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Longitudinal Shape Analysis

Goal: Understand how individuals change over time.

OASIS data:

72 healthy subjects

64 dementia subjects

2-5 images ∼1 year apart

http://wwww.oasis-brains.org

http://wwww.oasis-brains.org


Linear Mixed-Effects Models

Subject-level: yi = Xiβ + Zibi + ε
Group-level: bi ∼ N(0,Λ)

Data matrices: Xi,Zi, typically with Zi a subset of Xi

Fixed Effects (β): coefficients shared by all individuals
Random Effects (bi): perturbation of ith individual

Estimation by EM algorithm (bi are latent variables)

Laird and Ware, Biometrics, 1982
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Fitting Linear Mixed-Effects Models in R

Scalar Data Example:

I Dependent variable: Right hippocampal volume
I Fixed effects: intercept, age slope, group effect
I Random effects: intercept

> lmeExample = lme(RightHippoVol ˜ Age * Group,
+ random = ˜1 | ID, data = ldat)



60 70 80 90

20
00

30
00

40
00

50
00

OASIS Longitudinal Hippocampus Data

Age

R
ig

ht
H

ip
po

V
ol

●

●

Nondemented
Demented

g



60 70 80 90

20
00

30
00

40
00

50
00

OASIS Longitudinal Hippocampus Data

Age

R
ig

ht
H

ip
po

V
ol

●

●

Nondemented
Demented

g



Why Hierarchical Models?
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Shape Representations

Structure Boundaries
(Kendall’s Shape Space)

Image Deformations
(Diffeomporphisms)

● ● ●
● ● ●

● ●
●

● ●
●

●
●

●
●
●

●
●

●
●

●

● ● ● ● ● ●
●

●
●

●
●
●
●
●

●
●

●
●

●
●●●●●●●●●

●
●

●
●

●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ●

●
●
●

●
●
●
●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

I(x) → I ◦ φ−1(x)

In both cases, data live on a high-dimensional,
nonlinear manifold.
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Regression on Manifolds

M
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Given:
Manifold data: yi ∈ M
Scalar data: xi ∈ R

Want:
Relationship f : R→ M
“how x explains y”

f̂ = arg min
f

N∑
i=1

d( f (xi), yi)
2

This is a least squares problem.
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Geodesic Regression

M

yi

(x f ) = Exp(p, xv) 

p

v

I Generalization of linear regression.
I Least-squares fitting of geodesic to the data (xi, yi).

(p̂, v̂) = arg min
(p,v)∈TM

N∑
i=1

d (Exp(p, xi v), yi)
2

Fletcher, MFCA 2011, IJCV 2013; Niethammer et al., MICCAI 2011



Hierarchical Geodesic Models for
Longitudinal Data

I Group Level: Average geodesic trend (α, β)

I Individual Level: Trajectory for ith subject (pi, ui)

Muralidharan et al., CVPR 2012; Singh et al., IPMI 2013



Comparing Geodesics: Sasaki Metrics
What is the distance between two geodesic trends?

Define distance between initial conditions:

dS((p1, u1), (p2, u2))

Sasaki geodesic on tangent bundle of the sphere.



Hierarchical Model Using The Sasaki Metric

yij = Exp(Exp(pi, xijui), εij) Individual Level

(pi, ui) = ExpS((α, β), (vi,wi)) Group Level

where Exp is the exponential map on M and ExpS is the
exponential map on the tangent bundle TM, with respect
to the Sasaki metric on TM.

I This is feasible for finite-dimensional manifolds.
I Diffeomorphisms, not so much.
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Results on Longitudinal Corpus Callosum

Non-Demented Trend

Demented Trend

Permutation Test:

Variable T2 p-value
Intercept α 0.734 0.248
Slope β 0.887 0.027



HGM for Diffeomorphisms

I Individual level: N geodesic regression problems
I Group level: One group geodesic, I(0),m(0)



Comparing Geodesics for Diffeomorphisms

Group level geodesic parameterization
I Intercept: Image: I
I Slope: Initial momenta field: m = Lv

Transforming intercepts and slope
I Group action on image: φ · I = I ◦ φ−1

I Group action on momenta:
φ · m(0) = Ad∗φ−1m(0)︸ ︷︷ ︸

Co-adjoint transport
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Group Level Optimization Problem

E(m(0), I(0), pi(0)) =

Distance metric for group︷ ︸︸ ︷
1
2
‖m(0)‖2

K

+

Intercept match︷ ︸︸ ︷
1

2σ2
I

N∑
i=1

(‖pi(0)‖2
K + ‖ρi · ψ(ti) · I(0)− Ji‖2

L2)

+

Slope match︷ ︸︸ ︷
1

2σ2
S

N∑
i=1

‖ρi · ψ(ti) · m(0)− ni‖2
K .



Longitudinal Diffeomorphism Results

NON-DEMENTED DEMENTED


