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Abstract—Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely

applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data

uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse

complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that

arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying

structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of

statistical summary maps – the probabilistic map, the significance map, and the survival map – to characterize the uncertain behaviors

of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.

Index Terms—Morse complexes, uncertainty visualization, topological data analysis

Ç

1 INTRODUCTION

VISUALIZATIONS play an integral role in effective data sto-
rytelling and decision-making. Understanding the

effects of data uncertainty on visualizations has been recog-
nized as one of the top research challenges [1], [2], [3], [4]. In
this paper, we focus on the notion of aleatoric uncertainty,
which arises due to randomness in data acquisition and
processing, and “can not be reduced or removed by model
improvements or increases in measurement accuracy” [5].
Uncertainty visualization focuses on improving our ability
to reason about the data by communicating their aleatoric
uncertainties [5], and it has been shown to be effective in
practice [6]. A common practice to mitigate the effects of
uncertainty is to combine multiple simulations of a phe-
nomenon (e.g., with varying parameters and/or different
instruments) into an ensemble dataset; see [7] for a survey
on ensemble visualization.

In this paper, we investigate uncertainty in Morse com-
plexes for an ensemble of 2D scalar fields. Morse complexes
and Morse-Smale complexes [8] are topological descriptors
based on Morse theory [9], [10] that provide abstract repre-
sentations of the gradient flow behavior of scalar fields [11].
Morse complexes [8] are the building blocks for Morse-
Smale complexes, which have shown great utility in numer-
ous scientific applications, from identifying burning regions
in combustion experiments [12] to counting bubbles in

mixing fluids [13]. They also appear in partition-based
regression [14], [15] and statistical inference [16].

Given a Morse function f defined on a manifold M, f :
M ! R, the Morse complex (and Morse-Smale complex) of
f decomposes M into regions (referred to as cells) with uni-
form gradient behavior (see Section 2 for definitions). Morse
and Morse-Smale complexes have been extensively studied
under both piecewise-linear (PL) and combinatorial settings
(see Section 3). However, visualization of these topological
descriptors in the face of uncertainty remains challenging.

The uncertainties of Morse complexes capture informa-
tion about their accuracy, reliability, and variability [1]. In
terms of accuracy, Gyulassy et al. [17] have introduced algo-
rithms that improve upon the geometric quality of Morse-
Smale complexes. Their algorithms are shown to produce
the correct results on average, and the standard deviation
approaches zero with increasing mesh resolution. In terms
of variability, Thompson et al. [18] have briefly mentioned a
Monte Carlo sampling method to quantify variations in the
boundaries of Morse cells.

Motivated by limited prior work in encoding uncertainty
of topological descriptors [19], [20], we study the uncertainty
in Morse complexes for an ensemble of 2D scalar fields. Sup-
pose n ensemble members are given as scalar fields defined
on a shared 2D domain, f1; . . . ; fn : M ! R, where M � R2.
We study an ensemble of Morse complexes M1; . . . ;Mn com-
puted from these functions. We assume that each ensemble
member fi is drawn from some distribution that is concen-
trated around a (potentially unknown) ground truth function
f , i.e., fiðxÞ � fðxÞ � �iðxÞ for any x 2 M (for some �iðxÞ � 0).

In this work, we propose vector-valued statistical summary
maps for encoding and visualizing structural variations of
Morse complexes. Specifically, we introduce three types of sta-
tistical summary maps to characterize the uncertain behavior
of gradient flows and to be utilized in uncertainty visualization
for an ensemble: the probabilistic map, the significance map,
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and the survival map. We give an overview of our computa-
tional pipeline in Fig. 1 using a toy example from the Ackley
function [21].

In our first type of statistical summary map, the probabi-
listic map P : M ! Rn, we quantify the uncertainty based on
the destination of gradient flows.We assume that by combin-
ing persistence simplification [22], [23] with certain labeling
strategy (e.g., via k-means clustering, mandatory critical
points [24], or Morse mapping [25]), the local maxima of
each ensemble member share the same set of labels, denoted
as ½l� ¼ f1; 2; . . . ; lg. For the Ackley dataset, we have l ¼ 9
maxima after persistence simplification (see Figs. 1d, 1e, 1f,
1g, 1h, and 1i). Given such a shared labeling, for each point
x 2 M in the domain, we compute a probability distribution
of its gradient destination across the ensemble. We visualize
the probabilistic map using color blending (i.e., weighted
mean values) in Figs. 1j, 1k, and 1l, where each color repre-
sents a distinct label; see Section 4 for details.

In our second type of statistical summary map, the signif-
icance map I : M ! Rn, we quantify the uncertainty based
on the persistence associated with the destination of gradi-
ent flows. We assign a significance measure to each point x 2
M, which is the persistence value of a maximum to which
the gradient flow originating at x terminates. We visualize
the significance map using point-wise mean, variance, and
entropy in Figs. 1m, 1n, 1o, respectively; see Section 5 for
details. In our third type of statistical summary map, the
survival map S : M ! Rn, we study directional changes of
gradient flows as a result of persistence simplification. We
assign a survival measure for each point x 2 M based on how
frequently it changes its gradient destinations during a

hierarchical simplification process. We visualize the sur-
vival map (Figs. 1p, 1q, and 1r) using its point-wise mean,
variance, and entropy; see Section 6 for details.

