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ABSTRACT

Graphs are often used to encapsulate relationships between objects.
Node-link diagrams, commonly used to visualize graphs, suffer
from visual clutter on large graphs. Edge bundling is an effective
technique for alleviating clutter and revealing high-level edge pat-
terns. Previous methods for general graph layouts either require a
control mesh to guide the bundling process, which can introduce
high variation in curvature along the bundles, or all-to-all force and
compatibility calculations, which is not scalable. We propose a
multilevel agglomerative edge bundling method based on a prin-
cipled approach of minimizing ink needed to represent edges, with
additional constraints on the curvature of the resulting splines. The
proposed method is much faster than previous ones, able to bundle
hundreds of thousands of edges in seconds, and one million edges
in a few minutes.1

Keywords: Edge bundling, multilevel, clustering, graph drawing.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and Curve Generation; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Hierarchy
and Geometric Transformations

1 INTRODUCTION

Graphs are often used to model relationships between objects aris-
ing in many application areas, such as social networks, biology,
computer science and transportation. Node-link diagrams, in which
nodes are drawn as points and edges as straight lines, are commonly
employed to visualize graphs. These visualizations are mostly de-
termined by the position we choose to associate with each vertex
of the graph. This mapping of vertices to position is the layout of
a graph. It is a truism that our ability to generate large data ex-
ceeds our ability to visualize it, and this gap motivates the work
we present here. We are driven in part by the popularity of online
social networks, as well as automated data acquisition techniques
in the sciences and social sciences. Scalable and high-quality algo-
rithms exist to lay out very large graphs; these include multilevel
force-directed algorithms [6, 11, 15] and scalable multidimensional
scaling algorithms [3]. On many graphs, the node-link diagrams
produced by these algorithms are often aesthetically pleasing and
reveal intrinsic structure of the graphs. However, on certain classes
of graphs, a node-link diagram using straight edges is almost al-
ways difficult to comprehend, with edges obstructing nodes and
each other. Often, the layout algorithms themselves are working
correctly, in the sense that removing edges from the visualization
can reveal meaningful node clusters. It is the sheer number of edges
and their heterogeneous arrangement that clutter the visualization,
hiding potential high-level patterns.

A number of approaches help reduce visual clutter. First, graphs
can be simplified by coalescing clusters of nodes in a hierarchical
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fashion [25]. This can be combined with fisheye-style distortion to
balance high-level structures and local details [8]. Second, inter-
active visualization systems [19] can be used to explore the graph,
filtering out unnecessary visual artifacts.

A third useful tool is edge bundling. In this approach, edges are
represented by deformable curves, typically cubic splines. Edges
which are in some sense close to each other are referred to as com-
patible, and these compatible edges are then combined in a single
bundle, sharing part of their routes. This is analogous to electri-
cal wires fanning into a bundle, and fanning out at the other end.
Bundling reduces visual clutter, and helps reveal high-level node
and edge patterns. Initially, edge bundling was proposed for circu-
lar and hierarchical layout [7, 12, 21, 22], and was later extended to
general graph layouts [5, 13, 18].

In this paper, we consider edge bundling for general undirected
layouts. We propose a principled, efficient, and conceptually sim-
ple edge bundling algorithm. The algorithm is similar to recent fast
agglomerative clustering techniques [1, 23], except here we cluster
compatible edges to save ink, as we will shortly explain. We were
also inspired by agglomerative bundling algorithms for circular lay-
outs [7]. The major advance is that our algorithm works for general
layouts.

The guiding principle of our algorithm is saving ink [7]. Draw-
ing a bundled group of edges should take less ink than drawing
each edge separately. Conceptually, the algorithm mimics the be-
havior of a human faced with the task of bundling a mass of electri-
cal wires: identifying wires that have similar start and end points;
merging them; checking whether additional wires can join existing
bundles or need to start new bundles; and repeating this process.

