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(Re-)Formulation of PDE: Input Parameterization  

   
∂u
∂t

(t,x) = L(u) +  boundary/initial conditions

•  Goal: To characterize the random inputs by a set of random variables 
  Finite number 
  Mutual independence 

•  If inputs == parameters 
  Identify the (smallest) independent set 
  Prescribe probability distribution 

•  Else if inputs == fields/processes  
  Approximate the field by a function of finite number of RVs 
  Well-studied for Gaussian processes 
  Under-developed for non-Gaussian processes 
  Examples: Karhunen-Loeve expansion, spectral decomposition, etc. 

     
a(x,ω)≈µa (x) + ai (x)Zi (ω)

i=1

d
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The Reformulation 

•  Uncertain inputs are characterized by nz random variables Z 

   
∂u
∂t

(t,x,Z ) = L(u) +  boundary/initial conditions

   u(t, x,Z ) : [0,T ]× D × RnZ → R

   FZ (s) = Pr(Z ≤ s), s ∈RnZ

•  Probability distribution of Z is prescribed 

•  Stochastic PDE: 

•  Solution: 

Non-trivial task 



     
uN (t,x,Z )  ûk (t,x)Φk (Z )
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•  Nth-order gPC expansion: 

•  Orthogonal basis: 
     
Φi (Z )Φj(Z )ρ(Z ) dZ∫ = δij

•  Basis functions: 
  Hermite polynomials: seminal 
work by R. Ghanem 
  General orthogonal polynomials 
(Xiu & Karniadakis, 2002)  

•  Properties: 
  Rigorous mathematics 
  High accuracy, fast convergence 
  Curse-of-dimensionality 

Generalized Polynomial Chaos (gPC) 

•  Numerical Approaches: 
  Galerkin vs. collocation 

    u(i,Z ) : RnZ → R•  Focus on dependence on Z: 



Gaussian distribution Gamma distribution Beta distribution 

     
E g(Z )( ) = g(z)ρ(z) dz

R
∫  Expectation: 

gPC Basis 

      
Φi (z)Φj(z)ρ(z) dz∫ = E Φi (Z )Φj(Z )⎡

⎣⎢
⎤
⎦⎥ = δij

  Orthogonality: 

     
Φi (z)Φj(z)e−z2

dz
−∞

∞

∫ = δij

     
Φi (z)Φj(z)e−z dz

0

∞

∫ = δij

     
Φi (z)Φj(z) dz

−1

1

∫ = δij

Hermite polynomial Laguerre polynomial Legendre polynomial 



  Example: Uniform random variable 
o  Convergence 
o  Non-optimal 
o  First-order Legendre is exact 

gPC Basis: the Choices 

      
Φi (z)Φj(z)ρ(z) dz∫ = E Φi (Z )Φj(Z )⎡

⎣⎢
⎤
⎦⎥ = δij

  Orthogonality: 

     
Φi (z)Φj(z)e−z2

dz
−∞

∞

∫ = δij

  Example: Hermite polynomial 

  The polynomials:  Z~N(0,1) 

    Φ0 = 1, Φ1 = Z , Φ2 = Z 2−1, Φ3 = Z 3−3Z , 

  Approximation of arbitrary random variable:  Requires L2 integrability 



Stochastic Galerkin 

     
uN (t,x,Z )  ûk (t,x)Φk (Z )

k =0

N
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•  Galerkin method: Seek 

     
E

∂uN

∂t
(t,x,Z )Φm (Z )

⎡

⎣
⎢

⎤

⎦
⎥ = E L(uN )Φm (Z )⎡⎣ ⎤⎦ , ∀ m ≤ N

Such that 

•  The result: 
  Residue is orthogonal to the gPC space 
  A set of deterministic equations for the coefficients 
  The equations are usually coupled – requires new solver 



Stochastic Galerkin: An Example 

   
du
dt

=−k(Z )u,      u
t=0

= u0.

k(Z) is the decaying coefficient with a given probability distribution. 

