Noninvasive Diagnosis and Localization of Heart Ischemia from Body-Surface Electrocardiography

ECG in the Era of Personalized Healthcare

With unprecedented computing power and medical imaging technology nowadays, electrocardiography (ECG) is becoming a patient-specific technique for clinical practice.

Traditional ECG.

Body-surface mapping.

Inverse ECG reveals heart conditions.

Clinical Motivation

Myocardial ischemia occurs when heart is damaged due to insufficient blood supply. Our goal is to noninvasively localize myocardial ischemic regions based on body-surface ECG recordings.

Patient-Specific Simulation

The Utah-Torso model has 1 million tetrahedral elements.

Bioelectric Models

heart tissue.

MRI-derived heart geometry and fiber structures.

Heart Potential Reconstruction

This work was funded by NSF Career Award for Mike Kirby and NIH NCRR Center for Integrative Biomedical Computing.

