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imbalance of the blood to the heart. Previous studies suggest that ischemia originates in the
subendocardium, i.e., that nontransmural ischemia is limited to the subendocardium. By contrast, we
hypothesized that acute myocardial ischemia is not limited to the subendocardium and sought to
document its spatial distribution in an animal preparation. The goal of these experiments was to
investigate the spatial organization of ischemia and its relationship to the resulting shifts in ST
segment potentials during short episodes of acute ischemia.
Methods: We conducted acute ischemia studies in open-chest canines (N = 19) and swines
(N = 10), which entailed creating carefully controlled ischemia using demand, supply or complete
occlusion ischemia protocols and recording intramyocardial and epicardial potentials. Elevation of
the potentials at 40% of the ST segment between the J-point and the peak of the T-wave (ST40%)
provided the metric for local ischemia. The threshold for ischemic ST segment elevations was
defined as two standard deviations away from the baseline values.
Results: The relative frequency of occurrence of acute ischemia was higher in the subendocardium
(78% for canines and 94% for swines) and the mid-wall (87% for canines and 97% for swines) in
comparison with the subepicardium (30% for canines and 22% for swines). In addition, acute
ischemia was seen arising throughout the myocardium (distributed pattern) in 87% of the canine and
94% of the swine episodes. Alternately, acute ischemia was seen originating only in the
subendocardium (subendocardial pattern) in 13% of the canine episodes and 6% of the swine
episodes (p b 0.05).
Conclusions: Our findings suggest that the spatial distribution of acute ischemia is a complex
phenomenon arising throughout the myocardial wall and is not limited to the subendocardium.
© 2016 Elsevier Inc. All rights reserved.
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Introduction

Despite a century of research and practice, the clinical
accuracy of the electrocardiogram (ECG) to detect and
localize myocardial ischemia remains less than satisfactory
[1]. Myocardial ischemia occurs when the heart does not
receive adequate oxygen-rich blood to keep up with its
metabolic requirements, and severe ischemia can lead to
myocardial infarction and life-threatening arrhythmias. Early
and accurate detection is therefore an essential component of
managing this condition. In the emergency room (ER), a
resting 12-lead ECG is often recorded in patients with
symptoms of angina (chest pain). However, such a single
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resting ECG is normal in up to 50% of patients with chronic,
stable angina [2]. Far from static, ischemia is known to be a
dynamic condition that reflects a changing imbalance
between blood supply and metabolic demand. This dynamic
behavior presents diagnostic challenges and encourages
continuous monitoring, which is feasible only with a
technique like the ECG. Outside the emergency room, it is
natural that examination of the ECG under physical stress
conditions, or exercise testing (ET), has long been in
widespread clinical use. A meta-analysis (24,047 patients
with interpretable resting ECG in 147 studies) found exercise
ECG without imaging to have a pooled sensitivity of 68%
and specificity of 77% for detection of coronary artery
disease [2]. Thus, ET is characterized by poor sensitivity and
specificity, limiting its diagnostic usefulness. Due to the
extremely high incidence of ischemia and the many practical
and economical advantages of ECG based testing, any
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improvements in this technique and the interpretation of the
data it gathers will have a profound impact on clinical
practice.

The most common clinical ECG marker for myocardial
ischemia detection is the ST segment, that portion of the
ECG time signal that lies between the QRS complex and the
T-wave. Changes in the ST segment can occur within 15–
30 seconds after the onset of ischemia [3] and hence
represent one of the earliest markers of the condition. The
ST segment represents the period when the ventricles are
depolarized, i.e., the ventricular action potentials are all in
the plateau phase. In a healthy heart, this means that all
regions of the ventricles have approximately the same
transmembrane potential and that this phase of the normal
ECG is isoelectric. However, the ST segment potential can
shift above (ST segment elevation) or below (ST segment
depression) the baseline during myocardial ischemia,
depending on the flow of what are known as “injury
currents.” These currents are the result of voltage gradients
between normal and ischemic regions, gradients that arise
because of differences between the action potentials (AP)
of ischemic and normal cells that include localized
shortening, diminishing amplitude, and a decrease (more
positive value) in resting membrane potential. Further-
more, the change in the resting potential of ischemic cells
(due to increased K+ efflux) causes a TQ segment shift [4],
whereas the shortening of AP duration due to activation of
IKATP channel causes the ST segment shift [5]. A change in
the plateau potential to a less positive (more negative)
value in the ischemic region, in addition to a shortening of
its duration, will also contribute to ST segment changes.
Thus, the ST segment elevation on the body surface is a
combination of a TQ segment change and ST segment
change. The resulting injury currents can produce an ST
segment elevation in an extracellular or body-surface
electrode if they are directed toward the recording
electrode or ST segment depression if they are directed
away from the electrode.

