
Journal of Scientific Computing (2023) 95:54
https://doi.org/10.1007/s10915-023-02176-8

Learning Proper Orthogonal Decomposition of Complex
Dynamics Using Heavy-ball Neural ODEs

Justin Baker1 · Elena Cherkaev1 · Akil Narayan2 · Bao Wang2

Received: 24 February 2022 / Revised: 17 August 2022 / Accepted: 8 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Proper orthogonal decomposition (POD) allows reduced-order modeling of complex dynam-
ical systems at a substantial level, while maintaining a high degree of accuracy in modeling
the underlying dynamical systems. Advances in machine learning algorithms enable learn-
ing POD-based dynamics from data and making accurate and fast predictions of dynamical
systems. This paper extends the recently proposed heavy-ball neural ODEs (HBNODEs)
(Xia et al. NeurIPS, 2021] for learning data-driven reduced-order models (ROMs) in the
POD context, in particular, for learning dynamics of time-varying coefficients generated by
the POD analysis on training snapshots constructed by solving full-order models. HBNODE
enjoys several practical advantages for learning POD-based ROMs with theoretical guaran-
tees, including 1) HBNODE can learn long-range dependencies effectively from sequential
observations, which is crucial for learning intrinsic patterns from sequential data, and 2)
HBNODE is computationally efficient in both training and testing. We compare HBNODE
with other popular ROMs on several complex dynamical systems, including the von Kármán
Street flow, the Kurganov-Petrova-Popov equation, and the one-dimensional Euler equations
for fluids modeling.

Keywords Neural ODE · Momentum · Reduced-order modeling · Deep learning

Mathematics Subject Classification 65P99 · 68T07

B Bao Wang
bwang@math.utah.edu

Justin Baker
baker@math.utah.edu

Elena Cherkaev
elena@math.utah.edu

Akil Narayan
akil@sci.utah.edu

1 Department of Mathematics, University of Utah, Salt Lake City, UT, USA

2 Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute, University of Utah,
Salt Lake City, UT, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02176-8&domain=pdf

 54 Page 2 of 27 Journal of Scientific Computing (2023) 95:54

1 Introduction

Numerical long-time simulation of full-order models (FOMs) of complex dynamical systems
is computationally costly. This is particularly true for physical systems that contain a wide
range of spatial and temporal scales, including direct numerical simulation (DNS) [37] or
large eddy simulation (LES) in fluid mechanics [12, 17, 60] and chaotic systems [27, 52, 53].
Reduced-order models (ROMs) have been utilized as alternative scientific simulation tools,
which are computationally much more efficient than FOMs and retain comparable accuracy
for simulating complex dynamical systems. ROMs have played crucial roles in designing,
optimizing, and controlling dynamical systems [1, 2, 5, 18].

Several data-driven numerical algorithms have been proposed for reduced-ordermodeling,
including dynamic mode decomposition (DMD) [51] and proper orthogonal decomposition
(POD) [6]. These models leverage some FOM simulation data to construct low-dimensional
simplified models that describe the underlying dynamics, with the goal of using these
simplified models in generalization regimes to predict the unseen dynamics. Classical
projection-based reduced-order modeling techniques (of which DMD and POD are exam-
ples) are among the most popular approaches for constructing ROMs of dynamical systems.
This approach transforms the simulation results of FOM into a suitable low-dimensional sub-
space that preserves the largest variance of the training data. In, e.g., POD, classical numerical
algorithms (such as Galerkin methods), are subsequently used to rewrite the state variable
in the governing equation of the underlying dynamics into a system of ODEs, resulting in a
substantially reduced degree of freedom for describing the complex dynamics. Both DMD
and POD have been widely used in scientific simulations, particularly for fluid simulations.

ROMs generated from projection-based approaches can preserve crucial physical struc-
tures of the dynamics system. However, inappropriate truncation of the POD modes in
governing equations can severely degrade modeling accuracy and result in unexpected,
unphysical predictive results. Moreover, the precise strategy for mode truncation is task-
dependent and is typically limited to explicit and closed definitions of the mathematical
models [50]. Another drawback of direct projection-based approaches is that they require
knowledge of governing equations that model the dynamical system, and this information
is often absent for real-world problems. As such, data-driven reduced-order modeling has
drawn significant recent attention. For instance, the learning of closure models to compensate
for information loss due to mode truncation [36, 38, 48, 49], and data-driven reduced basis
representations have been learned from simulation data that provides significantly improved
predictive performance of the dynamics compared to classical models [31, 39, 58]. More
recently, “vanilla” versions of machine learning approaches such as neural ODEs (NODEs)
and recurrent neural networks (RNNs) have been used to learn temporal coefficients of the
POD of a given complex dynamical system [24, 25, 45]. A well-known issue of the vanilla
NODEs and RNNs is that they lack the capability of capturing long-range dependencies from
data, making these machine learning models fail to learn the intrinsic physics of complex
systems [4, 59].

1.1 Our Contribution

We employ the recently developed heavy-ball neural ODE (HBNODE) [59], an extension of
NODE [9], to learn the temporal coefficients of the POD of complex physical systems with
a focus on time-dependent simulations in scientific computing. In particular, our examples
include the von Kármán Street (VKS) flow, the Kurganov-Petrova-Popov (KPP) equation,

123

Journal of Scientific Computing (2023) 95:54 Page 3 of 27 54

and the one-dimensional Euler equations for fluids modeling. We provide numerical vali-
dation on the above three benchmark tasks and a detailed empirical and analysis of why
HBNODEs are beneficial for learning the dynamics of POD modes. Our numerical results
show the adjoint state of HBNODEs does not vanish, confirming that HBNODEs do learn
long-range dependencies, which results in remarkable performance gain over the baseline
NODEs. Moreover, our experimental results show significant computational advantages in
training and testing HBNODEs over the baseline ROM models.

1.2 RelatedWork

There is a healthy amount of recent work on learning PODmode dynamics using deep neural
networks, particularly RNNs and vanilla NODEs. Perhaps the most related papers to this
article are [15, 16, 45], which study the NODE framework for learning ROMs. In [45], the
authors developed a POD-NODE ROM framework for learning POD coefficients, which
starts from FOM snapshots and then uses an autoencoder to encode the POD representations
of FOM snapshots, followed by NODE training and forecasting. The POD-NODE ROM
framework achieves appealing results for learning reduced dynamics of the VKS model,
and it significantly outperforms the direct application of a long short-term memory (LSTM)
network for sequential learning. In [15, 16], the authors study the effectiveness of NODEs
for reduced-order modeling and predicting environment hydrodynamics. On the one hand,
they find that NODEs provide an elegant framework for the stable and accurate evolution of
latent-space dynamics with promising generalizability. On the other hand, they noticed that
in order to facilitate the widespread adoption of NODEs for large-scale systems, significant
effort needs to be directed at accelerating training time. This limitationmotivates this article’s
study and utilization of HBNODEs [59], which is the machine-learning backbone of the
reduced-order modeling pipeline proposed in this work. There are three major advantages of
learning PODs using HBNODEs over the existing deep learning approaches:

– HBNODEs are a class of continuous-depth neural networks, and they are suitable
for learning irregularly-sampled simulation data or physical observations. Hence,
observation protocols that entail missing or sparse data are easily tackled in this
framework.

– Certain spectral properties ofHBNODEs enable them to capture long-range dependencies
from sequential data, which is crucial for learning PODs of complex dynamics.

– Both HBNODEs and their adjoint ODEs are computationally much more efficient than
baseline NODEs.

In addition to the NODE paradigm of continuous-depth neural networks for reduced-order
modeling, the RNN—a natural sequential deep learning model—has also been successfully
used for learning-assisted model reduction. Many advanced RNN algorithms can also be
leveraged to enhance learning ROMs, e.g., LSTM networks [21]. RNN-based ROMs have
achieved remarkable success in many applied domains, including multiphase flow simula-
tion [24, 25], learning advection-dominated systems [35], learning chaotic dynamics [32],
and learning nonlinear aeroelastic models [33]. Compared to NODEs for learning ROMs,
RNNs cannot learn irregularly-sampled time series effectively and can even depart from the
underpinning physics due to their discrete nature.