To avoid the cost of computing all-to-all edge interactions, as
in the force-directed edge bundling algorithm FDEB [13], we first
construct a proximity graph of edges. Guided by this graph, we
then check whether bundling each edge with its neighbors saves
ink. When all possible bundlings are identified, we form a coarse
edge proximity graph based on the edge grouping, and repeat the
bundling process on this graph. After no more ink saving is pos-
sible, we fix the fan-in and fan-out parts of the edges (as shown
in Figure 1), and consider the bundled parts of the edges to see if
the aforementioned edge bundling procedure can be applied to the
bundled parts recursively. Curvature is controlled by restricting the
turning angles when an edge joins a bundle. Applying this algo-
rithm to many real-world graphs results in fast edge bundling that
reveals high-level edge patterns.

The remainder of this paper is organized as follows. In Section 2,
we review related work. Section 3 introduces the multilevel ag-
glomerative edge bundling algorithm, followed by Section 4, where
we introduce GPU-based rendering methods for faster interactive
manipulation. The section provides example visualizations, includ-
ing some for very large graphs. We conclude the paper in Section 5
with topics for further research.

2 RELATED WORK

Early work on edge bundling focused on special classes of graph
layouts. Newbery [22] proposed a method for handling layered
layouts of directed graphs. The method identifies edges that form
a complete bipartite graph, and makes these edges pass through a
common dummy node, thus eliminating many crossings. A modi-



fication of this was implemented in Graphviz [9]. Holten’s Hier-
archical Edge Bundling (HEB) [12] works with graphs that have a
defined hierarchy. It bundles edges using B-splines, following the
control points defined by the hierarchy. Gansner et al. [7] presented
an algorithm that reduces clutter in circular layouts by merging
edges so that the resulting splines share some control points. In our
work, we adopt their model of minimizing the total amount of ink
needed to draw the edges. This objective is incorporated in our al-
gorithm. Finally, Nachmanson et al. [21] consider edge bundling in
layered drawings with edges already routed as polylines or splines.
The goal of uncluttering the drawing is balanced with preserving
the topology of the original drawing and disambiguating edges.

Cui et al. [5] proposed one of the first methods suitable for gen-
eral undirected layouts. In the Geometry Based Edge Bundling
(GBEB) method, a control mesh guides the edge-clustering pro-
cess; edge bundles are formed by forcing all edges to pass through
the same control points on the mesh. The algorithm was reported to
be fast, although the resulting visualization was observed to exhibit
a “webbing” effect [13], with edges having high curvature varia-
tions.

Holten and van Wijk proposed a Force-Directed Edge Bundling
(FDEB) algorithm [13]. The algorithm is conceptually simple, uti-
lizing edges modeled as flexible springs that can attract each other.
The attractive force is proportional to the inverse (or inverse square)
distance of the springs, as well as to the compatibility of the edges.
It was found to result in smoother bundles that are easy to read.
A weakness of this algorithm is its high computational complexity.
The authors suggested that a Barnes-Hut like subdivision-based ap-
proach may be used to speed up the algorithm, though no details on
how this can be done were given.

Lambert et al. [18] proposed an edge bundling algorithm that is
also based on the use of a mesh. Graph edges are routed along
mesh edges using a shortest path algorithm. Mesh edge weights
are updated to encourage more graph edges to share common mesh
edges. The algorithm was found to be faster than force-directed
edge bundling [13]. Further optimization in the use of shortest path
algorithm and in parallelization made its speed close to that of the
geometry-based bundling algorithm [5]. The method was subse-
quently extended to 3D [17].

3 MULTILEVEL AGGLOMERATIVE EDGE BUNDLING

Throughout this paper we assume that we are working with a graph
G= {V, E}, with |V | vertices and |E| edges. We assume that we are
making 2D drawings, and that the positions of vertices are given.
The proposed algorithm is readily extended to 3D.

As discussed in Section 1, our intuition is to mimic what a hu-
man operator would do when faced with the task of bundling a mass
of electrical wires: identify wires that have similar start and end
points; merge them; check if additional wires can join existing bun-
dles, or need to start their own; and repeat this process. To achieve
this, we must first identify edges that are “similar.” Holten and van
Wijk [13] introduced four edge compatibility measures. For each
edge, a naive way to find similar edges is to check every other edge
for compatibility, an |E|2 operation.