Classic electrocardiographic theory builds on these
biophysically sound concepts with additional assumptions
about the spatial distribution of healthy and ischemic tissues;
however, these assumptions may be too simplified to explain
both experimental and clinical observations. The historical
basis for many of these assumptions lies in postmortem
examinations of infarcted hearts [6] under the additional
assumption that the location and extent of eventual scar and
infarct zones match approximately the ischemic regions that
arise acutely following onset of ischemia. Previous studies of
acute ischemia were instead based on measured potentials
primarily from the epicardial and endocardial surfaces [7].
While surface potentials are a reflection of intramyocardial
events, it is only possible to infer the underlying bioelectric
sources rather than measure them directly. Intramural
potentials have also been measured using wick electrodes
(10–40 recording sites) [8] but have been limited by low
spatial resolution. With the recent development of flexible
multiple electrode needles [9] we can now capture
extracellular potentials throughout the ventricular wall with
high spatial resolution (250 recording sites).
From these early experiments have come several elements
that now make up the prevailing putative explanation for
clinical observations of ST segments during acute ischemia.
Central to this explanation of the spatial dynamics of
ischemia is the assumption that at low grades of perfusion
deficit, myocardial ischemia is localized to the subendocar-
dium (innermost region of the heart wall) [3]. Justification
for this assertion includes the notion that this region has the
highest metabolic demand and is the most distal perfusion
zone and hence most vulnerable [3]. Moreover, with
increased stress, ischemia was thought to progress over
time uniformly toward the epicardium (outermost region),
eventually becoming transmural (spanning the full thickness
of the heart wall). According to this theory, ischemia
localized to the subendocardium would generate injury
currents flowing away from the epicardial or body-surface
electrodes toward the localized subendocardial ischemic
region. Thus ST segment depression is thought to indicate
subendocardial ischemia. Moreover, transmural ischemia
would then produce injury currents flowing toward the
recording electrodes located above the affected region of the
heart, resulting in ST segment elevations. Many decades of
clinical practice and experimental studies have shown that,
indeed, superficial leads with ST segment elevation can be
linked spatially to the region of ischemia and thus provide a
means to localize transmural ischemia from the body surface.
However, the same is not true of the ability of ST segment
depression to locate nontransmural ischemia [10].

Preliminary results from our group using intramyocardial
recordings do not support the assertion that nontransmural
ischemia arises only in the subendocardium [11] and have
motivated a comprehensive evaluation of the spatial distribution
of acute ischemia based on high-resolutionmeasurements under
a range of conditions. Our goal in this study was to evaluate the
conventional mechanisms for nontransmural ischemia using
intramural electrodes to measure three-dimensional potential
distributions in the ventricles of animals exposed to acute
ischemia. We conducted a series of 29 separate experiments
under a range of acute ischemia conditions using two different in
situ animal models. To interpret the resulting electrograms, we
assumed that localized ischemia causes localized elevations in
the extracardiac ST segment potentials. We measured three-
dimensional surface and transmural potential distributions under
study protocols that altered both the local coronary supply and
global metabolic demand.
Methods

Experimental preparation

The goal of these experiments was to detect the
three-dimensional distribution of ischemia-induced shifts in
ST segment potentials during the acute phase of short
episodes of ischemia created by reduced coronary flow and
an increased rate of contraction. We performed experiments
on open-chest, intact canines and swines using multipolar
intramural needle electrodes and epicardial surface elec-
trodes. Study subjects included 29 animals: 19 purpose bred
dogs and 10 adult mini pigs, following the approval from the



325K. Aras et al. / Journal of Electrocardiology 49 (2016) 323–336
Institutional Animal Care and Use Committee at University
of Utah and conforming to the Guide for the Care and Use of
Laboratory Animals (NIH Pub. No 85-23, Revised 1996).

