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Parametric vs. Nonparametric Regression

I Nonparametric analysis includes kernel and spline-based curve fitting
I These result in a good fit, but number of parameters tied to amount of data
I Parametric regression (e.g. polynomial fitting) uses compact representation,

resulting in more powerful statistical inference
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Polynomials balance flexibility with simplicity

Riemannian Polynomials

Polynomials on the sphere Figure: Leite & Krakowski 2008

I There are multiple ways to generalize polynomials to Riemannian manifolds
I Variational and energy-based generalizations are better suited to

nonparametric regression schemes
I We use the rolling maps of Jupp & Kent to generalize polynomials
I The resulting constraint is the Riemannian polynomial equation:

∇k
γ̇γ̇ = 0

I “Rolling” the manifold against a flat Euclidean space without slipping or
twisting, Riemannian polynomials trace out Euclidean polynomials

Riemannian polynomials provide a heirarchy of
flexible intrinsic models for curve-fitting
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Adjoint Optimization on Manifolds

We minimize sum of squared geodesic distances

E =
N∑

j=1

d(γ(tj), yj)
2

Adjoint variables λi are initialized to zero at t = 1
and integrated backwards to t = 0:

∇γ̇λ0 = −
k∑

i=1

R(vi, λi)v1−
N∑

j=1

δ(t − tj)Logγ yj

∇γ̇λ1 = −λ0 . . . ∇γ̇λk = −λk−1

The adjoint variables are used to compute gradients
with respect to initial conditions:

δγ(0)E = −λ0(0)
δv1(0)E = −λ1(0)

...
δvk(0)E = −λk(0)

These gradients are then used in a gradient
descent scheme to minimize E .

Kendall Shape Space

I Given sets of observed landmark positions, one often wants to study shape trends without the influence
of position, scale, and rotation

I Kendall’s shape space models this geometrically as a Riemannian manifold
I Shapes are represented as equivalence classes of point sets under similarity transformations
I For 2D shapes, Kendall shape space is isomorphic to complex projective space CPn−2

Results: Bookstein Rat Calivaria Growth

I 18 subjects, 8 landmarks, 8ages
I Polynomials fit in Kendall shape space
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Polynomials of orders one (black, R2 = 0.79), two
(blue, R2 = 0.85), and three (red, R2 = 0.87).

Quadratic and cubic curves fit this data much better than geodesics
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Zoomed views of individual landmark trajectories

Results: Corpus Callosum Aging

Figure: Fletcher 2011

I 32 subjects age 19–90 from OASIS
brain database
(www.oasis-brains.org)

I 64 landmarks, generated using
ShapeWorks (www.sci.utah.
edu/software.html)
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Shape curves for geodesic (top, R2 = 0.12), quadratic (middle,
R2 = 0.13), and cubic (bottom, R2 = 0.21) regressions.

Collinear initial conditions imply time
reparametrization of a geodesic path
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Estimated initial conditions (black=velocity, blue=acceleration,
red=jerk) for cubic regression.
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