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Visualization should help compare models with 
 observations

Average annual temperature 1900‐2000 as 

 
predicted by various climate models.

Which model is more similar

 

to a reference 

 
model or observations?

Trend plots often do not expose these 

 
aspects. 285
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Presenter
Presentation Notes
One of the goals of visualization is to allow visual comparison between models.

Here’s an example of the sea and land temperature sometime in the 20th century, as predicted by different climate models

The goal in studying these models is to find out which model is more similar to the observations.

One mechanism is via trend plots, but unfortunately these do not expose a lot of aspects that define the similarity between two timeseries



Visualization should help find correlations of similar outputs –

 important for uncertainty quantification

Divide ensembles in 6 latitude zones and 3 temporal averages

•Are there correlations across seasons or latitudes?
•Are there large discrepancies in the different outputs?
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Northern Med. Lats

Northern Low Lats

Southern Low Lats

Southern Med. Lats

Southern High Lats
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Seasons
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Another experiment is to understand how different climate variables affect each other. 

To this end, scientists perform zonal and seasonal studies, where they compare the averages at different latitudes and different times against each other.



Visualization should help find correlations of similar outputs –

 important for uncertainty quantification

Zones
Seasons

Northern High Lats

Northern Med. Lats

Northern Low Lats

Southern Low Lats

Southern Med. Lats

Southern High Lats

Annual Dec‐Jan‐Feb Jun‐Jul‐Aug

Find correlation

 
between (6+1)x3 = 

 
21 variables

 A scatterplot 

 
matrix becomes 

 
impractical

 

for 

 
many outputs

 

Find correlation

 
between (6+1)x3 = 

 
21 variables

A scatterplot 

 
matrix becomes 

 
impractical

 

for 

 
many outputs
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From a visualization point of view, this would imply the simultaneous visualization of, say, 21 variables.

A scatterplot matrix quickly becomes impractical



Visualization should help find correlations of similar outputs –

 important for uncertainty quantification

Zones
Seasons

Northern High Lats

Northern Med. Lats

Northern Low Lats

Southern Low Lats

Southern Med. Lats

Southern High Lats
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A parallel coordinate visualization is more practical
But only certain pairwise comparisons

 

are possible
A parallel coordinate visualization is more practical
But only certain pairwise comparisons

 

are possible
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As an alternative, one can use a parallel coordinate system, which, although more practical, restricts the analysis to certain pairwise comparisons.



Visual Summaries
• Represent directly 

 summary quantities, e.g., 

 mean, standard deviation, 

 entropy.

• Box‐plots and their many 

 variants

• One plot per ensemble 

 may result in clutter

• Visualizing several statistics 

 simultaneously in a metric 

 space: Taylor diagram

median
Lower quartile

Upper quartile

Lower percentile

Upper percentile

Potter et al. (Eurovis’2010)
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So, when visualizing multiple models, it becomes more effective to use visual summaries, which directly represent summary statistics of the data, such as the mean, the median, standard deviation, and so on.

One example is the box-plot and their many variants

There have been some recent generalizations which are able to represent more detailed information to the box plots.

However, when many variables or ensembles are visualized, the visualization becomes quickly cluttered.

As an alternative, one can represent statistics in a metric space. One such example, and the motivation for our work is the Taylor diagram



----- Meeting Notes (9/23/11 13:58) -----

put tags in boxplots



use box for last bullet



emphasize metric space  important



mention PC + SC (previous)





The Taylor Diagram
Simultaneously plots

Standard deviation, 

Root Mean Square Error

 
and

Correlation R.
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The Taylor diagram, introduced by Karl Taylor simultaneously plots the standard deviation, the root mean square error and correlation between two variables.

They key is that it is possible to find a metric space for these quantities, based on this identity

If you look closely, this identity looks like the cosine law of triangles.



----- Meeting Notes (9/23/11 13:58) -----

change E for RMS.