An open-chest preparation following mid-sternal thor-
ocotomy allowed direct access to the heart for recording
epicardial potentials from the entire surface of both
ventricles and transmural potentials from the anterior aspects
of the right and left ventricles. The animal was anesthetized
by bolus injection of sodium pentobarbital (30 mg/kg) for
canines or isoflurane gas (1–3% inhalant to effect) for pigs,
followed by maintenance doses administered as needed.
After the thorocotomy, the heart was suspended in a
pericardial cradle. Ventilation was with room air mixed
with oxygen adjusted to maintain physiological blood gas
parameters and pH. A heated and automatically monitored
heating table ensured physiological body temperature, and
insulation and monitoring maintained stable cavity temper-
ature to minimize any thermally induced repolarization
changes. A pacing clip attached to the right atrial appendage
provided control of heart rate above the intrinsic rate for each
animal.

A suitable left anterior descending (LAD) segment was
then dissected and freed from the underlying tissue. For one
set of experiments in which we regulated the coronary flow
progressively, the LAD was cannulated and perfused by the
blood from one of the carotid arteries with flow rates
controlled by a digital pump. In a second set of experiments,
we circled the LAD using a snare that we closed completely
to create ischemic episodes. In a third set of experiments, we
circled the LAD using a hydraulic occluder and used it to
regulate coronary flow. In this third approach, calibration of
the fluid volume injected into the occluder enabled us to
perform graded reductions in coronary perfusion. A heat
exchanger ensured that the perfused blood was maintained at
physiological temperatures. A measurement of coronary
flow and intrinsic heart rate at the start of each experiment
determined default resting values.
Experimental protocols and data acquisition

The study protocol was designed to simulate three forms
of acute ischemia: (1) a stress test with pacing as a surrogate
for exercise, (2) episodes of reduced coronary perfusion to
simulate coronary artery disease, and (3) complete occlusion.
Mirvis et al. have shown that tachycardia increases oxygen
demand that is unaffected by mode of tachycardia induction,
such as exercise or pacing [12]. Similarly, by combining
elevated heart rate and reduced coronary perfusion in
different protocols, we were able to simulate both of what
are known as “demand” and “supply” types of ischemia. For
demand ischemia, characterized by progressively elevating
metabolic demand under stable perfusion conditions, the
coronary perfusion was held constant and the pacing rate was
increased in a stepwise manner in increments of the pacing
interval of 30–50 milliseconds. Supply ischemia, in which
demand is stable but blood supply is progressively reduced,
was induced by keeping the pacing rate constant and
decreasing the perfusion rate in steps of 7–10 ml/min for
the cannulated LAD and steps of 25% perfusion deficit when
using the hydraulic occluder. For complete occlusion, the
coronary perfusion through the selected LAD segment was
reduced to zero using a snare. Moreover, the rate was
spontaneous (intrinsic) as the heart was not paced for the
duration of the ischemic intervention. A total of 100
ischemic episodes were conducted for canine (N = 19)
studies including 37 demand ischemia, 50 supply ischemia,
and 13 complete occlusion protocols. Similarly, a total of 36
ischemic episodes were conducted for swine studies (N = 10)
including 16 demand ischemia, 18 supply ischemia, and 2
complete occlusion protocols. Each resulting ischemic episode
lasted 2–10 minutes depending on the protocol, the intrinsic
values of resting heart rate and coronary flow of each animal,
and the maximum heart rates tolerated. Each experiment
consisted of four to six such episodes separated by recovery
periods (at intrinsic heart rates and perfusion) of approximately
25–30 minutes. Electrical recordings (described in detail
below) were taken for 3 seconds every 15–20 seconds during
the ischemic episode as well as during the recovery period.
Fig. 1 contains a schematic of the animal preparation.

