2021 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC) | 978-1-6654-1130-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/UrgentHPC54802.2021.00007

2021 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)

Evaluating policy-driven adaptation on the
Edge-to-Cloud Continuum

Daniel Balouek-Thomert, Ivan Rodero, Manish Parashar
{daniel.balouek, ivan.rodero, parashar}@utah.edu
SCI Institute, University of Utah, UT, USA

Abstract—Developing data-driven applications requires devel-
opers and service providers to orchestrate data-to-discovery
pipelines across distributed data sources and computing units.
Realizing such pipelines poses two major challenges: program-
ming analytics that reacts at runtime to unforeseen events, and
adaptation of the resources and computing paths between the
edge and the cloud. While these concerns are interdependent, they
must be separated during the design process of the application
and the deployment operations of the infrastructure. This work
proposes a system stack for the adaptation of distributed analytics
across the computing continuum. We implemented this software
stack to evaluate its ability to continually balance the computation
or data movement’s cost with the value of operations to the
application objectives. Using a disaster response application, we
observe that the system can select appropriate configurations
while managing trade-offs between user-defined constraints, qual-
ity of results, and resource utilization. The evaluation shows that
our model is able to adapt to variations in the data input size,
bandwidth, and CPU capacities with minimal deadline violations
(close to 10%). This constitutes encouraging results to benefit
and facilitate the creation of ad-hoc computing paths for urgent
science and time-critical decision-making.

Index Terms—Cloud computing, Edge computing, Computing
Continuum, Decision Model

I. INTRODUCTION

Urgent science refers to a class of time-critical scientific
applications that leverage distributed data sources to facilitate
important decision-making in a timely manner. Examples of
urgent science span various domains ranging from applications
that aim to improve quality of life, monitor civil infras-
tructures, respond to natural disasters and extreme events,
and accelerate science. The exponential growth of available
digital data sources coupled with pervasive access to nontrivial
computing capabilities and the availability of sophisticated
data analytics has the potential to enable end-to-end workflows
that combine these elements to the model, manage, control,
adapt and optimize sub-systems of interest.

However, while our capacity for collecting data is expanding
dramatically, our ability to manage, manipulate, and analyze
this data, transform it into knowledge and understanding, and
integrate it with practice has not kept pace. For example,
most popular data analytics solutions, including those based
on AI/ML, are cloud-based and require transporting data from
often distant edge devices to a central location for processing.
This limits the amount of data that we can process and our
ability to analyze and transform this data into knowledge in a
timely manner.

Moving away from traditional centralized Cloud models,
the use of resources between the Edge and Core of the
infrastructure allows distribution of analytics while preserving
low latency, high availability, and privacy. This aggregation of
heterogeneous resources along the data path from the Edge to
the Cloud also referred to as the Edge-to-Cloud Continuum,
or the Computing Continuum [1], [2], can be harnessed to
support urgent analytics. For instance, in the case of ML-based
analytics, data inference can be executed on the Edge in real-
time, and only relevant or pre-processed data is forwarded to
the Cloud. Furthermore, intermediate results can be aggregated
from multiple Edge devices (i.e., in the Fog), allowing fast
decision-making based on location or on utility functions.

Realizing this vision of the computing continuum for urgent
science poses challenges associated with the variability of
the computational environment and the ability to ensure end-
to-end guarantees for the applications. This extreme hetero-
geneity, in the capabilities and capacities of systems and
services, is furthered coupled with extreme uncertainty arising
from variabilities in the availability and quality of data, re-
sources, and services. Addressing this heterogeneity requires
application formulations and programming abstractions that
allow developers to expose natural flexibilities and tradeoffs,
and define policies and mechanisms that can drive runtime
adaptions. The timeliness of urgent decisions also makes
providing end-to-end guarantees critical and challenging.

To leverage the computing continuum for data-driven work-
flows, we propose a system stack for modeling and deploying
data-driven applications that react to events happening at
runtime. The objectives of this model are /) to facilitate the
implementations of policies that ensure performance guaran-
tees at runtime and, 2) to deploy them with simplicity atop
the Edge-to-Cloud Continuum.

To enable this approach, we evaluate a set of adaptation
policies (e.g., cloud-only, edge-only, hybrid, resource utiliza-
tion maximization, hard deadline), which aim to describe the
reactions of the application and to make more explicit the
user expectations and constraints in terms of response time,
solution quality, etc. according to what is currently available
in a dynamic computation and communication environment.
These policies further drive the reconfiguration of applications,
resources, and services, including, for example, provisioning
new resources and services, adapting scheduling strategies,
selecting appropriate systems services, and/or adjusting ap-

978-1-6654-1130-1/21/$31.00 ©2021 IEEE 11
DOI 10.1109/UrgentHPC54802.2021.00007

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

plication parameters as necessary.
The contributions of this paper are:

« an implementation of a unified framework for continuum
computing built on our prior research [2] — (Section III);

« an experimental validation of a disaster recovery work-
flow under different policies on an Edge-to-Cloud infras-
tructure emulated atop the Grid’5000 large-scale experi-
mental testbed (Sections IV and V);

II. MOTIVATION

In this section, we introduce the concept of urgent science
and the earthquake early warning use case that motivated this
work. We then discuss the challenges associated with execut-
ing distributed analytics on the Edge-to-Cloud Continuum.

A. Urgent Science

As available data increases in scale, heterogeneity, and
richness, data-driven urgent workflows are enabling new and
transformative applications across many disciplines. These
workflows aim to process machine-generated data in a timely
manner to identify context-sensitive features and events and
produce critical insights. For example, emerging urban mo-
bility applications rely on traffic sensors’ processing large
amounts of traffic data in real-time to identify and alleviate
traffic congestion. Similarly, autonomous cars using sensors
such as LiDAR and cameras are expected to gather and
process, in a timely manner, many TB’s of data per day [3].
Many of these workflows involve complex models that are
based on the efficient and time-constrained fusion of data from
different domains.

