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(Re-)Formulation of PDE: Input Parameterization

%(I,x) = L(u) + boundary/initial conditions

* Goal: To characterize the random inputs by a set of random variables
* Finite number
= Mutual independence

* If inputs == parameters
= [dentify the (smallest) independent set
= Prescribe probability distribution

* Else if inputs == fields/processes
= Approximate the field by a function of finite number of RVs
= Well-studied for Gaussian processes
» Under-developed for non-Gaussian processes
= Examples: Karhunen-Loeve expansion, spectral decomposition, etc.

a(x,w)~p (x)+ Z a(x)Z.(w)




The Reformulation

» Stochastic PDE:

%(t,x,Z )=L(u) + boundary/initial conditions

* Solution: u(t,x,Z):[0,T]x DxR"” - R

* Uncertain inputs are characterized by »n, random variables Z

Non-trivial task




Generalized Polynomial Chaos (gPC)

%—?(r,x,Z )=L(u) + boundary/initial conditions
* Focus on dependence on Z: u(+,Z):R” - R

« Nh-order gPC expansion:

N
Uy (1,3,2)2 >0 (6,0)8,(Z), # ofbasis=| ' LR
|k|:O N
* Orthogonal basis: f D,(2)D (Z2)p(Z)dZ =§,

* Properties:
= Rigorous mathematics
» High accuracy, fast convergence
= Curse-of-dimensionality
 Numerical Approaches:
= Galerkin vs. collocation

* Basis functions:
= Hermite polynomials: seminal
work by R. Ghanem
= General orthogonal polynomials
(Xiu & Karniadakis, 2002)




sPC Basis

= Expectation: ]E(g(Z)):fg(z)p(z)dz

= Orthogonality: f D.(2)®,(2)p(2)dz = ]E[(I)i(Z )®.(Z )] =0,

---------------

Gaussian distribution Gamma distribution Beta distribution
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Hermite polynomial Laguerre polynomial Legendre polynomial




gPC Basis: the Choices

= Orthogonality: fCI)i(z)CI)j(z)p(z) dz = E[Cbi(Z)CI)j(Z)] = 5ij

* Example: Hermite polynomial

f ,(2)®,(z)e " dz =6,

* The polynomials: Z~N(0,1) T T
o =1 & =2 o, =2"-1, &, =2"-3Z,

= Approximation of arbitrary random variable: Requires L’ integrability

15

= Example: Uniform random variable
o Convergence "
o Non-optimal
o First-order Legendre 1s exact

05+




Stochastic Galerkin

%(t, x,Z)=L(u) + boundary/initial conditions

e Galerkin method: Seek

u, (t,x,Z2) = EN: i, (t,x)® (Z)

|k|:0

Such that

a N
E{%(t,x,Z)(Dm(Z)} =E|L(u,)®,(Z)], V|m|<N

* The result:
= Residue 1s orthogonal to the gPC space
= A set of deterministic equations for the coefficients
= The equations are usually coupled — requires new solver




Stochastic Galerkin: An Example

« Equation : du _ —k(Z)u, u

dt

N

— o k(Z):Zkiq)i(Z)
i=0

k(Z) 1s the decaying coefficient with a given probability distribution.

» Seek gPC approximation :

v (t,2)= iﬁi(t)cbi(Z)

* Galerkin equation :

e, = [®,(2)0,(2)®,(2)p(z)dz

« Computational complexity: (N+1) coupled deterministic ODEs




Computational Efficiency

* du/dt =-ku, ut=0)=I

; E'\. ) —8&— Mean
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* k1s a Gaussian random variable : ;
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Error | Monte Carlo Method | Generalized Polynomial Chaos | Speed-up factor
(# of realizations) (# of expansion terms)
4% 100 1 100
1.1% 1,000 2 500
0.05% 9,800 3 3,267




Stochastic Collocation

%—Zl(z‘,x,Z )=L(u) + boundary/initial conditions
* Collocation: To satisfy governing equations at selected nodes

= Allow one to use existing deterministic codes repetitively

« Sampling: (solution statistics only)
* Random (Monte Carlo)
* Deterministic (lattice rule, tensor grid, cubature)

* Stochastic collocation: To construct polynomial approximations
= Node selection is critical to efficiency and accuracy
= More than sampling

Definition: Given a set of nodes and solution ensemble, find p(Z) in a proper
polynomial space, such that p=u in a proper sense.