Epicardial potentials were recorded from the surfaces of
both the ventricles using a 247-electrode flexible sock array,
the construction of which is described elsewhere [13]. In
addition, up to 25 flexible fiberglass needles [9], each
carrying 10 electrodes along its length, spaced at 1.5 mm,
were inserted into the ventricles in and around the region
presumably perfused by the cannulated or occluded LAD,
taking care to avoid injuring the epicardial arteries. The
spacing between needles within the epicardial region they
covered did not exceed 10 mm. The perfused region was
identified before insertion by stopping blood flow through
the LAD for 45 seconds and recording the resulting epicardial
potentials. Localized ST segment elevations were considered
indications of nearby ischemia. The potentials from sock and
needle electrodes were recorded using a custom acquisition
system permitting simultaneous acquisition of 1024 channels
at 1 kHz sampling rate [14]. A band pass filter with cutoff
frequencies at 0.03 and 500 Hz avoided both DC potentials
and aliasing. A single limb lead was used as a remote reference
for all the unipolar signals (AC-coupled) recorded from the
sock and needle electrodes. The ST segment elevation
recorded with AC-coupled amplifiers represents shift in the
TQ segment (TQ depression) and true elevation of the ST
segment [15].
Postexperiment imaging and signal processing

The electrograms recorded during the study were
processed in Matmap, a custom MATLAB-based signal
processing program developed in our laboratory. The signals
were first calibrated and gain adjusted and their baselines
corrected. Poor quality signals from sock and needle
electrodes, for example due to incomplete contact with the
tissue, were discarded. Electrograms recorded from needle
electrodes near the tip without positive R-wave deflection
were identified as cavity electrodes and also discarded. At
the end of the experiment, the locations of preselected sock
electrodes and all the plunge needles on the cardiac surface
were digitally recorded using a Microscribe 3D digitizer
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Fig. 1. Experiment setup: (A) Experiment setup, (B) sample study protocol, (C) sample epicardial and intramural electrograms, (D) ischemia threshold based on
localized ST40% potential, and (E) schematic of subendocardial and distributed patterns of ischemia localization.
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(Solution Technologies, Inc., Oella, MD). Interactive visual-
ization of the resulting spatio-temporal maps of cardiac
potentials was by means of map3d [16]. Following each
experiment, the heart was excised and scanned with a 7-tesla
MRI scanner (Bruker, Inc., Billerica, MA). The resulting
image sets were segmented to identify the atria and ventricles
using Seg3D [17], and the segmentations became the basis of a
volumetric tetrahedral mesh created using SCIRun [18]. The
digitized sock and needle electrodes were then registered to
this mesh geometry and visualized in SCIRun. Additional
visualization and analysis were performed by interpolating
potentials on parallel cutting planes regularly spaced through
the volume. We differentiated between subendocardial
(Endo), midmyocardial (Mid), and subepicardial regions
(Epi), as defined by 0–30%, 30–70%, and 70–100% of the
distance along those electrodes of each transmural plunge
needle that were within the myocardium. Thus, each region
roughly spanned one third the thickness of the left ventricular
wall. Moreover, ST elevated regions that overlapped into
multiple regions (e.g., Endo/Mid) were labeled accordingly.

Elevation of the value of the potentials at 40% of the ST
segment between the J-point and the peak of the T-wave
(ST40%) provided the metric for local ischemia. The global
Root Mean Squared (RMS) signal computed from all the
sock and needle electrode electrograms was used to identify
J-point and T-peak fiducials. To minimize the effects of
signal noise, we first computed the average of 10 potential
values around the ST40% time instant. In addition, to
minimize the influence of beat to beat fluctuations, we
further averaged the ST40% values from three consecutive
beats for each electrode site. The results from initial
experiments indicated the need to normalize ST segment
changes from control recordings taken before each interven-
tion. All ST40% values within the same intervention were
evaluated relative to these control values. We also defined a
threshold for ischemic ST segment elevations from these
normalized ST40% potentials as two standard deviations
away from the baseline values. Thus, the derived ST40%
potentials were analyzed spatially (up to 500 recording sites)
and temporally (approximately every 15 seconds) to track
the ST elevated regions during an acute ischemic episode.