Urgent science workflows present additional requirements
and constraints due to the nature and distribution of the
data, the complexity of the models involved, the stringent
error thresholds, and the strict time constraints. The exe-
cution of these workflows has to balance the need for a
large amount of computational power to reduce errors while
ensuring the timely processing and assimilation of essential
data streams [4], [5].

B. Earthquake Early Warning

Earthquakes are amongst the most destructive natural dis-
asters. Networks of distributed seismic instruments on various
scales are used for earthquake detection. Earthquake Early
Warning (EEW) systems provide earthquake alerts before the
shaking damage of a seismic event reaches sensitive areas, giv-
ing governments and communities a time window of seconds
to minutes to take protective actions.

EEW can be described as a classification problem in which
high-frequency seismic data streams from multiple sensors
are processed to infer classes indicating the magnitude of
the seismic event in a timely manner. Traditionally, EEW is
executed in a fully centralized fashion with data from sensors
being sent to Clouds.

At present, there are EEW systems operational in several
countries [6]. The Japan Meteorological Agency (JMA) began

operating a system in 2007 that consists of over 4,000 con-
tributing stations, with a typical station interval of about 20
km, and performed efficiently when an earthquake hit Japan in
2011 [7]. Mexico implemented a seismic alert system in 1991,
allowing for a warning time of 58 to 74 seconds [8]. Notable
related efforts include novel algorithms recently developed to
locate earthquakes and to calculate their magnitudes using
P- and S-wave energy [9]. Recently, ShakeAlert proposed to
detect and disseminate EEW alerts using smartphones, relying
on the fact that they have become ubiquitous to the public [10],
[11].

In a previous work [12], we proposed moving part of the
sensor data processing towards the Edge to speed up detection
while further enhancing network usage reduction, fault toler-
ance, and idle machines usage. The Distributed Multi-Sensor
Earthquake Early Warning (DMSEEW) is a two-step ensemble
method for earthquake detection. DMSEEW takes sensor-
level class predictions (normal activity, medium earthquake,
or large earthquake) based on the data gathered by each
sensor, aggregates them using a bag-of-words representation,
and uses it to predict the final earthquake category. A high-
level illustration of DMSEEW is presented in Figure 1.

Data By-Sensor By-Region Broadcasting
Production Processing Processing Alerts

o —— B2 @

M > T \ /

A T ®

\M —_— mem =

- = ®

Fig. 1: An illustration of the Distributed Multi-Sensor Earth-
quake Early Warning use-case (DMSEEW) [12]. Seismic sen-
sors located in the Edge send measurements to gateways in the
network which pre-process the data. Those pre-processed data
are sent to cloud servers which complete the data processing
and eventually broadcast earthquake alerts.

C. Leveraging the Computing Continuum

The Computing Continuum represents a fluid integration
of the computational, storage, and network resources located
at the edges, in the cloud, and in-between [1]. The data
is generated at the edges by sensors, scientific instruments,
and personal devices. Edge devices are usually limited in
computational power and storage; their principal function is
to collect data and transmit them for analysis. In-transit nodes
are then in charge of performing aggregation, filtering, or
preprocessing along the data path. Finally, far from the data,
the cloud provides the abstraction of unlimited resources in
well-provisioned datacenters.

Traditional solutions focus on one particular dimension
at a time. Hence, most of the solutions are built on the

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

premise that data ingestion, management, and processing can
be done in the cloud, without the use of edge and in-transit
tiers. Several edge-based middleware solutions exist in the
literature; however, they often lack a uniform programming
model framework for resource management, data processing,
and application servicing between edge and cloud [13], [14].

Choosing where to execute a function in a heterogeneous
and distributed system depends on a large number of factors
ranging from the performance of a given implementation on
a given resource to the variability of the data input size,
network links, and computing resources. Figure 2 shows the
difference between an “all-cloud” or “all-edge” placement of
the workflows for the dataset used in our evaluation (see
Section IV). Beyond the gap in performance due to the
different capacities of the resources, this result assumes that
resources are available at full capacity during the lifecycle of
the application, which rarely occurs in practice. This motivates
the need for adaptive policies that dynamically (and oppor-
tunistically) use a combination of available resources between
the edge and the cloud to provide performance guarantees and
reactions to unforeseen events.

B Cloud-only @ Edge-only
5 A150—_
o€
EE 1
= _
> 8 100
£9
@ i
m -
& E 5o
o 4
(= i

a ®] H

0__-| Il_l I
1MB 10MB 33MB

Image average size

Fig. 2: Processing time for the disaster response dataset
(800 images) using either 8-core Cloud or single core Edge
resources.

D. Challenges

Leveraging the computing continuum to support distributed
analytics and urgent workflows effectively leads to multiple
challenges.

Extreme heterogeneity and uncertainty. The continuum
represents extreme heterogeneity in the capabilities and capac-
ities of systems and services. Addressing this heterogeneity
requires application formulations and programming abstrac-
tions that allow developers to expose natural flexibilities and
tradeoffs and define policies and mechanisms that can drive
runtime adaptions.

Balancing requirements and expectations with con-
straints and cost. Mapping user expectations and constraints
in terms of response time, solution quality, data resolution,
cost, energy, etc. with what is possible in a dynamic com-
putation and communication environment during execution
warrants the design of an autonomic control plane. Such a
control plan must be able to address cost/benefit tradeoffs
at runtime in a cross-layer manner and drive the autonomic
reconfiguration of applications, resources, and services.

Ensuring time-critical decision making. While the seam-
less and ephemeral composition of data, resources and services
towards enabling novel and impactful application is com-
pelling, it also makes providing end-to-end guarantees critical
and challenging.

