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Morphometry through Deformations

Atlas
A
4 /¢—>
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Patient 1 Patient 5

@,
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Skulls of a human, a chimpanzee and a baboon Patient 4
and transformations between them Patie nt 3
Patient 2

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
o Observation = “random” deformation of a reference template
o Reference template = Mean (atlas)
o Shape variability encoded by the deformations
Statistics on groups of transformations (Lie groups, diffeomorphism)?
Consistency with group operations (hnon commutative)?
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Longitudinal deformation analysis
Dynamic obervations

time

Patient A . V.‘

Template ? ? —

Patient B

How to transport longitudinal deformation across subjects?
What are the convenient mathematical settings?
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Outline

Foundations of statistics on manifolds
o The Riemannian framework
o Lie groups as affine connection spaces
o The SVF framework for diffeomorphisms

Longitudinal analysis of deformations with SFVs
o Parallel transport of deformations germs
o Longitudinal modeling of brain atrophy in AD
o Morphological analysis with Helmoltz decomposition
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Bases of Algorithms in Riemannian Manifolds

Riemannian metric :

Dot product on tangent space

Speed, length of a curve

Geodesics are length minimizing curves
Riemannian Distance

O
O
O
O

Xy

Exponential map (Normal coord. syst.) :

o Geodesic shooting: Exp,(v) = y(x,v)(1)
o Log: find vector to shoot right (geodesic completeness!)

Unfolding (Log,), folding (Exp,)

o Vector -> Bipoint (no more equivalent class)

Operator Euclidean space | Riemannian manifold
Subtraction Ty =y —X x_); =Log,(Y)
Addition y =X+ ;y y = Exp, (Xy)
Distance dist(X,y) = Hy — XH dist(X,y) = ;y
Gradient descent X, =% —VC(X) X = EXp, (-6VC(X))
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Statistical tools: Moments

Frechet / Karcher mean minimize the variance
E[x]= argmin (Elaisty,x?) = EfRx|= j %x.p, (2)dM(z) =0 [P(C)=0]

Existence and uniqueness : Karcher / Kendall / Le / Afsari

Gauss-Newton Geodesic marching

X =€Xpy (V) with v= E[yT(]

Covariance (PCA) [higher moments]

=Bl |- [ )) poave

M

[Oller & Corcuera 95, Battacharya & Patrangenaru 2002, Pennec, JMIV06, NSIP’99 ]
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Limits of the Riemannian Framework

Lie group: Smooth manifold with group structure
o Composition g o h and inversion g' are smooth
o Left and Right translation L,(f) =gof R (f)=fog

o Natural Riemannian metric choices
o Chose a metric at Id: <x,y>4

o Propagate at each point g using left (or right) translation
<K Yy>g =< DLg(-n X, DLg(-n Y >y

No bi-invariant metric in general

o Incompatibility of the Fréchet mean with the group structure
o Left of right metric: different Fréchet means
e The inverse of the mean is not the mean of the inverse

o Examples with simple 2D rigid transformations

o Can we design a mean compatible with the group operations?
o Is there a more convenient structure for statistics on Lie groups?
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Basics of Lie groups

Flow of a left invariant vector field X = DL. x starting from e
o y,(t) exists for all time
o One parameter subgroup: y, (s + t) = y,(s). 7, (t)

Lie group exponential

o Definition: x € ¢ 2 Exp(x) =vy,(1) €G
o Local chart (not true in general for inf. dim)
o Baker-Campbell Hausdorff (BCH) formula

1
BCH(x,y) = Log(Exp(x).Exp(y)) =x+y+ > [x, v] + ..

3 curves at each point parameterized by the same tangent vector

o Left / Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?
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Affine connection spaces

Affine Connection (infinitesimal parallel transport)
o Acceleration = derivative of the tangent vector along a curve

o Projection of a tangent space on
a neighboring tangent space

Geodesics = straight lines
o Null acceleration: V;;y = 0

o 2" order differential equation:
Normal coordinate system

o Local exp and log maps

Adapted from Lé Nguyén Hoang, science4all.org
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Cartan-Schouten Connection on Lie Groups