Statistical analysis

A chi-square test of goodness-of-fit was performed to
determine whether the spatial distribution of acute ischemia –
subendocardial, and distributed – were equally preferred. The
subendocardial group comprised episodes which resulted in
ST elevated regions localized in the subendocardial region
(“Endo”) and/or spanned the subendocardial region and also
extended into the midmyocardial region (“Endo/Mid”). Thus,
if all the identified ST elevated regions during the course of an
acute ischemic episode originated exclusively in the sub-
endocardium, the episode was categorized into the subendo-
cardial group. Alternately, the distributed group comprised
episodes that resulted in ST elevated regions arising
throughout the left ventricular wall including subendocardial,
midmyocardial and subepicardial regions during the course of
an ischemic episode. Thus, if at least one of the identified ST
elevated regions during the course of an ischemic episode
originated in the mid-wall (“Mid”), subepicardium (“Epi”), or
the overlapping region (“Mid/Epi”), the episode was classified
as part of the distributed group. Moreover, each defined region
was counted only once for calculating the relative frequency of
occurrence, even if there were multiple ST elevated regions in
the defined region during the course of an ischemic episode.
Statistical significance was set at alpha b 0.05.
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Results

In the experiments, we found examples of ischemia
distributed over most of the ventricular wall. We show here
four representative examples of ischemia measured in the
subendocardium, the mid-wall, and the subepicardium
together with two statistical summaries of relative frequency
of occurrence across all 29 experiments.

Fig. 2 highlights data from a canine complete occlusion
study in which acute ischemia was distributed in multiple,
separate regions across the ventricular wall, all within the
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reflected on the epicardial surface with ST segment elevation
localizing the underlying ischemia.

Fig. 3 highlights data from a canine supply ischemia study
(at 172 BPM) in which acute ischemia was also distributed
in multiple, separate regions across the ventricular wall. The
onset of ischemia, which occurred 270 seconds into the
intervention (75% perfusion deficit) was characterized by
two ST segment elevated regions in the subendocardium
(S1), and the mid-wall (S2) respectively. The epicardial
surface once again did not show any meaningful ST segment
shifts at this stage. However, the ST elevated regions also
reached transmural status and was reflected on the epicardial
surface with ST segment elevation localizing the underlying
ischemia.

Fig. 4 highlights data from a canine demand ischemia
study (50% perfusion deficit) in which acute ischemia was
distributed in multiple, separate regions across the ventric-
ular wall. The onset of ischemia, which occurred 320 sec-
onds into the intervention (200 BPM) was characterized by
one ST segment elevated region in the subendocardium (S1).
The epicardial surface showed a sharp ST segment
depression at this stage that covered an area wider than the
underlying ischemic region. By the end of the intervention
(480 seconds) there were additional ST elevated regions
arising throughout the ventricular wall including the mid-
wall region (S2). However, none of the ischemic regions
reached transmural status. The corresponding epicardial
surface potential difference map showed the sharp ST
segment depression spanning a much wider region, relative
to the underlying ischemic regions.

Fig. 5 highlights data from a swine supply ischemia (at
133 BPM) study in which acute ischemia originated in the
mid-wall region. The onset of ischemia, which occurred
270 seconds into the intervention (75% perfusion deficit)
was characterized by one ST segment elevated region in the
mid-wall (S1) region. The epicardial surface did not show
any meaningful ST segment shifts similar to that seen in
canine studies.

Fig. 6 contains a summary of ischemia distribution
resulting from studies across all 19 canine animals. The
histograms of relative frequency of occurrence of acute
ischemia in each of the three defined regions (Endo, Mid,
Epi) as well as the two overlapping regions are shown. Panel
A shows the cumulative spatial distribution of acute
ischemia across all ischemic episodes (n = 100). Panel B
shows the spatial distribution of acute ischemia during
demand ischemia episodes (n = 37). Panel C shows the
spatial distribution of acute ischemia during supply ischemia
episodes (n = 50). Panel D shows the histograms of relative
frequency of occurrence of acute ischemia categorized as
conventionally arising in the subendocardium (Subendocar-
dial) or arising across the ventricular wall (Distributed). The
relative frequency of occurrence of acute ischemia was
higher in the mid-wall (87%) and the subendocardium (78%)
relative to the subepicardium (30%) across all canine
ischemic episodes. In addition, the distributed pattern of
ischemia (87%) was consistently observed regardless of the
type or severity of acute ischemia. Finally, the relative
frequency of occurrence of acute ischemia in the three
defined regions was not significantly altered by repeated
ischemia (Supplementary Data).