III. SYSTEM STACK

In this section, we briefly describe our unified framework
for continuum computing designed to enable data-driven work-
flows. The framework provides the essential capabilities and
services that are necessary for executing workflows on an
infrastructure that integrates resources across the continuum.
These services include resource discovery, mapping of com-
putations to resources, and runtime management and control.
Furthermore, at the application level, the framework enables
developers to express requirements and constraints associated
with stages of the workflow. Prior work on this framework has
been presented in [2].

An overview of the framework architecture is presented
in Figure 3 and is described below. This architecture targets
end-to-end applications that are implemented as a workflow
of services spanning data producers located at the edges,
in-network resources, and data consumers. An application
consists of a workflow of services (represented as different
shapes) that match user expectations and quality tradeoffs with
their available service implementation (represented as different
sizes). It is beneficial for the application logic to exploit the
available configurations of the infrastructure and influence the
operator placement and service configurations. For example,
if all applications use only core services, congestion and load
balancing issues may affect the overall performance of the
system.

The framework allows for the separation of concerns be-
tween the domain scientists (familiar with the applications)
and the DevOps (familiar with the platforms). By describing
the flexibilities and constraints of the applications (particu-
larly the reaction to adopt with regards to the relative state
of resources), the domain scientist allows for operations of
deployment and reconfiguration that considers variables of
latency, quality of service, and throughput during the lifecycle
of an application.

A. Building blocks

R-Pulsar is an edge-based middleware for enabling data-
driven workflows that span edge and cloud resources. It pro-
poses an event-driven programming model based on control-
flow constructs to facilitate the definition of data-processing

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

Domain scientist

Describes the N [X
application D —w TA)D;—P O — |:| - 'A‘
Describesthe T~~~ "~~~ " - T T T oo T T T
application | ocOQuOlJan A *¥*% |
service T T T T T T T T T T T TTTTTTTTTTTTT

Describes the IF bandwidth is low
flexibility and THEN max (compute)

constraints min (transfer)
R-Pulsar
Register workflow
£, A
()
In-network
VDC

O Core DDOCDAAQ*
O o A *

Infrastructure provider

Deploys
infrastructure

]

&

Comet cloud

1

Register resources

(L1),

Fig. 3: High-level view of the unified framework. The domain scientist is in charge of describing the flexibilities and constraints
of the application. The infrastructure provider deploys resources and instantiates services.

requirements. R-Pulsar allows developers to trigger topologies
based on the availability of resources and content of data [14].
Triggers can be values, trends (statistical), etc. This allows
the orchestration of computations through user-defined rules
for deciding what, when and where data get collected and
processed. R-Pulsar has been shown to improve metrics such
as end-to-end latency, bandwidth consumption, and messaging
costs for IoT-based workflows [15].

The Virtual Data Collaboratory (VDC) is a data-intensive
cyberinfrastructure focused on providing large-scale federated
data management, analysis resources, and tools for scien-
tific applications [16]. VDC leverages regional data transfer
nodes (DTNs) and federated data resources to support data
services and enable collaborative data-intensive workflows. In
the context of this work, VDC exposes data producers and
containerized agents for virtual and physical resources.

CometCloud enables the dynamic composition of infras-
tructure services across multiple (academic and commercial)
providers. It enables on-demand scale-up, scale-down, and
scale-out based on dynamic deadline-, budget-, and workload-
based constraints in a multi-cloud environment [17], [18].

IV. EVALUATION METHODOLOGY

To illustrate the performance and reactivity of our system
stack, we used it to enable a comparative analysis of the

five adaptative policies using scenarios associated with the
variability of resources across the Computing Continuum. The
goal of this evaluation is to show that: a) Our framework can
provide programming support and resource management for
data-driven workflows in real environments b) Our framework
is able to identify trade-offs between the quality and cost of
computations ¢) Our framework reacts to the variability of the
environments and allows for the execution of flexible user-
defined policies

A. Implementation aspects

a) Experimental platform: In order to deploy the differ-
ent components of the framework and run the experiments on
top of Grid’5000 [19], we rely on EnosLib [20], a library
able to set up the environment, deploy configurations and
gather metrics and results. This library was designed for
experiment-driven research and facilitates the repeatability of
the experiments so that comparison between the different
policies remains fair.

B. Baselines

The default Cloud and Edge policies, acting as baselines in
our system, are further denoted as Cloud-only and Edge-only
and will be compared to three different policies: Continuum,
Dynamic, Deadline. They are all defined using our framework
but differ in their objective functions.

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

\ | Data Input size [Bandwidth | CPU capacity |

/\ \ AVAWAW
Distribution I S \VERVERV/

TABLE I: Probability distributions of the data input size,
bandwidth and CPU capacity values during the execution.

a) Continuum: This policy maximizes the utilization of
edge resources, network links, and cloud resources.

b) Dynamic: The objective of this policy is to maximize
the utilization of resources while using approximation mecha-
nisms to render products within acceptable ranges of accuracy.

¢) Deadline: The objective of this policy is to enforce an
arbitrary deadline. It allows for approximations mechanisms,
sampling techniques, and allows for discarding of data when
necessary.

We compare the performance of the five policies in four
different setups. Each setup represents a different environment
in terms of the variability of the data input size, the available
bandwidth between the edge and core, and the available
processor capacity at the edge, as presented in Table 1.

d) Constant environment: This environment models a
fixed input size, where the images are the biggest available
in the dataset (33.8 MB). Data transfers and processing oper-
ations at their maximum capacity.

e) Variability in the data input size: This environment
models the variation in data input size that occurs at runtime.
We use a normal distribution with expectations of [33, 3.3, 1]
representing 3 different size factors of the data, and a standard
deviation of 0.5.

