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 “Oceanographers enthusiastically integrate global ocean circulation models 
in conjunction with atmospheric models over periods of thousands of years 
in order to asses future climate states – without actually knowing the skill of 
their ocean models …” 

 “The case was made at the workshop that … randomness be included in the 
dynamical equations …. “ 

 “… an oceanic circulation model is obtained by averaging and approximating 
the Navier-Stokes equations …. sub-grid-scales cannot be parameterized in 
terms of local mean flow quantities …Thus, the oceanic general circulation 
should be regarded as a stochastic problem described by a set of stochastic 
PDEs.” 

 “ … the vast majority of the data assimilation schemes … were derived and 
validated for linear systems with Gaussian noise …. The nonlinearity might 
actually lessen the dimensionality problem since the motion of the system 
might become confined  … to some lower-dimensional subset of the full 
state space …” 

Peter Muller and Frank Henyey, 1997.   Workshop Assesses 
Monte-Carlo Simulations in Oceanography 



 



Advanced Visualization and Interactive Systems Lab: A. Love, W. Shen, A. Pang 

Interactive Visualization and  
Targeting of pdf’s – Time Dependent Fields 

Lermusiaux,  
JCP-2006 



 

Visualization of Uncertainties/pdf’s: 
Multivariate Time-Dependent Fields 

Lermusiaux et al, Oceanography-2006 
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Flow Skeletons and Uncertainties: 
Mean LCS overlaid on DLE error std 

estimate for 3 dynamical events 

Upwel 1 

Relax. Upwel 2 

• Two upwellings and one relaxation (about 1 
week apart each) 

• Uncertainty estimates allow to identify most 
robust LCS (more intense DLE ridges are 
usually relatively more certain) 

• Different oceanic regimes have different LCS 
uncertainty fields and properties 

[Lermusiaux and Lekien, 
2005. and In Prep, 2011 
 
Lermusiaux, JCP-2006 
 
Lermusiaux, Ocean.-2006] 



A Grand challenge in Large Nonlinear Systems 

Computational challenges for the deterministic (ocean) problem 
• Large dimensionality of the problem, un-stationary statistics 
• Wide range of temporal and spatial scales (turbulent to climate) 
• Multiple instabilities internal to the system  
• Very limited observations 
Need for stochastic modeling … 
•    Approximations in deterministic models including parametric uncertainties 
•    Initial and Boundary conditions uncertainties 
•    Measurement models 

Need for data assimilation … 
•    Evolve the nonlinear, i.e. non-Gaussian, correlation structures 
•    Nonlinear Bayesian Estimation 

 Quantitatively estimate the accuracy of predictions 



Overview of Uncertainty Predictions Schemes 
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Uncertainty propagation via Monte Carlo method 
restricted to an “evolving uncertainty subspace” 

(Error Subspace Statistical Estimation - ESSE) 
Lermusiaux & Robinson, MWR-1999, Deep Sea Research-2001 
Lermusiaux, J. Comp. Phys., 2006 
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Uncertainty propagation via generalized  
Polynomial-Chaos Method 

Xiu & Karniadakis, J. Comp. Physics, 2002 
Knio & Le Maitre, Fluid Dyn. Research, 2006 
Meecham & Siegel, Phys. Fluids, 1964 
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Uncertainty propagation via POD method 
According to Lumley (Stochastic tools in Turbulence, 1971) it was introduced 
independently by numerous people at different times, including Kosambi (1943), 
Loeve (1945), Karhunen (1946), Pougachev (1953), Obukhov (1954 ). 
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Problem Setup: Derive equations for UQ 
Statement of the problem: A Stochastic PDE 
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An important representation property for the solution: Compactness 
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Disadvantage: Redundancy of representation  
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Nonlinear differential operator (possibly with stochastic coefficients)  

Stochastic initial conditions (given full probabilistic information) 

Stochastic boundary conditions (given full probabilistic information) 

Goal: Evolve the full probabilistic information describing   ( ), ;t ωu x



Evolving the full representation 
Major Challenge : Redundancy 
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First Step (easy): Separate deterministic from stochastic/error subspace 

Commonly used approach:  Assume that  ( ); 0iY t ω =

Second step (tricky): Evolving the finite dimensional subspace  

A separation of roles: What can                tell us ?   ( );idY t
dt
ω

Only how the stochasticity evolves inside 

Restrict “evolution of     ” to be “normal to    ”  i.e.  
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How the stochasticity evolves both inside and normal to SV

source of 
 redundancy 

Natural constraint to overcome redundancy 
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Dynamically Orthogonal Evolution Equations 
Theorem 1: For a stochastic field described by the evolution equation 
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we obtain the following evolution equations  

assuming a response of the form 
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Sapsis and Lermusiaux, Physica D (2009, 2011) 



POD & PC methods from DO equations 

Choosing a priori the stochastic subspace         using POD methodology we recover 
POD equations. 