A unique connection
o Symmetric (no torsion) and bi-invariant

o For which geodesics through Id are one-parameter

subgroups (group exponential)
o Matrices : M(t) = A.exp(t.V)
o Diffeos : translations of Stationary Velocity Fields (SVFs)

Levi-Civita connection of a bi-invariant metric (if it exists)

o Continues to exists in the absence of such a metric
(e.g. for rigid or affine transformations)

Two flat connections (left and right)
o Absolute parallelism: no curvature but torsion (Cartan / Einstein)
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Statistics on an affine connection space

Fréechet-mean: exponential barycenters

O Zi Lng (yi) =0 [Emery, Mokobodzki 91, Corcuera, Kendall 99]
o Existence & local uniqueness if local convexity [Arnaudon & Li, 2005]

For Cartan-Schouten connections [Pennec & Arsigny, 2012]
o Locus of points x such that Y Log(x~t.y;,) =0
o Algorithm: fixed point iteration (local convergence)

1
Xer1 = X¢ o Exp (Ez Log(x:*.y) )

o Mean stable by left / right composition and inversion
o If mis a mean of {g;} and h is any group element, then
homisameanof {ho g;}, mohisamean of the points {g; o h}

and m©Y is a mean of {gi(_l)}
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Generalization of the Statistical Framework

Covariance matrix & higher order moments
o Defined as tensors in tangent space

Y= [Log,(y) ® Log,(y) u(dy)

o Matrix expression changes
according to the basis

Other statistical tools
o Mahalanobis distance well defined and bi-invariant

o Principal Geodesic Analysis (PGA), provided a data likelihood
o Independent Component Analysis (ICA)
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Riemannian Metrics on diffeomorphisms

Space of deformations
o Transformation y=¢ (x)
o Curves in transformation spaces: ¢ (x,t)
o Tangent vector = speed vector field V,(X) =

do(x,1)
dt

Right invariant metric HV H |, o g~
o Lagrangian formalism e e

o Sobolev Norm H, or H,, (RKHS) in LDDMM - diffeomorphisms
[Miller, Trouve, Younes, Holm, Dupuis, Beg... 1998 — 2009]

o Geometric Mechanics [Arnold, Smale, Souriau, Marsden, Ratiu, Holmes, Michor...]

’

Geodesics determined by optimization 011’ a time-varying vector field
o Distance d 2(¢0,¢1) = arg mln(j“vt H; dt)
Yo

o Geodesics characterized by initial velocity / momentum
o Optimization by shooting/adjoint or path-straightening methods
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The SVF framework for Diffeomorphisms

Framework of [Arsigny et al., MICCAI 06]
o Use one-parameter subgroups

Exponential of a smooth vector field is a diffeomorphism
o U is a smooth stationary velocity field
o Exponential: solution at time 1 of ODE 0ox(t) / ot = u( x(t) )

—)

Stationary velocity field Diffeomorphism
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The SVF framework for Diffeomorphisms

Efficient numerical methods
o Take advantage of algebraic properties of exp and log.
o exp(t.V) is a one-parameter subgroup.

— Direct generalization of numerical matrix algorithms.

Efficient parametric diffeomorphisms

o Computing the deformation: Scaling and squaring
recursive use of exp(v)=exp(v/2) o exp(v/2)
[Arsigny MICCAI 2006]

o Updating the deformation parameters:
BCH formula [Bossa MICCAI 2007]

exp(v) o exp(eu) =exp(v + eu + [v,eu)/2 + [v,[v,eu]}/12 + ... )
o Lie bracket [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

I
X. Pennec - STIA - Sep. 18 2014 18



Symmetric log-demons [Vercauteren MICCAI 08]

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
o Parameterize the deformation by SVFs
o Time varying (LDDMM) replaced by stationary vector fields
o Efficient scaling and squaring methods to integrate autonomous ODEs

Log-demons with SVFs

1 1
E(V,Ve) = = |IF = M oexp(ve)l7, + —5 [[log(exp(—v) o exp(ve))llz, + R(V)

7\

—T— — ' —
Similarity Coupling Regularisation
Measures how much the Couples the correspondences Ensures
two images differ with the smooth deformation deformation
smoothness

o Efficient optimization with BCH formula
o Inverse consistent with symmetric forces
o Open-source ITK implementation [ T Vercauteren, et al.. Symmetric

o Very fast Log-Domain Diffeomorphic
o http://hdl.handle.net/10380/3060 Registration: A Demons-based

