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Morphometry through Deformations 
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller] 
 Observation = “random” deformation of a reference template  
 Reference template = Mean (atlas) 
 Shape variability encoded by the deformations 

Statistics on groups of transformations (Lie groups, diffeomorphism)? 
Consistency with group operations (non commutative)? 
 

Patient 3 

Atlas 

Patient 1 

Patient 2 

Patient 4 

Patient 5 


1  


2  


3  


4  


5  



Longitudinal deformation analysis 

3 

time 

Dynamic obervations 

How to transport longitudinal deformation across subjects? 
What are the convenient mathematical settings?   
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Bases of Algorithms in Riemannian Manifolds 
 Riemannian metric : 

 Dot product on tangent space  
 Speed, length of a curve 
 Geodesics are length minimizing curves 
 Riemannian Distance  

 

Operator Euclidean space Riemannian manifold 

Subtraction 
Addition 
Distance 

Gradient descent )( ttt xCxx  
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Unfolding (Logx), folding (Expx) 
 Vector -> Bipoint (no more equivalent class) 

Exponential map (Normal coord. syst.) : 
 Geodesic shooting: Expx(v) = g(x,v)(1) 
 Log: find vector to shoot right (geodesic completeness!) 
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Statistical tools: Moments 

Frechet / Karcher mean minimize the variance 

 
Existence and uniqueness : Karcher / Kendall / Le / Afsari 

 

Gauss-Newton Geodesic marching 

 

 

Covariance (PCA) [higher moments] 
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[Oller & Corcuera 95, Battacharya & Patrangenaru 2002, Pennec, JMIV06, NSIP’99 ] 



Limits of the Riemannian Framework 

Lie group: Smooth manifold with group structure 
 Composition g o h and inversion g-1 are smooth 
 Left and Right translation Lg(f) = g o f    Rg (f) = f o g 
 Natural Riemannian metric choices 

 Chose a metric at Id: <x,y>Id 

 Propagate at each point g using left (or right) translation 
<x,y>g = < DLg(-1) .x , DLg(-1) .y >Id 
 

No bi-invariant metric in general  
 Incompatibility of the Fréchet mean with the group structure 

 Left of right metric: different Fréchet means 
 The inverse of the mean is not the mean of the inverse  

 Examples with simple 2D rigid transformations 
 

 Can we design a mean compatible with the group operations? 
 Is there a more convenient structure for statistics on Lie groups? 
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Basics of Lie groups 

Flow of a left invariant vector field 𝑋 = 𝐷𝐿. 𝑥 starting from e 
 𝛾𝑥 𝑡  exists for all time 
 One parameter subgroup: 𝛾𝑥 𝑠 + 𝑡 = 𝛾𝑥 𝑠 . 𝛾𝑥 𝑡   

Lie group exponential 
 Definition: 𝑥 ∈ 𝔤  𝐸𝑥𝑝 𝑥 = 𝛾𝑥 1  𝜖 𝐺  
 Local chart (not true in general for inf. dim) 
 Baker-Campbell Hausdorff (BCH) formula 

𝐵𝐶𝐻 𝑥, 𝑦 = 𝐿𝑜𝑔 𝐸𝑥𝑝 𝑥 . 𝐸𝑥𝑝 𝑦 = 𝑥 + 𝑦 +
1

2
𝑥, 𝑦 + … 

3 curves at each point parameterized by the same tangent vector 

 Left / Right-invariant geodesics, one-parameter subgroups 
Question: Can one-parameter subgroups be geodesics? 
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Affine connection spaces 

Affine Connection (infinitesimal parallel transport) 
 Acceleration = derivative of the tangent vector along a curve 
 Projection of a tangent space on  

a neighboring tangent space  
 

 
 
Geodesics = straight lines 

 Null acceleration: 𝛻𝛾 𝛾 = 0 
 2nd order differential equation: 

Normal coordinate system 
 Local exp and log maps 
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Adapted from Lê Nguyên Hoang, science4all.org 



Cartan-Schouten Connection on Lie Groups 

A unique connection 
 Symmetric (no torsion) and bi-invariant 
 For which geodesics through Id are one-parameter 

subgroups (group exponential) 
 Matrices : M(t) = A.exp(t.V) 
 Diffeos : translations of Stationary Velocity Fields (SVFs)   

 

Levi-Civita connection of a bi-invariant metric (if it exists) 
  Continues to exists in the absence of such a metric 

(e.g. for rigid or affine transformations) 
 