[f) Variability in the data input size and available band-
width: This environment models two variations: the input size
as described below, and the available bandwidth. We use a Chi-
Squared distribution that results in a constrained bandwidth
early in the experiments before slowly recovering towards the
maximum bandwidth available.

g) Variability in the data input size, available bandwidth,
and CPU capacity: This environment models the two varia-
tions described below and the sinusoidal distribution of the
CPU capacity, oscillating between 30 and 70%. This aims
at modeling the cyclic activity of an edge resource when
periodically running the decision engine/processing events,
and waiting for events.

C. Environment

We implemented the architecture described in Section III
and deployed it on the nova cluster from the Grid’5000 ex-
perimental testbed. Among these nodes, we emulate one edge
node with 1 core and one core node with 8 cores. The capacity
of each type of node is described in Table II. The network
connection between nodes of the same and different types have
a delay and bandwidth as given in Table III. EnosLib enables,
among others, the scripting of network emulation features
that allows the specification of Edge-to-Cloud communication
constraints (delay, loss, and bandwidth).

The Edge-to-Cloud network characteristics emulate a 4G
mobile network configuration. We describe in Table III the
values of bandwidth, minimum latency, and jitter of our
network configuration.

\ Layer \ Cores | RAM (GiB) | Storage |
Edge 1 2 2GB
Cloud 8 64 500GB

TABLE II: Resource capacity of Edge and Cloud nodes.

D. Performance Metrics

Each experiment gathers various metrics from the infras-
tructure. We introduce the used performance metrics.

The time to completion measures in minutes the time elapsed
between the production of the first image of a given batch
by the sensor and the processing of the data (raw file or
summary) associated with the last image of the same batch
in the cloud. This metric contains the processing time on each
type of resource and the Edge-to-Cloud transfer time.

The compute time measures in minutes the time spent
processing the images of a batch. It Is a sum of any processing
occurring on any resource of the Continuum. It also contains
the overhead associated with the decision-making process of
the policies.

The data transfer time measures in minutes the time spent
transferring data across the Continuum.

The data quality quantifies the variation of average system
F1-score when using approximation mechanisms.

The acceptance rate quantifies the number of images that
were processed in a given batch. This metric only applies to
the deadline policy where data products can be discarded at
the source to help enforce the user-defined deadline.

The following section presents the validation of our system
stack and the performance of the different policies using a real
workload (see Section 2).

E. Datasets

We use data from the Hurricane Sandy dataset, extracted
from the office for coastal management '. The goal of this
application is to provide emergency services to quickly and
efficiently determine whether building conditions are safe for
evacuees to return after a natural disaster. First, the workflow
captures LiDAR images of the affected zones using a drone,
then it pre-processes the images to determine the appropriate
response. Finally, if needed, a change analysis is performed
using historical data pulled from the cloud.

We process the images using a customized implementation
of the Canny edge detection algorithm. The Canny edge
detector is an edge detection operator that uses a multi-stage
algorithm to detect a wide range of edges in images [21]. The
Canny edge detection algorithm can be broken down into 5
steps: Noise reduction; Gradient calculation to detect the edge
intensity and direction; Non-maximum suppression to thin out

Uhttps://chs.coast.noaa.gov/htdata/lidar1 , / geoid18 /data /1436

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

Jitter |

[400ms (normal) |

‘ | Bandwidth | Minimum latency |
[4G | 15Mbps 100 ms

TABLE III: Edge-to-Cloud network configuration used for the
evaluation

the edges; Double threshold to discard weak or non-relevant
pixels, and edge Tracking to highlight strong pixels.

This generic workflow and synthetic dataset is representative
of the Earthquake Early Warning motivating use case. How-
ever, we chose the Canny edge algorithm due to its ease to
apply approximation through substitution (using simpler tasks)
and discarding (not executing a subset or certain redundant
tasks), which can be applied to different tasks (both at function
and input parameters) [22]. This facilitates the reduction
in quality of the different images and the deployment on
constrained hardware thanks to the numerous implementations
available.

F. Experimental setup

Each experiment of the evaluation consists of: (i) deploy-
ing the system stack and necessary infrastructure on top of
Grid’5000, (ii) configuring the network, and the machines, (iii)
deploying the application on that infrastructure, (iv) running
the application for 30 batches of images, and (v) gathering logs
and metric measurements. These steps are repeated for each
of the five policies. Hence, in total, the evaluation consists of
20 experiments. Each experiment is run 10 times.

V. EVALUATION RESULTS

We first assess the performance of the policies in a constant
environment. Then, we successively add variations in the
data input size, bandwidth, and CPU capacities, highlighting
the dynamicity that occurs at runtime across the computing
continuum. Finally, we dissect the behavior of each policy in
four different cases.

A. Constant Environment

We start by presenting the performance of Cloud-only
and Edge-only, the bound policies that are used as a basis
of comparison to the other policies throughout this section.
The main characteristic of those scenarios is that placement
of functions and data transfers are unchanged during the
execution. Cloud-only and Edge-only will, respectively, always
transfer then compute in the core or compute all data products
at the edge then send a summary of findings at the core. Due
to that, the main performance bottleneck for these policies will
be the CPU capacity at the edge, and the available bandwidth
across the continuum, as observed in Figure 4. It is worth
mentioning that the summary of findings only consists of the
number of potentially damaged buildings. The size of the
summary is voluntarily negligible compared to the transfer
of an image, generating less data load on the network. All
scenarios present a constant performance, in accordance with
the lack of injected variability in the environment. Notice that
the scale is different on the Cloud-only results: it takes close

Data Transfer m Compute

Cloud-only performance (fixed data input size, no variability)

6]
4]
2]

2.
” Edge-only performance (fixed data input size, no variability)
1.5
1.0
0.57

0.0
20

Continuum performance (fixed data input size, no variability)