Approach, MICCAI 2008 ]
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Cartan Connections vs Riemannian

What is similar
o Standard differentiable geometric structure [curved space without torsion]
o Normal coordinate system with Exp, et Log, [finite dimension]

Limitations of the affine framework

o No metric (but no choice of metric to justify)

o The exponential does always not cover the full group
« Pathological examples close to identity in finite dimension
« In practice, similar limitations for the discrete Riemannian framework

What we gain

o A globally invariant structure invariant by composition & inversion
o Simple geodesics, efficient computations (stationarity, group exponential)
o The simplest linearization of transformations for statistics?
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Measuring Temporal Evolution with deformations

Fast registration with deformation parameterized by SVF

Pe(x) = exp(t v(x))

https:/[team.inria.fr/asclepios/software/lcclogdemons/

[ Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ]
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Longitudinal deformation analysis in AD

o From patient specific evolution to population trend
(parallel transport of deformation trajectories)

o Inter-subject and longitudinal deformations are of different nature
and might require different deformation spaces/metrics

Patient A . V-‘

Template ? ? —

Patient B —
PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)
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Parallel transport of deformations

Encode longitudinal deformation by its initial tangent (co-) vector
o Momentum (LDDMM) / SVF

Parallel transport
o (small) longitudinal deformation vector
o along the large inter-subject normalization deformation

Existing methods
o Vector reorientation with Jacobian of inter-subject deformation
o Conjugate action on deformations (Rao et al. 2006)
o Resampling of scalar maps (Bossa et al, 2010)

o LDDMM setting: parallel transport along geodesics via Jacobi fields
[Younes et al. 2008]

Intra and inter-subject deformations/metrics are of different nature
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Parallel transport along arbitrary curves

Infinitesimal parallel transport = connection
V,(X): TM->TM

A numerical scheme to integrate for symmetric connections:
Schild’s Ladder [Elhers et al, 1972]

o Build geodesic parallelogrammoid
o Iterate along the curve
P1 A OP’1

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]

X. Pennec - STIA - Sep. 18 2014
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Parallel transport along geodesics

Along geodesics: Pole Ladder [Lorenzi et al, JMIV 2013]

[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 2014 ]
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Efficient Pole and Schild’s Ladder with SVFs

T

Exp(IT(u)) =Exp(v/2) o Exp(u) o Exp(—v/2)

Ia

Exp(u)

Numerical scheme
o Direct computation 171..,.,(u) = D (Exp(v)) Exp(_o - 4 Exp(—v)

o Using the BCH:

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]
Runner-up for the IPMI Erbsmann 2011 prize
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Analysis of longitudinal datasets
Multilevel framework

X. Pennec - STIA - Sep. 18 2014

Single-subject, two time points

Log-Demons (LCC criteria)

Single-subject, multiple time points

4D registration of time series within the

Log-Demons registration.

Multiple subjects, multiple time points

Pole or Schild’s Ladder

[Lorenzi et al, in Proc. of MICCAI 2011]
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Mean Longitudinal Model for AD

Estimated from 1 year changes — Extrapolation to 15 years
70 AD subjects (ADNI data)

Extrapolated Observed Extrapolated
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Longitudinal changes in Alzheimer’s disease
(141 subjects — ADNI data)

Student’s
t statistic

X. Pennec - STIA - Sep. 18 2014
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Consistency and numerical stability

Vector measure

Scalar summary

(Jacobian det, logJacobian det, ...)

Vector
transport

Scalar summary

>

X. Pennec - STIA - Sep. 18 2014

Scalar measure

\7/

Scalar
transport
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Longitudinal changes in Alzheimer’s disease
(141 subjects — ADNI data)

Comparison with standard TBM

Pole ladder

Scalar transport

Consistent results
X. Pennec - STIA - Sep. 18 2014 Equivalent statistical power 34




Study of prodromal Alzheimer’s disease

o 98 healthy subjects, 5 time points (0 to 36 months).
o 41 subjects AB42 positive (“at risk” for Alzheimer’s)
o Q: Different morphological evolution for A+ vs AB-?

