9 shows scatter plots of the λ values and the curvatures
(κ) of the L-curve for the standard Tikhonov inverse across the uncertainty ranges using the nominal
and ground truth heart positions as well as for each UQ joint-inverse solution. As the uncertainty
range increased, so too did the λ values, starting from the ground-truth position. The κ values were
generally slightly larger when using the ground truth heart position than for the nominal position and
then increased very slightly as the uncertainty range increased. Beats with larger geometric error showed
lower κ values both, in the nominal inverse and UQ joint-inverse cases. Figure 10 shows a comparison
of L-curve morphologies among the inverse solutions using nominal, and ground-truth heart position,
and UQ joint-inverse solutions across the six uncertainty ranges. In the case of the low geometric
error heartbeat, the nominal and ground-truth position L-curves had similar morphologies, whereas they
differed more for mid and high geometric errors. In each case, as the uncertainty range increased,
the L-curves derived from the UQ joint-inverse formulation showed increasing sharpness at the corner,
increasing slope of the upwards-facing feature of the curve, and a shift rightwards of the corner location.

4.2 Datasets 1 and 2

Datasets 1 and 2 explored the application of UQ to ECGI with measured body surface and heart
signals and an unknown amount of geometric error. Figure 11 summarizes the mean UQ solution
accuracy from PCE-UQ as compared to the standard inverse solution at the nominal position. (See
Supplemental Tables in Section 6 for numerical summaries). Accuracy of the UQ mean solutions
varied between datasets and across activation sequences with some showing slight increases in solution
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Figure 4: Example potential maps for measured data and inverse solutions in Dataset 3 using the ground
truth position, nominal position, and PCE-UQ mean solution. Potential maps are shown at a time point
corresponding to the peak of the root mean squared curve of the measured signals, shown in the bottom
left. Inverse solutions are shown for three heart positions from Dataset 3 using the aVP activation
sequence: one with low geometric error between the nominal and true position (5.3 mm, top row), one
with a medium amount of geometric error (24.4 mm, middle row), and one with a high amount of
geometric error (49.1 mm, bottom row). Inverse solutions using the ground truth heart position and
nominal heart position are shown in the left inverse solution columns. The remaining inverse solutions
are the PCE-UQ mean solutions for each uncertainty range.
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Figure 5: Example standard deviation maps for potentials shown in Figure 4, i.e., the PCE-UQ from
Dataset 3. The map in the top-left corner shows the measured potential map at the time point shown
in the RMS curve below. Standard deviation maps are shown for three heart positions from Dataset 3
using the aVP activation sequence with geometric error ranges as defined in Figure 4.
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Figure 6: Parameter sensitivity maps for the potentials shown in Figure 4, i.e., the PCE-UQ from
Dataset 3. The map in the top-left corner shows the measured potential map at the time point shown
in the RMS curve below. Sensitivity maps are shown for three heart positions from Dataset 3 using the
aVP activation sequence with geometric error ranges as defined in Figure 4. From left to right, each
column shows the parameter sensitivity for X, Y, and Z direction shifts in heart positions, respectively.
No substantial sensitivity was found for any parameter combinations.
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Figure 7: Inverse solution accuracy metrics as a function of distance for the nominal, ground truth, and
UQ joint-inverse solutions in Dataset 3. The layout of the plots is similar to that in Figure 4.2, but
here for the UQ joint-inverse approach. Each point represents a single inverse solution using either the
nominal heart position (Nominal, column one), the ground-truth heart position (True Position, Column
2), or the UQ joint-inverse solution for uncertainty ranges 1 through 6 (columns 3 through 8).