However, we are interested in an edge bundling algorithm that
can scale to very large graphs, so we must avoid the quadratic com-
plexity involved in making such an all-to-all similarity computa-
tion. Our solution is to use a simple compatibility measure where
each edge is treated as a point in 4-dimensional space, and edge-
edge similarity is given by a metric in that space. Within this set-
ting, we can form an edge proximity graph efficiently. Edges that
are neighbors in the proximity graph can then be checked for pos-
sible bundling. Edges that are not immediate neighbors can still be
bundling in the multilevel process described in Section 3.3. The
overall algorithm is illustrated in Figure 1, and described in detail
in the following.

3.1 Edge proximity graph

Each vertex u has a position in 2D denoted as xu. We represent
each edge (u,v) as a 4-dimensional vector (xu,xv). Two edges are
“close” if their Euclidean distance in the 4-dimensional space is
small. A space decomposition, e.g., a kd-tree, can be constructed
using all |E| 4-dimensional vectors in time |E|log(|E|). This data
structure then allows us to find the k-nearest (k << |E|) neighbors
in time k log(|E|) per edge. Thus we construct an edge proximity
graph Γ in time k|E|log(|E|). We note that ordering of the points
in the 4-dimensional vector (xu,xv) affects the distance in the em-
bedding. This effect can be avoided by ordering the 4-dimensional
vector based on the x− or y− coordinates, or simply by inserting
both (xu,xv) and (xv,xu) in the data structure, without affecting the
k|E|log(|E|) complexity. We stress here that vertices in Γ and G are
not the same: vertices of Γ are edges of G.

An edge proximity graph Γ so constructed may not treat all com-
patible edges as neighbors, both because of the limited number k of
neighbors considered, and because we measure proximity using the
Euclidean norm in 4D, instead of using more detailed compatibil-
ity measures [13] that take into account length, angle, position, and
visibility. This, however, does not cause significant problems, be-
cause we ultimately measure the compatibility of edges by whether
bundling results in saving ink. In addition, our multilevel bundling
process can bundle not only neighbors, but a neighbor’s neighbors,
etc. Finally, a recursive process further increases the opportunity
to bundle edges that were not initially considered as being close.
Figure 1 (b) shows the edge proximity graph corresponding to the
edges in Figure 1 (a).

3.2 Agglomerative bundling

Once Γ is constructed, it guides the bundling decisions. For each
neighbor v of a vertex u in Γ, we calculate the ink saving that may
result if the edge represented by v is bundled with the edge rep-
resented by u. We then choose among all u’s neighbors one that
gives the maximal ink saving. Note that a neighbor v may already
be bundled with other edges, in which case v represents a bundle.
Let e(u) denote the edge or edges represented by a node u in Γ.
Let ink(e(u)) denote the ink needed to draw the edge (or bundle of
edges) represented by u, and e(u)∪ e(v) an edge bundle formed by
merging the edges represented by u and v. Then the amount of ink
saved by bundling the edges is defined as

ink(e(u))+ ink(e(v))− ink(e(u)∪ e(v))

We calculate the (approximate) minimal amount of ink needed
to draw a set of edges using the one dimensional optimization
procedure of Gansner and Koren [7]. Given the set of edges
e(u)∪ e(v) = {e1 = (xS

1,x
T
1 ),e2 = (xS

2,x
T
2 ), . . . ,ek = (xS

k ,x
T
k )}. As-

sume that the ends of the edges are properly ordered so that they
form two equal sized sets, the source set S = {xS

1,x
S
2, . . . ,x

S
k} and

the target set T = {xT
1 ,x

T
2 , . . . ,x

T
k }. The aim of the ink optimization

procedure is to find two meeting points M1 and M2, such that edges
leaving nodes in the source set S fan-in to M1, travel along a straight
line to M2, then fan-out to nodes in the target set T (Figure 2). The
total ink used to draw these edges is

f (S,T,M1,M2) = ∑
x∈S

||x−M1||+ ||M1−M2||+ ∑
x∈T

||M2−x||. (1)

The meeting points M1 and M2 are chosen to minimize the total ink,

ink(e(u)∪ e(v)) = min
M1,M2

f (S,T,M1,M2).