Applications of the Taylor Diagram

Taylor, 2005
(Taylor Diagram Primer)
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Now, how do we read a Taylor diagram.

Here’s an example of predicted average precipitation according to certain models.

Usually, the reference frame is depicted in the horizontal axis, in this case the observation data.

Depending on where the other variables appear, each corresponding to the result of a different model, you can tell whether they are more or less correlated to the observation, and if they have less or more standard deviation.

And depending on how far they are in the isocontours, you can tell which ones are closer to the observation in terms of error.

So for example, the model in a circle, from NCAR and the spiral (Hadley Centre) have a similar correlation to the observation, but the NCAR has practically the same standard deviation, i.e., it accounts for the same variability than the observation. 



Anscombe’s Trio
Variables B,C,D: same

 
standard deviation and same

 
correlation w.r.t. A

Information Theory to 
 the Rescue!

 

Information Theory to 
 the Rescue!

noise non‐linear outlier
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However, the Taylor diagram is only good for comparisons in terms of correlation.

Let’s consider three variables, all of which have the same standard deviation and same correlation with respect to another variable A.

These are part of the Anscombe’s quartet, which I call her Anscombe’s trio.

Though they are the same in terms of statistics, they are clearly different

And they account for different aspects of variability, such as noise, non-linearity, or the presence of outliers



Naturally, they appear at the same position in the Taylor diagram.



Our solution is to turn to information theory, where we replace statistics for information theoretic properties, such as entropy and mutual information.

And voila!, our diagram now can tell the difference between these three distributions.



----- Meeting Notes (9/23/11 13:58) -----

Make text short

say something about differences

- e.g., noise, non-linearity, outliers



Information Theory Primer
• Entropy H(X)

– Measure of information 

 uncertainty of X

• Joint Entropy H(X,Y)
– Uncertainty of X,Y

• Conditional Entropy H(X|Y)
– Uncertainty of X given that 

 I know Y

• Mutual Information I(X;Y)
– How much knowing X 

 reduces the uncertainty of 

 Y

H(X,Y)

H(X) H(Y)

I(X;Y)H(X|Y) H(Y|X)
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Let me give a little intro to information theory.

In general, we want to define variables and distributions in terms of 

Entropy, a measure of the information uncertainty of a variable X

Joint entropy for pairs of variables, which is the uncertainty of knowing these two variables.

Conditional entropy which is the uncertainty of X given what you already know about Y

Mutual information is how much knowing X reduces the uncertainty of Y



----- Meeting Notes (9/23/11 13:58) -----

independent

dependent

Same

Put three examples: X,Y independent  (I(X;Y) = 0)

X,Y dependent (I(X,Y!=0))

X,Y are the same I(X;Y) = H(X,Y)) = H(X) = H(Y)



Show one at a time: entropy, joint entropy… etc

When showing the different variations, explain that a metric of that is VI



Variation of Information VI=H(X | Y) + H(Y | 
X)

H(X,Y) = H(X) = H(Y) = I(X;Y)

H(X,Y) < H(X) + H(Y)

H(X,Y) = H(X) + H(Y)
I(X;Y) = 0

VI=0

VI<H(X;Y)

VI=H(X;Y)

X and Y are the 

 same

 

X and Y are the 

 same

X and Y are 

 independent

 

X and Y are 

 independent

X and Y are different 

 but dependent

 

X and Y are different 

 but dependent
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There is also a notion of variation of information.

Let’s look at the interaction between two variables.

When the two variables are the same, the joint entropies are the same as the marginal entropies and the mutual information.

When they are not the same, but they are dependent, the joint entropy is in general smaller than the sum of their entropies

And finally, when they are independent, the mutual information is zero so their joint entropy is equal to the sum of entropies.

Knowing X or Y doesn’t help you reduce the uncertainty of the other.



The variation of information represents this metric distance, so it’s zero when they are the same and they are equal to the sum of entropies when they are independent.



The Variation of Information VI: a measure of 
 distance in information theory
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Presentation Notes
There is another way of defining the variation information, in terms of entropies and the mutual information.