123

 54 Page 4 of 27 Journal of Scientific Computing (2023) 95:54

1.3 Organization

Weorganize the paper as follows: In Sects. 2 and 3, we briefly review the POD-based reduced-
order modeling and HBNODE for continuous-depth deep learning, respectively. We present
the benchmark physical models of the complex dynamical systems and full-order modeling
for data generation in Sect. 4. Section5 shows the detailed deep learning model and pipeline
for learning POD-based ROMs. We verify the efficacy of our proposed machine learning
models and contrast them with several baseline models in Sect. 6, followed by concluding
remarks.

2 POD-Based Reduced-Order Modeling

In this section, we briefly review key ideas and procedures of POD-based reduced-order
modeling.

2.1 Notation

We denote vectors and matrices by lower- and upper-case boldface letters, respectively. For
a vector x = (x1, · · · , xd)� ∈ R

d , where (x1, · · · , xd)� denotes the transpose of the row
vector (x1, · · · , xd), we use ‖x‖ = (

∑d
i=1 x

2
i)

1/2 to denote its �2 norm, and use 0 to denote
the zero vector. In cases when d = 2 and x is a spatial vector, we will write the components
instead as x = (x, y)�. For a matrix A, we use A�, A−1, and ‖A‖ to denote its transpose,
inverse, and spectral norm, respectively. We use I to denote the identity matrix, whose size
will be clear based on context.

We will consider the approximation of a space-time function u = u(x, t) where x is a
spatial vector (typically of 1 or 2 dimensions) and t is a scalar on [0, T] for some fixed and
finite terminal time T . The function u may be vector-valued. In much of our discussion, we
will take the concrete example of u being a solution to a discretized VKS problem, whose
details are given in Sect. 4.1. For the VKS problem, u ∈ R

2 contains the horizontal (x) and
vertical (y) components of a fluid velocity field. We will write u = (ux , uy) to denote these
two components.

2.2 POD Snapshots

POD shares a similar spirit and implementation as the celebrated principal component anal-
ysis (PCA), the latter of which has been a very popular tool for data analysis [30, 43]. The
key idea of PCA is to project high-dimensional data into a lower-dimensional space that
is spanned by the eigenvectors corresponding to the leading eigenvalues of the covariance
matrix of the data. PCA preserves the largest variance of training data and thus contains
the most important information contained in the originally high-dimensional data. POD has
been introduced in accelerating fluids simulation and reducing the complexity of fluidmodels
since the pioneering work of Berkooz et al. [7]. Once the leading eigenmodes are obtained
via analysis of training data, it is possible to reduce the order (the computational complex-
ity and degrees of freedom) of the complex FOMs. The POD-based dimension reduction
approach starts with some training samples of physically observed or numerically simulated
snapshots of dynamics. These sample snapshots are aggregated into an ensemble matrix Y ,
where each row contains the state of a dynamical system at a fixed time step. Next, we

123

Journal of Scientific Computing (2023) 95:54 Page 5 of 27 54

Fig. 1 POD pipeline: We first pre-process the data, from experimental observation or FOM simulation, by
subtracting the mean. Then we apply spectral decomposition of the covariance matrix and only keep the first
r eigenmodes, resulting in the reduced representation—

∑r
i=1 αi (t)ψi (x)—of u′(x, t), where α(t)s are the

temporal coefficients and ψ(x)s are the eigenmodes

compute the covariance matrix of the rows of the matrix Y , and the eigenvectors—sorted
according to the corresponding decreasing-ordered eigenvalues—are used as the new orthog-
onal basis for representing the ROM. Below we summarize the crucial steps of identifying
the low-dimensional representations via the POD approach, which has also been visualized
in Fig. 1.

– Data generationWe simulate the FOM, which is computationally expensive, for a short
time to obtain the training data at time steps t1, t2, · · · , tNt . For the VKS problem, when
our solutionu contains two components u = (ux , uy) that depend on the two-dimensional
spatial variable x = (x, y), we assume that FOM snapshots ux(t j), uy(t j) are vectorized
representations of N spatial degrees of freedom. Then we have

ux(t j), uy(t j) ∈ R
N , j = 1, 2, . . . , Nt .

For real-world dynamical systems for which we do not know the exact governing equa-
tion, we sample the true dynamics via experimental measurements as training data. In
either case, we assume that training data is available to us (as the snapshots above),
and our goal is to efficiently leverage this data to learn reduced-order dynamics without
recourse to the FOM, which we assume is unknown.

– Linearly center the data dynamics With our VKS-centric notation above, according to
the Reynolds decomposition of the flow, we have for fixed t j ,

ux = ūx + u′
x; uy = ūy + u′

y, (1)

where ūx and ūy are the temporal mean of the solutions, computed over our Nt snapshots.
The components u′

x and u′
y are the fluctuating components of the data.

– Data assembling Concatenate the simulated and centered FOM snapshots into the
following matrix Y ,

Y =

⎛

⎜
⎜
⎜
⎝

(u′
x (t1))

� (u′
y(t1))

�
(u′

x (t2))
� (u′

y(t2))
�

...
...

(u′
x (tNt))

� (u′
y(tNt))

�

⎞

⎟
⎟
⎟
⎠

, (2)

so that row j contains the concatenated snapshot u′
x (t j), u

′
y(t j), i.e., the two flattened

velocity components at time step j . The size of the matrix Y is Nt × 2N .

123

 54 Page 6 of 27 Journal of Scientific Computing (2023) 95:54

– Perform a spectral decomposition of the covariance matrix We construct the covariance
matrix K of the rows of Y and compute its eigendecomposition:

K = YY�, K = AΛAT , A = (
α1, . . . ,αNt

)
, (3)

where α j is the j th eigenvector, and the matrix Λ is diagonal containing entries λ j ,
the associated non-negative eigenvalues of K . We assume the eigenvalues are listed in
non-increasing order, λ j ≥ λ j+1.

– Identify reduced-ordermodes and truncateLarger eigenvalues of K are directly related to
the dominant characteristics of the dynamical system,while small eigenvalues correspond
to small perturbations of the dynamical behavior. The matrix K has Nt eigenvalues, and
we choose the order of the reduced-order model to be r � Nt by inspecting a relative
information content I (r), defined as follows

I (r) =
∑r

i=1 λi
∑Nt

i=1 λi
, (4)

so that 1 − I (r) is a relative Frobenius norm error between K and its rank-r spectral
approximation. As we will see in Sect. 6, I (r) is close to one for practical problems, even
for very small r . As output of the procedure, we can construct the following (discretized)
ROM of the fluctuating component of the dynamics

u′∗(t j) ≈
r∑

i=1

(αi) jψ∗,i , (5)

where ∗ ∈ {x, y}, and (ψ�
x,i ,ψ

�
y,i)

� ∈ R
2N is a vector denoting a discretized spatial

function; the entries of ψ∗,i correspond to the N degrees of freedom in the snapshots u∗,
and is a subvector of the i-th right-singular vector of Y . Equivalently, it is defined as,

ψ∗,i = 1

λi
Y�αi = 1

λi

Nt∑

j=1

(αi) ju′∗(t j).

A “standard” POD approach would next project the (assumed known) dynamical model
onto span{ψ∗,i }ri=1. We will proceed to assume that such a dynamical model is unknown to
us, and will instead use machine learning models to predict dynamics.

Remark 1 With the training data αi available at time steps t1, t2, · · · , tNt through the above
procedure, extrapolation of the FOM dynamics or experimental measurements amounts to
predicting the POD coefficients αi (t) for future time t accurately, in our case using machine
learning models. Notice that αi (t) is observed sequentially and has a continuous profile,
indicating the potential advantages of using NODE for learning αi (t), as we describe next.

3 Heavy-Ball Neural ODEs

In this section, we briefly review NODE and HBNODE and algorithms for their training and
testing. Moreover, we provide some simple analysis of why HBNODE is better for learning
PODcoefficients for reduced-ordermodeling leveraging insights from the acceleration theory
of the classical momentum methods.

123

Journal of Scientific Computing (2023) 95:54 Page 7 of 27 54

3.1 Neural ODEs

NODEs [9] are a class of continuous-depth (-time) neural networks [11, 46]. The continuous-
time nature of NODEs makes them particularly suitable for learning complex dynamics from
irregularly-sampled sequential data, see, e.g., [9, 14, 34, 41, 47]. Mathematically, a NODE
is formulated as the following first-order ODE:

dh(t)

dt
= f (h(t), t, θ), (6)

where f (h(t), t, θ) ∈ R
d is specified by a neural network parameterized by θ , e.g., a

two-layer feed-forward neural network. Starting from the input h(0), NODEs learn the repre-
sentation and perform prediction by solving (6) from t = 0 to T using a numerical integrator
with a given error tolerance, often with adaptive step size solver or adaptive solver for short
[13]. Solving (6) from t = 0 to T in a single pass with an adaptive solver requires evaluating
f (h(t), t, θ) at various timestamps, with computational complexity measured by the number
of function evaluations in a time-forward sweep (“forward NFEs”) [9].