1.5
1.0
0.57

0.0
20

15 Dynamic performance (fixed data input size, no variability)

Time to completion (min)

1.0+

0.57
NN NN NN NN NN RN NN NN NN

0.0
20

Deadline performance (fixed data input size, no variability)
1.5+

1.0+

055

EIL BN BN BY BY BN RO EN BN B NGBS BN EEES BN BN E RN RS RN BN R E AR

00 1 5 10 15 20 25 30
Image Batches

Fig. 4: Time to completion resulting from processing 30
batches of images on each policy with a constant environment.

to 8 minutes for each batch, while the Edge-only policy needs
close to 1.3 minutes to process a batch, both relying mainly on
one type of resource. The Continuum policy balances the usage
of data transfers and edge computations with a slightly higher
completion time per batch. The clustered columns represent
the time spent (in parallel) on each operation, independently
of the location of resources. The dynamic policy presents an
improvement of 40% compared to the Edge-only baseline. The
repartition of operation is explained by the pre-processing of
images to reduce their quality to the minimum acceptable level
(I.e. 60%). Finally, the deadline policy is set with the hard
constraint of 30 seconds to compute each batch of images.
This forces the decision-making engine to, in order, use the
minimum quality possible, and then, reduce the number of
images processed in each batch. Many class of applications
tolerates sampling or are tolerant to errors, but the interactions
required to guarantee the proper functioning are out of the
scope of this article. We implement this policy as a proof
of concept to show the versatility of our decision-making
engine and its ability to beat the user-defined deadlines in an
edge environment. In our context, images are discarded strictly
based on estimated computations and transfer times of a given
batch.

B. Variable Environment

The second set of experiments introduces variability in the
data input size, bandwidth, and CPU capacities. We show that
the performance is directly affected by the environment and
that our online decision-making engine is able to feed the
policies with ongoing events to adapt the function placement
and data quality to the objectives. The extent of that adaptation

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

scheme is further discussed using the results of the continuum,
dynamic, and deadline policies.

Data Transfer ® Compute
Cloud-only performance (variable data input size)

Edge-only performance (variable data input size)

ontinuum performance e data input size

[varial

Dynamic performance (variable data input size)

Time to completion (
o

0.0 -

Deadline performance (variable data input size)

0.0 n Innlmmmn (]
: 10 15 20 25 30

Image Batches

Fig. 5: Time to completion resulting from processing 30
batches of images on each policy with a variable input data
size.

1) Input Size: We illustrate the input data size scenario
in Figure 5. The main observation from this set of charts
is the overall average in performance which resembles the
normal distribution of the input data size. We observe slight
degradations in all scenarios due to the online processing
of events (less than 5% on all experiments.) When dealing
with smaller images, all policies have similar behavior and
performance due to the overprovisioning of resources. As the
size of images fluctuates, the continuum policy maintains a
maximization of resource utilization by constantly adjusting
the number of raw images to be sent in order to use the
network links at capacity. The dynamic and deadline policies
react well to the changes of data size, however, we observe
two spikes for batches 11 and 12 for both policies. Particularly,
on the deadline policy, we observe a spike on batch 11
while it does not happen on the next batches with similar
or greater input size. Similar behavior is observed on batch
12, however, these appear to be outliers among the other data
points. Overall, the system adjusts well when the environment
presents frequent input size changes during the execution of
the application.

2) Bandwidth capacity: We illustrate the bandwidth capac-
ity scenario in Figure 6. This scenario cumulates the input
size changes described previously with a network contention
scenario early in the experiment. Starting with the Cloud-only
policy, the performance strongly resembles the distribution of
network capacity events due to the “forward-then-compute”
nature of the policy. The Edge-only scenario indicates no effect
from the network contention: the edge resources continue

Data Transfer ® Compute

0.0

had Cloud-only performance (variable data input size and bandwidth)
407 1 I i1
20+ i b AR R TR R
0
20 Edge-only performance (variable data input size and bandwidth)
1.53
—
£ 107
= | Ll
=g Lidall il
§ oo
D 20 Continuum performance (variable data input size and bandwidth)
G 153
E 1o 114
30.5* FEEEFE 1111111
* 0.0
(9]
1S 20 Dynamic performance (variable data input size and bandwidth)
= 159
1.0
dd st
0.0 .
20 Deadline performance (variable datainput size and bandwidth) 8OF
1.57 758
g 709
10 555
0.57 pog-S
pinpnninpinnnnnnel
10 15 20 25

30
Image Batches

Fig. 6: Time to completion for processing 800 images on each
policy with variable input data size and bandwidth capacity.

to operate, reducing data products to summary in order to
cope with the minimal bandwidth available. Because of the
limited network. the continuum policy tends to rely more on
edge resources, resulting in an improvement of the overall
performance compared to the previous experiment with little
overhead. Similar behavior is observed for the dynamic policy,
while the deadline relies on edge resources, approximation,
and discarding to enforce the deadline. We observe 6 violations
of deadline between 2% and 6%, with an average acceptance
rate of 35%. At this particular point, the decision-making
engine seems to fail to properly estimate the time required
to pre-process this new batch of images, resulting in some
miscalculations for bounding the operations. As the network
is too constrained, many images are dropped resulting in fewer
images processed and less information sent.

3) CPU capacity: We illustrate the CPU capacity scenario
in Figure 7. This scenario cumulates the input data size and
bandwidth variations, along with an external cyclic utilization
of edge resources. This last scenario aims at modeling the
variability and uncertainty of the Computing Continuum. This
results in a higher number of events to manage, but also
more complex decisions to apply for the policies. Overall,
we observe a significant performance degradation for every
policy. While Cloud-only performance remains unchanged due
to no use of edge resources, Edge-only, and Dynamic observe
more than 200% of performance degradation. However, we
can observe that the Dynamic policies adjust quickly to the
periodic variations of the CPU. The deadline policy remains
able to enforce the user-defined deadline (5 violations of dead-
line between with a maximum of 10.4%) with an acceptance
rate comprised between 47.27% and 53.21%.