16

Page 16 of 34AUTHOR SUBMITTED MANUSCRIPT - PMEA-105203.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Figure 8: Example potential maps for measured data and inverse solutions in Dataset 3 using the ground
truth position, nominal position, and the UQ joint-inverse formulation. As in Figure 4, the map in the
top-left corner shows the measured potential map at the time point shown in the RMS curve below.
Inverse solutions are shown for three heart positions from Dataset 3 using the aVP activation sequence,
again as in Figure 4. Inverse solutions using the ground truth heart position and nominal heart position
are shown in the left two columns and the remaining columns contain the UQ joint-inverse solutions for
each uncertainty range.
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Figure 9: Inverse solution regularization metrics as a function of distance for the nominal, ground truth,
and UQ joint-inverse solutions in Dataset 3. Each point represents a single inverse solution using either
the nominal heart position (Nominal, column one), the ground-truth heart position (True Position,
Column 2), or the UQ joint-inverse solution for ranges 1 through 6 (columns 3 through 8). Colors
indicate the activation sequence, where red is an anterior ventricular paced beat, green is a posterior
ventricular paced beat, and blue is a sinus beat. The points are sorted into groups on the x-axis for
each case according to the Euclidean distance between the nominal and ground truth heart position for
that beat. The scatter plots from top to bottom show the regularization weight (λ) chosen for each
solution and the curvature of the L-curve corner (κ). Both Y axes are in log scale.
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Figure 10: Example L-curves for reconstructions using either the nominal position, ground-truth position,
or UQ joint-inverse. L-curves are shown for the same three heart positions from Dataset 3 using the
aVP activation sequence as shown in previous figures. For each curve, the corner selected by the L-curve
algorithm is highlighted with a red dot. The curves for inverse solutions using the nominal heart position
are shown in blue, using the true heart position in green, and using the UQ joint-inverse formulation
in black. For each UQ joint-inverse solution, the L-curves corresponding to each uncertainty range are
shown with a label (R1 to R6) to the right of each.
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Figure 11: Inverse solution accuracy metrics for the nominal and PCE-UQ mean solutions in Datasets
1 and 2. Each box plot represents all 40 solutions for a particular activation sequence using either the
nominal heart position (Nominal, column one), or the PCE-UQ mean solution for ranges 1 through 6
(columns 2 through 7). Colors indicate the activation sequence where red is an anterior ventricular
paced beat, green is a posterior ventricular paced beat, and blue is a sinus beat. The box plots from
top to bottom show the root mean squared error (RMSE in millivolts), the spatial correlation, and the
temporal correlation.
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accuracy at middle uncertainty ranges, and others demonstrating minimal variation. In general, the
temporal correlation of the UQ mean solutions was lowest at the highest uncertainty range, while
RMSE and spatial correlation did not show consistent changes among datasets or activation sequences.
The standard deviation increased as the uncertainty range increased, as Figure 12 demonstrates with
uncertainty ranges 1 and 2, resulting in near zero standard deviation across the potential map. The UQ
mean solution potential maps showed more pronounced changes in Datasets 1 and 2 than Dataset 3,
with elevation and depression amplitudes increasing in magnitude for each uncertainty range (Figure 12).
Parameter sensitivity showed minimal parameter interactions and did not substantially vary in spatial
distribution across uncertainty ranges. In Figure 13 we see that the X, Y, and Z sensitivity maps at the
peak of the QRS of aVP 1 for Dataset 1 resemble the sensitivity maps found for Dataset 3 (Figure 6).

Figure 14 shows the inverse metrics for the UQ joint inverse solutions at each uncertainty range in
Datasets 1 and 2. Generally, the solution quality began to degrade around Range 4 in both datasets
across all metrics. However, there are some exceptions such as the aVP activation sequence, which
showed a consistent temporal correlation across all uncertainty ranges, and only a slight degradation in
RMSE and spatial correlation. When examining the inverse problem metrics, κ and λ in Figure 15, there
was a nonlinear response of the κ value to an increase in uncertainty range. At middle uncertainty ranges
(2 through 4) in both datasets, we observed higher κ values than at either lower or higher uncertainty
ranges. This trend was observed in both datasets and across all activation sequences with the aVP
activation sequence showing the most pronounced increase in κ. The λ value on the other hand was
lower in uncertainty range 1 than that found in the nominal position inverse solutions and increased
steadily as the uncertainty range increased. Finally, Figure 16 shows UQ joint inverse potential map
reconstructions for an aVP beat from Dataset 2 across the uncertainty ranges. We observed that as the
uncertainty range increased the distribution of the potential elevation shifted from midway between the
apex and base in uncertainty range 1 to more basal in uncertainty range 6.