The adjoint sensitivity method, or the adjoint method [8], is a memory-efficient method for
training NODEs through optimization of θ . We regard the output h(T) as the prediction and
denote the loss between the prediction h(T) and the ground truth asL. Let a(t) := ∂L/∂h(t)
be the adjoint state, then we have (see [8, 9] for details)

dL
dθ

=
∫ T

0
a(t)� ∂ f (h(t), t, θ)

∂θ
dt, (7)

with a(t) satisfying the following adjoint ODE

da(t)
dt

= −a(t)� ∂

∂h
f (h(t), t, θ), (8)

which is solved numerically from t = T to 0 and also requires the evaluation of the right-
hand side of (8) at various timestamps, with the number of NFEs during this time-backward
sweep (“backward NFEs”) measuring the computational complexity.

There are several critical problems with NODEs, including (i) Given an error tolerance,
the NFEs required in a single forward pass can be excessive. Moreover, solving the adjoint
ODE (8) often requiresmoreNFEs than solving the forwardODE (6). (ii) In trainingNODEs,
the adjoint state a(t) often vanishes, i.e., the norm of a(t) tends to 0, impeding NODEs from
learning long-range dependencies [29], resulting in poor predictive performance.

3.2 Heavy-Ball Neural ODEs

The authors of [56, 59] proposedHBNODEsand their generalized version, namedgeneralized
HBNODEs (GHBNODEs). HBNODEs are motivated by ideas from momentum-accelerated
gradient descent [44] and they can be regarded as the continuous limit of theMomentumRNN
model [40]. Mathematically, the HBNODE is a special second-order neural ODE of the
following form

d2h(t)

dt2
+ γ

dh(t)

dt
= f

(
h(t), t, θ

)
, (9)

where γ ≥ 0 is the damping parameter, which can be set as a tunable or a learnable hyperpa-
rameter with positivity constraint. In the trainable case, we adopt the one used in [59], that

123

 54 Page 8 of 27 Journal of Scientific Computing (2023) 95:54

is γ = ε · sigmoid(ω) for a trainable ω ∈ R and a fixed tunable upper bound ε, e.g., ε = 1.
The HBNODE (9) can be rewritten as the following system of first-order NODEs

dh(t)

dt
= m(t); dm(t)

dt
= −γm(t) + f (h(t), t, θ). (10)

3.2.1 Computational advantages of HBNODE vs. NODE

To show why HBNODE enjoys computational efficiency in training and testing, let us first
consider the adjoint equation of (9), which will again be solved using adaptive numerical
ODE solvers. First, the following theoretical result [59] shows that the adjoint of anHBNODE
is also an HBNODE.

Proposition 1 (Adjoint equation for HBNODE [59]) The adjoint state a(t) := ∂L/∂h(t)
for the HBNODE (9) satisfies the following HBNODE with the same damping parameter γ

as that in (9),
d2a(t)
dt2

− γ
da(t)
dt

= a(t)
∂ f
∂h

(h(t), t, θ). (11)

Notice that we solve the adjoint equation (11) from t = T to 0 via backward propagation.
By letting τ = T − t and b(τ) = a(T − τ), we can rewrite (11) as follows,

d2b(τ)

dτ 2
+ γ

db(τ)

dτ
= b(τ)

∂ f
∂h

(h(T − τ), T − τ, θ). (12)

Therefore, the adjoint of the HBNODE is also an HBNODE and they have the same damping
parameter.

The above result indicates that the adjoint problem for HBNODE is of the same type as the
forward problem, accelerating backward propagation provided the forward propagation is
accelerated.

Next, we provide theoretical insights into the computational efficiency of HBNODEs.
Leveraging the acceleration theory of the heavy-ball momentum method in taming the oscil-
lation of the optimization trajectory by reducing the condition number of the underlying
problem. Furthermore, it is worth mentioning that the heavy-ball method only provably
accelerates strongly convex quadratic optimization problems, while in practice, it acceler-
ates general optimization problems. In analogy to the acceleration theory of the heavy-ball
method, we consider the following two linearized high-dimensional ODE systems

dh(t)

dt
= Ah(t), (13)

and
dh(t)

dt
= m(t)

dm(t)

dt
= −γm(t) + Ah(t)

⇔ d

dt

(
h(t)
m(t)

)

=
(
0 I
A (−γ I)

)

︸ ︷︷ ︸
:=B

(
h(t)
m(t)

)

, (14)

where we assume A is positive definite to simplify our analysis and reveal intuition of the
advantages of HBNODE over NODE. Let the eigenvalues and eigenvectors of A be given
by λi , vi respectively. Following the proof of the acceleration of heavy-ball momentum,1 we
can show that |λ̃max |/|λ̃min | ≤ √|λmax |/|λmin |, where λmax and λmin are the largest and

1 see http://www.math.utah.edu/~bwang/mathds/Lecture8.pdf for details.

123

http://www.math.utah.edu/~bwang/mathds/Lecture8.pdf

Journal of Scientific Computing (2023) 95:54 Page 9 of 27 54

smallest eigenvalues. Similarly, λ̃max and λ̃min are the largest and smallest eigenvalues, in
magnitude, of B.

Notice that the ratio |λmax |/|λmin | and |λ̃max |/|λ̃min | are the stiffness of the linear ODE
model (13) and the corresponding linear HBNODE counterpart (14). Thus the heavy-ball
NODE can be much less stiff than the original NODE. If the stiffness of the ODE model
is κ , using the heavy-ball model results in stiffness of at most

√
κ , which is a substantial

reduction.
Recall that we use the adaptive step size explicit solver to solve both forward and backward

ODEs, from t = 0 to T , in training NODEs and HBNODEs. A less stiff model allows the
adaptive solver to use a much large step size and thus can significantly reduce NFEs. More-
over, Proposition 1 indicates that the adjoint equation of an HBNODE is also an HBNODE,
and therefore we reap the computational advantages of relaxed stiffness in both forward and
backward propagation phases. Our previous analysis only considers very simple linear ODE
models. How to extend the analysis to the neural network is a very interesting future direction.
One particular idea is analyzing the NODE and HBNODEwhen they are overparameterized,
in which case one could leverage neural tangent kernel theory [23].

3.2.2 Generalized HBNODEs (GHBNODEs)

Compared to vanilla NODEs, high-order NODEs include HBNODEs usually suffer from the
uncontrolled aggregation of the hidden state, deteriorating model performance at best, and
blowing up training at worst. To alleviate this issue, in [59] the authors propose the following
generalized HBNODE

dh(t)

dt
= σ(m(t)); dm(t)

dt
= −γm(t) + f (h(t), t, θ) − ξh(t), (15)

where σ(·) is a nonlinear activation, which is set as tanh by default. The positive hyperpa-
rameters γ, ξ > 0 are two tunable or learnable hyperparameters. In the trainable case, we let
γ = ε · sigmoid(ω) as in HBNODE, and ξ = softplus(χ) to ensure that γ, ξ ≥ 0. Compared
to HBNODEs, GHBNODEs integrate two ideas to improve the neural network architec-
ture design: (i) Incorporating the gating mechanism σ used in LSTM [22] and GRU [10],
which can suppress the aggregation of m(t); (ii) Following the idea of skip connections [20],
HBNODEs add the term ξh(t) into the governing equation of m(t), which benefits training
and generalization of GHBNODEs. It has been extensively verified that GHBNODE can
indeed control the growth of h(t) effectively, which significantly improve the performance
of machine learning models on various sequential learning tasks.

Another interesting result is that though the adjoint state of theGHBNODEdoes not satisfy
the exact heavy-ball ODE, it also significantly reduces the backward NFEs in practice. We
observe that sometimes GHBNODEs are computationally more efficient than HBNODEs.