The following heuristic is used to find the approximate optimal
meeting points. First, the centroids of the sets S and T are com-
puted. Then, we minimize (1) by the procedure known as golden
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Figure 1: How multilevel agglomerative bundling works: (a) Original edges. Ink = 35.82. (b) Constructing an edge proximity graph (k = 3). (c)
After one level of agglomerative bundling. Ink = 19.31. (d) Constructing a coarsened proximity graph. (e) After multilevel agglomerative bundling.
Ink = 12.00. We call the tree-like branching portions of the bundles at their endpoints the fan-in and fan-out. (f) After recursive application of
bundling. Ink = 10.94. (g) Rendered using splines. (h) With turning angle <= 40o and spline rendering. Ink = 15.24.

section search [24], finding two points M1 and M2 along the line
linking the centroids. Figure 2 illustrates the process.

Figure 2: Illustration of the ink minimization process. The dotted line
pass through the centroids of S and T .

Figure 3: Left: edges with far away end points. Middle: bundling
results in a large turning angle. Right: limiting the turning angle.

When the end points of edges are far away, sometimes bundling
these edges results in large turning angles (Figure 3, middle), and
the corresponding splines will have a large curvature. We avoid
this in two ways. First, we allow a user-specified maximum turning
angle, and constrain the two meeting points so that this angle is
not exceeded. Second, we compromise between saving ink and
smaller turning angle by selecting the meeting points M1 and M2 to
minimize

f (S,T,M1,M2)

(

1+
cos(Amax)

p

)

,

instead of (1), with parameter p > 1, subject to the maximum turn-
ing angle constraint. Here Amax is the maximum turning angle given
by the specific meeting points. A larger value of p makes ink saving
more important, while a smaller value avoids sharp turning angles.

3.3 Multilevel agglomerative bundling

After edges are bundled by the agglomerative bundling process, we
coarsen the edge proximity graph by coalescing nodes (which rep-

resent edges of the original graph) that are bundled. Now each
node of the coarsened graph may represent a bundle of edges (Fig-
ure 1 (d)). We then repeat the bundling process described in the
previous section. This multilevel process terminates when no more
ink saving can be identified. The multilevel process allows edges
that may be far away in the original edge proximity graph to have
a chance to form a bundle, provided that doing so results in saving
ink.

Figures 1 (c) and 1 (e) show the results after one and two levels of
agglomeration. The first level reduces ink from 35.82 to 19.31. The
second level reduces it further to 12.00. No further ink reduction
can be achieved by going one level further.

3.4 Recursion

After one step of this bundling process, each edge is represented by
a polyline with at most three segments. Figure 4 (middle) shows
the result at the end of the multilevel process when applied to the
airlines graph (see Section 4). While a single step of the algo-
rithm reduces clutter when compared with the original graph, there
are still many similar splines that can be merged further. Therefore
we take the bundled straight sections as a new set of edges, and re-
cursively apply the multilevel process to bundle the edge bundles.
To promote straight lines, weights are used to represent the number
of edges a bundle represents, and the ink to draw a bundled line
is proportional to its weight. This has the effect of avoiding ex-
cessive bending of heavier bundles when merging bundles together.
Figure 1 (f) illustrates the result of recursion. This recursion ends
when no ink saving can be achieved. At this point each edge is a
polyline. We use the turning points as control points and render the
edges as splines (Figure 1 (g)). Figure 4 (bottom) shows the result
of recursively applying the multilevel process to the airlines

graph.

We call this multilevel agglomerative edge bundling procedure
MINGLE. Algorithm 1 gives the pseudo-code for MINGLE. In the
algorithm, e(v) denotes the set of edges represented by node v. If
v has been assigned a group, then this set also include edges repre-
sented by those nodes in the same group as v.



Figure 4: (a) Graph airlines (b) Bundled without recursion (c) With
recursion.