The reconstruction at range 6 more closely resembled the nominal position inverse solution than the
range-1 solution and the intermediate UQ inverse solutions showed a gradual transition. The potential
elevation and depression magnitudes did not change substantially across the uncertainty ranges, unlike
the mean UQ inverse solution observed in Figure 12 which showed an increased potential elevation and
depression magnitude as the uncertainty range increased.
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Figure 12: Example maps of potential and standard deviation for measured values and inverse solutions
in Dataset 2 using the nominal position and PCE-UQ mean solution. All results are for a single aVP beat
at a time point corresponding to the peak of the root-mean-squared curve of the measured signals. An
inverse solution using the nominal heart position is shown in the bottom left. The remaining columns
contain the PCE-UQ mean solutions and their standard deviations for each uncertainty range, all in
units of millivolts but with separate scaling.
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Figure 13: Parameter sensitivity maps for the PCE-UQ in Dataset 2 using an aVP beat. The time
point for all maps corresponds to the peak of the root-mean-squared curve of the measured signals, as
indicated on the time plot. The leftmost map contains the measured potentials and the three sensitivity
plots to the right correspond with shifts in the X, Y, and Z values, respectively.
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Figure 14: Inverse solution accuracy metrics for the nominal, and UQ joint inverse solutions in Datasets
1 and 2. Each box plot represents all 40 solutions for a particular activation sequence using either the
nominal heart position (Nominal, column one) or the UQ joint inverse solutions for ranges 1 through 6
(columns 2 through 7). Colors indicate the activation sequence where red is from an anterior ventricular
paced beat, green from a posterior ventricular paced beat, and blue from a sinus beat. The box plots
from top to bottom show the root mean squared error (RMSE in millivolts), the spatial correlation, and
the temporal correlation.
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Figure 15: Inverse solution regularization metrics for the nominal, and UQ joint inverse solutions in
Datasets 1 and 2. Each box plot represents all 40 solutions for a particular activation sequence using
either the nominal heart position (Nominal, column one), or the UQ joint inverse solutions for ranges 1
through 6 (columns 2 through 7). Colors indicate the activation sequence where red is from an anterior
ventricular paced beat, green from a posterior ventricular paced beat, and blue from a sinus beat. The
box plots from top to bottom show the regularization weight (λ) chosen for each solution and the
curvature of the L-curve corner (κ). Both Y axes are in log scale.
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Figure 16: Example potential maps for measured data and inverse solutions from Dataset 2 using the
nominal position and the UQ joint inverse formulation. Potential maps are shown at a time point
corresponding to the peak of the root mean squared curve of the measured signals for an aVP activation
sequence. The RMS signal is shown on the right with a red vertical line indicating the visualized time
instant. The upper left panel contains the measured potentials and the lower left panel an inverse
solution using the nominal heart position. The remaining maps show inverse solutions using the UQ
joint inverse approach for each uncertainty range.
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5 Discussion

In this study, we implemented two extensive applications of uncertainty quantification to the inverse
problem of ECGI in the context of variability in the cardiac position. We sought to address two main
goals: 1) demonstrate the feasibility of applying UQ to geometric uncertainty of the ECGI inverse
problem and 2) compare the resulting outputs from different UQ approaches. To manage the scope
of this multidimensional analysis, we selected a small subset of activation sequences, and a simplified
parameterization of heart position. Even with these constraints, analysis and interpretation of the results
were challenging. Adding to the challenges was the fact that few have addressed the topic of UQ in the
context of the ECGI inverse problem and there is a paucity of standard modes of analysis. We sought
to develop and evaluate such modes of analysis, a summary of which we present in this study.

Our first approach was parametric uncertainty quantification (PCE-UQ), which produces a distribu-
tion of solutions to the model of interest (in this case the inverse problem of ECGI), given parameterized
estimates of input variability, in this case the position of the heart, in the form of probability distribution.
The second approach produces a single inverse solution that incorporates assumptions of input parameter
variability. This approach is derived from the joint-inverse formulation, a novel ECGI formulation that
we have developed previously.9,30 To date, very few studies have explored applications of parametric
UQ to the ECGI inverse problem,8 even fewer have applied our UQ joint-inverse formulation,9,30 and
none have compared the two. A final product of the study was a general framework to compare the
results from such approaches.