Two flat connections (left and right) 
 Absolute parallelism: no curvature but torsion (Cartan / Einstein) 
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Statistics on an affine connection space 
 

Fréchet mean: exponential barycenters 
  𝐿𝑜𝑔𝑥 𝑦𝑖𝑖 = 0               [Emery, Mokobodzki 91, Corcuera, Kendall 99] 

 Existence & local uniqueness if local convexity [Arnaudon & Li, 2005] 
 

 

For Cartan-Schouten connections  [Pennec & Arsigny, 2012]  
 Locus of points x such that    𝐿𝑜𝑔 𝑥−1. 𝑦𝑖 = 0  
 Algorithm: fixed point iteration (local convergence) 

𝑥𝑡+1 = 𝑥𝑡 ∘ 𝐸𝑥𝑝
1

𝑛
 𝐿𝑜𝑔 𝑥𝑡

−1. 𝑦𝑖   

 Mean stable by left / right composition and inversion  
 If 𝑚 is a mean of 𝑔𝑖  and ℎ is any group element, then  

ℎ ∘ 𝑚 is a mean of ℎ ∘ 𝑔𝑖  , 𝑚 ∘ ℎ is a mean of the points 𝑔𝑖 ∘ ℎ   

and 𝑚(−1) is a mean of 𝑔
𝑖
(−1)  
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Generalization of the Statistical Framework 
 

Covariance matrix & higher order moments 
 Defined as tensors in tangent space 

 

          Σ =  𝐿𝑜𝑔𝑥 𝑦 ⊗ 𝐿𝑜𝑔𝑥 𝑦  𝜇(𝑑𝑦) 
 

 Matrix expression changes 
according to the basis 

 
 
 

Other statistical tools 
 Mahalanobis distance well defined and bi-invariant 
 Tangent Principal Component Analysis (t-PCA) 
 Principal Geodesic Analysis (PGA), provided a data likelihood 
 Independent Component Analysis (ICA) 
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Riemannian Metrics on diffeomorphisms 
Space of deformations 

 Transformation y= (x) 
 Curves in transformation spaces:  (x,t) 
 Tangent vector = speed vector field  

 
Right invariant metric  

 Lagrangian formalism 
 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms  

[Miller, Trouve, Younes, Holm, Dupuis, Beg… 1998 – 2009] 

 Geometric Mechanics [Arnold, Smale, Souriau, Marsden, Ratiu, Holmes, Michor…] 
 

Geodesics determined by optimization of a time-varying vector field 
 Distance 

 

 Geodesics characterized by initial velocity / momentum 
 Optimization by shooting/adjoint or path-straightening methods 

dt
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The SVF framework for  Diffeomorphisms 
Framework of [Arsigny et al., MICCAI 06] 

 Use one-parameter subgroups 
 

Exponential of a smooth vector field is a diffeomorphism 
 u is a smooth stationary velocity field 
 Exponential: solution at time 1 of ODE ∂x(t) / ∂t = u( x(t) ) 

•exp 

Stationary velocity field Diffeomorphism 

X. Pennec - STIA - Sep. 18 2014 
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Efficient numerical methods 
 Take advantage of algebraic properties of exp and log. 

 exp(t.V) is a one-parameter subgroup. 

→ Direct generalization of numerical matrix algorithms. 
 

Efficient parametric diffeomorphisms 
 Computing the deformation: Scaling and squaring  

 recursive use of exp(v)=exp(v/2) o exp(v/2) 
 [Arsigny MICCAI 2006] 

 
 Updating the deformation parameters:  

BCH formula [Bossa MICCAI 2007] 
 

exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … ) 
 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p) 

 
 

The SVF framework for  Diffeomorphisms 

X. Pennec - STIA - Sep. 18 2014 
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Symmetric log-demons [Vercauteren MICCAI 08] 

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007] 
 Parameterize the deformation by SVFs  
 Time varying (LDDMM) replaced by stationary vector fields 
 Efficient scaling and squaring methods to integrate autonomous ODEs 

 
 

Log-demons with SVFs 
 

 
 
 

 Efficient optimization with BCH formula 
 Inverse consistent with symmetric forces 
 Open-source ITK implementation 

 Very fast  
 http://hdl.handle.net/10380/3060  
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Similarity 

Measures how much the 
two images differ 

Coupling 

Couples the correspondences  
with the smooth deformation 

Regularisation 

Ensures 
deformation 
smoothness 

[ T Vercauteren, et al.. Symmetric 
Log-Domain Diffeomorphic 
Registration: A Demons-based 
Approach, MICCAI 2008 ] 
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Cartan Connections vs Riemannian 