Algorithm 1 Multilevel agglomerative edge bundling algorithm
(MINGLE)

input: a set E of edges with position of the end points given.
set totalgain = 0; UNGROUPED =−1;
form an edge proximity graph Γ = {VE ,EE} of E;
repeat

set gain = 0; k = 0;
set group(u) = UNGROUPED for all u ∈VE ;
for each node u of Γ do

if group(u) = UNGROUPED then
find among all neighbors of u a node v that gives the
most ink saving if e(u) and e(v) are bundled;
gain(u,v) = ink(e(u)∪ e(v))− (ink(e(u))+ ink(e(v))) ;

if gain(u,v)> 0 then
bundle e(u) and e(v);
gain = gain+gain(u,v);
if group(v) 6= UNGROUPED then

group(u) = group(v);
else

group(u) = k; group(v) = k;
end if

else
group(u) = k;

end if
k = k+1;

end if
end for
Γ = Γ with nodes that are in the same group coalesced;
totalgain = totalgain+gain;

until gain ≤ 0
return group, totalgain.

The time complexity of the MINGLE algorithm can be analyzed
as follows. At each level of the multilevel algorithm, every edge
has to be checked against k of its neighbors to see if merging them
saves ink. In the best case, when each edge only merges with a
few other edges, this takes O(k|E|) time (assuming that finding the
optimal meeting point of two edges can be done in constant time).
Combined with the time needed to compute the proximity graphs,
the best case complexity is O(k|E| log(|E|)). The worst case occurs
when each edge bundles with all previously processed edges, i.e.,
edge i merges with a bundle consisting of edges 1,2, . . . , i− 1. In
this case, the total time will be proportional to O(|E|2). In prac-
tice, on real-world graphs, this pathological complexity has not
been observed, and the agglomerative bundling process runs very
efficiently, as explained further in the next section.

4 RESULTS

We implemented MINGLE in C, and used OpenGL for rendering.

For the initial edge proximity graph, instead of constructing a
strict proximity graph [16], such as a relative neighborhood graph
or a Gabriel graph, for our purposes it is sufficient to find an ap-
proximate proximity graph, which can be constructed quickly. We
generate a k-nearest neighbor graph using the ANN library (Version
1.1.2, [20]). In our experiments, unless otherwise specified, we fix
k at 10. Further discussion of the choice of k is given below.

In the examples and experiments in this paper, we set the max-
imal turning angle to 40◦, except for Figure 7 (right), where we
wanted to be aggressive and did not set a limit on turning angle.
Unless node positions are given, all graphs are first drawn using
sfdp from Graphviz [9], an implementation of a force-directed
algorithm [15].

All CPU timings of the algorithm were measured on an Intel
Xeon E5506 2.13GHz processor running Ubuntu 9.10 with 12 GB
of RAM and a GeForce GTX260 graphics card. We used gcc -O3

for compilation. Table 1 shows the CPU times given by MINGLE.
For comparison, we also show the CPU times for FDEB [13] and
GBEB [5] reported2 by Holten et al. [13]. For these two algorithms,
we only have CPU data for the two small graphs airlines and
migration, which depict US airline routes and migration infor-
mation, respectively. The timing data were from an Intel Core2
Duo 2.66 GHz processor. According to cpubenchmark.net,
this class of processors is 3 to 4 times slower than the Intel Xeon
processor we used.

We can see from the table that even factoring in processor
speed, the MINGLE algorithm is substantially faster than FDEB
and GBEB.

We also tested MINGLE on nine larger graphs. These graphs,
except ixpas, were taken from the University of Florida Sparse
Matrix Collection [26]. Further information concerning them can
be found there. The graphs are chosen with two objectives.

Our first objective is to have a diverse sample of graphs. For ex-
ample, the graph yeast comes from a biological application. The
graph ixpas is bipartite with edges connecting autonomous sys-
tem (AS) nodes and Internet exchange points (IXP) where they have
a presence. AS nodes are assigned estimated (averaged) locations;
IXP nodes have known, exact geographic locations. The graph
amazon0302 depicts co-purchase relations between items on
amazon.com. The graph amazon0302 b uses the amazon0302

2We did run FDEB on our machine. It was able to bundle the first three

graphs in Table 1. The CPU time we observed (15, 56 and 102 seconds,

respectively) is less favorable than these reported in Holten et al. [13], when

factor in the difference in processor speed. This could be due to many rea-

sons, one of which could be that we only have an excutable program which

may be optimized for a platform different from ours. Therefore we thought

it would be fairer to quote the timing as reported in Holten et al. [13]. We

have no access to GBEB.