3.2.3 (G)HBNODEs learn long-range dependencies effectively

Learning long-range dependencies is crucial for the success of deep learning for sequential
data, and vanishing and exploding gradients are two bottlenecks for training RNNs to learn
long-range dependencies [4, 42]. The exploding gradients issue can be effectively resolved via
gradient clipping, training loss regularization, etc [42]. The vanishing gradient phenomenon
in trainingRNNsmaterializes in continuous-depth neural networks as vanishing of the adjoint
state [59]. In particular, we consider a(t) := ∂L/∂h(t), and when the vanishing gradient

123

 54 Page 10 of 27 Journal of Scientific Computing (2023) 95:54

phenomenon occurs, a(t) goes to 0 quickly as T − t increases, so that dL/dθ in (7) will be
essentially independent of a(t) for larger T − t . We have the following expressions for the
adjoint states of the NODE and HBNODE (see [59] for details):

– For NODE, we have

∂L
∂ht

= ∂L
∂hT

∂hT
∂ht

= ∂L
∂hT

exp

{

−
∫ t

T

∂ f
∂h

(h(s), s, θ)ds

}

. (16)

– For GHBNODE,2 we have

[
∂L
∂ht

∂L
∂mt

]
=

[
∂L
∂hT

∂L
∂mT

]
[

∂hT
∂ht

∂hT
∂mt

∂mT
∂ht

∂mT
∂mt

]

=
[

∂L
∂hT

∂L
∂mT

]
exp

{

−
∫ t

T

[
0 ∂σ

∂m(∂ f
∂h − ξ I

)−γ I

]

ds

︸ ︷︷ ︸
:=M

}

.
(17)

For the matrix M, we have the following useful property about its spectrum.

Proposition 2 ([59]) The eigenvalues of −M can be paired so that the sum of each pair
equals (t − T)γ .

Following the argument in [59], Proposition 2 can be used to show that the adjoint state of
NODE in (16) may vanish when T − t is large, but the adjoint state of (G)HBNODEs in (17)
will not vanish. This property supports the claim that HBNODEs benefit in learning long-
range dependencies, which in turn further boosts the accuracy in learning POD of complex
dynamical systems.

In Sect. 6, we will validate the above theoretical merits of HBNODEs over NODEs using
the benchmark problems listed in Sect. 4 below.

4 Benchmarks and Data Preparation

In this section, we will present some details of the three benchmark physical models—VKS,
KPP, and Euler equations—used for validating the efficacy of learning PODwith HBNODEs.
Our training data for theKPP andEuler equations are generated by solving FOMs; the training
data for the VKS dataset is adopted from a publicly available dataset.

4.1 VKSModel

The von Kármán vortex street (VKS) is a fluid dynamics phenomenon where vortices appear
in a periodic fashion in the wake of flow past a blunt object, frequently a cylinder. A very
small Reynolds number results in a laminar smooth flow past the cylinder, and very large
Reynolds numbers result in a turbulent flow. In an appropriate middle regime, the VKS
phenomenon appears and can be simulated. The associated dynamical model is the two-
dimensional Navier-Stokes equations; with u = (ux , uy) the fluid velocity, these equations
read,

∂u
∂t

= ν∇2u − (u · ∇)u − 1

ρ0
∇ p,

2 HBNODE can be seen as a special GHBNODE with ξ = 0 and σ be the identity map.

123

Journal of Scientific Computing (2023) 95:54 Page 11 of 27 54

where ρ0 is the spatially uniform pressure, and ν is the kinematic viscosity, which is inversely
related to the Reynolds number. Our experimental setup concerns flow past a cylinder in two
spatial dimensionswith conditions that result in steady-stateVKSflowafter an initial transient
period. We follow the experimental setting used in [45] to acquire simulation data.

4.2 KPPModel

The Kurganov-Petrova-Popov (KPP) model is a scalar, two-dimensional conservation law,
first proposed in [28]. This system is difficult to simulate since it features a non-convex flux,
and is given by,

∂u

∂t
+ ∇ · f (u) = 0, t > 0, x ∈ [−2, 2], y ∈

[

−5

2
,
3

2

]

,

where f (u) = (sin u, cos u)T and ∇ :=
(

∂
∂x , ∂

∂ y

)
. Our setup mirrors that in [28], so that we

use the following initial data

u(x, y, 0) =
{ 14π

4 , x2 + y2 < 1,
π
4 , else

We employ a finite volume scheme utilizing a Lax-Friedrichs flux with a 5th-order WENO
reconstruction over the two-dimensional rectangular domain with a Cartesian mesh up to
time T = 10. The simulation uses a tensorial grid with Nx = 50, Ny = 50 (corresponding
to N = Nx Ny = 2500 total spatial degrees of freedom), and Nt = 1250.

4.3 Euler Equations for Fluids Modeling

The one-dimensional Euler equations of gas dynamics are a system of conservation laws.
We consider the simulation of a parameterized shock-entropy problem from this differential
equation, whose setup is given by,

∂u
∂t

+ ∂ f (u)

∂x
= 0, t > 0, x ∈ [−5, 5],

with f (u) =
⎛

⎝
ρu

ρu2 + p
(E + p)u

⎞

⎠

T

,

where u := (ρ ρu E)� ∈ R
3 is the unknown with (ρ, u, p, E) denoting the gas den-

sity, velocity, pressure, and energy, respectively. The system is closed via the following
relationship between E and p:

p = (γ − 1)

(

E − 1

2
ρu2

)

,

where γ is the heat capacity ratio, a gas-dependent constant.3 We take boundary conditions
at x = ±5 as those given by the initial data. The shock-entropy problem features smoothly
oscillating as well as discontinuous features.

We again employ a finite volume scheme to solve the Euler equations, using a Harten-
Lax-van Leer (HLL) flux, which is an approximated Riemann solver [19]. Our simulations

3 This γ is distinct from the γ discussed in Sect. 3.2.

123

 54 Page 12 of 27 Journal of Scientific Computing (2023) 95:54

Fig. 2 The pipeline of predicting the temporal coefficients for a single step forward usingHBNODE leveraging
a variational autoencoder. We first use a RNN encoder to encode the input data and then sample the states h
and m and evolve them using an HBNODE. Finally, we apply an RNN decoder to the final representation to
get the prediction

integrate up to terminal time T = 1.8, with a uniform grid having N = 1000 degrees of
freedom in the scalar spatial variable x .

This last example differs from the previous two in that we consider this a parametric
equation, where η = (ηu, ηρ) ∈ R

2 is a parameter for the initial conditions. We initialize
the dynamics using the parameter η as follows, where ηu varies on the interval [2, 3] and ηρ

varies on the interval from [3, 4]. The parametric initial data (u(x, 0), ρ(x, 0), p(x, 0)) =
(u0, ρ0, p0) are given by

u0 =
{

ηu x < −4

0 else
, ρ0 =

{
ηρ x < −4

1 + 0.2 sin(πx) else
, p0 =

{
31
3 x < −4

1 else

We generate training data by gathering an ensemble of trajectories for the above problem
over a grid of η values and attempt to learn dynamics on unseen values of η. Thus, in this
example we not only seek to predict to future times, but also trajectories on parameter values
not in the training set.

5 Learning Pipeline

In this section, we describe the detailed pipeline of using deep learning for reduced-order
modeling accompanied by the baseline ROMs.

5.1 Learning-Based Reduced-Order Modeling

Our machine learning-based reduced-order modeling framework is flexible for machine
learning model selection, e.g., using either HBNODE or NODE as shown in Figs. 2and 3,
respectively. In our learning-based reduced-order modeling framework, we first apply POD
outlined in Sect. 2 on the training data to extract (discretized) temporal coefficients α(t)’s and
the eigenmodes ψ(x)’s following (5). Next, we will use machine learning models to predict
future dynamics u(x, t) leveraging these coefficients and modes. In particular, the main task
is an extrapolation of the temporal coefficients α(t)’s using NODEs or HBNODEs.

To predict future values of the POD data, we consider two different machine learning
architectures, shown in Figs. 2 and 3, respectively. The first architecture is a one-to-one

123

Journal of Scientific Computing (2023) 95:54 Page 13 of 27 54

Fig. 3 The pipeline of predicting the temporal coefficients for multi-steps ahead. First, we encode the input
sequence {αi (t j)}n−1

j=0 using a RNN encoder to obtain the latent sequence {zi (t j)}n−1
j=0. Second, we use a

NODE to learn a “good” representation of the input sequence by evolving the latent sequence {zi (t j)}n−1
j=0.

Third, we apply a RNN decoder to the “good” representation to get the final prediction. Notice that NODE can
be replaced with (generalized) HBNODE, in which case we need to obtain another sequence of momentum
states from the RNN encoder

architecture that predicts the value at tk+1 based on the data at tk . The second architecture is
a sequence-to-sequence architecture that uses sequence data points to predict the following
sequence of data points. The overlap in the sequence prediction can be adjusted so that the
predicted sequence is entirely new or that only one new data point is predicted.