If we do a simple replacement to root entropies

And multiply here and there for this quantity

We get an expression that, once again, looks like the cosine law of triangles, where this ratio, the angle theta is the normalized mutual information

----- Meeting Notes (9/23/11 13:58) -----

another slide VI showing VI = sum conditional



box around ratio showing NMI



The Variation of Information VI: a measure of 
 distance in information theory

Normalized Mutual 

 
Information (NMI)

Presenter
Presentation Notes


----- Meeting Notes (9/23/11 13:58) -----

another slide VI showing VI = sum conditional



box around ratio showing NMI



RVI Diagram

Presenter
Presentation Notes
Now, analogous to the Taylor diagram is our mutual information diagram, 

Where a given variable is plotted radially, with radius equal to the square root entropy and the angle with the X axis is given by the normalized mutual information.











FIX R to R_{XY}

Remove CRMS for RMS (instead of E)

----- Meeting Notes (9/23/11 13:58) -----

parallelism -- equivalence -- analogy



RVI DiagramEquivalences

Statistics 

 

Information Theory
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Then we can see some of the equivalences between statistics and information theory.



Root mean square error becomes root variation of information

Variance becomes entropy

Covariance becomes mutual information

And correlation becomes normalized mutual information.









FIX R to R_{XY}

Remove CRMS for RMS (instead of E)

----- Meeting Notes (9/23/11 13:58) -----

parallelism -- equivalence -- analogy



VI Diagram

Presenter
Presentation Notes
Now, the concept of root square entropy may not be intuitive and when you read the diagrams you would have to square in your head

However, we can arrive at a similar expression using the actual entropies and variation of information,

Where the angle, here c, is now a scaled and biased version of the NMI.



The scale and bias makes the diagram to go from 0 to 180 degrees instead.





Ok, this is the diagram. Now what?





----- Meeting Notes (9/23/11 13:58) -----

change c to c_xy





Experiment of 2D distributions with outliers

add outliers

Beta (clean) Beta (outliers)

uniform binomial

2D histogram

2D
 h
ist
og
ra
m
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There are several  aspects of the diagram important to point out. Before, we said that correlation is affected by outliers, so let’s look at an example where we test this.

We start from a 2D distribution. Here we plot  a 2D histogram, where the height represents frequency, and at the sides we have the corresponding marginal distributions, one of them uniform, and the other a beta distribution.

We introduced outliers in a way that they don’t change the marginal distributions, and repeated the same for a uniform and binomial distributions.





----- Meeting Notes (9/23/11 13:58) -----

Show marginal distributions

(3D histogram)? 



make hollow



MI diagram is more resilient to outliers

Outliers have a significant 

 
impact on correlation

 

Outliers have a significant 

 
impact on correlation

The information in both the 

 
“clean”

 

and “dirty”

 

distributions 

 
is essentially the same

 

The information in both the 

 
“clean”

 

and “dirty”

 

distributions 

 
is essentially the same
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Now, we got several random realizations of these distributions and plotted them using a taylor diagram

We see that outliers have a significant impact on correlation, so even one outlier makes it look like these distributions are too different.



However, in our mutual information diagram, these distributions are essentially the same, since the information encoded in these is pretty much unchanged.





----- Meeting Notes (9/23/11 13:58) -----

Show marginal distributions

(3D histogram)? 



make hollow



Computing Entropy and Mutual Information may
 require estimation of underlying probability functions 

Although there are differences, 

 
relative

 

distances are consistent

 

for 

 
each choice of kernel

 

Although there are differences, 

 
relative

 

distances are consistent

 

for 

 
each choice of kernel

N(sx=1.0, sy=0.5, R=0.99}
N(sx=1.0, sy=1.5, R=0.99}

N(sx=1.0, sy=0.5, R=0.95}

N(sx=1.0, sy=1.5, R=0.95}

N(sx=1.0, sy=0.5, R=0.90}

N(sx=1.0, sy=1.5, R=0.90}
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Another aspect of our diagrams is that entropy and mutual information must be estimated when you have discrete data.