What is similar 
 Standard differentiable geometric structure [curved space without torsion]  
 Normal coordinate system with Expx et Logx [finite dimension] 

 

Limitations of the affine framework 
 No metric (but no choice of metric to justify) 
 The exponential does always not cover the full group 

 Pathological examples close to identity in finite dimension 
 In practice, similar limitations for the discrete Riemannian framework  

What we gain 
 A globally invariant structure invariant by composition & inversion  
 Simple geodesics, efficient computations (stationarity, group exponential)  
 The simplest linearization of transformations for statistics?  

X. Pennec - STIA - Sep. 18 2014 
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Fast registration with deformation parameterized by SVF 
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Measuring Temporal Evolution with deformations 

𝝋𝒕 𝒙 = 𝒆𝒙𝒑(𝒕. 𝒗 𝒙 ) 

https://team.inria.fr/asclepios/software/lcclogdemons/ 

[ Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ] 



Longitudinal deformation analysis in AD 
 From patient specific evolution to population trend 

(parallel transport of deformation trajectories)  
 Inter-subject and longitudinal deformations are of different nature 

and might require different deformation spaces/metrics 
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PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia) 

Patient A 

Patient B 

? ? Template 



Parallel transport of deformations 

Encode longitudinal deformation by its initial tangent (co-) vector 
 Momentum (LDDMM) / SVF 

 

Parallel transport  
 (small) longitudinal deformation vector 
 along the large inter-subject normalization deformation 
 

Existing methods 
 Vector reorientation with Jacobian of inter-subject deformation 
 Conjugate action on deformations (Rao et al. 2006) 
 Resampling of scalar maps (Bossa et al, 2010) 
 LDDMM setting: parallel transport along geodesics via Jacobi fields 

[Younes et al. 2008] 
 

Intra and inter-subject deformations/metrics are of different nature  
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Parallel transport along arbitrary curves 
Infinitesimal parallel transport = connection 

g’X : TMTM  
 

A numerical scheme to integrate for symmetric connections:  
Schild’s Ladder [Elhers et al, 1972] 
 Build geodesic parallelogrammoid 
 Iterate along the curve  
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of 
deformations in time series of images, IPMI 2011 ] 



Parallel transport along geodesics 
Along geodesics: Pole Ladder [Lorenzi et al, JMIV 2013] 
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[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series 
of Images: from Schild's to pole Ladder, JMIV 2014 ] 
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Efficient Pole and Schild’s Ladder with SVFs 

Numerical scheme 
 Direct computation: 
 
 Using the BCH: 
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of 
deformations in time series of images, IPMI 2011 ] 

Runner-up for the IPMI Erbsmann 2011 prize 
 



Analysis of longitudinal datasets 
Multilevel framework 

29 

Single-subject, two time points 

Single-subject, multiple time points 

Multiple subjects, multiple time points 

Log-Demons (LCC criteria) 

4D registration of time series within the 
Log-Demons registration. 

Pole or Schild’s Ladder 

[Lorenzi et al, in Proc. of MICCAI 2011] 
X. Pennec - STIA - Sep. 18 2014 
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Mean Longitudinal Model for AD 
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Estimated from 1 year changes – Extrapolation to 15 years 

70 AD subjects (ADNI data) 

Observed Extrapolated Extrapolated 
year 
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Longitudinal changes in Alzheimer’s disease  
(141 subjects – ADNI data) 

Contraction Expansion 

Student’s 
 t statistic 
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Consistency and numerical stability 
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Vector 
transport 

Scalar 
transport 

Scalar summary  

Scalar summary 

(Jacobian det, logJacobian det, …) 

Vector measure Scalar measure 



Longitudinal changes in Alzheimer’s disease  
(141 subjects – ADNI data) 

Comparison with standard TBM 

Student’s t statistic 

Pole ladder 

Scalar transport 

Consistent results 

Equivalent statistical power X. Pennec - STIA - Sep. 18 2014 34 



Study of prodromal Alzheimer’s disease  
 

 98 healthy subjects, 5 time points (0 to 36 months). 
 41  subjects Ab42 positive (“at risk” for Alzheimer’s) 
 Q: Different morphological evolution for Ab+ vs Ab-?  
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Average SVF 
for normal 
evolution (Ab-) 

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011] 



Ab42- Ab42+ 
Ab42- Ab42+ 

Time: years 

36 X. Pennec - STIA - Sep. 18 2014 



Study of prodromal Alzheimer’s disease  
 Linear regression of the SVF over time: interpolation + prediction 
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 Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) ) 

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011] 
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Non-rigid registration for longitudinal analysis 

Alzheimer’s atrophy 
trajectory Baseline MRI Follow-up MRI 

=exp(v) 

Atrophy flow encoded by the dense stationary velocity field   
[Lorenzi et al, MICCAI 2012] X. Pennec - STIA - Sep. 18 2014 44 
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Morphological analysis of SVF 

Vorticity 

 

Structural 
readjustments  

Volume changes 

 

Atrophy!! 

