Aligning the brain: A Parallel Solution for Tera-pixel Imagery

Steve Petruzza¹, Aniketh Venkat¹, Attila Gyulassy¹, Frederick Federer³, Alessandra Angelucci³, Peer-Timo Bremer² and Valerio Pascucci¹

¹ SCI Institute, University of Utah ² Lawrence Livermore National Lab ³ Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah

Overview

Brain functions emerge from the coordinated activity of billions of neurons connected in specific ways to form highly dense neural circuits. Obtaining a complete wiring diagram of the brain, particularly of the larger non-human primate (NHP) brain, remains a major challenge, largely due to the lack of algorithmic and computational solutions to handle, analyze and reconstruct the massive amount of neuronal data that are being collected.

A typical acquisition process uses computer controlled micropositioning stages to acquire multiple overlapping tiles in a two dimensional grid. The process records the tile's physical co-ordinates that are used as initial tile positions. Due to a range of movements in each dimension, the recorded co-ordinates is not precise enough for direct reconstruction.

Part of the brain dataset (each volume contains 1B voxels)

Parallel Pairwise Registration

The alignment process is non-trivial and takes a lot of computing time on commodity PC's at terascale. A scalable solution is therefore highly desired.

To effectively utilize HPC resources, it is important to distribute the workload efficiently on a number of computing resources. To this aim we developed a task based parallel workflow, outlined below.

> **Step 1:** Decompose the overlapping regions into sub-blocks of size

X_{overlap} X Y_{overlap} X n_{slices}.

Task 0

Registration

Task 1

Registration

Step 2: Perform 3D registration using normalized cross correlation in the frequency domain.

Global Alignment

To obtain a globally optimal tile displacement we form an undirected weighted graph where the nodes correspond to the tiles and the edges correspond to the tile displacements. We compute a minimum spanning tree of this graph to find the final tile positions. Alignment results for a simple configuration of 4 tiles sub-divided into 2 sub-blocks per tile (resulting in 2 graphs) is shown below.

Performance Scaling

Initial results report strong scaling on Shaheen II, a supercomputer in KAUST (King Abdallah University of Science and Technology), for varying number of cores (256 to 2048).

(a) Global alignment result

(b) Displacement graph

Correlation time: time spent to compute the optimal tile offsets. Total time: includes time required for data read, transfer, correlation result collection and final graph production. King Abdullah University

Scientific Computing and Imaging Institute

KAUSI