5.1 PCE-UQ ECGI Formulation

The PCE-UQ provides a complex and rich output when applied to ECGI, however, it is not immedi-
ately clear how to interpret the results in terms of the effects of parameter variability on model accuracy.
Here, we focused on the mean of this output distribution, which provides a single set of cardiac potential
for each case, a result that represents in some overall sense, the impact of parameter uncertainty. Further
studies should develop more elaborate techniques to leverage and assess the entire output distribution.
Within these mean potentials maps, we observed subtle changes in Datasets 1 and 2 as the uncertainty
range increased. For example there was an increase in the size and amplitude of the potential elevation
during the peak of the QRS as seen in Figure 12. However, this effect did not carry over to Dataset
3, which was created under synthetic but controlled conditions. There were only minimal differences
between potential maps across the uncertainty ranges. Furthermore, results from Dataset 3 were fairly
similar between the case of the nominal position solution and the mean solution with UQ applied. This
finding indicates that the nominal solution would be a substantially similar surrogate for the UQ mean,
a conclusion only accessible through the use of UQ.

While the mean values of the PCE-UQ distributions provide general insight into the behavior of
the ECGI inverse problem, the statistical moments of this approach provide additional insight into the
effects of uncertainties of the input parameters. In particular, we focused on the standard deviation
and parameter sensitivities. We found that the magnitude of standard deviation depended largely on
dataset and uncertainty range. For example, in Dataset 1, the maximum standard deviation was below
1 mV up to uncertainty range 4 (± 15 mm), whereas for Dataset 2 the maximum was slightly higher in
each uncertainty range, but still remained low (below 1.5 mV) through uncertainty range 2 (± 5 mm).
These results corroborate a common rule of thumb that geometric errors should be kept below 5 mm,
and represents a target applied in some geometric registration studies.31,38 Dataset 3 produced outlier
solutions for some beats in the higher uncertainty ranges, which is apparent in the high max RMSE
(> 50 mV), high max standard deviation (> ±200 mV), low min spatial correlation (< 0.1), and low
min temporal correlations (< 0.1) (See supplemental Tables in Section 6)The presence of these outliers
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is likely due to instability in the individual inverse solutions used to train the PCE emulator during
the parameter sampling process, which we observed in some cases where the regularization weight λ
was poorly chosen by the L-curve method. We hypothesize that this instability may be ameliorated by
developing a more robust method for the selection of λ in the context of these UQ samples. Despite
this limitation, we observed that the majority of the beats in Dataset 3 produced errors well within the
limits typical for this ECGI formulation.

The parameter sensitivity analysis provides insight into the relative contribution of each parameter
to the observed solution variability. In addition to individual parameter contributions, UQ provides
an assessment of the interactions between parameters. Perhaps surprisingly, we found no appreciable
parameter interaction between variations of the X, Y, and or Z parameters in any of our test scenarios.
These results may reflect the orthogonal nature of these parameters but also provide reassuring evidence
of independence of the effects of translation uncertainties in heart location. UQ analysis is uniquely able
to provide such insights and guidance when solving inverse problems.

5.2 UQ Joint-Inverse

The UQ joint-inverse solution we have developed avoids the the challenges of interpreting the results
of the PCE-UQ analysis by providing a readily interpretable output in the form of a single inverse solution,
given a parameterization of the input variability. By providing a single output solution, the UQ joint-
inverse formulation eliminates the ambiguity of interpreting a distribution of solutions, while at the
same time removing potential insights gained from the distribution detailed above. A further benefit
of UQ joint-inverse formulation was enhanced stabilty, producing no outlier solutions across any of our
datasets. This increased stability may be due to the fact that the joint-inverse formulation considers
the collection of heart positions simultaneously, as opposed to the PCE-UQ approach, which computes
an inverse solution for each heart position sample individually. Another reassuring finding was that the
UQ joint-inverse solutions became increasingly smoothed as the uncertainty range increased, likely a
direct result of the correspoding increase in regularization weight (λ). This smoothing can be seen in
the potential maps in Figures 8 and 16.

In the face of increasing ranges of heart-position uncertainty, the UQ joint-inverse solutions showed
variable changes in accuracy. For Dataset 3, for example, the spread of the solution accuracy improved
(decreased) with increasing range of uncertainty, but only for the lower-accuracy reconstructions. So-
lution accuracy from higher-accuracy reconstructions, in contrast, worsened slightly as the range of
uncertainly in the location increased. The main surprise in this finding was that output accuracy would
ever improve in the face of increasing ranges of uncertainty in heart position. It must be noted, however,
that these differences in the output accuracy were very small and we suspect the decrease in spread was
a symptom of the increased regularization weight chosen for larger uncertainty ranges (see Figure 9),
resulting in overly smooth solutions.