name |E| MINGLE FDEB* GBEB*

airlines 1297 0.1 19 2.5
yeast 6646 0.9 - -
migration 9660 1.0 80 18.8
wiki-Vote 100762 18.4 - -
ixpas 149661 32.3 - -
net50 464440 87.1 - -
amazon0302 899792 277. - -
net100 1001640 204. - -
amazon0302 b 1233364 267. - -
net150 1538840 355. - -
Stanford 1992636 404. - -
pattern1 4652095 1049. - -

Table 1: CPU time (in seconds) taken by different edge bundling al-
gorithms. Columns marked with an asterisk (*) show CPU times from
a processor that is 3-4 times slower than the one used for MINGLE.

name source |V | % ink
saving

avg.
work

airlines [5, 13] 235 59.2 126.4
yeast [26] 2361 45.1 206.6
migration* [5, 13] 6517 74.5 137.8
wiki-Vote [26] 8297 66.8 173.5
ixpas AT&T 28546 90.5 230.4
net50 [26] 16320 81.5 164.3
amazon0302 [26] 262111 54.8 240.7
net100 [26] 29920 85.3 164.0
amazon0302 b [26] 519010 55.8 207.9
net150 [26] 43520 83.9 192.5
Stanford [26] 281903 69.7 196.1
pattern1 [26] 19242 84.5 176.2

Table 2: Additional measurements of MINGLE on test cases. “Ink
saving” is percentage of ink saved when edges are bundled, instead
of drawn as straight edges. “Work” is average number of ink optimiza-
tions each edge, or bundle, is involved in. ∗The migration graph
contains two-way edges that represent two-way migrations, and the
duplication amount to 21.9% of total ink. Subtracting this, the ink sav-
ing for the migration graph is 52.6.

matrix, but treats the rows and columns as two separate sets of ver-
tices, thus yielding a bipartite graph.

The second objective is to have a wide range of number of edges
so as to test the scalability of MINGLE. To that end we selected
net50, net100, net150, three graphs of the same kind but
different sizes.

As can be seen, MINGLE is able to bundle graphs with around
100,000 edges in about 20 seconds, and graphs with around one
million edges in around 4 minutes. The largest graph, pattern1,
has 4.6 million edges, and MINGLE processes it in 14 minutes.
Overall, the algorithm scales well.

Table 2 gives some additional details about the graphs, and about
MINGLE. It shows the percentage of ink saved, defined as,

ink to draw straight edges− ink to draw bundled edges

ink to draw straight edges
,

in percentage. It also shows “average work”, a measure of the av-
erage number of times an edge, or a bundle, is involved in ink opti-
mization. Every time the ink optimization routine is invoked to find
optimal bundle for m edges or bundles, we increment “work” by m.
The total “work” is divided by the number of edges in the original
graph to get the “average work”. We can see that this quantity re-
mains relatively stable as number of edges increases (rows in both

tables 1-2 are ordered by increasing number of edges). Given that
the majority of CPU time is spent in the ink optimization proce-
dure, the relatively stable “average work” shows that algorithm is
not exhibiting the worst case quadratic time complexity.

While all above results are based on k = 10, we experimented
with values of k between 2 to 1000. Table 3 shows the amount of
ink saving and CPU time for six graphs of varying sizes. Clearly,
a relatively small k is sufficient to achieve good ink saving. Sur-
prisingly, increasing k beyond a small value actually reduces ink
saving, and increases CPU time. We do not know the exact reason
why ink saving actually deteriorate as k increases beyond 3. But we
believe that a smaller k prevents bundling of multiple edges at an
early stage of the multilevel agglomerative bundling process. This
create a more balanced tree and promotes consideration of merging
candidates that are not consider very close in the 4D space.