 
Helmholtz decomposition 

 

[Lorenzi et al, MICCAI 2012] X. Pennec - STIA - Sep. 18 2014 45 
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Pressure 
Defines sources and sinks  

of the atrophy process 

        Divergence   
Defines flux across  

expanding/contracting regions 

Divergence Theorem 

Morphological analysis of SVF 

Discovery Quantification 

[Lorenzi et al, MICCAI 2012] X. Pennec - STIA - Sep. 18 2014 46 
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Probabilistic definition of the atrophy topography 

Nice 

E 

E C 

C 

Step1. Finding local maxima and minima for the pressure field (sources,sinks) 
Step2. Finding surrounding areas of maximal outwards/inwards flux (Expansion and Contraction) 

P(Critical area) ≈ Proximity to critical point + Surrounding flux 

[Lorenzi et al, MICCAI 2012] X. Pennec - STIA - Sep. 18 2014 47 



Group-wise flux analysis in Alzheimer’s 
disease: Quantification 

X. Pennec - STIA - Sep. 18 2014 48 

From group-wise… …to subject specific 

 
Regional flux 
(all regions) 

Hippocampal  
atrophy  

[Leung 2010] 
(Different ADNI 

subset) 

AD vs 
controls 

164 [106,209]  121 [77, 206] 

MCI vs 
controls 

277 [166,555] 545 [296, 1331] 

sample size ∝ sd/(mean1-mean2) 

NIBAD’12 Challenge: 
Top-ranked on Hippocampal atrophy measures 

Effect size on left hippocampus 
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Conclusion 
Cartan connections: a nice setting for transformation groups 

 A connection defines geodesics but no length along them 
 Cartan connection: one-parameters subgroups are bi-invariant geodesics 
 Fréchet / Karcher means  exponential barycenter = bi-invariant mean  

 Fine existence [Pennec & Arsigny 2012] (Uniqueness?)  

Algorithms for SVFs 
 Log-demons: Open-source ITK implementation http://hdl.handle.net/10380/3060  
 Tensor (DTI) Log-demons: https://gforge.inria.fr/projects/ttk  
 LCC time-consistent log-demons for AD available soon 
 ITK class for SVF diffeos currently under development 

 

Schilds Ladder for parallel transport   
 Effective instrument for the transport of deformation trajectories  
 Key component for multivariate analysis and modeling of longitudinal data 
 Stability and sensitivity 

 
 

 



The Stationnary Velocity Fields (SVF) 
framework for diffeomorphisms 

 SVF framework for diffeomorphisms is algorithmically simple 
 Compatible with “inverse-consistency” 
 Vector statistics directly generalized to diffeomorphisms 
 Efficient parallel transport of deformation trajectories with Schilds/pole ladders 

Registration algorithms using log-demons: 
 Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008) 

http://hdl.handle.net/10380/3060  
[MICCAI Young Scientist Impact award 2013] 
 

 Tensor (DTI) Log-demons (Sweet WBIR 2010):  
https://gforge.inria.fr/projects/ttk  
 

 LCC log-demons for AD (Lorenzi, Neuroimage. 2013) 
https://team.inria.fr/asclepios/software/lcclogdemons/ 
 

 3D myocardium strain / incompressible deformations (Mansi MICCAI’10) 
 

 Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012) 
http://www.stanford.edu/~cseiler/software.html 
[MICCAI 2011 Young Scientist award] 
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 Medical image processing and visualization software  
 Open-source, BSD license 
 Extensible via plugins 
 Provides high-level algorithms to end-users  
 Ergonomic and reactive user interface 

                                http://med.inria.fr  
INRIA teams involved: Asclepios, Athena, Parietal, Visages  

 Available registration algorithms : 
 Diffeomorphic Demons 
 Incompressible Log Demons 
 LCC Log Demons 
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http://med.inria.fr/

