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Statistics of longitudinal shape data 

– Need to study the dynamics of anatomical alterations for: 

• To monitor disease progression 

• Detect subjects at risk 

• Classify subjects according to patterns of anatomical alterations 
 

– Challenges: 

• Shape data: image, 3D surface meshes, point sets, etc. 

• Infer dynamics from few time points 

• Average inter-subject differences  normative scenario 
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Jack et al. Lancet Neurol’10 
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Complex differences 
in shape can be 
described by simple 
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The solution is a geodesic path! 



Forms and deformation 

 
 

 

The solution is a geodesic path! 



Forms and deformation 

 
 

 



Forms and deformation 

 
 

 



Forms and deformation 

 
 

 



Forms and deformation 

 
 

 

Same theoretical solutions, different algorithms 
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, or norm of currents, norm of varifolds, norm between images, etc.. 
[Glaunès’05, Durrleman’08, Charon’13, …] 



Forms and deformations 

 
 

 
Deformation of white matter tracts [Gori et al. MICCAI’13] 

32 
Registration of sulcal curves [Durrleman et al. Media’08] Registration cortical surface between baseline and follow-up 

Atlas-to-patient registration of basal ganglia [Fouquier et al. DBSMC’14] 



Regression of time-series shape data 
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Regression of time-series shape data 

 
 

 

39 

Piecewise geodesic solution 
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Piecewise geodesic solution geodesic solution 
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Piecewise geodesic solution geodesic solution 

Durrleman et al. MICCAI’09, IJCV’13,  

Fishbaugh et al. IPMI’13, GSI’13, ISBI’14  
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Durrleman et al. MICCAI’09, IJCV’13, Fishbaugh et al. IPMI’13, GSI’13, ISBI’14  

Geodesic regression: fixed baseline 

Geodesic regression: estimated baseline 

• Joint optimization: 

• Estimation of a baseline (intercept) 

• Estimation of initial momenta and control points (slope) 
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Durrleman et al. MICCAI’09, IJCV’13, Fishbaugh et al. IPMI’13, GSI’13, ISBI’14  

Geodesic regression: fixed baseline 

Geodesic regression: estimated baseline 
Input: 



Regression of time-series shape data 

 
 

 

Durrleman et al. MICCAI’09, IJCV’13, Fishbaugh et al. IPMI’13, GSI’13, ISBI’14  

Geodesic regression: fixed baseline 

Geodesic regression: estimated baseline 
Output: 



Regression of time-series shape data 

 
 

 

Growth of the genu fiber tract [Fishbaugh et al. IPMI’13] 



Regression of time-series shape data 

 
 

 

Geodesic regression of join image and surface data [Fishbaugh et al. MICCAI’13]  



Longitudinal Data Analysis 
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Repeated measurements of a series of subjects. Subjects differ in: 
• Shape 
• Pace of development 
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• Comparison between two lineages (toy example) 
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Longitudinal Data Analysis 
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• Compare regression between subjects [Durrleman et al. JHE’11, IJCV’13] 

Morphological changes 
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• Compare regression between subjects [Durrleman et al. JHE’11, IJCV’13] 

Morphological changes 

Time warp 
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Longitudinal Data Analysis 

 
 

 

• Multiple subjects comparison: [Durrleman et al. IJCV’13] 
• Construction of an average growth scenario 
• Spatiotemporal deformation of the average scenario to each subject 
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Longitudinal Data Analysis 

 
 

 

• Multiple subjects comparison: [Durrleman et al. IJCV’13] 
• Construction of an average growth scenario 
• Spatiotemporal deformation of the average scenario to each subject 

 
• Developmental delays in autistic children: 

• 2 scans (initial age 2-3 years, follow-up 4-5 years) 
• 12 subjects (4 autistics, 4 developmental delays, 4 controls) 
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Average growth scenario Time warps 



Conclusion 

 
 

 

 
 

 

• An approach to biological shape analysis based on deformations 

• Regression of time series shape data: 

• Piecewise geodesic regression 

• Geodesic regression 

• Other alternatives include: 

• Acceleration-controlled (continuously differentiable trajectories) [Fishbaugh’11] 

• Riemannian splines (perturbation of Hamiltonian equations) [Vialard’10] 

• Statistics of longitudinal data sets: 

• Morphological deformation 

• Time-warp 

 

• Joint work with: J. Fishbaugh, G. Gerig, X. Pennec, M. Prastawa, A. Trouvé 
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Time warp 



www.deformetrica.org 
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