THE JNIVERSITY OF UTAH[®]

Parametric vs. Nonparametric Regression

- Nonparametric analysis includes kernel and spline-based curve fitting
- These result in a good fit, but number of parameters tied to amount of data
- Parametric regression (e.g. polynomial fitting) uses compact representation, resulting in more powerful statistical inference

Polynomials balance flexibility with simplicity

Riemannian Polynomials

Polynomials on the sphere

Figure: Leite & Krakowski 2008

- There are multiple ways to generalize polynomials to Riemannian manifolds
- Variational and energy-based generalizations are better suited to nonparametric regression schemes
- We use the rolling maps of Jupp & Kent to generalize polynomials
- The resulting constraint is the Riemannian polynomial equation:

$$\nabla^k_{\dot{\gamma}}\dot{\gamma}=\mathbf{0}$$

"Rolling" the manifold against a flat Euclidean space without slipping or twisting, Riemannian polynomials trace out Euclidean polynomials

Riemannian polynomials provide a heirarchy of flexible intrinsic models for curve-fitting

References

- ► F. Bookstein. Shape and the Information in Medical Images. 1997.
- ▶ P. T. Fletcher. Geodesic Regression on Riemannian Manifolds. 2011.
- ▶ P. E. Jupp and J. T. Kent. Fitting smooth paths to spherical data. 1987.
- F. S. Leite and K. A. Krakowski. Covariant differentiation under rolling maps. 2008.

Polynomial Regression on Riemannian Manifolds Jacob Hinkle, Prasanna Muralidharan, P. Thomas Fletcher, Sarang Joshi Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah

Adjoint Optimization on Manifolds

$$\nabla_{\dot{\gamma}}\lambda_{0} = -\sum_{i=1}^{k} R(v_{i},\lambda_{i})v_{1} - \sum_{j=1}^{N} \delta(t-t_{j}) \log_{\gamma} y_{j}$$

$$\nabla_{\dot{\gamma}}\lambda_{1} = -\lambda_{0} \qquad \dots \qquad \nabla_{\dot{\gamma}}\lambda_{k} = -\lambda_{k-1}$$

Kendall Shape Space

- of position, scale, and rotation
- Kendall's shape space models this geometrically as a Riemannian manifold
- Shapes are represented as equivalence classes of point sets under similarity transformations
- For 2D shapes, Kendall shape space is isomorphic to complex projective space $\mathbb{C}P^{n-2}$

Results: Bookstein Rat Calivaria Growth

- 18 subjects, 8 landmarks, 8 ages
- Polynomials fit in Kendall shape space

Quadratic and cubic curves fit this data much better than geodesics

The adjoint variables are used to compute gradients with respect to initial conditions:

> $\delta_{\gamma(0)}E = -\lambda_0(0)$ $\delta_{V_1(0)}E = -\lambda_1(0)$ $\delta_{V_k(0)}E = -\lambda_k(0)$

These gradients are then used in a gradient descent scheme to minimize *E*.

Given sets of observed landmark positions, one often wants to study shape trends without the influence

Polynomials of orders one (black, $R^2 = 0.79$), two (blue, $R^2 = 0.85$), and three (red, $R^2 = 0.87$).

Zoomed views of individual landmark trajectories

Results: Corpus Callosum Aging

- 32 subjects age 19–90 from OASIS brain database
- (www.oasis-brains.org)
- 64 landmarks, generated using ShapeWorks (www.sci.utah. edu/software.html)

Figure: Fletcher 2011

Collinear initial conditions imply time reparametrization of a geodesic path

red=jerk) for cubic regression.