Uncertainty Analysis for Complex Systems: Algorithms and Challenges

Dongbin Xiu

Department of Mathematics, Purdue University

Support: AFOSR, DOE, NNSA, NSF

(Re-)Formulation of PDE: Input Parameterization

 $\frac{\partial u}{\partial t}(t,x) = \mathcal{L}(u) + \text{boundary/initial conditions}$

• **Goal:** To characterize the random inputs by a set of random variables

- Finite number
- Mutual independence

• If inputs == parameters

- Identify the (smallest) independent set
- Prescribe probability distribution

• Else if inputs == fields/processes

- Approximate the field by a function of finite number of RVs
- Well-studied for Gaussian processes
- Under-developed for non-Gaussian processes
- Examples: Karhunen-Loeve expansion, spectral decomposition, etc.

$$a(x,\omega) \approx \mu_a(x) + \sum_{i=1}^d \tilde{a}_i(x) Z_i(\omega)$$

The Reformulation

• Stochastic PDE:

 $\frac{\partial u}{\partial t}(t, x, Z) = \mathcal{L}(u) + \text{boundary/initial conditions}$

• **Solution:** $u(t,x,Z):[0,T] \times \overline{D} \times \mathbb{R}^{n_Z} \to \mathbb{R}$

• Uncertain inputs are characterized by n_z random variables Z

Generalized Polynomial Chaos (gPC)

 $\frac{\partial u}{\partial t}(t, x, Z) = \mathcal{L}(u)$ + boundary/initial conditions

- Focus on dependence on Z: $u(\bullet, Z) : \mathbb{R}^{n_z} \to \mathbb{R}$
- *N*th-order gPC expansion:

$$u_N(t,x,Z) \triangleq \sum_{|\mathbf{k}|=0}^N \hat{u}_{\mathbf{k}}(t,x) \Phi_{\mathbf{k}}(Z), \quad \# \text{ of basis} = \begin{pmatrix} n_z + N \\ N \end{pmatrix}$$

- **Orthogonal basis:** $\int \Phi_i(Z)\Phi_j(Z)\rho(Z)dZ = \delta_{ij}$
- Basis functions:
 - Hermite polynomials: seminal work by *R*. *Ghanem*
 - General orthogonal polynomials
 (Xiu & Karniadakis, 2002)

• **Properties:**

- Rigorous mathematics
- High accuracy, fast convergence
- Curse-of-dimensionality
- Numerical Approaches:
 - Galerkin vs. collocation

gPC Basis: the Choices

- Orthogonality: $\int \Phi_{i}(z)\Phi_{j}(z)\rho(z) dz = \mathbb{E}\Big[\Phi_{i}(Z)\Phi_{j}(Z)\Big] = \delta_{ij}$
- Example: Hermite polynomial

$$\int_{-\infty}^{\infty} \Phi_{\mathbf{i}}(z) \Phi_{\mathbf{j}}(z) e^{-z^2} dz = \delta_{\mathbf{ij}}$$

• The polynomials: *Z*~*N*(0,1)

$$\Phi_0 = 1, \quad \Phi_1 = Z, \quad \Phi_2 = Z^2 - 1, \quad \Phi_3 = Z^3 - 3Z, \quad \cdots$$

- Approximation of arbitrary random variable: Requires L² integrability
- Example: Uniform random variable • Convergence
 - Non-optimal
 - o First-order Legendre is exact

Stochastic Galerkin

 $\frac{\partial u}{\partial t}(t, x, Z) = \mathcal{L}(u)$ + boundary/initial conditions

• Galerkin method: Seek

$$u_N(t,x,Z) \triangleq \sum_{|\mathbf{k}|=0}^N \hat{u}_{\mathbf{k}}(t,x) \Phi_{\mathbf{k}}(Z)$$

Such that

$$\mathbb{E}\left[\frac{\partial u_{N}}{\partial t}(t,x,Z)\Phi_{\mathbf{m}}(Z)\right] = \mathbb{E}\left[\mathcal{L}(u_{N})\Phi_{\mathbf{m}}(Z)\right], \quad \forall \left|\mathbf{m}\right| \le N$$

• The result:

- Residue is orthogonal to the gPC space
- A set of deterministic equations for the coefficients
- The equations are usually coupled requires new solver

Stochastic Galerkin: An Example

• Equation :
$$\frac{du}{dt} = -k(Z)u, \quad u\Big|_{t=0} = u_0. \qquad k(Z) = \sum_{i=0}^N k_i \Phi_i(Z)$$

k(Z) is the decaying coefficient with a given probability distribution.