Contribution. In summary:

� We quantify the uncertainties in gradient behaviors
across a 2D Morse complex ensemble using a proba-
bilistic map P, a significance map I , and a survival
map S.

� These vector-valued statistical summary maps cap-
ture the uncertainty based upon the variations
among gradient destinations (P), the persistence of
these destinations (I ), and the directional changes of
gradient flows (S), respectively.

� These maps employ information obtained during
persistence simplification of each ensemble member
at a fixed scale (P and I ) and across all scales (S),
respectively.

� Weapply various uncertainty visualization techniques,
such as mean-, variance-, and entropy-based visualiza-
tion, as well as interactive probability queries [26] to
our statistical summarymaps, to understand theMorse
complex structural uncertainty in synthetic and simu-
lation datasets.

2 TECHNICAL BACKGROUND

Our approach has two technical gradients, namely Morse
complexes and persistence simplification.

Morse Complexes.We focus on the construction of 2DMorse
complexes. For simplicity, let M � R2 be a 2D smooth

Fig. 1. An overview of our computational pipeline with the Ackley dataset: (a) A 3D visualization of the ground truth Ackley function; (b) an input
ensemble of 2D Morse complexes associated with the functions sampled with noise from the ground truth; (c) mandatory local maxima of the ensem-
ble; (d) the Morse complex of the ground truth function; (e) the Morse complex of the mean field; (f-i) two ensemble members before (left) and after
(right) persistence simplification; (j-l) a probabilistic map visualized using color blending (j) with certain (k) and uncertain regions (l); (m-o) a signifi-
cance map visualized with its point-wise mean (m), variance (n), and entropy (o); and (p-r) a survival map visualized with its point-wise mean (p), var-
iance (q), and entropy (r) for the input ensemble. For the yellow-blue diverging colormap, blue means low and yellow means high value.
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manifold with a boundary (we further ignore the boundary
condition for most of our discussion). Let f : M ! R be a
Morse function;rf denotes its gradient. A point x 2 M is con-
sidered critical ifrfðxÞ ¼ 0; otherwise it is regular. At any reg-
ular point x, the gradient is well defined, and integrating it in
both ascending and descending directions traces out an inte-
gral line, which is a maximal path whose tangent vectors
agree with the gradient [27]. Each integral line begins and
ends at critical points. The descending manifold surrounding a
local maximum is defined as all the points whose integral
lines end at the local maximum. The descending manifolds
decompose the domain into 2-cells, whereas critical points are
the 0-cells, and integral lines connecting the critical points are
the 1-cells. As illustrated in Fig. 2a, these cells form a complex
called a Morse complex of f , denoted asM ¼ Mf (whenever f
is clear from the context). In particular, all the points inside a
single 2-cell have their local gradient flows (integral lines)
ending at the same localmaximum (Fig. 2b).

Persistence and Persistence Simplification. Persistent homol-
ogy is a tool in topological data analysis for quantifying the
significance of topological features. It is widely used for data
de-noising through persistence simplification [22]. In visuali-
zation, persistence has been used to simplify topological
structures, such as Morse and Morse-Smale complexes [8],
[28]. For a 2D scalar function, we create a hierarchical Morse
complex [22] by simplifying persistence pairs (in this case,
maximum-saddle pairs) in the order of increasing persis-
tence values [23]. Persistence assigned to each critical point
in the complex intuitively describes the scale at which a criti-
cal point disappears through simplification. Persistence
pairs can be simplified by successively canceling pairs of crit-
ical points connected in the complex with minimal persis-
tence while avoiding certain degenerate situations (see [23]
for implementational details).

Fig. 3 illustrates the process of persistence simplification
for a 2D Morse complex. A saddle-maximum pair ðz; xÞ
with the minimal persistence in Fig. 3a is simplified in
Fig. 3c (the respective 2D views are shown in Figs. 3b and
3d). The process merges the orange cell into the green cell.
The gradient flows of all points in the orange cell change
their destination from x to y.

3 RELATED WORK

Representations of Morse-Smale Complexes. Morse and Morse-
Smale complexes are defined for functions on smooth

d-manifolds. Moving from the smooth category to the dis-
crete category requires considerable effort to ensure struc-
tural integrity and to simulate differentiability [8]. In
general, Morse and Morse-Smale complexes can be repre-
sented explicitly or implicitly [23]. The first, an explicit
representation, is computed in 2D [8] and 3D [29] for piece-
wise linear (PL) functions defined on triangulated domains.
The second, an implicit representation, originates from Dis-
crete Morse theory [30] where a Morse-Smale complex is
implicitly represented by a combinatorial gradient field [23].
We present our results for the explicit representations of
Morse complexes, although our methods do not depend
upon the choice of the representation. Note that in image
analysis, the watershed algorithm [31] is analogous to the
computation of Morse complexes in low dimensions.

Uncertainty Visualization of Critical Points and Gradient
Fields.The critical points and induced gradient field of a scalar
function characterize the structure of its correspondingMorse
complex. A few recent works have focused on data uncer-
tainty and its effects on the critical points and gradient fields.
Mihai and Westermann [32] proposed likelihood visualiza-
tions of the critical points for an uncertain scalar field, which
was extended to Gaussian-distributed uncertain scalar fields
by Liebmann and Scheuermann [33]. Huettenberger et al. [34]
exploited the idea of Pareto optimality for predicting the posi-
tions of local extrema for multifield data. G€unther et al. [24]
devised mandatory critical regions as a way to segment the
domain of uncertain data, where at least one critical point of
an unknown underlying function is guaranteed to exist
within a mandatory critical region. Favelier et al. [35] devel-
oped persistence-based clustering of ensemble members fol-
lowed bymandatory critical regions for visualizing positional
uncertainties of critical points. In this work, we leverage the
idea of mandatory critical regions in our probabilistic map
(Section 4).