In our case we use kernel density estimation to approximate the probability distributions of variables.



To see how much they get affected, we plotted the mutual information diagram for some normal bivariate (BYE-VAR-EE-AT) distributions.

The interesting thing about normal distributions is that you can actually compute the entropy in closed form and there is a mapping between the taylor and mutual information diagram



We computed our diagram with several kernel density methods, and we see that although there’s some variability, they agree with the expected location.

More importantly, the relative location is mostly preserved for each choice of kernel.









Color is distribution

Show ground truth MI diagrams instead of taylor

Shape is KDE method

Change to VI-diagram



Uncertainty Quantification in 
 Climate Simulations

Precipitation average
7 Zonal averages (color)
3 Temporal averages (shape)
3 different ensemble sets  (size)

Presenter
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Now let’s move on to some examples.

Here’s the summary of a study in uncertainty quantification at the lab.

This plot depicts a comparison of seasonal and zonal averages of precipitation.

Color indicates a zone and shape indicates a season.

The size of the glyph corresponds to one of three studies, each of them with different set of samples.

We notice a mapping between the two plots, which is an indication of variables with normal distribution.

But some differences are easier to pick up in the MID.

Say that when this mapping exists, is an indication of normal distributions

----- Meeting Notes (10/23/11 19:33) -----

REHEARSE THIS



Intercomparison Studies
 Annual mean temperature 1900‐2000

 285

 286

 287

 288

 289

 290

 1900  1920  1940  1960  1980 2000

Te
m

pe
ra

tu
re

Year

Presenter
Presentation Notes
Here’s an intercomparison study of climate in the 20th century.

On the top right we show the trend plot of average annual temperature as computed by different models versus observation.

And here we see both the taylor and mutual information diagram.



First thing we notice is that there is no clear mapping like we saw before,

Which may indicate other types of interactions, such as outliers, noise or non-linearity.



----- Meeting Notes (9/23/11 13:58) -----

Normal distributions: monotonic transformation

We don't see this here, means ...
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For example, we notice that this model, which is ranked as the one with highest error in the taylor diagram, appears as closer in terms of mutual information that most of the others

Interestingly, it appears as having highest entropy (compared to the rest), and we see that it is quite a noisy trend.



----- Meeting Notes (9/23/11 13:58) -----

Normal distributions: monotonic transformation

We don't see this here, means ...
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In this case we see two distributions that appear to have the same correlation and std. dev than observations,

But in the MID they appear in quite different places. Looking at the plot, we see that they indeed have different behavior.



----- Meeting Notes (9/23/11 13:58) -----

Normal distributions: monotonic transformation

We don't see this here, means ...



MID applies to discrete data: useful when 
 comparing Clustering Results

• Summarize study in 

 clustering [Filippone et 

 al. 2009]

• 8 different methods

• 4 classification 

 problems

Presenter
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Another aspect of the mutual information diagram is that applies to categorical data.

For example, in clustering.

When we want to compare the  accuracy of a clustering algorithm, in the presence of ground truth, we can compute the entropy and mutual information directly.

In this example, we were able to summarize the study of 8 different clustering algorithms for four different classification problems.



We see that some of the methods (3,4,5) happen to perform poorly compared to the rest, except for one of the data sets.





Change to VI diagram

Say something about increasing/decreasing entropy



Concluding Remarks
• Taylor

 
diagram:

– easy to compute.
– Well understood

 
in geophysical sciences, climate.

• MI diagram:
– Counterpart using information theory.
– requires 

 
an 

 
estimation 

 
step 

 
that 

 
may 

 
introduce 

 
additional 

 uncertainties.
– extends nicely to categorical data, multi‐variate distributions.
– exposes non‐linearities, difficult to see via (linear) correlation.

• More informed decisions when combining both diagrams.



Thanks!

Questions?
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