Stochastic Collocation: Interpolation

* Lagrange interpolation:

* Let z; be the nodes and u(z,) be solution, then Lagrange interpolation

o
p(z)= Zlu(z].)Lj(z) L(z)=6,, 1<i,j<N,
=

» Difficult for unstructured grids.
* Dimension-by-dimension space filling

Te.nsor.grids: inéfﬁcient Sparse gﬁds: m.ore éfﬁcient
M
* Matrix inversion: p(2) = 2 c ® (Z)
i=1
M
p(z,) = Z;cmcpm(zj) =f = Ac=f

Vandermonde matrix: A:(ajk)z(fl)k(zj)), j=1,...,Np, k=1,....M




Stochastic Collocation: Non-interpolating
* Regression type:

minHAc— fH

* Over-determined system: least-square type
* Under-determined system: /,-minimization, compressive sampling, etc.

* Discrete projection:

Pu= EN: u (t,x)® (2)

|k|:0

i, = Blu(Z)®, ()] = [ u(2)®,(2)p(z)dz

N
~ ) u(z)®, (z)w,
j=1




Stochastic Computation: The Landscape

» Realistic Large-scale Complex Systems:
« Complex physics =» highly nonlinear systems
 Large number of random variables
* (Extremely) time consuming simulations
 Legacy codes (nearly impossible to re-write)

 Stochastic Galerkin:
* Difficult to implement
» Good mathematical properties

 Stochastic collocation is more proper:
* Easy to implement =» virtually no coding effort
 Nonlinearity poses no additional difficulties

* Easy implementation:
1. Choose a set of nodes, Z, j=1,...,N,,.
2. Run deterministic simulation at each node Z,.
3. Construct polynomial approximation (surrogate/response surface).




Stochastic Computation: Challenges

* Curse-of-Dimensionality:

* Number of simulations grows (too) fast with dimensionality
 Current approaches:

= Adaptive (sparse) grid

» “Sparser” grids
* Significantly “delayed” but far from satisfactory

= A rather extreme (but not uncommon) scenario:

“What if I have 30 random inputs but can only afford 10 simulations?”

* Do we know all the probability distributions?
* In many practical systems, we do not =» Epistemic uncertainty
 Very few studies
* (Probably) the first numerical approach: Jakeman, et al, JCP 2010

* Multi-physics, multi-scale systems




Stochastic Computation: “Useful” Algorithms

= “Useful” UQ algorithms need to target ....

* Realistic Large-scale Complex Systems:
» Complex physics = highly nonlinear systems
 Large number of random variables

* (Extremely) time consuming simulations
» Legacy codes (nearly impossible to re-write)

= More development of “capability-based” UQ
* To make UQ algorithms with certain capability/accuracy more efficient
* For example: adaptive refinement

" In need of “capacity-based” UQ
* To design the “best” method for a given simulation capacity

* For example:
* “What if I have 30 random inputs but can only afford 10 simulations?”
* Rephrase: “Assume we can afford 10 simulations, what can we achieve?”




Summary

= Uncertainty Analysis: To provide improved prediction
* Input characterization
* Uncertainty propagation
* Post processing

= Generalized polynomial chaos (gPC)
* Multivariate approximation theory

= Active directions:
* Compressive sampling
* Adaptive algorithms
* Model-form uncertainty
 Utilization of data: data assimilation, inference, etc.
* etc, etc, etc...

* What about visualization?
* Lack of dialogue between the UQ and Viz communities