Fig. 7 contains a summary of ischemia distribution
resulting from studies across all 10 swine animals. The
relative frequency of occurrence of acute ischemia was
higher in the mid-wall (97%) and the subendocardium (94%)
relative to the subepicardium (22%) across all swine
ischemic episodes. In addition, the distributed pattern of
ischemia (94%) was predominantly observed regardless of
the type or severity of acute ischemia and comparable to that
seen in canine studies. The effect of repeated episodes on the
spatial distribution of acute ischemia was noted from the first
to the second episode, but less so from the second to the third
episode. Overall, the relative frequency of occurrence of
acute ischemia in the three defined regions was not
significantly altered by repeated ischemia and comparable
to that seen in canine studies (Supplementary Data).
Discussion

The aim of this study was to evaluate the conventionally
held assumptions about nontransmural ischemia using
intramural electrodes to measure three-dimensional potential
distributions in the ventricles of animals exposed to acute
ischemia. To that end, we conducted a series of in situ
experiments on canine and swine subjects and profiled the
resulting intramural and epicardial potentials. We captured
the spatial distribution of the electrocardiographic response
acute myocardial ischemia under staged conditions of both
supply and demand forms of the condition in both dogs and
pigs. The two major findings from this study were (a) acute
ischemia originated not only in the subendocardium but
throughout the ventricular wall, i.e., in the subendocardium,
midmyocardium, or the subepicardium, and (b) the frequen-
cy of occurrence of acute ischemia was higher in the
subendocardium and the mid-wall relative to the subepicar-
dium. The most important conclusion from this study is that
the electrical response of the heart to acute ischemic stress is
not localized to the subendocardium, thus calling into doubt
a major tenet of electrocardiography and the conventional
explanation for primary ST segment depression.

Our choice of animal species follows the example of
many past studies of ischemia and cardiac electrophysiology.
Neither species is a perfect match to humans and so has
strengths and weaknesses as an experimental model. Dogs
have a conduction system more similar to that of humans
[19], while it is the swine coronary vascular system that is
more similar to that of humans [19]. The collateral
circulation is more extensive in dogs compared to pigs,
whereas the human collateral network falls somewhere
between those two species [19]. Hence it is all the more
meaningful that the results were consistent across both
animal models, suggesting a fundamental mechanistic truth.

The study protocol was designed to simulate exercise
testing or the very initial phase of a coronary spasm or
myocardial infarct and thus focused on the most acute phase
of ischemia. We designed the duration of ischemic episodes
(2–10 minutes) to be within what is considered the
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reversible range [20], i.e., a level of insult from which the
heart would recover fully in a short time. To allow sufficient
recovery between ischemic episodes, we followed each
s
l

ischemic episode by 25–30 minutes of recovery. Jennings et al.
have shown that such a recovery period is enough to restore
normal ATP production and achieve reversal of changes in
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cellular ultrastructure [20]. The use of plunge needle electrodes
to record intramural potentials resulted in some tissue trauma,
which resolved quickly with little myocardial scarring or LV
dysfunction [21].

We were able to induce acute ischemia when the perfusion
deficit reached at least 50%, which is in agreement with other
studies [22,23]. In addition, we did not observe any meaningful
shifts in the epicardial ST potentials during the onset of acute
ischemia which is also in agreement with previous studies [24].
Moreover, epicardial ST segment elevation was observed only
when acute ischemia reached transmural status. Interestingly,
under the conditions of demand ischemia at rapid heart rates, we
observed sharp epicardial ST segment depression overlapping
the underlying nontransmural ischemia but spanning a much
wider area and may be associated with increasing voltage
gradients across the ischemic boundary [25]. Thus, the
epicardial ST potentials were limited in their ability to localize
the underlying nontransmural ischemia.
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Our data demonstrated the acute ischemia arises through-
out the myocardial wall. In Fig. 2, a canine complete
occlusion study, acute ischemia arose in the subendocar-
dium, mid-wall and the subepicardium. In Fig. 3, a canine
supply ischemia study, acute ischemia originated in the
subendocardium and the mid-wall region. In Fig. 4, a canine
demand ischemia study, acute ischemia originated in the
subendocardium. However, with increased stress, additional
ST elevated regions were observed arising throughout the
ventricular wall. In Fig. 5, a swine supply ischemia study,
acute ischemia also originated in the mid-wall region. Thus,
results from our study showed that acute ischemia is not
always localized in the subendocardium and can arise
throughout the myocardium.