We choose a conservative k = 10 for results in Table 1-2 as we
are aware that for artificial data, e.g., two sets of m parallel lines
each, with a small separating distance between the sets, a smaller
k < m will yield a disconnected proximity graph. Although MIN-
GLE will run fine on this example, the disconnected proximity
graph does prevent edges between the two sets to have a chance
to merge. But in practice, for the graphs tested in Table 3, k = 3
seems to be a good choice. Overall, this experiment confirms that
a small k does not hurt performance because of the local nature of
k-nearest neighbor graph, rather, the multilevel agglomerative pro-
cess is robust and does provide the global reach needed.

k 2 3 5 10 50 100 1000

airl. 57.1 62.3 61.4 59.2 55.6 53.5 48.75
0.1 0.05 0.08 0.14 0.5 0.86 3.9

migra. 72.3 77.1 75.7 74.5 72.5 71.6 68.1
0.7 0.5 0.64 1.0 3.9 6.4 51.5

wiki. 60.5 68.8 67.5 66.8 64.7 63.5 63.5
9.5 5.7 11.4 18.4 70.3 127 391

amaz. 48.5 57.4 56.0 54.8 - - -
262 157 177 277 - - -

net15. 86.2 84.5 83.9 83.0 - - -
85 112 355 1257 - - -

patt. 70.6 87.4 85.2 84.5 - - -
516 407 520 1049 - - -

Table 3: Effect of k on the ink saving and CPU time. In each cell,
the top number is the percentage of ink saving; the bottom number
is CPU time (seconds). Cells marked with “-” mean that CPU time
exceeds 1500 seconds. It is seen that a relatively small k (e.g., k = 3)
is better than very large k, and gives a larger ink saving and smaller
CPU time. (The names of graphs are abbreviated to save space.)

4.1 Rendering

Similar to Holten and van Wijk [13], we use a GPU-based, OpenGL
rendering technique to highlight edge bundles. We use the standard
technique of additive alpha blending with a floating-point frame-
buffer object to accurately count the number of edges incident on
each pixel, typically called the overdraw, which we will model as
a scalar field ω : D ⊂ R2 → R (D denotes the screen rectangle). To
determine the color of each pixel, we first find the maximum over-
draw M = maxx∈D ω(x) using the standard procedure of reduction
on the GPU [4]. We then use a linear colormap that encodes the
overdraw as a function from [0,M] → RGB. We use a blue-red-
yellow-white palette for light backgrounds and a light-cyan-red-
yellow-white palette for dark backgrounds.

Holten and van Wijk [13] suggest a continuous interpolation be-
tween straight edges and bundled edges as a way for user to under-
stand the bundle structure. We adopt that approach. Specifically,



let a bundled edge be represented as a polyline {x0,x1, . . . ,xk}. The
projection of point xi onto the straight line {x0,xk} is

x̄i = x0 +
(xi − x0)

T (xk − x0)

||xk − x0||2
(xk − x0).

Each step of the animation uses control points {sx̄i + (1 −
s)xi|i = 0,1, . . . ,k} to form splines, with parameter s varying from
0 (straight line) to 1 (bundled edge). To speed up rendering, we
use a relatively recent feature in GPUs known as geometry shaders.
The geometry shading step appears in the graphics pipeline between
vertex and fragment processing. Its most important feature is to cre-
ate entirely new graphics primitives (triangles, polylines, etc.) di-
rectly on the GPU. In our case, the advantage of such an approach
is that the control points of the splines are only sent to the GPU
once. The actual interpolation along the s parameter and the tessel-
lation of the spline into line segments is performed by the geometry
shader, greatly reducing the workload on the graphics bus in com-
parison with what it would be if we were to create this geometry on
the GPU for every frame.

Interactively varying s gives a continuous deformation from the
original graph to the bundled graph, making the edge structure
much easier to understand. (See http://www2.research.

att.com/˜yifanhu/edge_bundling/.) Larger values for
s, approaching 1, also give thick bundles, allowing one to see more
clearly how many edges go into particular sections of a bundle.

In the case where relative bundle sizes are critically important,
we provide an alternative rendering based on hill shading [14]. The
added illumination cues help determine which bundles carry more
edges, in particular where they split and merge. Our hillshading
rendering procedure is straightforward. Starting with the raw over-
draw count image, we first blur it by some amount (currently we use
a separable Gaussian filter with 3σ decay at 5 pixels). Hill shading
works by approximating diffuse illumination of a mountain range
modeled as a height field. The illumination b at each pixel is given
by b = max(0,−〈l, n̂〉), where l is the direction of the incoming
light vector (assumed constant) and n̂ is the normal vector at each
point. The normal vector is given by

n =

(

−s
∂ω

∂x
,−s

∂ω

∂y
,1.0

)

, n̂ = n/||n||.