Pfaffelmoser et al. [36] analyzed the variability in gradient
fields induced by uncertain scalar fields, where gradients are
computed using the notion of central differences. Otto et al.

Fig. 2. (a) Descending manifolds forming the Morse complex of f. Col-
ored regions are 2-cells, gray lines are 1-cells. (b) A zoomed-in view of a
2-cell. The white arrows in (b) depict the gradient flows. Red, blue, and
gray points are 0-cells that denote local maxima, local minima, and sad-
dles, respectively.

Fig. 3. A 2DMorse complex before (a, b) and after (c, d) persistence sim-
plification. Both 3D (a, c) and 2D views (b, d) of the Morse complexes are
shown. A saddle-maximum pair ðz; xÞ in (a) is simplified in (c). White
arrows depict the gradient flows.
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[37], [38] proposed Monte Carlo gradient sampling for visu-
alizing variations of pathlines in 2D and 3D uncertain vector
fields. Bhatia et al. [39] studied edge maps for error analysis of
uncertain gradient flows. Nagraj et al. [40] proposed a mea-
sure to quantify gradient uncertainty for multifield data.

Uncertainty Visualization of Topological Descriptors. A
major challenge in visualizing topological descriptors is to
encode data uncertainty. Various uncertainty visualization
techniques [41], [42], [43] have been proposed to explore
structural variations of contour trees for noisy data. Recent
work by Yan et al. [20] studied structural averages of merge
trees in the context of uncertainty visualization. The analy-
sis and visualization of topological variations in the context
of uncertain data remains an open research challenge [19].

Several studies have addressed challenges associated
with level sets visualization in the face of uncertainty,
including contour boxplots [44], probabilistic marching
cubes [45], [46], and level set extraction from uncertain data
[47], [48], [49]. Multicharts for comparative 3D ensemble
visualization [50], dynamic volume lines [51], Gaussian
mixture data representations [52], and statistical volume
visualization [53] are a few important contributions in vol-
ume rendering for visualizing uncertainty.

4 PROBABILISTIC MAP

Using the probabilistic map P : M ! Rn, we quantify the
uncertainty based on the destinations of gradient flows.
Specifically, for each point x 2 M in the domain, we com-
pute a probability distribution of its gradient destination
across the ensemble. Given an ensemble of Morse com-
plexes M1; � � � ;Mn, we combine persistence simplification
with a certain labeling strategy to obtain a shared label set
for local maxima of the ensemble members. Let ½l� ¼
f1; 2; . . . ; lg denote such a label set. In other words, for each
ensemble member Mi, its local maxima have labels that
form a subset of ½l�. Now fix Mi, we trace the gradient flow
of each point x 2 M toward its destination, a local maxi-
mum y 2 M, and assign to x the label of y; let ai : M ! ½l�
denote such an assignment. The probabilistic map P : M !
Rn is defined as a discrete probability distribution of values
in a1ðxÞ;a2ðxÞ; . . . ;anðxÞð Þ for each x 2 M.

Ackley Dataset. We describe our pipeline for the probabi-
listic map via a synthetic dataset, called the Ackley dataset.
Fig. 1a visualizes the Ackley function [21] f as the ground
truth. f is made into a Morse function using simulation of
simplicity [54]. f contains nine (local) maxima, which pro-
duce nine 2-cells in its corresponding Morse complex in
Fig. 1d. We generate an ensemble of uncertain scalar fields
ffigni¼1 by mixing f with a small amount of noise sampled
from a uniform distribution (i.e., �iðxÞ � Uð0; 0:3	 pfÞ),
where pf is the persistence of the smallest topological fea-
ture (a maximum-saddle pair) in f . Two ensemble members
fiðxÞ � fðxÞ � �iðxÞ are shown in Figs. 1f and 1h, respec-
tively. For comparison, we compute the mean field of the
ensemble, �f ¼ ðPi fiÞ=n and visualize its Morse complex in
Fig. 1e. The Morse complex of �f (Fig. 1e) appears similar to
the ground truth (Fig. 1d); however, it does not capture
structural variations among the boundaries of 2-cells.

Persistence Simplification and Labeling. First, we perform a
pre-processing step that combines persistence simplification

with certain labeling strategy such that the maxima of each
ensemble member share the same set of labels, denoted as
½l� ¼ f1; 2; . . . ; lg. There are three labeling strategies, via
k-means clustering, mandatory maxima [24], or Morse
mapping [25].

For the strategy based on k-means clustering, we use a
set of n persistence graphs (Fig. 4a) derived for n ensemble
members, each of which shows the number of maxima as a
function of persistence [55], to guide the selection of a sim-
plification scale. For a fixed Mi, each maximum has its asso-
ciate persistence value that indicates at which scale this
feature would be simplified, and thus, represents its signifi-
cance [56]. The shape of the persistence graph, in particular,
a plateau, indicates a stable range of scales to separate noise
from features [56]. Combining the persistence graphs
(Fig. 4a) and spaghetti plots of 1-cells (Fig. 4b) helps us iden-
tify a scale for which we observe an agreement in the num-
ber maxima across the ensemble. We demonstrate such a
process in Fig. 4 where l is determined to be 9 with the aid
of persistence graphs and spaghetti plots. We then apply
k-means clustering (setting k ¼ l) to the maxima across all
ensemble members, where each maximum of a simplified
~Mi is assigned a label in ½l�.