• Seek gPC approximation :

$$v_N(t,Z) = \sum_{i=0}^N \hat{v}_i(t) \Phi_i(Z)$$

• Galerkin equation :

$$\frac{d\hat{v}_k}{dt} = -\sum_{i=0}^N \sum_{j=0}^N e_{ijk} k_i \hat{v}_j, \quad k = 0, \ 1, \ 2, \dots, N$$

$$e_{ijk} = \int \Phi_i(z) \Phi_j(z) \Phi_k(z) \rho(z) dz$$

• Computational complexity: (*N*+1) coupled deterministic ODEs

Computational Efficiency

- du/dt = -k u, u(t=0)=1
 - *k* is a **Gaussian** random variable :

PDF:
$$f_k(x) = \frac{1}{\sqrt{2p}} e^{-\frac{x^2}{2}}$$

• 4th-order **Hermite** expansion

Error	Monte Carlo Method	Generalized Polynomial Chaos	Speed-up factor
	(# of realizations)	(# of expansion terms)	
4%	100	1	100
1.1%	1,000	2	500
0.05%	9,800	3	3,267

Stochastic Collocation

 $\frac{\partial u}{\partial t}(t, x, Z) = \mathcal{L}(u)$ + boundary/initial conditions

• **Collocation:** To satisfy governing equations at selected nodes

Allow one to use existing deterministic codes repetitively

- **Sampling:** (solution statistics only)
 - Random (Monte Carlo)
 - Deterministic (lattice rule, tensor grid, cubature)
- Stochastic collocation: To construct polynomial approximations
 - Node selection is critical to efficiency and accuracy
 - More than sampling

Definition: Given a set of nodes and solution ensemble, find p(Z) in a proper polynomial space, such that $p \approx u$ in a proper sense.

Stochastic Collocation: Interpolation

• Lagrange interpolation:

• Let z_j be the nodes and $u(z_j)$ be solution, then Lagrange interpolation

$$p(z) = \sum_{j=1}^{Q} u(z_j) L_j(z) \qquad L_i(z_j) = \delta_{ij}, \quad 1 \le i, j \le N_p$$

- Difficult for unstructured grids.
- Dimension-by-dimension space filling

Tensor grids: inefficient

Sparse grids: more efficient

• Matrix inversion:
$$p(Z) = \sum_{i=1}^{M} c_m \Phi_m(Z)$$

 $p(z_j) = \sum_{i=1}^{M} c_m \Phi_m(z_j) = f_j \implies Ac = f$
Vandermonde matrix: $A = (a_{jk}) = (\Phi_k(z_j)), \quad j = 1, ..., N_p, \quad k = 1, ..., M$

Stochastic Collocation: Non-interpolating

• Regression type:

$$\min \left\| \mathbf{A}\mathbf{c} - \mathbf{f} \right\|$$

- Over-determined system: least-square type
- Under-determined system: l_1 -minimization, compressive sampling, etc.

• Discrete projection:

$$\mathbb{P}_{N}u = \sum_{|\mathbf{k}|=0}^{N} \hat{u}_{\mathbf{k}}(t, x) \Phi_{\mathbf{k}}(Z)$$
$$\hat{u}_{\mathbf{k}} = \mathbb{E}[u(Z)\Phi_{\mathbf{k}}(Z)] = \int u(z)\Phi_{\mathbf{k}}(z)\rho(z)dz$$
$$\approx \sum_{j=1}^{N_{p}} u(z_{j})\Phi_{\mathbf{k}}(z_{j})w_{j}$$

Stochastic Computation: The Landscape

Realistic Large-scale Complex Systems:

- Complex physics → highly nonlinear systems
- Large number of random variables
- (Extremely) time consuming simulations
- Legacy codes (nearly impossible to re-write)

• Stochastic Galerkin:

- Difficult to implement
- Good mathematical properties

• Stochastic collocation is more proper:

- Easy to implement \rightarrow virtually no coding effort
- Nonlinearity poses no additional difficulties

• Easy implementation:

- 1. Choose a set of nodes, Z_j , $j=1,...,N_p$.
- 2. Run deterministic simulation at each node Z_{j} .
- 3. Construct polynomial approximation (surrogate/response surface).

Stochastic Computation: Challenges

• Curse-of-Dimensionality:

- Number of simulations grows (too) fast with dimensionality
- Current approaches:
 - Adaptive (sparse) grid
 - "Sparser" grids
- Significantly "delayed" but far from satisfactory
 - A rather extreme (but not uncommon) scenario:
 - "What if I have 30 random inputs but can only afford 10 simulations?"

• Do we know all the probability distributions?

- In many practical systems, we do not \rightarrow <u>Epistemic uncertainty</u>
- Very few studies
- (Probably) the first numerical approach: Jakeman, et al, JCP 2010
- Multi-physics, multi-scale systems

Stochastic Computation: "Useful" Algorithms

• "Useful" UQ algorithms need to target

- Realistic Large-scale Complex Systems:
 - Complex physics → highly nonlinear systems
 - Large number of random variables
 - (Extremely) time consuming simulations
 - Legacy codes (nearly impossible to re-write)

More development of "capability-based" UQ

- To make UQ algorithms with certain capability/accuracy more efficient
- For example: adaptive refinement

In need of "capacity-based" UQ

- To design the "best" method for a given simulation capacity
- For example:
 - "What if I have 30 random inputs but can only afford 10 simulations?"
 - Rephrase: "Assume we can afford 10 simulations, what can we achieve?"

Summary

- Uncertainty Analysis: To provide improved prediction
 - Input characterization
 - Uncertainty propagation
 - Post processing
- Generalized polynomial chaos (gPC)
 - Multivariate approximation theory
- Active directions:
 - Compressive sampling
 - Adaptive algorithms
 - Model-form uncertainty
 - Utilization of data: data assimilation, inference, etc.
 - etc, etc, etc...

What about visualization?

• Lack of dialogue between the UQ and Viz communities