Average SVF
for normal
evolution (AB-)

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]
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Time: years

AB42- AB42+
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Study of prodromal Alzheimer’s disease

Linear regression of the SVF over time: interpolation + prediction

Multivariate group-wise comparison
of the transported SVFs shows
_ statistically significant differences
T =Exp\()*T, (nothing significant on log(det) )
[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]
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Non-rigid registration for longitudinal analysis

Alzheimer’s atrophy
Baseline MRI trajectory Follow-up MRI

p=exp(v)

Atrophy flow encoded by the dense stationary velocity field
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Morphological analysis of SVF

v — Volury/pranges 4- V x A
Helmholtz decomposition

Atrophy!! Structural
readjustments

X. Pennec - STIA - Sep. 18 2014
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Morphological analysis of SVF

Discovery

Pressure D
Defines sources and sinks

of the atrophy process

Quantification

Divergence
Defines flux across

expanding/contracting regions

X. Pennec - STIA - Sep. 18 2014

Divergence Theorem

[Lorenzi et al, MICCAI 2012]

O
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Probabilistic definition of the atrophy topography

ice

E

P(Critical area) ~ Proximity to critical point + Surrounding flux

Step1. Finding local maxima and minima for the pressure field (sources,sinks)
Step2. Finding surrounding areas of maximal outwards/inwards flux (Expansion and Contraction)

X. Pennec - STIA - Sep. 18 2014 [Lorenzi et al, MICCAI 2012] 47



Group-wise flux analysis in Alzheimer’s

disease: Quantification
From group-wise... ...1o subject specific

—

sample size « sd/(mean,-mean,) Effect size on left hippocampus

Hippocampal Group six months one year two years
Regional flux atrophy .
(all regions) [Leung 2010] INRIA - Regional Flux 1.02 1.33 1.47
(Different ADNI
— S— 12106 NIBAD’12 Challenge:
; 77, .
ontrols [ ] it PR Top-ranked on Hippocampal atrophy measures
1 I

MCI vs 277 [166,555] 545 [296, 1331] 48
controls



Conclusion

Cartan connections: a nice setting for transformation groups
o A connection defines geodesics but no length along them
o Cartan connection: one-parameters subgroups are bi-invariant geodesics

—> exponential barycenter = bi-invariant mean
o Fine existence [Pennec & Arsigny 2012] (Uniqueness?)

Algorithms for SVFs
o Log-demons: Open-source ITK implementation http://hdl.handle.net/10380/3060
o Tensor (DTI) Log-demons: https://gforge.inria.fr/projects/ttk
o LCC time-consistent log-demons for AD available soon
o ITK class for SVF diffeos currently under development

Schilds Ladder for parallel transport
o Effective instrument for the transport of deformation trajectories
o Key component for multivariate analysis and modeling of longitudinal data
o Stability and sensitivity
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O
O
O

O

The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

SVF framework for diffeomorphisms is algorithmically simple

Compatible with “inverse-consistency”

Vector statistics directly generalized to diffeomorphisms

Efficient parallel transport of deformation trajectories with Schilds/pole ladders

Registration algorithms using log-demons:

O

Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008)
http://hdl.handle.net/10380/3060
[MICCAI Young Scientist Impact award 2013]

Tensor (DTI) Log-demons (Sweet WBIR 2010):
https://gforge.inria.fr/projects/ttk

LCC log-demons for AD (Lorenzi, Neuroimage. 2013)
https:/[team.inria.fr/asclepios/software/lcclogdemons/

3D myocardium strain / incompressible deformations (Mansi MICCAI'10)

Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012)
http://lwww.stanford.edu/~cseiler/software.html
[MICCAI 2011 Young Scientist award]

X. Pennec - STIA - Sep. 18 2014 50



« Medical image processing and visualization software
« Open-source, BSD license

« Extensible via plugins

« Provides high-level algorithms to end-users

« Ergonomic and reactive user interface

Available registration algorithms :
« Diffeomorphic Demons
« Incompressible Log Demons
« LCC Log Demons

http://med.inria.fr

INRIA teams involved: Asclepios, Athena, Parietal, Visages



http://med.inria.fr/