For the strategy based on mandatory maxima, we apply
the technique of G€unther et al. [24] to an ensemble of uncer-
tain Ackley functions ffigni¼1, resulting in l ¼ 9 mandatory
maxima, which are represented by different colors in
Fig. 1c. Mandatory maxima are defined to be spatial regions
and function ranges where local maxima have to occur
across the ensemble [24]. We then apply persistence simpli-
fication to each Morse complex Mi until we are left with l
maxima. Subsequently, we associate each maxima to its
nearest mandatory maxima to obtain its label in ½l�.

For the strategy based on Morse mapping, we employ a
method that has been applied to the tracking of critical
points [25]. It builds upon the partition of the domain pro-
vided by a Morse complex. For a pair of Morse complexes
M1 and M2, we say a maxima x 2 M1 is weakly mapped to a
maxima y 2 M2 if x belongs to the 2-cell surrounding y in
M2. If x is mapped to y and y is mapped to x, then x is
strongly mapped to y. We choose an ensemble member with a
minimum number of maxima as a pivot Mp. For each other
member, we assign labels to its maxima by computing both
weak and strong mappings againstMp.

Computing the probabilistic map. Now, for each Mi, ai :
M ! ½l� assigns each x 2 M the label of its gradient

Fig. 4. The persistence simplification process for the Ackley dataset. (a)
By overlaying persistence graphs, all ensemble members have the
same number (i.e., 9) of maxima (dotted pink line) for a scale at 0.3
within a common stable region (dotted red line). (b) At scale 0.3, overlaid
spaghetti plots of 1-cells (i.e., 2-cell boundaries) for the simplified Morse
complexes across the ensemble exhibit a significant spatial variation,
but the topology of these 1-cells remains consistent.
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destination (another maxima). The probabilistic map P :
M ! Rl is defined to be a discrete probability distribution
of values in a1ðxÞ; . . . ;anðxÞð Þ. Let PjðxÞ be the number of
times x is assigned a label j 2 ½l� divided by n. Then PðxÞ ¼
ðP1ðxÞ; . . . ;PlðxÞÞ. For a point x 2 M, if PjðxÞ ¼ 1 (implying
Pk ¼ 0 for all k 6¼ j) for some j, then x is a point with cer-
tainty; otherwise, it is a point with uncertainty. Points with
certainty are those whose gradient flows to the maxima
with the same label, whereas points with uncertainty are
those whose gradient destinations vary across ensemble
members.

Visualizing P via Color Blending. Fig. 1j visualizes P for the
Ackley dataset via color blending. Suppose each label is
assigned a color, fc1; . . . ; clg, where ci 2 R3 (a RGB triplet).
Point x is then assigned a color as SiciPiðxÞ. Fig. 1k shows
the points with certainty in color. For example, all orange
points have their gradients flow to the maxima with the
same label. The white regions are points with uncertainty.
Points with uncertainty are further visualized with color in
Fig. 1l based on their proximity to the points with certainty.
For a pair of adjacent regions with different labels i and j
(e.g., orange versus light green), a black contour contains all
points x 2 M such that PiðxÞ ¼ 0:5 for some label i; we refer
to such black contours as expected boundaries.

Visualizing P via Entropy and Interactive Queries. Further-
more, we compute and visualize point-wise entropy of P.
Given P : M ! Rl, the Shannon entropy [57] at x 2 M is
computed as EðxÞ ¼ 
Pi¼l

i¼1 PiðxÞlog2PiðxÞ. Since uniform
probability yields maximum uncertainty and therefore max-
imum entropy, points with high entropy represent positions
whose gradient destinations have higher unpredictability.
As illustrated in Fig. 5, points with high entropy (E � 1) are
concentrated within the four corners, because their gradient
destinations are (approximately) uniformly distributed
across four maxima.

To further understand the points with uncertainty in P
(Fig. 1j), we provide interactive queries based on the frame-
work of Potter et al. [26]. Points at selected locations are que-
ried of its corresponding distribution P (Fig. 6).

5 SIGNIFICANCE MAP

Using the significance map I : M ! Rn, we quantify the
uncertainty of a point based on the persistence associated
with its gradient destinations at a fixed scale across the
ensemble. First, we use persistence graphs [55] in combination
with spaghetti plots (Fig. 4) to identify the scale of persis-
tence simplification across the ensemble. Second, we apply
persistence simplification with the identified simplification
scale to each Morse complex Mi. We assign a significance
measure to each point x 2 M of a simplified ensemble

member ~Mi, which is equal to the persistence value of a local
maximum in ~Mi to which the gradient flow originating at x
terminates; let bi : M ! R denote such an assignment.
Figs. 7a and 7b visualize significance assignments across
two ensemble members for the Ackley dataset. The signifi-
cance map I : M ! Rn is defined to be a vector of signifi-
cance measures across the ensemble b1ðxÞ;b2ðxÞ; ::;bnðxÞð Þ
for each point x 2 M.