The first architecture under our study is adapted from [45], which was originally used to
compare the performance of NODE and LSTM in model reduction. We replace the vanilla
NODE used in [45] with the HBNODE, and we depict the modified architecture in Fig. 2.
Compared to the pipeline used in [45], after the RNN encoding of the temporal coefficients
we have to sample both h and m to accommodate learning using HBNODE. In contrast,
the vanilla NODE used in [45] only needs to sample the state h. The above encoding and
sampling procedure is accomplished via a variational autoencoder [26].

We plot the second architecture in Fig. 3, where the vanilla NODE can be replaced with
(generalized) HBNODE. For the second architecture, i.e., the sequence-to-sequence archi-
tecture, takes a sequence of length n inputs and predicts a sequence of outputs, we encode the
input sequence {αi (t j)}n−1

j=0 into the latent sequence {zi (t j)}n−1
j=0 using an RNN encoder, then

we use NODE or HBNODE to evolve the latent sequence to get the desired representation,
followed by an RNN decoder to get the final long-term prediction {αi (t j)}Nj=n .

5.2 A Baseline Comparison: Dynamic Mode Decomposition (DMD)

We employ DMD as another baseline model reduction method to demonstrate the effective-
ness of learning-based model reduction using HBNODEs. In this part, we briefly review the
idea of DMD for reduced-order modeling. To compare DMD to the learning-based reduced-
order modeling using HBNODE, we consider only modeling the fluctuating components
u′ of the snapshots, see (1). The predictions of DMD are generated by a linear operator
A corresponding to a linear difference equation u′

k+1 = Au′
k , where A must be learned.

In DMD, dominant eigenvalues and eigenvectors of A are computed via the singular value
decomposition (SVD). Although the true underlying dynamics may be nonlinear, the Koop-
man operator formalism concludes that a lifted version of the dynamics is indeed linear. For
nonlinear problems, DMD attempts to learn these lifted linear dynamics.

Let U (k) be the snapshot matrix for the time interval t0, . . . , ttrain−1 and U (k+1) be the
snapshot matrix for the time interval t1, . . . , ttrain, i.e., column j of U (k) corresponding to

123

 54 Page 14 of 27 Journal of Scientific Computing (2023) 95:54

Fig. 4 DMDpipeline: The data is pre-processed by subtracting themean to capture the fluctuating components
of the data. In addition, the following lifts {cos(x), sin(x), x2, x3}were applied to the data, and then vectorized
along the snap-shot axis. We then generate the full-order model according to the spectral decomposition of
the linear transformation between the two snapshot matrices at subsequent time intervals. To reduce the order
only the dominant r eigenmodes are selected, resulting in a representation u′(x, t) = ∑r

i=1 φiλ
k−1
i bi for the

lifted data u′(x, t)

time snapshot t j−1. In particular, let U (k+1) ≈ AU (k) where U (k) is given by the SVD
U (k) = XΣV ∗. We further denote X̃ , Ṽ , and Σ̃ as the rank-r truncation of X , V , and
Σ , respectively. Then we may compute an approximation Ã directly from U (k+1) by the
following,

Ã = X̃∗U (k+1)Ṽ Σ̃−1 (18)

The reduced matrix Ã is composed of the dominant r eigenvalues λ1, . . . , λr and eigen-
vectors φ1, . . . ,φr . These eigenvectors are also known as the DMD modes. Given training
data on the training interval t0, . . . , ttrain, the matrix Ã is formulated by partitioning the
snapshot matrix u′ into two time intervals. Validation data on the interval ttrain+1, . . . , tvalid
is generated by solving u′(ttrain+k) = Ãku′(ttrain). We depict DMD-based reduced-order
modeling in Fig. 4. More details of DMD can be found at e.g., [51].

6 Experimental Results

In each experiment below, we contrast the performance of HBNODE-based ROM to two
baseline ROMs, namely, NODE-based and DMD-based ROMs. We observe consistently
improved predictive performance of HBNODE over baseline ROMs. We interpret the
improved performance usingHBNODEs by inspecting the stiffness and adjoint state ofHBN-
ODEs, confirming the theoretical results. Animated comparisons of the data reconstructions
can be found at [3].

6.1 Transient and Steady-State VKS

The VKS dataset is obtained by simulating the FOM in Sect. 4.1 on the time interval [0, 400],
containing two different regimes. When t < 100, the dynamics lie in the transient state and
approach the steady state as t increases; while the dynamics maintain a steady state when
t ≥ 100, as shown in Fig. 5.
ROMs for Steady-State Dynamics We contrast different ROMs for simulating VKS flow in
the steady-state regime. In particular, both the DMD and POD training is taken over the time
interval from t = 100 to 400. The POD modes for the steady-state flow oscillate quasi-
periodically, see Fig. 6, and the relative information content I (r) in (4) decays rapidly in r .

123

Journal of Scientific Computing (2023) 95:54 Page 15 of 27 54

Fig. 5 Comparison of transient and steady-state phases of the VKS dataset. The steady-state phase contains
quasi-periodic solutions conducive to machine learning. The transient phase does not contain such well-
behaved dynamics

Fig. 6 The steady-state POD modes are highly oscillatory with quasi-periodic patterns

The POD relative information content for 8 leading modes is ∼ 99%, as illustrated in Fig. 7
a. In contrast, the lifted DMDmodel, using the lifts {cos(x), sin(x), x2, x3} with x = (x, y),
requires 24 modes to achieve ∼ 99% relative information content, shown in Fig. 7b. The
quasi-periodic nature of the POD modes indicates that a model with high training accuracy
will continue to perform well on the validation data.
ROMs for Transient to Steady State Dynamics ROMs behave very differently over the entire
time interval from t = 0 to 400. The POD modes do not oscillate over the entire interval but
only over the steady-state phase. For both POD and DMD, the relative information decays
much slower. The POD relative information decreases to ∼ 96% for the dominant 8 modes.
While for the dominant 24 lifted DMD modes, the relative information is reduced to ∼ 94%
over the full dynamics. This suggests that a machine learning-based ROM which is able to
train on the transient phase to predict the steady-state phase accurately captures the intrinsic
patterns of the underlying dynamics.

123

 54 Page 16 of 27 Journal of Scientific Computing (2023) 95:54

Fig. 7 Comparison of the relative information decay for POD and DMD over the steady-state VKS. The POD
modes decay far more rapidly than those of DMD. Therefore, one can expect better results with a smaller
order of ROM using POD than DMD

Table 1 The hyperparameters for
the VAE architecture—shown in
Fig. 2—for NODE and
HBNODE-based ROMs

Hyperparameter Value

Latent dimension 6

Layers encoder 4

Units encoder 10

Layers ODE 12

Units decoder 41

Layers decoder 4

Learning rate .00153

Epochs 2000

The parameters are tuned to the best NODE specification

Learning Steady-State Dynamics In this task, we train the pipeline shown in Fig. 2 for single-
input-single-output dynamics prediction. Following the baseline in [45], we train over the
steady-state dynamics starting from t = 100 using the dominant 8 POD modes. The training
data consists of the POD modes from t = 100 to 174, and the training labels consist of
the POD modes from t = 101 to 175. The validation data consists of the POD modes from
t = 175 to 199, with the objective to predict the POD modes at time steps from t = 176
to 200. We use the mean squared error to measure the loss between the labeled data and the
predictions. We utilized an AdamW optimizer to train the network based on this loss criteria.
For the black-box integration method, we selected DOPRI-5 [13] with a relative tolerance
of 1e−8. The model’s hyperparameters are tuned to best the NODE as outlined in [45] and
restated in Table 1.
Learning Transient to Steady-State Dynamics In this task, we train the pipeline outlined
in Fig. 3 for multi-input-single-output dynamics prediction. The objective of this task is to
capture the phase transition at t = 100. The data consisted of the dominant 8 PODmodes for
the time interval from t = 0 to 400. The data was sequenced in a multi-input-single-output
structure so that 9 preceding time steps were used to predict the 10-th time step. The training
data consists of the POD modes for the transient time interval from t = 0 to 79. The training
labels consisted of the POD modes from t = 10 to 80. The validation data utilizes the POD
modes from steady-state time interval t = 80 to 119, and the validation labels consist of

123

Journal of Scientific Computing (2023) 95:54 Page 17 of 27 54

Table 2 Hyperparameters of
NODE and HBNODE for
learning ROMs from transient to
steady-state VKS dynamics

Hyper-parameter Value

Layers 12

Hidden layers 64

Sequence length 9

Learning rate .001

Epochs 500

Fig. 8 Contrasting NODE and HBNODE-based ROMs for learning steady-state VKS dynamics. HBNODE
outperforms NODE in both training and validation loss

data from t = 90 to 120. The other experimental settings follow the above single-input-
single-output scenario. The model’s hyperparameters are the same for NODE and HBNODE
components and are given in Table 2.