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

Data Transfer = Compute
Cloud-only performance (variable data input size, bandwidth and CPU)
40 I
I i z
p I I s 5 FF 2z 8

60

s F B
z

20+

Edge-only performance (variable data input size, bandwidth and CPU)

o
1

a
|

Continuum performance (variable data input size, bandwidth and CPU)

B

dth and CPU)

N

o 2
nEEBSS

o
@

Time to completion (min)

Dynamic performance

II II I| i

20 Deadline performance (variable data input size, bandwidth and CPU) 6
1.57

H

1.09 5

3 a

o PRl nninnnna w§
10 15 20 % 30

0.0
Image Batches

(variable data input size, bandwii

S
!

il i

Fig. 7: Time to completion resulting from processing 30
batches of images on each policy with variable input data size,
bandwidth capacity and CPU capacity

Data Transfer 0 Compute
8_
<
E o
c
.0
k]
£ 47
o
o
ie)
)
E 27
[=
s bl T
I S/ AN AN e
<) < & (]
0°<$.<\°&° & °§§.¢°°& S
F & FE
2N L Z20N)

Fig. 8: Repartition of data points for each policy. Closer
data points for a given policy indicate a low variability of
performance.

In Figure 8, we plot the performance associated to each
experiments using a violin/box-plot representation. One can
notice the consistency of the deadline policy among highly
variable environments. On the other hand, there is a vast
distribution of points in the Cloud-only policies, only con-
firming that the Cloud alone can not provide guarantees of

performance or deadlines under a high variability of resources.
These results help us clarify the role of the programming
support to implement resources during design, and the resource
management to cope with variability at runtime. Despite using
a sequential approach to manage events within time windows,
our system stack enables the execution and adaptation of the
application under a high variability of events.

C. Discussion

We can extrapolate some insights and takeaways from this
evaluation to the Earthquake Early Warning use case. The
main takeaway from the performance evaluation of these five
policies is the importance of the synergy between workloads,
applications, and infrastructures. Another important insight
refers to the difference between Deadline and Dynamic sce-
narios. If the application can tolerate the observed acceptance
rates, Edge can be an interesting option in particular for
scenarios where the network is very constrained such as in
the 2G and 3G network infrastructures, or under intermittent
connectivity. It is important to highlight that, as real-time is an
essential constraint for EEW systems, in this work, we focus
on the latency of the applications for justifying the proposed
Continuum computing approach. Nevertheless, as discussed
in other works , relying on the computing continuum may
also add features such as resilience, privacy, or network cost
reductions.

VI. RELATED WORK

The Computing Continuum aggregates the architectural and
algorithmic challenges of its subcomponents while presenting
new challenges related to their integration and overall manage-
ment [1], [2]. As data analytics based on AI/ML techniques are
becoming an increasingly important component of data-driven
application workflows, several studies have identified model
optimization and ML inference as the main vectors driving the
use of resources at the edge [23], [24]. Furthermore, execution
mechanisms that leverage data parallelism (partitioning data
among units) and model parallelism (distributing the intelli-
gence among units) have proven effective for processing data
streams [25], [26].

a) Edge-enhanced architectures and system: While many
edge-based stream analytics systems focus on dead-line driven
processing [27], bandwidth-limited scheduling [28], [29] and
real-time processing [30], [31], major stream processing
frameworks rely on data being moved to the cloud and
are often agnostic to the specific requirements of devices
[32]. Collaborative approaches for inference leverage hybrid
edge-to-cloud infrastructures based on constraints such as the
size of input data, the model to be executed, and trade-
offs between the inference accuracy and network latency and
bandwidth [33], [34]. Other graph-based approaches track
pipelines and map them to geographically distributed analytic
engines ranging from small edge-based engines to powerful
multi-node cloud-based engines [35], [36]. Finally, distributed
deep learning has motivated the use of computing hierarchies
by splitting neural network [37] or using sparse updates [38]

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

to aggressively reduce communication costs. However, these
works are either not resilient/sensitive to topology changes
[39] or rely on unsuitable resource management features for
service delivery [40].

b) Resource management: Current resource management
systems for automating deployment, scaling, and management
of applications are not equipped to support the extreme uncer-
tainty arising from variability in the availability and quality of
data, resources, and services [37]. Several initiatives exist in
the literature to manage massively distributed resources [41],
[42], [43], but they either operate edge infrastructures as data
center environments with WAN links or consist in deploying
hierarchical managers [44].

c) Meeting System Level Objectives (SLOs): Recent
work in Function-as-a-Service research have investigated func-
tion placement and optimization in heterogeneous comput-
ing environment. Kumar and al. propose Delta, a high-level
scheduler able to profile function performance using predictive
models [45]. Their approach present significant potential for
executing complex tradeoffs under different connectivity and
computational capabilities. Other works aims at maximizing
utilization of serverless functions by regulating the resource
usage of executions when task load increases [46] or using
historical data to predict whether a task will meet its objectives
[47]. While these works deal with aspects of efficient function
scheduling in heterogeneous environments, their focus is not
on managing user expectations.

Our work attempts at articulating the extreme heterogene-
ity and uncertainty of resources with the requirements and
constraints of data-driven applications. Prior works are either
application-specific and lack abstractions for expressing ob-
jectives for time-critical operations or focused on a single
environment. The proposed work for programming flexible
analytics aims for a general approach with few assumptions
on the data and resources capabilities.

