Medical Prediction from Comparison of Patient-Matched Genomic Profiles

Benjamin O. Alpert, Preethi Sankaranarayanan and Orly Alter*

Department of Bioengineering and the Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT 84112

Introduction

Despite recent large-scale profiling efforts, the best prognostic predictor of glioblastoma multiforme (GBM), the most common brain tumor in adults, remains the patient's age at diagnosis [1]. We describe a global pattern of tumor-exclusive co-occurring copy-number alterations (CNAs) that is correlated, possibly coordinated with GBM survival and response to chemotherapy [2].

Methods

The pattern is revealed by generalized singular value decomposition (GSVD) [3,4] comparison of patient-matched (but probe-independent) aCGH profiles of GBM and normal blood samples from The Cancer Genome Atlas (TCGA).

\[D_1 = U_1 \Sigma_1 V^T \]
\[D_2 = U_2 \Sigma_2 V^T \]

Figure 1: GSVD

Results

We find that the GSVD classifies the patients into two groups of significantly different prognoses. A group of ~10% of the patients displays low, approximately zero, relative copy numbers in the global pattern. The Kaplan-Meier (KM) median survival time is ~29 months, which is more than twice longer than that of the group with high copy numbers (Fig. 3a), with a log-rank test P-value <10^{-3}. The KM median survival time difference between the patients >50 or <50 years old at diagnosis is ~11 months (Fig. 3b), approximately two thirds of the ~16 months difference observed for the global pattern. The univariate Cox proportional hazard ratio we calculate for age is 2, similar to the 2.3 for the global pattern. The KM median survival time difference observed for the global pattern. The univariate Cox proportional hazard ratio we calculate for age is 2, similar to the 2.3 for the global pattern. The univariate Cox proportional hazard ratio we calculate for age is 2, similar to the 2.3 for the global pattern. The univariate Cox proportional hazard ratio we calculate for age is 2, similar to the 2.3 for the global pattern. The univariate Cox proportional hazard ratio we calculate for age is 2, similar to the 2.3 for the global pattern. The univariate Cox proportional hazard ratio we calculate for age is 2, similar to the 2.3 for the global pattern. It is more than twice longer than that of the group with high copy numbers (Fig. 3a), with a log-rank test P-value <10^{-3}.

Figure 2: Global Pattern of Tumor Exclusive CNAs

Conclusions

i. The global pattern is independent of age, and combined with age, makes a better predictor than age alone. We find that the pattern provides a better prognostic predictor than the chromosome numbers or any one focal CNA that it identifies, suggesting that the GBM survival phenotype is an outcome of its global genotype.

ii. GSVD comparison of matched profiles of a larger set of TCGA patients, inclusive of the initial set, confirms the global pattern.

iii. GSVD classification of the GBM profiles of an independent set of patients validates the prognostic contribution of the pattern [5].

We find, confirm and validate that a negligible weight of the global pattern in a patient’s GBM aCGH profile is indicative of a significantly longer GBM survival time, especially among chemotherapy patients, implying an improved response to treatment.

Recent experiments [6] verify that GSVD modeling of DNA microarray data can correctly predict previously unknown global mechanisms [7]. This GSVD comparative modeling, therefore, draws a mathematical analogy between the prediction of cellular modes of regulation and the prognosis of cancers.

References

5. Alpert et al., World DNA and Genome Day (2011)

This research was supported by the Utah Science Technology and Research (USTAR) Initiative, National Human Genome Research Institute R01 Grant HG-004302 and National Science Foundation CAREER Award DMS-0847173.

*orly@sci.utah.edu