In contrast, for Datasets 1 and 2, the reconstruction accuracy generally performed as expected,
degrading as the uncertainty range increased. The UQ joint-inverse solution operates as an expected
value over the range of input parameter variability, thus as the range increases, it would be expected
that the solution accuracy would degrade. The degree of this degradation may provide insight into the
effect of position uncertainty on the inverse solutions. Furthermore, the UQ-joint inverse formulation
explicitly includes the possible presence of heart position variability, as described by our parameterization,
in contrast to traditional inverse formulations which fail to account for heart position variation.

Because the joint UQ approach was based on a Tikhonov regularization formulation, it made sense
to evaluate the effects of uncertainty on the regularization parameter, λ. We examined both the selected
regularization weight and the sharpness of the L-curve corner for each uncertainty range. In Datasets
1 and 2, there was an increase in λ at each uncertainty range, and an increased curvature within the
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middle uncertainty ranges. These findings lend another angle of inquiry to research by Rodrigo et al. and
others who have suggested that the sharpness of the corner of the L-curve is related to the geometric
accuracy of the forward model.21 Further corroborating this suggestion were the results from Dataset
3, in which higher geometric error generally produced lower L-curve curvature and higher λ values as
seen in Figure 9. This trend, however, lacked consistency in our study. For example, when using the
true cardiac position in inverse solutions for Dataset 3, particularly for sinus beats, the cardiac positions
which were more distant from the nominal position produced lower curvatures in the L curves. By
contrast, there was higher L-curve curvature using the nominal position rather than the true cardiac
position (Figure 9) This nominal cardiac position was approximately in the center of torso geometry,
which may suggest that not only the error in the heart position but also the relative heart position with
respect to the torso may contribute to the sharpness of the L-curve. The L-curve shape also varied with
range of position variability, becoming sharper as the range of position uncertainty increased. A unique
feature of applying UQ analysis directly to inverse problems, rather than indirectly via the associated
forward problem, is the range of analyses that become possible. For example, regularization is so integral
to almost all inverse problems, yet its role in evaluations of UQ can only really be revealed with this
type of combined approach.

The regularization parameter selection by the L-curve is clearly affected by variability in cardiac
position, yet because these features of the L-curve are not considered a part of the model output but
rather an intermediate feature of the inverse solver, the relationship between cardiac position and the
L-curve is more difficult to interpret. However, this relationship could perhaps be leveraged to produce
more sophisticated regularization methods which are informed by, agnostic to, and/or robust to input
uncertainty. As most regularization techniques are derived from applying a priori assumptions about
the solution as constraints in the inverse solver, there may be a way to include an assumption of input
parameter variability into such regularization operations. Such potential relationships between input
parameter uncertainty and regularization in the inverse problem warrants further investigation.

5.3 Limitations

This study approached the application of UQ to the inverse problem of ECGI from a broad perspective
and the subsequent observations are therefore only general. These observations are also based on general,
but incomplete error metrics, e.g., RMSE, spatial correlation, and temporal correlation. More specific
applications of ECGI, e.g., to localize sites of early and breakthrough activation, warrant more specific
metrics and realistic, application specific types and ranges of uncertainties.

We selected cardiac position as the sole source of uncertainty due to its applicability across ECGI
applications (all ECGI applications require a geometric model), as well as the interpretability of variability
in cardiac position (several known sources of error are well characterized). While the results presented
here can only be explicitly interpreted in the context of error in X, Y, and Z translation, the general
approach and types of outputs can be translated to other input variables of interest. Other areas of
possible input variability may include inputs such as the position of the torso electrodes, the shape of
the torso, or various other parameters of the ECGI bioelectric source, forward formulation, or solution
method. For such inputs, we suggest that a key problem facing an ECGI UQ application is development
and implementation of parameterization. For example, while torso shape may be parameterized by
statistical shape models in a similar fashion to what others have done for the heart,39 such a study
would require a repository of torso shapes and associated body surface map recordings. Additionally,
the tuning and integration of such a torso shape parameterization into an ECGI formulation would be
nontrivial. Inputs such as the position of the electrodes on the torso may also prove difficult to implement.
For example, parameterizing each electrode position as a 2D coordinate on the torso surface would result
in a large parameter space for the upwards of 200 torso electrodes used in many ECGI implementations.
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Such a large parameter space would not only greatly increase the computational burden of any UQ study,
but also the complexity of the analysis in the face of so many parameters and parameter interactions.
Succinct and robust parameterization of ECGI inputs is an outstanding challenge facing future ECGI
UQ studies.