Our data also demonstrated that the relative frequency of
occurrence of acute ischemia was higher in the subendo-
cardium and the mid-wall in comparison with the sub-
epicardial region. The statistical summaries in Figs. 6 and 7
showed that the relative frequency of occurrence of acute
ischemia was higher in the mid-wall (87% for canines, 97%
for swines) and the subendocardium (78% for canines and
94% for swines) relative to the subepicardium (30% for
canines and 22% for swines). In addition, acute ischemia was
seen arising throughout the myocardium (distributed pattern)
in 87% of the canine and 94% of the swine episodes.
Alternately, acute ischemia was seen always originating only
in subendocardium (subendocardial pattern) in 13% of the
canine episodes and 6% of the swine episodes. The
frequency of occurrence across the three defined regions
(Endo, Mid, and Epi) stayed relatively consistent indepen-
dent of the type and severity of ischemia. Studies [26] have
suggested that repeated ischemia induces altered electrical
response to subsequent ischemic episodes and is associated
with attenuated metabolic response and increased conduction
delay. The repeated ischemic episodes did not significantly
alter the relative frequencies of occurrence between the three
defined regions (Supplementary Data).

There is some evidence in the literature to support the
possibility that ischemia would occur first in subendocardial
zones. For example, some studies speculate that the sub-
endocardium is the region most vulnerable to ischemia due to
transmural gradients in regional blood flow [27], and others
suggest the existence of intramyocardial pressure gradients
[28] and greater metabolic stress [29]. Our results, however, do
not support the resulting hypothesized consequences, none of
which have actually been supported by high resolution
measurements of three-dimensional parameters such as our
studies describe.

Ours is not the only study to suggest heterogeneity of the
ischemic response within the endocardium [30–34].
Steenbergen et al. [30] used NADH fluorescence photogra-
phy in their rat model studies to show that ischemia produced
by gradual reduction in coronary flow resulted in heteroge-
neous areas of anoxic tissue and attributed this response to
intrinsic properties of arterioles. Gilmour et al. [31] studied the
transmembrane potentials in a canine ischemia model to
suggest that epicardial and papillary muscle excitability is
more easily depressed during ischemia compared to endocar-
dium, which is more responsive due to contact with the
Purkinje fibers that provide continued electrical stimulation.
Wilensky et al. [32] investigated transmembrane potentials in a
rabbit model and suggested that during the first 10 minutes of
ischemia, an endocardium rim layer, 60 cells deep (approx-
imately 600 μ), remains unaffected by ischemia and may be
attributed tomultiple factors including diffusion of oxygen and
nutrients from the cavity, blood transport via luminal vessels
toward the subendocardial tissue, electrical coupling with
Purkinje fibers, and greater resistance of subendocardial cells
to effects of hypoxia, elevated extracellular potassium, and
acidosis. Austin et al. [33], based on measurements of canine
regional blood flow, suggested spatial heterogeneity of
myocardial perfusion within the endocardium, resulting in
islands of viable subendocardial tissue due to differences in
local metabolic demand secondary to differences in regional
function. Leshnower et al. [34], in an irreversible ischemia
study on sheep, found that the midmyocardium was most
vulnerable to ischemia and the subendocardium was most
resistant. Franzen et al. [35] demonstrated substantial spatial
heterogeneity in local blood flow and metabolite content in
their canine studies and suggested that at microvascular level
both blood flow andmetabolism behave heterogeneously from
their neighboring units. In addition, previous acute ischemia
studies on canines [36] and swines [37] have suggested that the
spatial heterogeneity in local extracellular K+ concentrations
may be associated with differences in membrane sensitivity to
acute ischemia, different rates of ATP depletion, and intersite
diffusion of K+ ions. Even if there remains uncertainly as to
specific mechanisms, there is emerging agreement from our
and other findings calling into doubt the prevailing notion that
the onset of ischemia is limited to the subendocardium.