6.1.1 Results and comparison to existing ROMs

Results of Learning Steady-State DynamicsWe contrast HBNODE and NODE-based ROMs
in Figs. 8and 9. Figure8 shows that HBNODE-based ROM not only achieves remarkably
smaller training loss but also significantly smaller validation loss than NODE-based ROM.
In terms of the predictive performance, we see that HBNODE performs better at capturing
several of the peaks of the oscillatory modes as shown in Fig. 9.
Results of Learning Transient to Steady-State Dynamics Compared to learning steady-state
VKS dynamics, HBNODE achievesmore significant performance gain over NODE for learn-
ing transient to steady-state dynamics in terms of training and validation loss, as shown in
Fig. 10 . Since we are doing sequential learning, one interpretation of the improvement in
learning dynamics is the effective learning of long-range dependencies. Indeed, the crite-
rion of learning long-range dependencies has been widely used in measuring the efficacy of
sequential learning models [42, 59]. In NODE and HBNODE, the effectiveness of learning
long-range dependencies can be measured by whether the adjoint state vanishes quickly or
not.We visualize the evolution of themagnitude of the adjoint states of NODE andHBNODE
in Fig. 11, which support the theoretical result in Sect. 3.2.3. In particular, we see that the
adjoint state of NODE vanishes much more rapidly than that of HBNODE as T − t increases.
A more detailed connection between the adjoint state and learning long-range dependencies
is provided in [59].

123

 54 Page 18 of 27 Journal of Scientific Computing (2023) 95:54

Fig. 9 Comparison of modes reconstruction for NODE and HBNODE-based ROMs for learning steady-state
VKS dynamics. HBNODE captures the peaks of the dominant POD modes better than NODE. Before and
after the vertical blue line stands for training and validation, respectively

Fig. 10 Contrasting training and validation loss of NODE and HBNODE for learning ROMs of transient
to steady-state VKS dynamics. The progress made by the NODE is significantly reduced by the vanishing
gradient. HBNODE has a much slower decaying gradient and is able to continue to make progress in both
training and validation sets

Fig. 11 Comparison of the adjoint states for the NODE and HBNODE in learning multi-input-single-output.
The NODE adjoint state vanishes substantially faster than HBNODE

123

Journal of Scientific Computing (2023) 95:54 Page 19 of 27 54

Fig. 12 Comparison of modes reconstruction for NODE and HBNODE-based ROMs for learningmulti-input-
single-output task. NODE is able to reliably learn the first two dominant modes but is unable to capture the
steady-state dynamics, having a much larger frequency and introducing substantial lag into the oscillation
frequency. HBNODE is able to more reliably capture the steady-state dynamics with slightly larger frequency
and developing lag much later than the NODE component. Before and after the vertical blue line stands for
training and validation, respectively

Fig. 13 Comparison of NFEs and stiffness for the NODE and HBNODE in learning transient to steady-state
VKS dynamics. NODE requires more NFEs in each forward pass than HBNODE as the NODE is much stiffer
than HBNODE. The stiffness of NODE varies sharply as training goes on, while the stiffness of HBNODE
decays during the training

In terms of the predictive performance, as shown in Fig. 12 , the HBNODE predictor
captures the peaks of the oscillatory dynamics better than NODEs, especially in the first two
modes α1 and α2. Moreover, the prediction error using NODE is much larger than that of
HBNODE, and the prediction error amplifies as the prediction time goes, in particular, for
modes α3 and α4.

Another primary advantage of HBNODE over NODE-based ROMs lies in computational
efficiency, which is theoretically supported by the discussion in Sect. 3.2.1. As shown in
Fig. 13a, the forward NFE required in each forward pass by HBNODE is consistent smaller
than that of NODE. We also monitor the stiffness of both NODE and HBNODE during the
learning process, and Fig. 13b shows that the stiffness of NODE oscillates and maintains
much larger than HBNODE.

123

 54 Page 20 of 27 Journal of Scientific Computing (2023) 95:54

Fig. 14 The decay of relative information content for POD and DMD of the KPP dataset. The rapid decay in
the modes indicates the problem is suitable for POD and DMD

Fig. 15 The dominant POD modes for the KPP data. The oscillations of the modes decay rapidly and have
a very low frequency, making it challenging for learning compared to the quasi-periodic oscillations of the
VKS dataset

6.2 KPPModel

We obtain the KPP dataset by simulating the FOM presented in Sect. 4.2 for 1000 timesteps
(Nt = 1000). The KPP model is well-suited for reduced-order modeling due to the rapidly
decaying eigenvalues in both POD and DMD, seeing Fig. 14 . However, we found in our
experiments that it is particularly difficult to capture the dynamics using machine learning
architectures due to the slow decaying ROM dynamics depicted in Fig. 15.

In our experiments, we note that the non-lifted DMD continuously deforms the center of
mass in a way that defies the physical constraints of the system. A comparison of lifted and
non-lifted DMD predictions and POD predictions are shown in [3]. To lift DMD, we utilized
the lifting functions {cos(x), sin(x), x2, x3} with x = (x, y). Figure14 shows that the POD

123

Journal of Scientific Computing (2023) 95:54 Page 21 of 27 54

Table 3 The hyperparameters of
NODE and NODE for the
learning ROMs of KPP model

Hyper-parameter Value

Layers 2

Hidden layers 64

Sequence length 4

Learning rate .01

Epochs 500

Fig. 16 Comparison of theKPPmodes prediction usingNODEandHBNODE.HBNODE is better at predicting
the dynamics for the validation set than NODE. Before and after the vertical blue line stands for training and
validation, respectively

modes decay faster than the lifted DMDmodes. The dominant 24 DMDmodes correspond to
97% of the relative information content; in contrast, the dominant 8 POD modes correspond
to 99% of the relative information value.

We train the pipeline depicted in Fig. 3 for learning multi-input-single-output dynamics.
The data is constructed from the 8 dominant POD modes on the time interval from t = 0
to 1000. The data is sequenced so that every 4 preceding time step is used to predict the
5-th time step. The training data consists of the POD modes from t = 0 to 799 and the
training labels consist of POD modes from t = 5 to 800. The validation data utilizes data
from t = 800 to 999 and the validation labels consist of data from t = 805 to 1000. The
model’s hyperparameters are the same for NODE and HBNODE components and are given
in Table 3.

6.2.1 Results and comparison to existing ROMs

We compare the prediction of NODE and HBNODE against ground truth in Fig. 16 , and
we see that HBNODE performs remarkably better than NODE in predicting the dynamics.
In particular, HBNODE is able to properly capture the oscillation dynamics of the modes,
unlike NODE. Figure17shows that HBNODE has a much smaller training and validation
loss than that of NODE.

123

 54 Page 22 of 27 Journal of Scientific Computing (2023) 95:54

Fig. 17 Comparison of the training and validation loss ofNODE andHBNODE for learningROMs for theKPP
model. NODE is unable to make progress due to a rapidly vanishing gradient, impeding learning long-range
dependencies

Table 4 The hyperparameters of
NODE and NODE for the
learning ROMs of Euler
equations

Hyper-parameter Value

Layers 6

Hidden layers 16

Learning rate .01

Epochs 100

6.3 Euler Equations for Fluids Modeling

We further consider learning reduced-order models for simulating the Euler equations, where
the dataset is obtained by simulating the full-ordermodel presented in Sect. 4.3with a discrete
ensemble of parameters η1, . . . , ηM with M = 100, over 180 timesteps. Two different
parameters η values can produce rather different dynamics, as evidenced in Fig. 18 . The
Euler equations data is unique in the sense that it may be segmented based on these initial
conditions. The ROM is generated by taking the dominant 8 POD modes for each parameter
ηi on the time interval from t = 0 to 180. This data is shuffled randomly among the initial
parameter ηi to no longer increase sequentially. The average relative information content
across all 100 values of η is ∼ 95%.

