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Multi-scale contextual 
model: 

Multi-class multi-scale 
contextual model: 

Fig 2:  Illustration of the multi-scale  
contextual model. 

Fig 3: Sparse sampling vs multi-scale 
sampling. 

Connectomics: 

Motivation 
Brain circuit models 
Understanding wiring defects 
Electron microscopy 
High resolution 
High throughput techniques for large 
volumes (~20 Tb)  

Dense reconstruction 
Segment each neuron in the volume 
Find synapses between the 
segmented neurons 

Manual segmentation is slow 

Fig 1:  3D neuron reconstruction. 

Results (mitochondria and synapse segmentation) 
Mouse neuropil (SBSFEM) 

Fig 6: Results for mitochondria segmentation. (a) input image, (b) multi-scale model, (c) MCMS model, and (d) groundtruth image. 
(a) (b) (c) (d) 

Drosophila first instar larva ventral nerve cord (SSTEM) 
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Fig 7: Results for mitochondria and synapse segmentation. (a) input image, (b) multi-scale model, (c) MCMS model, and (d) groundtruth image. 
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Fig. 8: Example of (a) original EM image, (b) ground truth 
labels, and (c) initial learning stage output with membrane 

gaps circled in red 

Partial Differential  
Equation (PDE) Processing  
 
• The goal with this step is to close gaps that were 

left in membrane labels after learning. 
• Closing gaps in the membrane improves the 

quality and usability of the resulting label when 
doing connectomics 

• Some induced oversegmentation can be removed 
by using the watershed merge tree and boundary 
classifier 

PDE Update Equation 
 

 
 

 

 
 

1.Growth terms. λ1 and λ2 are the eigenvalues of the derivative matrix. λ1 
darkens the membrane and λ2 causes growth at terminal points such as 
gaps in the membrane 

2.Area term.  This term results in a minimization in the area of each cell 
enforcing smooth boundaries. 

3.Boundary term.  G is created from the gradient of the original image 
resulting in this term enforcing the membrane edges following edges in the 
original image 

Fig. 10:PDE Results 
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Membrane Gap Closing Example 

Representation of the Result 
 

• This method is sensitive to the number of iterations 
• We replace each membrane pixel with the number of iterations required for 

that pixel to cross an intensity threshold divided by the total number of 
iterations 

• The final result can either be thresholded by a smart user to provide the best 
segmentation or further improved upon by performing region merging 
classification 
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Fig. 9: Example of (a) result before replacement, and (b) 
result after replacing with the number of iterations 
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Semi-Automatic Segmentation Method 
We use a sparsely labeled image as a guide for using a min-cost path finding algorithm to create the membrane structure 

Fig 11: Example of grid labeling of cell 
membranes.  Red shows unlabeled gridlines 

and yellow shows labeled grid lines. 

Guided Sparse Labeling 
• Overlay gridlines on the original 

image 
• User indicates where gridlines 

cross the cell membranes 

Fig 12: Example of min-cost path finding 
result for a single grid square 

Min-cost Path Finding 
• Use Dijkstra’s algorithm for the path 

finding 
• Computed the min-cost path 

between all pairs of membrane for a 
given grid square 

• Cost function is such that pixels 
near in intensity to the labeled 
membrane will have a low cost and 
those further away will have a higher 
cost. 

Fig 13: Example of grid labeling of cell 
membranes.  Red shows unlabeled gridlines 

and yellow shows labeled grid lines. 

Representation of the result 
• Merge multiple paths along the 

same membrane using 
morphological processing 

• Replace binary membrane labels 
with original intensity labels for 
removal of inaccurate paths through 
thresholding 
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Semi-Automatic Segmentation Example 

Fig. 14: Semi-automatic segmentation results for an example image. 
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Fig. 15: Example of (a) original EM image, (b) 
membrane detection, (c) initial watershed over-

segmentation, (d) region merging with water level 
rising and (e) watershed merge tree. 
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Watershed Merge Tree 
and Boundary Classifier 
 
• Watershed transform generates initial over-

segmentations and region merging hierarchy. 
• Watershed merge tree: representation of region 

merging order. 
• Boundary classifier: 

• Predict about each merge/split. 
• Random forest classifier with 141 

features 
(geometry/intensity/texture/merge 
saliency). 

Resolving Merge Tree 
 
• Consistency constraint:  

• Any pixel should be labeled only once. 
• Once a node is selected, its ancestors and descendants must 

be removed. 
• Node potential:  

• Probability that a node does not merge with its sibling and its 
children merge.  

• In Fig. 2 (b), P6=(1-P6,8)P1,2. 
• Resolving merge tree via greedy optimization:  

• Pick the most potential node; 
• Remove its ancestors and descendants; 
• Repeat until no nodes are left.  

(a) (b) 

Fig. 16: Illustration of how (a) final segmentation is acquired by 
(b) resolving a merge tree. 

Fig. 17: Region merging results of two image regions (zoomed in). 
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Region Merging Examples 

Mouse neuropil (SBSFEM) 

Results (membrane detection) 

Fig 18: Results for membrane detection. (a) input image, (b) ANN series, (c) Multi-scale 
contextual model, (d) PDE post processing, (e) water shed merge tree, and (f) groundtruth image.  
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Drosophila first instar larva ventral nerve cord (SSTEM) 
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Fig 19: Results for membrane detection. (a) input image, (b) Multi-
scale contextual model, (c) PDE post processing, and (d) water shed 

merge tree.  

Table 2. Testing performance of the multi-scale 
contextual model and post-processing methods (pde + 
watershed merge tree) for the Drosophila VNC ssTEM 
dataset. 

Table 1. Performance of the multi-scale 
contextual model and post-processing 
methods (pde + watershed merge tree) for 
the mouse neuropil SBFSEM dataset. 
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Fig 4:  Illustration of the multi-class 
contextual model. 

Fig 5:  The multi-class feature pooling scheme. 
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