The clinical accuracy of the electrocardiogram (ECG) to
detect and localize myocardial ischemia remains less than
satisfactory [1], and our findings suggest possible mecha-
nisms for this poor performance. ECG leads that show ST
segment elevation provide a means of localizing transmural
ischemia from the body surface and are a well-known
clinical marker of infarction [38]. This was also evident in
our study with epicardial ST elevation observed when acute
ischemia reached transmural status. However, the ability of ST
segment depression to locate ischemia is considerably less
specific [10]. Acute ischemia studies with animal models have
shown that even on the cardiac surface (epicardium), ST
segment changes have poor sensitivity [24]. Our data also
demonstrated that nontransmural ischemia is often undetected
on the epicardial surface, especially using the ST segment as a
marker. This behavior was consistently seen across both
canine and swine species and could be associated with one or
more of the following: (a) signal attenuation due to distance
from the epicardium, (b) masking effect from other nearby
ischemia sources, and (c) electrical anisotropy, with higher
resistance to current flow toward the epicardium. It is possible
then that the superposition of these discrete ischemic sources
may attenuate or neutralize resulting injury currents, limiting
the ability of the epicardial electrograms to detect and localize
nontransmural ischemia. Indeed, the consequences of this
ambiguity on the body-surface ECG remain a topic of ongoing
research but are likely to be even less predictive than the more
proximal and spatially resolved epicardial potentials. Results
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from our previous study [39] have shown that under the
conditions of very acute ischemia, epicardial T-waves have
higher sensitivity to mild degrees of acute ischemia than
epicardial ST segment potentials. Moreover, epicardial QRS
potentials showed even less sensitivity to mild ischemia than
the ST segment and thus had limited ability to localize the
spatial extent or degree of myocardial ischemia. This suggests
that a combination of epicardial ST segment and T-wave
markers could provide a more reliable index of acute ischemia
than either in isolation.
Limitations

Our study has several limitations. First, we did not
measure myocardial collateral blood flow which would have
provided information on regional primary and collateral
blood flow to compare with the electrical recordings. Instead,
the findings of this study depend on the assumption that local
shifts in extracellular ST segment potentials can be detected
with sufficient spatial resolution and that they reflect nearby
ischemia. While an indirect marker of what is fundamentally
a perfusion deficit, intramural extracellular ST segment
potentials have been shown to be a sensitive marker for
ischemia [24] and correlate well with regional blood flow
[40] and local gas tension measurements [41].

Second, the insertion of plunge needles causes tissue
trauma. However, the plunge needle electrodes we used were
finer than previously available, creating significantly less
tissue injury, and therefore more sensitive measurements
than possible in previous studies. In addition, we benefited
from the most detailed and comprehensive electrical
measurements reported to date: a 247-electrode sock array
to record epicardial potentials and up to 250 needle
electrodes to measure intramural potentials, thus providing a
high degree of three-dimensional spatial resolution.Moreover,
the spatial resolution of our intramural recordings was 1.5 mm
along each needle and 10 mm between neighboring needles,
thus enabling a precise enough identification of intramural
ischemia at the several millimeter scale we measured it.

Third, the LAD occlusion procedure to identify the perfusion
bed could have preconditioned the myocardium affecting the
spatial distribution of acute ischemia during the subsequent
interventions. However, the acute phase of preconditioning is
believed to last up to 120 minutes [42], and in our studies, the
recovery period after the initial occlusion procedure was
typically 90 minutes or more to account for plunge needle
insertion procedure and the subsequent stabilization period. This
may have mitigated the preconditioning effect on the
myocardium.
Conclusion

In summary, our results suggest a complex electrocar-
diographic response to acute ischemia characterized by
heterogeneous distribution of ST segment elevated regions
across the myocardial wall. Understanding the spatial and
temporal nature of these underlying bioelectric sources may
provide future insights into ways to localize ischemia from
the cardiac surface and may impact how we interpret
potentials measured on the body surface. A possible
approach we have also begun to evaluate successfully is to
identify other electrical markers (T-wave, QRS complex,
etc.) in combination with ST segment that could improve the
ability to detect and localize the extent of myocardial injury
[39]. At a minimum, the spatial heterogeneity of the ischemic
response that we have documented suggests a need to refine
the current electrocardiographic model of ischemia.
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