VII. CONCLUSION

Our society relies intensively on digital technologies for
decision-making that impact our economy, culture, and
lifestyle in several domains. The computational ecosystem
that supports these analytics has become highly heterogeneous
and geographically distributed, bringing significant challenges
associated with the complexity and sustainability of distributed
analytics.

In spite of these important advancements, there is still a
critical gap in the knowledge base that pertains to the loosely
coupled solutions that are enabling developers to express what
data and services to run, where to run them, and how to
run them across the Computing Continuum. These limitations
prevent developers from reasoning on massively distributed
resource capabilities without prior or advanced knowledge of
the targeted infrastructure dynamics.

In this paper, we present a framework for deploying and
evaluating policies between edge and cloud resources. We
show that our approach is able to cope with the variability
of the Computing Continuum, and adapt the configuration

of flexible data flows, allowing their customization to fit
the computing resources’ capabilities, dynamic application
requirements, and desired quality and performance objectives.
This model can be extended to other applications in which
adaptation levers and flexibilities exist, and presents encour-
aging results for tackling distributed data-driven analytics
across the continuum. We are now working on a probabilistic
approach of the decision-making model that could compensate
for missing or incomplete data at runtime. Also, we are looking
at the integration of logging and metrics management into our
rule-based engine for more diverse adaptation policies.

ACKNOWLEDGEMENTS

This research is supported in part by the NSF under grants
numbers OAC 1640834, OAC 1835692, and OCE 1745246.
The research was conducted as part of the SCI Institute at the
University of Utah.

REFERENCES
[1] P. Beckman, J. Dongarra, N. Ferrier, G. Fox, T. Moore, D Reed, and
M. Beck. Harnessing the computing continuum for programming our
world, 2019.
D. Balouek-Thomert, E. G. Renart, A. R. Zamani, A. Simonet, and
M. Parashar. Towards a computing continuum: Enabling edge-to-cloud
integration for data-driven workflows. The International Journal of
High Performance Computing Applications, 33(6):1159-1174, Novem-
ber 2019.
K. Winter. For Self-Driving Cars, There’s Big Meaning Behind
One Big Number: 4 Terabytes.https:/newsroom.intel.com/editorials/
self-driving-cars-big-meaning-behind-one-number-4-terabytes/, 2017.
Siew Hoon Leong and Dieter Kranzlmiiller. Towards a general definition
of urgent computing. Procedia Computer Science, 51:2337 — 2346,
2015. International Conference On Computational Science, ICCS 2015.
Gordon Gibb, Rupert Nash, Nick Brown, and Bianca Prodan. The
technologies required for fusing hpc and real-time data to support urgent
computing. In 2019 IEEE/ACM HPC for Urgent Decision Making
(UrgentHPC), pages 24-34. IEEE, 2019.
R. M. Allen, P. Gasparini, O. Kamigaichi, and M. Bose. The Status of
Earthquake Early Warning around the World: An Introductory Overview.
Computing in Science Engineering, 80(5):682—-693, 2009.
K. Doi. The operation and performance of Earthquake Early Warnings
by the Japan Meteorological Agency. Soil Dynamics and Earthquake
Engineering, 31(2):119-126, 2011.
J. M. Espinosa-Aranda, A. Cuellar, A. Garcia, G. Ibarrola, R. Islas,
S. Maldonado, and F. H. Rodriguez. Evolution of the Mexican Seismic
Alert System (SASMEX). Seismological Research Letters, 80(5):694—
706, 2009.
Yih min W. and Ta liang T. A virtual sub-network approach to
earthquake early warning. Bull. Seism. Soc. Am, pages 2008-2018, 2002.
K. Rochford, J. A. Strauss, Q. Kong, and R. M. Allen. Myshake:
Using human-centered design methods to promote engagement in a
smartphone-based global seismic network. Frontiers in Earth Science,
6:237, 2018.
M. D. Kohler, D. E. Smith, J. Andrews, A. I. Chung, R. Hartog,
I. Henson, D. D. Given, R. de Groot, and S. Guiwits. Earthquake Early
Warning ShakeAlert 2.0: Public Rollout. Seismological Research Letters,
91(3):1763-1775, 04 2020.
K. Fauvel, D. Daniel Balouek-Thomert, D. Melgar, P. Silva, A. Si-
monet, G. Antoniu, A. Costan, V. Masson, M. Parashar, I. Rodero, and
A. Termier. A Distributed Multi-Sensor Machine Learning Approach to
Earthquake Early Warning. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, 2020.
Bin Cheng, Giirkan Solmaz, Flavio Cirillo, Ernd Kovacs, Kazuyuki
Terasawa, and Atsushi Kitazawa. Fogflow: Easy programming of iot
services over cloud and edges for smart cities. IEEE Internet of Things
Journal, 5(2):696-707, 2017.

[3]

[4]

[5

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

E. G. Renart, D. Balouek-Thomert, and M. Parashar. An edge-based
framework for enabling data-driven pipelines for iot systems. In 2079
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 885-894, 2019.

E. G. Renart, A. da Silva Veith, D. Balouek-Thomert, M. Dias de
Assuncao, L. Lefevre, and M. Parashar. Distributed Operator Placement
for IoT Data Analytics Across Edge and Cloud Resources. In CCGrid
2019 - 19th Annual IEEE/ACM International Symposium in Cluster,
Cloud, and Grid Computing, pages 1-10, Larnaca, Cyprus, May 2019.
M. Parashar, A. Simonet, I. Rodero, F. Ghahramani, G. Agnew, R. Jantz,
and V. Honavar. The Virtual Data Collaboratory: A Regional Cyber-
infrastructure for Collaborative Data-Driven Research. Computing in
Science Engineering, 22(3):79-92, May 2020.

J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. Parashar. Cometcloud:
Enabling software-defined federations for end-to-end application work-
flows. IEEE Internet Computing, 19(1):69-73, 2015.