Visualize I With Mean, Variance, and Entropy. The map I
can be visualized using its point-wise mean, variance, and
entropy (Figs. 1m, 1n, and 1o). The point-wise mean of I is
defined as �b :¼ 1

n

P
i bi. To highlight further the variability

of 1-cells, we employ a quantized visualization by dividing
the range of I into a number of intervals and visualize the
pre-image of each interval using a miscellaneous colormap
(Fig. 7c). The point-wise variance is defined as VarðbÞ :¼
1
n

P
iðbi 
 �bÞ2. The point-wise Shanon entropy is computed

by obtaining a probability distributions of the significance
values b1ðxÞ; . . . ;bnðxÞ using kernel density estimation. For
example, via interactive queries, such distributions at the
locations with labels x ¼ 0 and x ¼ 1 are visualized in
Figs. 7e and 7f, respectively.

To capture structural variations in a local neighborhood
of a point, we also study variance and entropy computed in
a 5	 5 patch centered at a given point. This is referred to as
the patch-wise variance/entropy. They can be considered
as smoothing filters that emphasize and enhance uncertain
features in local neighborhoods, see Section 7.1 for details.

Fig. 5. Visualizing P with point-wise entropy.

Fig. 6. Interactive queries of P for the Ackley dataset. Two query loca-
tions labeled x ¼ 0 and x ¼ 1 are selected. PiðxÞ associated with each
query location is visualized using a bar chart, where i denotes labels.

Fig. 7. (a-b) Visualization of significance assignments for two simplified
Morse complexes of the Ackley dataset. For the yellow-blue diverging
colormap, blue means low and yellow means high value. (c) Quantized
visualization of point-wise mean of I . (d-f) Visualizing the significance
map with point-wise mean coupled with interactive queries.
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6 SURVIVAL MAP

Using the survival map S : M ! Rn, we study directional
changes of gradient flows as a result of persistence simplifi-
cation across all scales. For a fixed ensemble memberMi, we
first apply a hierarchical persistence simplification of Mi

using persistence as a scale parameter. In the case of a 2D
Morse complex, we focus on canceling maximum-saddle
pairs until only the global maximum remains. We assign a
survival measure for each point x 2 M based on how fre-
quently it changes its gradient destinations during the sim-
plification process. The less frequently x changes its gradient
destinations, the greater is its survival measure, and vice
versa. In other words, the survival measure quantifies the
survivability of consistent flow behaviors. Let gi : M ! R

denote such an assignment. The survival map S : M ! Rn is
defined to be a vector of survival measures across the ensem-
ble, g1ðxÞ; g2ðxÞ; . . . ; gnðxÞð Þ for each x 2 M.

Algorithmic Details. To compute g : M ! R for a particular
ensemble member, we use Fig. 3 to illustrate one step of our
algorithmwith a toy example. Suppose we simplify the maxi-
mum-saddle pair ðx; zÞ with the lowest persistence �. As a
result, the gradient flows that terminate at x (Fig. 3a) are redir-
ected to the nearbymaxima y (Fig. 3b), effectivelymerging the
orange 2-cell surrounding x into the green 2-cell surrounding
y. g : M ! R is increased by � for all points in the green 2-cell
of Fig. 3a, and it is unchanged everywhere else in the domain.
In other words, points in the green region (Fig. 3a) have
“survived” the simplificationwithout changing their gradient
destinations; therefore, they are “rewarded” the amount �.
Therefore, g captures the survivability of local gradient desti-
nations after simplification.

Following the above process, we compute gi : M ! R for
each ensemblemember.We initialize gi to be zero everywhere.
Let f�1; . . . ; �nig denote the persistence of maximum-saddle
pairs to be canceled in an increasing order. We perform ni

steps of persistence simplification. For each step j (1 � j � ni),
gi is incremented within a local neighborhood where the gra-
dient flow destinations survive (remain unchanged) after sim-
plification. The above process is repeated until the entire
Morse complex is simplified into a single 2-cell surrounding
the globalmaximum (j ¼ ni).

Visualize S With Mean, Variance, and Entropy. Figs. 1p, 1q,
1r visualize S via its point-wise mean, variance, and
entropy, respectively. For instance, the mean is defined as
mðxÞ ¼ 1

n

Pn
i¼1 giðxÞ. The yellow region in Fig. 1p suggests

the existence of a relatively tall peak, and the dark blue
regions represent the existence of relatively low peaks
across all ensemble members. This behavior is consistent
with the ground truth Ackley function depicted in Fig. 1a.

7 RESULTS

We demonstrate the utility of our proposed statistical sum-
mary maps for gaining insights into Morse complex uncer-
tainty for simulated and observed scientific datasets.

7.1 Wind Dataset

We first analyze a set of 15 vector fields (velocity) from a
wind dataset of the IRI/LDEO Climate Data Library. The
dataset pressure_level_wind is obtained using the NCEP

ensemble system1 [58] with the forecast and perturbed parame-
ters. We analyze the dataset with a pressure level at 200
hPA and a forecast hour at 0 on January 01, 2015 over a spa-
tial range of 150�W-49:5�W and 90�N-10�S. The sampling
resolution for the grid is 1:5� along each spatial dimension,
resulting in a 68x68 grid representing the domain of inter-
est. We obtain an ensemble of 15 Morse complexes com-
puted from the negation of velocity vector magnitudes.
That is, we focus on features surrounding the local minima
of the velocity magnitude scalar field that correspond to the
critical points of vector fields. Fig. 8a shows the mean vector
field.