( ) ( ) ( ){ } ( )
;

, ; , ; ,j
j

dY t
t E t t d

dt
ωω

ω ω −       ∫
D

= u y u y u y yL L

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1,
; , ; , ; , ; ,

i j i j

j
i Y Y k i Y Y k

t
E Y t t E t Y t t d t

t
ω ωω ω ω ω− −∂  
  −        ∂  

∫
D

u x
= u x C u y u y y C u xL L

( ) ( ),
, ; ,  

t
E t

t
ω ω

∂
  ∈   ∂

u x
= u x x DL

SDE describing 
  evolution of 

stochasticity inside      

    Family of PDEs 
  describing evolution of 

stochastic subspace         

sV

sV

PDE describing 
evolution of  
mean field         

( ) ( ) ( ) 1
0, ; ; , ; ,  

i jj i Y Yt E Y t h tωω ω ω −  = ∈∂   u C DB ξ ξ ξ

( ) ( ), ; , ; ,  t E h tωω ω= ∈∂      u DB ξ ξ ξ

sV

Choosing a priori the statistical characteristics of the stochastic coefficients           
we recover the PC equations. 
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Application I : Navier-Stokes in a cavity 
2D viscous flow with stochastic initial conditions and no stochastic excitation 
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Initial mean flow 

PDE Numerics: C-grid, upwind [M. Griebel et al., 1998]         SDE Numerics: here, s-dimensional Monte-Carlo  

Streamfunction 



Application I : Navier-Stokes in a cavity 

Energy 
of mean 
flow 

Variances 
of each 
mode 

Re = 1000 



Comparison with Monte-Carlo 

Comp. time:        11min  (4000 samples or                  12,3h (300 samples) 
analytical Yi  )  



Adapt the stochastic subspace dimension 

sV
sV ⊥ Probability measure 
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• In the context of DO equations so far the size of the stochastic subspace 
remained invariant. 

sV

• For intermittent or transient phenomena  the dimension  of  the  stochastic 
subspace may vary significantly with time. This is accounted for by ESSE. 

We need criteria to evolve the dimensionality of the stochastic subspace 

This is a particularly important issue for stochastic systems with 
deterministic initial conditions 



Criteria for dimension reduction / increase 

Dimension Reduction 

min i jY Y crλ σ  < C

( ),i tu x sV

Dimension Increase 

Comparison of the minimum eigenvalue of the correlation matrix         .  
i jY YC

Removal of the corresponding direction from the stochastic subspace. 

Comparison of the minimum eigenvalue of the correlation matrix         .  
i jY YC

min i jY Y crλ   > Σ C

Addition of a new direction                in the stochastic subspace     .  

pre-defined value 

pre-defined value 

How do we choose this new direction?  
 By breeding in the orthogonal  complement  

Same problem when we start with deterministic initial condition 
(dimension of stochastic subspace is zero) 
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Example: Double Gyre,  Re=10,000 



The GMM-DO Filter: 
 

Data Assimilation and Adaptive Sampling  
with 

Gaussian Mixture Models 
using the  

Dynamically Orthogonal field equations 

(Sondergaard, 2011; Sondergaard and Lermusiaux, MWR-to-be-submitted , Parts I and II) 



Overview of the GMM-DO Filter 

The GMM-DO Filter: 
An efficient data assimilation 
scheme that preserves non-

Gaussian statistics and 
respects nonlinear dynamics 

and uncertainties 

Error Subspace 
Statistical Estimation 

(ESSE) 

The Dynamically 
Orthogonal (DO) 
Field Equations 

(stochastic PDEs) 

Bayes 
Information 

Criterion (BIC) 

Gaussian 
Mixture Models 

(GMM) 
The Expectation-

Maximization 
(EM) Algorithm 



Gaussian Mixture Models 
(with Bayesian update) 

The probability density function for a random vector, x, distributed 
according to a multivariate Gaussian mixture model is given by 
 
 
 
subject to the constraint that 
 
 
 
We refer to M as the mixture complexity and πj as the mixture 
weights. The multivariate Gaussian density function takes the form: 
 
 

l 

Prior Distribution 

Likelihood Model 

Posterior Distribution 



Overview of the GMM-DO Filter 

(Sondergaard, 2011; Sondergaard and Lermusiaux, MWR-to-be-submitted , Parts I and II) 