The need to select the regularization weight λ in both the PCE-UQ and the UQ joint-inverse
formulation was an added complication that deserves future development and attention. For this study
we allowed λ to vary for each individual inverse solution used to train our PCE emulator. Doing so
introduced a source of variability which, while related to the variability of our parameters of interest, was
less direct and interpretable. Indeed the value of λ chosen in these cases was a function of the cardiac
position, however, this additional output was not considered by the UQ formulation when constructing
the distribution of ECGI solutions. Furthermore, we observed that the PCE-UQ approach produced
outlier solutions at higher uncertainty ranges, a finding we attribute to poor selection of regularization
weight by the L-curve. In the case of the UQ joint-inverse formulation, regularization also presents a
confounding factor. We selected a single λ value for each heartbeat in the UQ joint-inverse formulation,
despite the range of heart positions. The joint formulation could be adjusted to allow for a variable λ
values computed using each individual position first, then incorporated as a diagonal matrix inside the
regularization term of Equation 6. Such a complex approach may, however, result in similar instabilities
as those seen in the PCE-UQ formulation. Finally, we chose the Frobenius L-curve criterion to select
a single value of λ over the entire signal. Other approaches such as a time-varying regularization or
a median regularization weight from individual time instances, as well as other regularization selection
methods altogether (CRESO, U curve) have been proposed by others and these different regularization
approaches may affect the UQ results.6

The datasets used for this study consisted of experimentally recorded electrocardiographic signals
(BSP’s and EGM’s ) which are subject to their own levels of unknown error. We addressed this limitation
by supplementing the analysis with synthetic data (measured EGM and simulated BSP using numerically
sampled cardiac positions), however, these approaches are limited and future studies should seek to
apply these UQ techniques to a wider collection of datasets. Furthermore, cardiac source signals in this
study were recorded from a pericardiac cage, which we have presented previously.31 The signals on the
pericardiac cage are smoother and attenuated when compared to true cardiac surface electrograms. The
benefits of using the pericardiac cage over an epicardial array include its more complete and even sampling
and superior geometric accuracy when registering the pericardiac geometry, however, the UQ results
might be different with true epicardial potentials. This study is also limited by the experimental setup
based on the electrolytic torso tank, which represents a simplified scenario of a homogeneous volume
conductor and a static heart position. Such an arrangement offers profound advantages, including fine
control over geometric parameters and reduction of measurement errors, however, an inhomogeneous,
moving torso would provide more rigorous testing of ECGI, provided there were some way to capture the
geometry. The mostly feasible approach will likely be based on synthetic geometry and signals based on
a highly resolved, time-varying, inhomogeneous geometric model.

5.4 Prospective View

Throughout this study, we presented a broad characterization of the result of UQ analyses in the
context of cardiac position uncertainty. However, meaningful levels of output variability, accuracy
thresholds, and error metrics are often determined by the specific physiological or pathophysiological
features of interest, which would require more narrowly focused, but limited, study designs. Instead, we
sought to present an overall framework for the application of UQ to the inverse problem as a starting
point for future research into specific ECGI use cases such as arrhythmia detection and localization.
This proof-of-concept study should enable such future research.
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The solutions provided by UQ are not strictly superior to standard approaches, but rather they provide
a window into how the solutions respond to unavoidable uncertainties in their inputs. In the specific case
of ECGI, understanding how input uncertainties affect the diagnosis of patients and guide subsequent
therapy is paramount for developing robust clinical implementations. The approaches presented here
will hopefully provide a starting point for further investigation. We envision that further development of
UQ applications to ECGI may yield both technical improvements to ECGI as well as more sophisticated
clinical tools. Such clinical tools we envision will provide not only an ECGI solution but also clinically
useful information about the possible variability of that solution and the sources of this variability. This
information would possibly provide clinicians using ECGI with a more precise view of the variability of
the ECGI solution, enabling more effective and reliable use of ECGI in a clinical setting.
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