Persistence Simplification. Guided by persistence graphs
and spaghetti plots, we first apply persistence simplification
to obtain a common label set across all ensemble members.
From the persistence graphs in Fig. 9a, we identify a com-
mon plateau that indicates a stable range of scales to sepa-
rate features from noise. In particular, at a scale 7 (dotted
red line) within the plateau, all members have 11 maxima
after simplification (dotted pink line). Spaghetti plots of the
simplified Morse complexes with 11 maxima are shown in
Fig. 9b. Although there are significant spatial variations of
1-cells, their topology remain sufficiently consistent across
the ensemble. Therefore, we analyze the ensemble at the
chosen scale where each member contains 11 maxima after
simplification.

For comparison, Fig. 8b visualizes the Morse complex of
the mean vector field, which is also simplified to contain 11
maxima in Fig. 8c. Fig. 10 visualizes the Morse complexes
for two ensemble members before and after simplification.
The spatial variations of 1-cells appear to be substantial,
even after simplification. Although persistence simplifica-
tion of the mean field (Fig. 8c) gives us a high-level view of
its gradient behavior, it does not give us insight into posi-
tional uncertainties of 1-cells (i.e., 2-cell boundaries).

Labeling. Next, we apply k-means clustering to find label
correspondences across the simplified ensemble members.
Fig. 11a shows a scatter plot of the maxima across simplified
ensemble members. Fig. 11b illustrates label correspond-
ences after k-means clustering (where k ¼ 11). For compari-
son, we also experiment with an alternative labeling
strategy based on mandatory maxima. Fig. 11c visualizes 11
mandatory maxima computed using the framework of
G€unther et al. [24]. Fig. 11d shows label assignment of each
maximum to its nearest mandatory maxima. For the wind

Fig. 8. Wind dataset. (a) Visualization of the negated mean velocity mag-
nitude field (red means low and blue means high velocity magnitude);
and its corresponding Morse complexes before (b) and after (c) persis-
tence simplification.

1. http://iridl.ldeo.columbia.edu/SOURCES/.ECMWF/.S2S/
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dataset, both labeling strategies (k-means versus mandatory
critical points) provide identical results.

Probabilistic Map. The probabilistic map P is computed
and visualized using color blending in Fig. 12a. In Fig. 12b,
P is visualized based on point-wise entropy (thresholded at
� 0:9). Via interactive queries, the gradient flows passing
through location x ¼ 0 have a high probability of terminat-
ing at maxima associated with labels 4 (orange) or 9 (violet);
while the gradients passing through x ¼ 1 may terminate at
maxima with labels 2 (light blue), 6 (red), or 7 (light green).

Significance Map. The significance map I is visualized via
its point-wise mean, patch-wise variance, and entropy, as
illustrated in Fig. 13. When I is visualized with its mean in
(a) and (b), it captures uncertain segmentation of the
domain. In particular, the yellow region in (a) encloses
points with high average significance (persistence) and
highlights an important feature shared across all members.
The regions with higher fluctuations in colors in the quan-
tized visualization (b) represent the positional uncertainty
of 1-cells.

The variance-based visualization of I captures how far a
set of significant values is spread out from their mean at a
local neighborhood. In particular, the yellow region in
Fig. 13d highlights the points with the largest variation. The
entropy-based visualization of I in Fig. 13e highlights
neighborhoods that exhibit relatively high randomness in

their significance values, thus capturing boundary uncer-
tainty exceptionally well. Points with high entropy, e.g.,
those enclosed by the red dotted squares in (e), are shown
to be consistent with the areas with large spatial variations
in the spaghetti plots (c). For comparison, our entropy-
based visualization (e) complements the aggregate segmen-
tation of Thompson et al. [18] in (f), which highlights the
points that are crossed frequently by the 1-cells across
ensembles. It captures the frequencies of points serving as
2-cell boundaries, whereas the entropy captures the struc-
tural variabilities of boundaries in local neighborhoods.

7.2 Navier Stokes Simulation Dataset

We study a time-dependent flow simulation dataset [59]2.
The dataset originates from a direct numerical Navier Stokes
simulation by Camarri et al. [59]. It is a 3D flow around a con-
fined square cylinder where the square cylinder has been

Fig. 9. Wind dataset: persistence simplification. (a) Persistence graphs.
(b) Spaghetti plots of the simplified Morse complexes with 11 cells.

Fig. 10. Wind dataset: Morse complexes of two ensemble members
before (a, c) and after (b, d) persistence simplification.

Fig. 11. Labeling with k-means clustering: (a) a scatter plot of maxima
across simplified ensemble members; (b) the k-means clustering of
maxima with k ¼ 11. Labeling with mandatory maxima: (c) mandatory
maxima are shown as colored regions; (d) each ensemble maximum is
assigned the label of its nearest mandatory maximum.

Fig. 12. Wind dataset: (a) P is visualized using color blending, including
points with certainty and points with uncertainty (black contours in the
uncertain region denote the expected Morse complex boundaries); (b) P
is visualized based on point-wise entropy thresholded at 0.9.