In this task, we train the machine learning pipeline shown in Fig. 3 for learning multi-
input-multi-output dynamics. The training dataset comprises the dominant 8 POD modes
for each of the training parameters among η1, . . . , ηtrain. We use 90 of the 100 parameters,
η1, . . . , η90, for training and the rest for validation. The training input consists of the dominant
8 POD modes for each of the 90 training parameters on the time interval from t = 0 to
150. The training labels consist of the dominant 8 POD modes for each of the 90 training
parameters time steps from t = 151 to 180. The validation dataset is composed of the
validation parameters η91, . . . , η100. The validation input and labels are segmented using the
same intervals as the training data.

The model uses a GHBNODE component with a hyperbolic tangent activation function.
All other experimental settings are the same as in the KPP dataset, and the tuned hyper-
parameters are listed in Table 4. The NODE and HBNODE models are trained and validated
over the same data shuffling.

123

Journal of Scientific Computing (2023) 95:54 Page 23 of 27 54

Fig. 18 The Euler Equations data at time step t = 50 with two different initial parameters, η0 and η50.
Variations in the parameter η produce widely varying dynamics and as a result varying POD modes. The
objective of this task is to predict the dynamics for unseen parameters η using a set of training parameters
ηtrain

6.3.1 Results and comparison to existing models

We compare the prediction of NODE and GHBNODE for a randomly selected parameter
ηtrain from the training set and a randomly selected parameter ηvalid from the validation set.
The modes for the training parameter ηtrain are shown in Fig. 19 , and the modes for the
validation parameter ηvalid are shown in Fig. 20 . We observe that the POD modes for the
parameter ηtrain in Fig. 19 differ from those for ηvalid primarily in amplitude rather than shape.
As a result, a poor prediction model will have a sudden discontinuity between the input and
prediction values. The transition point between the input and the prediction is indicated in
Figs. 19 and 20 by the vertical blue line.

Figure 19 shows the dominant 4 PODmodes for ηtrain from the training set. The predictive
capabilities of GHBNODE significantly outperform the NODE model. In particular, for α2

and α3, we observe that the NODE has a large jump discontinuity at the transition between
the input and prediction. The GHBNODEmodes are smoother in the transition region, which
indicates the ability of the GHBNODE model to distinguish between separate parameters.

In Fig. 20, we observe the same characteristics for NODE and GHBNODE. NODE is
unable to accurately predict the output for the parameter ηvalid from the validation set. In
particular, for α3 of the validation parameter, the NODE prediction is even less smooth than
that of the training parameter shown in Fig. 19. In this experiment, we observe that NODE
is unable to distinguish data with varying parameters as accurately as GHBNODE.

123

 54 Page 24 of 27 Journal of Scientific Computing (2023) 95:54

Fig. 19 For a randomly selected initial parameter ηtrain, we plot the dominant four modes and their predicted
data using NODE and GHBNODE. The blue vertical line separates the input and output data. The ground
truth is in black, while the prediction data is in dashed red. GHBNODE can learn the dynamics of α2 and α1
for the parameterized data significantly better than NODE. This is evidenced by the fact that NODE predicts
the inflection point of α2 too early

Fig. 20 For the randomly selected initial parameter ηvalid, we plot the dominant fourmodes and their predicted
data usingNODEandGHBNODE.Theblue vertical line separates the input and output data. The ground truth is
in black, while the prediction data is in dashed red. HBNODE can predict the data for unseen parameterizations
much better than NODE

7 Concluding Remarks

This paper employs the recently developed HBNODEs and their generalization for learning
POD coefficients for model reduction. We analyze through simple linearized models and
empirically verify the advantages of HBNODEs over existing NODEs. In particular, HBN-
ODEs enjoy the following advantages that imply practical benefits for learning POD-based
ROMs, including 1) The deep learning model is continuous-depth, providing flexibility in
learning irregularly-sampled time series and faithful to the continuous profiling of the under-
lying physical models. 2) Both the forward and adjoint ODEs of HBNODEs are of the
heavy-ball style, accelerating both training and testing of the machine learning procedure.
And 3) HBNODEs can learn long-range dependencies effectively, capturing intrinsic pat-
terns from data. There are numerous avenues for future works, and two particular interesting
directions in our mind are 1) Improving HBNODEs, particularly replacing the fine-tuned or
learned damping parameter with an adaptive one that are motivated by certain optimization

123

Journal of Scientific Computing (2023) 95:54 Page 25 of 27 54

algorithms with adaptive momentum [54, 55, 57], and 2) Applying HBNODE-based ROMs
to model reduction arising from scientific challenges, especially when we do not have the
ground truth governing equation of the dynamical systems.

Acknowledgements This material is based on research sponsored by NSF grants DMS-1848508, DMS-
1924935, DMS-1952339, DMS-2110145, DMS-2111117, DMS-2152762, and DMS-2208361, DOE grant
DE-SC0021142 and DE-SC0023490, and AFOSR FA9550-20-1-0338. We also acknowledge support from a
seed grant from the College of Science at the University of Utah.

Data Availability All data and code related to this paper are available at https://github.com/JustinBakerMath/
pod_hbnode/.

References

1. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. Advances in Design and Control.
Society for Industrial and Applied Mathematics (2005)

2. Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory Model Reduction of Large-Scale Dynamical
Systems. In: Mohammadpour, J., Grigoriadis, K.M. (eds.) Efficient Modeling and Control of Large-Scale
Systems, pp. 3–58. Springer, Boston, MA (2010)

3. Baker, J., Cherkaev, E., Narayan,A.,Wang, B,: Learning pod of complex dynamics usingheavy-ball neural
odes: Animations. https://www.github.com/JustinBakerMath/pod_hbnode/blob/master/README.md#
animations

4. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult.
IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

5. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for
parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

6. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for
parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

7. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent
flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

8. Bittner, L., Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishechenko, E.F.: the mathematical
theory of optimal processes. VIII + 360 S. New York/London 1962. Wiley. Preis 90/-. ZAMM - Journal
of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 43(10-
11):514–515, (1963)

9. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In:
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems, vol. 31. Curran Associates, Inc., New York (2018)

10. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078 (2014)

11. Cohen, M.A., Grossberg, S.: Absolute stability of global pattern formation and parallel memory storage
by competitive neural networks. IEEE Trans. Syst. Man Cybern. SMC–13(5), 815–826 (1983)

12. Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81(3), 1131
(2009)

13. Dormand, J.R., Prince, P.J.: A family of embedded runge-kutta formulae. J. Comput. Appl. Math. 6(1),
19–26 (1980)

14. Dupont, E., Doucet, A., Teh,Y.W.:Augmented neural odes. InAdvances inNeural Information Processing
Systems, volume 32. Curran Associates, Inc. (2019)

15. Dutta, S., Rivera-Casillas, P., Cecil, O.M., Farthing,M.W, Perracchione, E., Putti,M.:Data-driven reduced
order modeling of environmental hydrodynamics using deep autoencoders and neural odes. arXiv preprint
arXiv:2107.02784, (2021)

16. Dutta, S., Rivera-Casillas, P., Farthing, M.W.: Neural ordinary differential equations for data-driven
reduced order modeling of environmental hydrodynamics. arXiv preprint arXiv:2104.13962 (2021)

17. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys.
Fluids A 3(7), 1760–1765 (1991)

18. Gugercin, S., Antoulas, A.C.: A Survey of Model Reduction by Balanced Truncation and Some New
Results. Int. J. Control 77(8), 748–766 (2004)

123

https://github.com/JustinBakerMath/pod_hbnode/
https://github.com/JustinBakerMath/pod_hbnode/
https://www.github.com/JustinBakerMath/pod_hbnode/blob/master/README.md#animations
https://www.github.com/JustinBakerMath/pod_hbnode/blob/master/README.md#animations
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/2107.02784
http://arxiv.org/abs/2104.13962

 54 Page 26 of 27 Journal of Scientific Computing (2023) 95:54

19. Harten,A., Lax, P.D., vanLeer,B.:OnUpstreamDifferencing andGodunov-TypeSchemes forHyperbolic
Conservation Laws. SIAM Rev. 25(1), 35–61 (1983)

20. He, K., Zhang, X., Ren, S., Sun, J: Identity mappings in deep residual networks. In European Conference
on Computer Vision, pp. 630–645 (2016)

