
Abstract
We present an approach to studying ensembles of cache simula-
tions which vary in either cache features (such as cache size, asso-
ciativity, block replacement policy, etc.) or qualities of the program 
being simulated (such as choice of algorithm, data storage layouts, 
etc.). Through the qualities of variation between their members, 
these ensembles can reflect the computational structure of pro-
grams and expose their performance characteristics, leading to 
better understanding of code and performance improvements that 
can be valuable in conserving scarce computing resources. We in-
clude several case studies looking at various types of cache perfor-
mance uncertainty, including some surprising performance bottle-
necks in common coding operations, demonstrating the usefulness 
of our approach.

Memory performance is often a bottleneck for overall performance, 
which in turn is important in many situations, such as large-scale 
programs running on shared supercomputers. We investigate 
cache simulation ensembles in order to yield insight about program 
memory cache performance. Our work uses cache simulation of 
program memory reference traces to produce cache performance 
profiles; by varying features of the simulated caches, and qualities 
of the programs being run, we are able to create ensembles of such 
simulations allowing us to look into the effect of such changes on 
performance. Software features that might change from run to run 
include choice of algorithms (which may access memory in differ-
ent ways), data layout (which may affect the performance of access 
patterns upon that data), and the value and structure of the input 
data itself (which may cause the algorithm to react one way or an-
other, affecting its memory performance). Cache features that may 
affect performance include the number and size of cache levels, 
associativity of each level, and block replacement policies. This 
poster presents several case studies of cache simulation en-
sembles that vary in one or more of these features, and explains 
the insights we gained from these studies.

Cache Ensemble Analysis for Understanding 
Algorithmic Memory Performance
A.N.M. Imroz Choudhury and Paul Rosen

Fig. 1. Triangle rendering with input data ordered different ways. Triangle rendering 
requires repeated access into a data array describing the geometry of the triangles, 
making performance dependend on the order of storage. This ensemble shows three 
sorting orders for the input data: sorted numerically, randomly, and regularly shuffled. 
The initial phase of the ensemble, in which the data is simply being loaded from disk 
into memory, shows unanimous agreement. Then the drastic effect of storage order be-
comes visible. There is more than a twofold increase in performance in going from 
poorly or randomly sorted data to well-sorted data, and the performance is seen to be 
relatively stable in time for all three storage policies.

Fig. 2. Data storage policies for material point method. The algorithm keeps track of 
both particle and grid node data, with two ways to store each: in an array of C-style 
structs, or in several parallel arrays. Because the algorithm requires different pat-
terns of access on the data at different times, we expect one or the other of these poli-
cies to perform better. This ensemble shows all four combinations of policies for the 
two kinds of data, with “parallel-parallel” being seen to perform the best. Note that the 
spikes of poor performance occur regardless of storage policy, indicating a particular 
feature of the computation that seems not to depend on storage policy at all.

Fig. 3. Bubble vs. insertion sort. These sorting algorithms have very similar computational structure, both 
making repeated, shrinking sweeps of the list, placing one element in its correct position at the end of each. 
However, bubble sort makes many more memory accesses to accomplish this, as it repeatedly swaps ele-
ments towards the end of the array on each sweep. Because these swaps tend to occur within the cache, 
bubble sort appears to have better cache performance overall. However, when the two traces are time-
matched (top) and appropriately scaled (bottom) by synchronizing the plots at known points in their source 
code, bubble sort is seen to actually take longer with respect to the cache, because of its overall higher volume 
of memory access. The circular glyphs at the bottom denote the amount of relative stretching of the traces re-
quired to time-match them.

Fig. 4. Various incarnations of matrix multiplication. (a) An ensemble several basic forms of matrix multipli-
cation. The naive algorithm (red) performs the worst, due to cache-unfriendly access patterns coming from 
the right-hand matrix, which is stored in row-major order but must be accessed by its columns. Storing the 
right-hand matrix in column-major order transposes the poor access pattern to a cache-friendly one, but such 
transposed matrices cannot be used as left-hand matrices in other computations. A more general solution is 
to use blocked matrix multiply—curiously, though well-known for its cache efficiency, it is seen not to perform 
as well as the transposed matrix multiplication. (b) The problem is that in this example, the starting addresses 
of the matrix blocks cause them all to be mapped into the same associative sets of the cache, disrupting 
cache performance. This ensemble shows the effect of reducing the associativity of the simulated cache. 
Note the large effect it has for this example, visible in the spread of ensemble members. (c) A simple solution 
is to stagger the block addresses by inserting unused padding at the ends of the rows of the matrices. This 
ensemble shows varying performance for different amounts of padding. (d-f) The same data appearing in (c), 
but with the curves for padding amounts of two, four, and six subtracted uniformly out, respectively. A padding 
amount of two staggers the block addresses effectively, while an amount of four seems to has a similar but 
smaller effect. With padding of six, we combine the effects of two and four, making near-optimal gains.

Fig. 5. Block replacement policies. Top: This ensemble shows the effect of block replacement policy on a 
scientific code that solves the one-dimensional diffusion equation. The algorithm works by making repeated 
sweeps of the data array, updating it for each computed timestep. Curiously, in this example LRU, a com-
monly well-performing choice, coincides with PES, the pessimal block replacement algorithm. This is due 
to the sweeping access pattern, which would actually prefer to evict the most recently used item in order to 
achieve optimality. MRU is seen to have similar performance to OPT, the optimal choice. Bottom: However, 
we can perform a trick to improve LRU’s performance: by “pingponging” our computation—sweeping from 
first to last, and then reversing for the next pass—LRU begins to look something like MRU, as the meaning 
of “least recent” and “most recent” swap roles. Not that LRU with pingponging performs at least as well as 
MRU. This is a case where the analysis suggests a simple change to the software to dramatically increase 
its cache efficiency.

A B C D E F

G

(a) Naive, transposed, and blocked matrix multiply.

(b) The effect of cache associativity on blocked matrix
multiplication.

(c) The effects of padding on blocked matrix multiplication.

(d) Differential view with padding of two.

(e) Differential view with padding of four.

(f) Differential view with padding of six.