Fig. 13. Wind dataset: (a-b) I is visualized with its point-wise mean (a),
together with its quantized visualization (b); (c) spaghetti plots of 1-cells;
(d-e) I is visualized with its patch-wise variance and entropy, respec-
tively; (f) aggregate segmentation from [18]. For the yellow-blue diverg-
ing colormap, blue means low and yellow means high value.

2. http://tinoweinkauf.net/notes/squarecylinder.html
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positioned symmetrically between two parallel walls.
Camarri et al. used a uniformly resampled version, which
was provided by Tino Weinkauf and used by von Funck
et al. [60] for smoke visualization. We consider an ensemble
consisting of velocity vector fields from time steps 60-66 of
the 3D simulation. We take a 2D slice perpendicular to the
z-axis (z ¼ 24) and use velocity magnitude as the underlying
scalar fields.

Persistence Simplification. First, we apply persistence sim-
plification to obtain a common label set across all ensemble
members, guided by persistence graphs and spaghetti plots
in Fig. 14. In particular, at the selected simplification scale
(dotted red line) in Fig. 14a, 5 out of 7 (70 percent) members
agree on the number of maxima (10) after simplification.

We illustrate three ensemble members at time steps 60,
63, and 66, in Figs. 15a, 15b, and 15c, respectively. For each
time step, we visualize, from left to right, the underlying
scalar field, together with Morse complexes before and after
persistence simplification. The mean field (Fig. 15d), on the
other hand, misses a significant number of features com-
pared to individual members due to the spatial shift of criti-
cal points across the ensemble. Furthermore, the mean field

Morse complex does not give any insight into its structural
uncertainty.

However, spaghetti plots of the simplified Morse com-
plexes in Fig. 14b do not display the topological consistency
of 1-cells as in Section 7.1. For such cases, we demonstrate
below how Morse mapping may be an effective strategy for
our labeling process.

Labeling. In Fig. 16, we compare the three labeling strate-
gies in finding label correspondences across the simplified
ensemble members. Since the mandatory maxima strategy
extracts the common denominator of maxima across all
ensemble members, its results are sensitive to noise in the
data. Specifically, for ensembles with relatively large noise,
the number of mandatory maxima tend to be small (3), as
illustrated in Fig. 16d. If we simplify each ensemble member
to have 3 maxima and assign each maximum the label of its
nearest mandatory maximum, we will miss most of the fea-
tures in the ensemble (Fig. 16e). As illustrated Figs. 16a and
16b and 15c, the Morse mapping and the k-means clustering
strategies provide slightly different results. The Morse map-
ping strategy (Fig. 16a) does not require the simplified
ensemble members to have the same number of maxima,
and therefore it is more flexible than the k-means clustering.

Probabilistic Map. We further compare and contrast the k-
means clustering and Morse mapping labeling strategies for
the computation of the probabilistic map P in Fig. 17. The
probabilistic map visualizations using either labeling strat-
egy give insight into the positional uncertainty of the
expected 2-cell boundaries that are not observable via the

Fig. 14. Navier Stokes simulation dataset: persistence simplification. (a)
Persistence graphs. (b) Spaghetti plots of the simplified Morse
complexes.

Fig. 15. Navier Stokes simulation dataset. (a-c) Three ensemble mem-
bers at time steps 60, 63, and 66, respectively. (d) Morse complex of the
mean field. Each subfigure visualizes, from left to right, the velocity mag-
nitude field, its corresponding Morse complexes before and after persis-
tence simplification.

Fig. 16. Navier Stokes simulation dataset. (a) Labeling with Morse map-
ping. (b-c) Labeling with k-means clustering. (d-e) Labeling with manda-
tory maxima, which are shown as colored regions in (d); ensemble
maxima are labeled with nearest mandatory maxima (e).

Fig. 17. Navier Stokes simulation dataset: the map P is computed and
visualized based upon k-means clustering (a) and Morse-mapping (b)
labeling strategies, respectively. Black contours in the uncertain region
denote the expected 2-cell boundaries in both subfigures.
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mean field (Fig. 15d). However, as illustrated in Fig. 17b, the
expected 2-cell boundaries using Morse mapping appear to
be more consistent with respect to the underlying topology
of individual ensemble members than those obtained using
k-means clustering in Fig. 17a and themean field in Fig. 15d.

Significance Map and Survival Map. Figs. 18a, 18b, and 18c
visualize the significance maps I via point-wise mean,
patch-wise variance and entropy, respectively. The region
enclosed by the red dotted box within the spaghetti plots in
Fig. 14b shows a lack of spatial consistency in the 1-cells
across ensemble members. The boundary of such a region is
highlighted via the variance in Fig. 18b (white dotted box).

On the other hand, the survival map S visualized via its
mean highlights the yellow feature immediately behind the
square cylinder (white dotted box) in Fig. 18d, which has the
highest survivalmeasure across all scales. The patch-wise var-
iance and entropy of S (Figs. 18e and 18f) both capture high
variabilities along its boundaries (white dotted boxes).

7.3 Red Sea Eddy Simulation Dataset

We study the eddy simulation of the Red Sea, which is avail-
able via the 2020 IEEE SciVis Contest3. Analyzing the effects
of ocean eddies is important in oceanology for gaining
insights into the transport of energy and biogeochemical par-
ticles [61]. In the Red Sea dataset, each ensemble member is
generated based on the MIT ocean general circulation model
(MITgcm) and the Data Research Testbed (DART) [62] with
varying initial conditions. The data are obtained by sampling
from a 3D domain of resolution 500	 500	 50, and ensem-
ble members are sampled from 60 time steps to represent a
time-varying 3D flow [63]. For our analysis, we use an
ensemble of 10 members, in which each member corre-
sponds to a 2D slice perpendicular to the z-axis (z ¼ 1) for
time step 40. Each ensemble member represents a velocity
vector field, and Morse complexes are computed from the
negation of velocity magnitudes of each ensemble member
to focus on critical points of the vector fields.