GMM Filter Example: 
Flow Exiting a Strait or “Sudden Expansion Flow” 

Time t = 50,    True solution 
 
 
 
      Mean field prior 
 
 
 
      Modes 1 to 4  



Overview of the GMM-DO Filter 

(Sondergaard, 2011; Sondergaard and Lermusiaux, MWR-to-be-submitted , Parts I and II) 

GMM fit in DO stochastic subspace 



The EM algorithm with GMM 
Based on the data at hand, the Expectation-Maximization algorithm describes an iterative 
procedure for obtaining the Maximum Likelihood estimate for the unknown set of parameters, 
θ,  here of our prior Gaussian mixture model: 

Procedure. Given the n data, x, and initial parameter estimate θ(0), repeat until convergence: 
 
 (1) Expectation: Using the current set of parameters, θ(k), form   

 (2) Minimization: Update the estimate for the set of parameters, θ(k+1), according to 



Bayes Information Criterion 
Determining the complexity of a Gaussian mixture model can be put in the context of model 
selection: based on the data at hand, x, we wish to select the model complexity that maximizes 
the likelihood of this data: 

We use Bayes Information Criterion -- we select the simplest hypothesis consistent with the 
data, i.e. maximize the log-likelihood of the data around the EM-ML estimate of the parameters: 

Number of data points 

Number of parameters 

ML estimate of parameter vector 
log-likelihood 
of the data: 



GMM Filter Example: 
Flow Exiting a Strait or “Sudden Expansion Flow” 

Time t = 50   Prior Distribution 
 



GMM Filter Example: 
Flow Exiting a Strait or “Sudden Expansion Flow” 

Time t = 50   Prior Distribution 
 



Time t = 50    
 
Observations and their pdf  
 
Prior Distributions at these 
data points 
 
Posterior Distributions at 
these data points 
 

GMM Filter Example: 
Flow Exiting a Strait or “Sudden 

Expansion Flow” 



Overview of the 
GMM-DO Filter 

(Sondergaard and Lermusiaux,  
  MWR -to-be-submitted -2011, Parts I and II) 

For GMM-DO Update Theorem, see: 

Bayesian Update of GMM in  
DO stochastic subspace 



GMM Filter Example: 
Flow Exiting a Strait or “Sudden Expansion Flow” 

Time t = 50    
 
Posterior Distribution 
 



GMM-DO Filter: 
DO equations and Non-Gaussian Data Assimilation 

(Top Right): True solution mean 
flow-field streamlines overlaid 
on vorticity with sampling 
positions as circles 
(Left): DO marginal pdfs 
represented as samples with 
the single 1st and 2nd DO 
marginal pdfs on each sides, 
clearly showing non-Gaussian 
behavior.  
(Middle Right): Mean estimate 
mean using GMM-DO filter.  
(Bottom  Right): Variance of 10 
DO modes as a function of time  
(Bottom Right): Comparisons of 
the root-mean-square-error 
(truth minus mean) as a 
function of time, clearly 
showing superior performance 
of GMM-DO filter 

“Flow exiting a Strait” Test Case: Results show that our new DO equations and Non-
Gaussian assimilation leads to optimal error reduction 

Truth 

Mean 
Estimate 

RMSE 



Visualizing Uncertainty in Fluid and Ocean Flows 

Stochastic Flow behind a 
square cylinder 
 Uncertain initial and boundary 

conditions 
 Range of Reynolds number 

modeled with a single DO 
simulation 

 Equivalent to 105 deterministic 
runs 

1d 
marginal 

pdfs 



Visualizing Uncertainty in Fluid and Ocean Flows 

1d marginal pdfs 

 on diagonal 

2d marginal pdfs 

 off-diagonal 

 here, illustrate 
transition to 
non-Gaussian 
pdf at Re ~ 41 

 105 realizations 
in DO subspace 



Visualizing Uncertainty in Fluid and Ocean Flows 

2d marginal 
pdfs 

 9 DO modes 

 Still 105 

realizations 
in DO 
subspace 

How to 
visualize 3d 
marginal 
pdfs to full 
9d pdfs? 



CONCLUSIONS 
 Prognostic DO Equations for Stochastic Fields 

 GMM-DO Data Assimilation 

 Visualizing Probability Densities of Ocean Fields? 

 Scientific Visualization of Uncertainty 
 Overlays (pseud-color, contours, etc) 

 Histograms at each point in physical space, time-dependent 

 Key question: how to visualize pdfs in DO subspace?, but then in 
physical space? 

 Societal Visualization of Uncertainty 
 Overlays 

 Direct Volume rendering, Transparency 

 Glyphs, etc 
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