21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
23. Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: convergence and generalization in neural

networks. InProceedings of the 32nd InternationalConference onNeural InformationProcessingSystems,
pp. 8580–8589, (2018)

24. Kani, J.N., Elsheikh, A.H.: Dr-rnn: A deep residual recurrent neural network for model reduction. arXiv
preprint arXiv:1709.00939, (2017)

25. Nagoor Kani, J., Elsheikh, A.H.: Reduced-order modeling of subsurface multi-phase flow models using
deep residual recurrent neural networks. Transp. Porous Media 126(3), 713–741 (2019)

26. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
27. Kuramoto, Y.: Diffusion-Induced Chaos in Reaction Systems. Prog. Theor. Phys. Suppl. 64, 346–367

(1978). (02)
28. Kurganov, A., Petrova, G., Popov, B.: Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex

Hyperbolic Conservation Laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007)
29. Lechner, M., Hasani, R.: Learning long-term dependencies in irregularly-sampled time series. arXiv

preprint arXiv:2006.04418, (2020)
30. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and

its applications-part i: Theory. J. Sound Vib. 252(3), 527–544 (2002)
31. Lui, H.F.S., Wolf, W.R.: Construction of reduced-order models for fluid flows using deep feedforward

neural networks. J. Fluid Mech. 872, 963–994 (2019)
32. Ma, C., Wang, J., et al.: Model reduction with memory and the machine learning of dynamical systems.

arXiv preprint arXiv:1808.04258, (2018)
33. Mannarino, A., Mantegazza, P.: Nonlinear aeroelastic reduced order modeling by recurrent neural

networks. J. Fluids Struct. 48, 103–121 (2014)
34. Massaroli, S., Poli, M., Park, J., Yamashita, A., Asama, H.: Dissecting neural odes. In: Larochelle, H.,

Ranzato,M.,Hadsell, R.,Balcan,M.F., Lin,H. (eds.)Advances inNeural InformationProcessingSystems,
vol. 33, pp. 3952–3963. Curran Associates, Inc., New York (2020)

35. Maulik, R., Lusch, B., Balaprakash, P.: Reduced-order modeling of advection-dominated systems with
recurrent neural networks and convolutional autoencoders. Phys. Fluids 33(3), 037106 (2021)

36. Mohebujjaman, M., Rebholz, L.G., Iliescu, T.: Physically constrained data-driven correction for reduced-
order modeling of fluid flows. Int. J. Numer. Meth. Fluids 89(3), 103–122 (2019)

37. Moin, P., Mahesh, K.: Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech.
30(1), 539–578 (1998)

38. Mou, C., Liu, H., Wells, D.R., Iliescu, T.: Data-driven correction reduced order models for the quasi-
geostrophic equations: A numerical investigation. Int. J. Comput. Fluid Dyn. 34(2), 147–159 (2020)

39. Murata, T., Fukami, K., Fukagata, K.: Nonlinear mode decomposition with convolutional neural networks
for fluid dynamics. J. Fluid Mech. 882, A13 (2020)

40. Nguyen, T., Baraniuk, R., Bertozzi, A., Osher, S., Wang, B.: MomentumRNN: Integrating momentum
into recurrent neural networks. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.)
Advances in Neural Information Processing Systems, vol. 33, pp. 1924–1936. Curran Associates, Inc.,
New York (2020)

41. Norcliffe, A., Bodnar, C., Day, B., Simidjievski, N., Lió, P.: On second order behaviour in augmented
neural odes. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural
Information Processing Systems, vol. 33, pp. 5911–5921. Curran Associates, Inc., New York (2020)

42. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In
International Conference on Machine Learning, pp. 1310–1318, (2013)

43. Pearson, K.: Liii on lines and planes of closest fit to systems of points in space. London Edinburgh Dublin
Philosoph. Magaz. J. Sci. 2(11), 559–572 (1901)

44. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math.
Math. Phys. 4(5), 1–17 (1964)

45. Rojas, C.J.G., Dengel, A., Ribeiro, M.D.: Reduced-order Model for Fluid Flows via Neural Ordinary
Differential Equations. arXiv:2102.02248 [physics], February (2021). arXiv: 2102.02248

46. Rosenblatt, F.: Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Technical
report, Cornell Aeronautical Lab Inc Buffalo NY, (1961)

123

http://arxiv.org/abs/1709.00939
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2006.04418
http://arxiv.org/abs/1808.04258
http://arxiv.org/abs/2102.02248
http://arxiv.org/abs/2102.02248

Journal of Scientific Computing (2023) 95:54 Page 27 of 27 54

47. Rubanova, Y., Chen, R.T.Q., Duvenaud, D.K: Latent ordinary differential equations for irregularly-
sampled time series. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., (2019)

48. San, O., Maulik, R.: Neural network closures for nonlinear model order reduction. arXiv preprint
arXiv:1705.08532, (2017)

49. San, O., Maulik, R.: Machine learning closures for model order reduction of thermal fluids. Appl. Math.
Model. 60, 681–710 (2018)

50. San, O., Maulik, R., Ahmed, M.: An artificial neural network framework for reduced order modeling of
transient flows. Commun. Nonlinear Sci. Numer. Simul. 77, 271–287 (2019)

51. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656,
5–28 (2010)

52. Sivashinsky, G.I.: On flame propagation under conditions of stoichiometry. SIAM J. Appl. Math. 39(1),
67–82 (1980)

53. Sivashinsky, G.I.: Nonlinear analysis of hydrodynamic instability in laminar flames-i. derivation of basic
equations. Acta Astronaut. 4(11), 1177–1206 (1977)

54. Sun, T., Ling, H., Shi, Z., Li, D., Wang, B.: Training deep neural networks with adaptive momentum
inspired by the quadratic optimization. arXiv preprint arXiv:2110.09057, (2021)

55. Wang, B., Nguyen, T.M., Bertozzi, A.L., Baraniuk, R.G., Osher, S.J.: Scheduled restart momentum for
accelerated stochastic gradient descent. arXiv preprint arXiv:2002.10583, (2020)

56. Wang, B., Xia, H., Nguyen, T., Osher, S.: How does momentum benefit deep neural networks architecture
design? a few case studies. arXiv preprint arXiv:2110.07034, (2021)

57. Wang,B.,Ye,Q.: Stochastic gradient descentwith nonlinear conjugate gradient-style adaptivemomentum.
arXiv preprint arXiv:2012.02188, (2020)

58. Wang, M., Li, H.-X., Chen, X., Chen, Y.: Deep learning-based model reduction for distributed parameter
systems. IEEE Trans. Syst. Man Cybern. Syst. 46(12), 1664–1674 (2016)

59. Xia, H., Suliafu, V., Ji, H., Nguyen, T., Bertozzi, A., Osher, S.,Wang, B.: Heavy ball neural ordinary differ-
ential equation. In Advances in Neural Information Processing Systems, volume 34. Curran Associates,
Inc., (2021)

60. You, D., Moin, P.: A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy
simulation in complex geometries. Phys. Fluids 19(6), 065110 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1705.08532
http://arxiv.org/abs/2110.09057
http://arxiv.org/abs/2002.10583
http://arxiv.org/abs/2110.07034
http://arxiv.org/abs/2012.02188

	Learning Proper Orthogonal Decomposition of Complex Dynamics Using Heavy-ball Neural ODEs
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 POD-Based Reduced-Order Modeling
	2.1 Notation
	2.2 POD Snapshots

	3 Heavy-Ball Neural ODEs
	3.1 Neural ODEs
	3.2 Heavy-Ball Neural ODEs
	3.2.1 Computational advantages of HBNODE vs. NODE
	3.2.2 Generalized HBNODEs (GHBNODEs)
	3.2.3 (G)HBNODEs learn long-range dependencies effectively

	4 Benchmarks and Data Preparation
	4.1 VKS Model
	4.2 KPP Model
	4.3 Euler Equations for Fluids Modeling

	5 Learning Pipeline
	5.1 Learning-Based Reduced-Order Modeling
	5.2 A Baseline Comparison: Dynamic Mode Decomposition (DMD)

	6 Experimental Results
	6.1 Transient and Steady-State VKS
	6.1.1 Results and comparison to existing ROMs

	6.2 KPP Model
	6.2.1 Results and comparison to existing ROMs

	6.3 Euler Equations for Fluids Modeling
	6.3.1 Results and comparison to existing models

	7 Concluding Remarks
	Acknowledgements
	References