Persistence Simplification. First, we apply persistence sim-
plification to obtain a common label set across all ensemble
members, guided by persistence graphs and spaghetti plots

in Fig. 19. In particular, at the selected simplification scale
(dotted red line) in Fig. 19a, 5 of 10 (50 percent) members
agree on the number of maxima (11) after simplification.

We illustrate three ensemble members in Figs. 20a, 20b,
20c, respectively. For each ensemble member, its corre-
sponding simplified Morse complex contains 2-cells that
highlight vortical features of ocean (white boxes). The mean
field Morse complex in Fig. 20d, however, does not give any
insight into the structural uncertainty, that is, the variabil-
ities of these features across the ensemble.

On the other hand, spaghetti plots of the simplified
Morse complexes in Fig. 19b do not display the topological
consistency of 1-cells as in Section 7.1. In such cases, we
demonstrate below how Morse mapping may be an effec-
tive strategy for our labeling process.

Labeling. In Fig. 21, we compare the three labeling strate-
gies. As illustrated in Fig. 21d, the number of mandatory
maxima is small (3) since ensemble members have large var-
iations. Simplifying each ensemble member to have 3 max-
ima will miss most of the features of interest (Fig. 21e). The
Morse mapping (Fig. 21a) and the k-means clustering
(Figs. 21b and 21c) strategies, on the other hand, provide rea-
sonable results; the Morse mapping is more flexible without
requiring the same number of maxima across the ensemble.

Fig. 18. Navier Stokes simulation dataset: (a-c) I is visualized with its
point-wise mean in (a), patch-wise variance in (b), and patch-wise
entropy in (c); (d-f) S is visualized with its point-wise mean in (d), patch-
wise variance in (e), and patch-wise entropy in (f). For the yellow-blue
diverging colormap, blue means low and yellow means high value.

Fig. 19. Red Sea dataset: persistence simplification. (a) Persistence
graphs. (b) Spaghetti plots of the simplified Morse complexes.

Fig. 20. Red Sea dataset. (a-c) Three ensemble members together with
(d) the mean field. Each subfigure visualizes, from left to right, the
negated velocity magnitude field (red means low and blue means high
velocity magnitude), its corresponding Morse complexes before and
after persistence simplification.3. https: //kaust-vislab.github.io/SciVis2020/
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Probabilistic Map. We visualize the probabilistic map
using both the k-means clustering and Morse mapping
labeling strategies. Both visualizations in Fig. 22 highlight
positional uncertainty of 2-cell boundaries invisible to the
mean field of Fig. 20d. However, the expected 2-cell bound-
aries using Morse mapping appear to be more spatially sta-
ble than those obtained via k-means clustering.

Figs. 23a, 23b, and 23c visualize our entropy-based explo-
ration of probabilistic map for lower entropy thresholds of
1.5, 1.25, and 1, respectively. Figs. 23d, 23e, and 23f carve
out regions in the domain, where the ensemble agrees in
their gradient destinations for at least 80, 70, and 60 percent
members, respectively. Thus, the shared features across the
ensemble are discoverable in Figs. 23d, 23e, and 23f.

Significance Map and Survival Map. Figs. 24a, 24b, and 24c
visualize the significance maps I via point-wise mean,
patch-wise variance and entropy, respectively. The signifi-
cance map I in Fig. 24a highlights the presence of a shared
feature (white dotted box) with relatively high persistence.
The same region (white dotted box) also is of high variance
(Fig. 24b) and high entropy (Fig. 24c). Interestingly, the sur-
vival map S appears to be low for this region (white dotted
box in Fig. 24d), which requires further investigation.

8 CONCLUSION

We propose statistical summarymaps as new abstractions for
quantifying structural variations among ensembles of Morse
complexes that arise from2Duncertain scalar fields.We intro-
duce three types of statistical summarymaps, the probabilistic
map P, the significance map I , and the survival map S. We
take advantage of persistence simplification, mandatory criti-
cal points, or Morse mapping, to derive labeling strategies for
ensemble members. We employ techniques such as color
blending, entropy-based visualization, interactive queries,

and quantized visualizations to understand the structural var-
iability captured by our statistical summarymaps.

Regarding labeling strategies, we demonstrate by experi-
ments in Section 7.1 and the supplementary material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TVCG.2020.3022359 that mandatory maxima capture almost
all common features when there is a small amount of noise
across the ensemble. However, when the ensemble mem-
bers become quite noisy, the number of mandatory critical
points is significantly smaller than the number of maxima
in any ensemble member, rendering the label assignment
unreliable (Sections 7.2 and 7.3). The k-means clustering
and the Morse mapping strategies are more general, with
the latter being the most flexible when ensemble members
are not required to have the same number of maxima.

For future work, we plan to extend our work for Morse
complexes beyond 2D. Although Morse complexes may be
approximated in higher dimensions, visualizing uncertain-
ties in higher dimensions will require new visual mappings.
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