M. AbdelBaky and M. Parashar. A general performance and qos model
for distributed software-defined environments. IEEE Transactions on
Services Computing, pages 1-1, 2019.

Desprez and al. Adding virtualization capabilities to the grid’5000
testbed. In Ivan I. Ivanov, Marten van Sinderen, Frank Leymann, and
Tony Shan, editors, Cloud Computing and Services Science, pages 3-20,
Cham, 2013. Springer International Publishing.

Ronan-Alexandre Cherrueau, Marie Delavergne, Alexandre Van Kem-
pen, Adrien Lebre, Dimitri Pertin, Javier Rojas Balderrama, Anthony
Simonet, and Matthieu Simonin. EnosLib: A Library for Experiment-
Driven Research in Distributed Computing. I[EEE Transactions on
Parallel and Distributed Systems, September 2021.

William MclIlhagga. The canny edge detector revisited. International
Journal of Computer Vision, 91(3):251-261, 2011.

Parul Pandey and Dario Pompili. Exploiting the untapped potential
of mobile distributed computing via approximation. Pervasive and
Mobile Computing, 38:381-395, 2017. Special Issue IEEE International
Conference on Pervasive Computing and Communications (PerCom)
2016.

J. Chen and X. Ran. Deep learning with edge computing: A review.
Proceedings of the IEEE, 107(8):1655-1674, 2019.

M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and Faraz Hussain. Machine learning at the network edge: A survey, 07
2019.

A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and Ng Andrew.
Deep learning with cots hpc systems. In International conference on
machine learning, pages 1337-1345, 2013.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang, et al. Large scale distributed deep
networks. In Advances in neural information processing systems, pages
1223-1231, 2012.

Ali Reza Zamani, Mengsong Zou, Javier Diaz-Montes, Ioan Petri, Omer
Rana, Ashiq Anjum, and Manish Parashar. Deadline constrained video
analysis via in-transit computational environments. IEEE Transactions
on Services Computing, 13(1):59-72, 2017.

Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai,
Zhuo Chen, Kiryong Ha, Wenlu Hu, and Brandon Amos. Edge analytics
in the internet of things. IEEE Pervasive Computing, 14(2):24-31, 2015.
Tan Zhang, Aakanksha Chowdhery, Paramvir Bahl, Kyle Jamieson, and
Suman Banerjee. The design and implementation of a wireless video
surveillance system. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, pages 426-438,
2015.

Camille Bailas, Mark Marsden, Dian Zhang, Noel E O’Connor, and
Suzanne Little. Performance of video processing at the edge for crowd-
monitoring applications. In 2018 IEEE 4th World Forum on Internet of
Things (WF-10T), pages 482-487. IEEE, 2018.

Peng Liu, Bozhao Qi, and Suman Banerjee. Edgeeye: An edge service
framework for real-time intelligent video analytics. In Proceedings of the
Ist international workshop on edge systems, analytics and networking,
pages 1-6, 2018.

E. G. Renart, D. Balouek-Thomert, and M. Parashar. Challenges in
designing edge-based middlewares for the internet of things: A survey,
2019.

X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. Deepdecision: A mobile
deep learning framework for edge video analytics. In IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, pages 1421—
1429, 2018.

20

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

Seungyeop Han and al. Mcdnn: An approximation-based execution
framework for deep stream processing under resource constraints. In
14th Annual Intl. Conference on Mobile Systems, Applications, and
Services, MobiSys 16, page 123-136, 2016.

M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu. Deepwear:
Adaptive local offloading for on-wearable deep learning. IEEE Trans-
actions on Mobile Computing, 19(2):314-330, 2020.

Nisha T. and al. ECO: Harmonizing edge and cloud with ml/dl
orchestration. In USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18), Boston, MA, 2018.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
Distributed deep neural networks over the cloud, the edge and end
devices. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 328-339. IEEE, 2017.

Zeyi Tao and Qun Li. esgd: Communication efficient distributed deep
learning on the edge. In {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

Zhenyu Wen, Pramod Bhatotia, Ruichuan Chen, Myungjin Lee, et al.
Approxiot: Approximate analytics for edge computing. In 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pages 411-421. IEEE, 2018.

Hyunseok Chang, Adiseshu Hari, Sarit Mukherjee, and TV Lakshman.
Bringing the cloud to the edge. In 2014 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 346-351.
IEEE, 2014.

Open Source Edge Cloud Computing Architecture - StarlingX, Nov
2020. [Online; accessed 1. Nov. 2020].

KubeEdge. KubeEdge, Nov 2020. [Online; accessed 1. Nov. 2020].
kubernetes sigs. kubefed, Nov 2020. [Online; accessed 1. Nov. 2020].
Ronan-Alexandre Cherrueau, Marie Delavergne, Adrien Lebre,
Javier Rojas Balderrama, and Matthieu Simonin. Edge Computing
Resource Management System: Two Years Later! PhD thesis, Inria
Rennes Bretagne Atlantique, 2020.

Rohan Kumar, Matt Baughman, Ryan Chard, Zhuozhao Li, Yadu Babuji,
Ian Foster, and Kyle Chard. Coding the computing continuum: Fluid
function execution in heterogeneous computing environments. In 2021
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 66-75. IEEE, 2021.

Amoghvarsha Suresh and Anshul Gandhi. Fnsched: An efficient sched-
uler for serverless functions. In Proceedings of the 5th International
Workshop on Serverless Computing, pages 19-24, 2019.

Chavit Denninnart, James Gentry, and Mohsen Amini Salehi. Im-
proving robustness of heterogeneous serverless computing systems via
probabilistic task pruning. In 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 6-15.
IEEE, 2019.

Authorized licensed use limited to: The University of Utah. Downloaded on January 06,2022 at 18:37:32 UTC from IEEE Xplore. Restrictions apply.