The constant s is a parameter which essentially controls the slope
of the hills. In traditional hill shading, the units of height are the
same as the units which measure length in the field itself, which
gives a single sensible choice of s = 1. However, when using hill
shading in abstract settings such as ours, s can be an arbitrary pos-
itive value. The choice of s can influence the perception of the
final rendering, and while we could leave s to be interactively deter-
mined, we believe it is important to provide good defaults. We have
found in our experiments that picking the value of s which maxi-
mizes the entropy of the resulting normal distribution tends to yield
aesthetically pleasing results. The idea of maximizing entropy of a
distribution related to the viewing parameters is well-known [2].

4.2 Further Examples

Figure 5 (top) shows a layout of the Internet IXP peering graph
ixpas, with 149661 edges. It is difficult to see what is going on
in parts of the graph where the edge density is high. Using edge
bundling, Figure 5 (bottom) shows the flow structure more clearly.
For example, there is a strong connection between a site near Hon-
olulu, Hawaii and sites in Europe and Asia. Also, there is a site
in Nassau, Bahamas that connects with many sites in the US and
Europe, a pattern difficult to discern in the original drawing.

Figure 6 shows the largest component of graph net50, com-
paring the original drawing and bundled drawing, with and without
hill shading. With bundling, it is easier to see the small groups of

vertices between the rightmost large group of vertices, and the long
vertical group vertices. This is because there are fewer edges in the
way to obstruct the view. Hill shading adds additional visual cues
to determine which bundles carry more edges, and where they split
and merge.

Finally, Figure 7 shows the graph amazon0302 with close to
a million edges. This directed graph was collected by crawling the
Amazon.com website. Each node is an item, and an edge exists
from item i to item j if, according to Amazon.com, customers who
bought item i also frequently bought item j. Without edge bundling,
the drawing is a hairball cluttered with edges. With bundling, there
is a significant increase in discernible details. However this graph
also illustrates a limitation of edge bundling: while more details can
be seen with bundling, the result is still a hairball. We believe no
edge bundling algorithm can reveal high-level edge patterns that do
not exist in the layout.

5 CONCLUSIONS AND FUTURE WORK

We proposed a multilevel agglomerative edge bundling method for
general graph layouts. Our method is based on a principled ap-
proach of minimizing the ink needed to represent edges, with ad-
ditional constraints on the curvature of the resulting splines. The
method is significantly more efficient than previously published
ones, able to bundle hundreds of thousands of edges in seconds,
and one million edges in a few minutes. The algorithm is not diffi-
cult to implement, requiring no underlining meshes. The resulting
edge-bundled graphs show significantly reduced cluttering, and can
reveal some high-level edge patterns.

While we combined the edge proximity graph with an ink-saving
based edge bundling technique, we could replace the ink-saving al-
gorithm with, say, a force-directed edge bundling algorithm [13].
More specifically, in Algorithm 1, the gain in bundling edges could
be calculated using a force-directed procedure. Alternatively, we
could modify the force-directed edge bundling of Holten and van
Wijk [13] by limiting interaction of edges only to those that are
neighbors in the edge proximity graph. Either approach has the po-
tential to speed up the force-directed algorithms. We are exploring
these possibilities and initial results look promising.

We note that the one-dimensional ink saving algorithm we used
is simplistic and assumes that all edges will merge at one of the two
control points. In practice, it may be more aesthetic for edges to join
at different points along the bundle. This is another reason why a
force-directed algorithm could be an interesting alternative to the
one-dimensional ink saving algorithm. The problem of finding the
shortest length of lines linking a set of end points is related to find-
ing a minimum Steiner tree, which is known to be NP-Hard [10].

Finally, we note that while edge bundling is a helpful tool in
reducing clutter, it cannot find structures that are not present in the
layout. How to steer a layout algorithm with a edge bundling tool
to find hidden structures could be an interesting topic of research.
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