•  Equation : 

•  Computational complexity: (N+1) coupled deterministic ODEs 

   
  k(Z ) = kiΦi (Z )

i=0

N
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dv̂k

dt
=− eijk kiv̂ j

j=0

N

∑
i=0

N

∑ ,    k = 0,  1,  2,…, N

•  Galerkin equation : 

  
eijk = Φi (z)Φ j (z)Φk (z)ρ(z) dz∫

•  Seek gPC approximation : 

   
vN (t,Z ) = v̂i (t)Φi (Z )

i=0

N

∑



Computational Efficiency 

•  du/dt = - k u,  u(t=0)=1 

•  k is a Gaussian random variable : 

•  4th-order Hermite expansion 



Stochastic Collocation 

•  Sampling: (solution statistics only) 
•  Random (Monte Carlo) 
•  Deterministic (lattice rule, tensor grid, cubature) 

•  Collocation: To satisfy governing equations at selected nodes 
  Allow one to use existing deterministic codes repetitively 

•  Stochastic collocation: To construct polynomial approximations 
  Node selection is critical to efficiency and accuracy 
  More than sampling 

Definition: Given a set of nodes and solution ensemble, find p(Z) in a proper 
                     polynomial space, such that p≈u in a proper sense. 



Sparse grids: more efficient Tensor grids: inefficient 

Stochastic Collocation: Interpolation 

•  Let zj be the nodes and u(zj) be solution, then Lagrange interpolation 

   
p(z) = u(z j )Lj (z)

j=1

Q

∑     
Li (z j ) = δij , 1≤ i, j≤ N p

  Difficult for unstructured grids.  
  Dimension-by-dimension space filling 

•  Matrix inversion: 

•  Lagrange interpolation: 

  
p(Z ) = cmΦm(Z )

i=1

M

∑

   
p(z j ) = cmΦm(z j )

i=1

M

∑ = f j ⇒ Ac = f

    
A = ajk( ) = Φk (z j )( ), j = 1,..., N p , k = 1,…, MVandermonde matrix: 



Stochastic Collocation: Non-interpolating 

•  Regression type: 

     
PNu = ûk (t, x)Φk (Z )

k =0

N

∑

      

ûk = E[u(Z )Φk (Z )] = u(z)Φk (z)ρ(z) dz∫

≈ u(z j )Φk (z j )wj
j=1

N p

∑

•  Discrete projection: 

  
min Ac − f

•  Over-determined system: least-square type 
•  Under-determined system: l1-minimization, compressive sampling, etc. 



Stochastic Computation: The Landscape 

•  Realistic Large-scale Complex Systems: 
•  Complex physics  highly nonlinear systems 
•  Large number of random variables 
•  (Extremely) time consuming simulations 
•  Legacy codes (nearly impossible to re-write)  

•  Stochastic Galerkin: 
•  Difficult to implement 
•  Good mathematical properties 

•  Stochastic collocation is more proper: 
•  Easy to implement  virtually no coding effort 
•  Nonlinearity poses no additional difficulties 
•  Easy implementation: 

1.  Choose a set of nodes, Zj, j=1,…,Np. 
2.  Run deterministic simulation at each node Zj. 
3.  Construct polynomial approximation (surrogate/response surface). 



Stochastic Computation: Challenges 

•  Curse-of-Dimensionality: 
•  Number of simulations grows (too) fast with dimensionality 
•  Current approaches: 

  Adaptive (sparse) grid 
  “Sparser” grids 

•  Significantly “delayed” but far from satisfactory 
  A rather extreme (but not uncommon) scenario: 
   “What if I have 30 random inputs but can only afford 10 simulations?” 

•  Do we know all the probability distributions? 
•  In many practical systems, we do not  Epistemic uncertainty 
•  Very few studies 
•  (Probably) the first numerical approach: Jakeman, et al, JCP 2010 

•  Multi-physics, multi-scale systems 



•  Realistic Large-scale Complex Systems: 
•  Complex physics  highly nonlinear systems 
•  Large number of random variables 
•  (Extremely) time consuming simulations 
•  Legacy codes (nearly impossible to re-write)  

Stochastic Computation: “Useful” Algorithms 
  “Useful” UQ algorithms need to target …. 

  More development of “capability-based” UQ 
•  To make UQ algorithms with certain capability/accuracy more efficient 
•  For example: adaptive refinement 

  In need of “capacity-based” UQ 
•  To design the “best” method for a given simulation capacity 
•  For example:  

• “What if I have 30 random inputs but can only afford 10 simulations?” 
•  Rephrase: “Assume we can afford 10 simulations, what can we achieve?” 



Summary 

  Generalized polynomial chaos (gPC) 
•  Multivariate approximation theory 

  Active directions: 
•  Compressive sampling 
•  Adaptive algorithms 
•  Model-form uncertainty 
•  Utilization of data: data assimilation, inference, etc. 
•  etc, etc, etc… 

  What about visualization? 
•  Lack of dialogue between the UQ and Viz communities  

  Uncertainty Analysis: To provide improved prediction 
•  Input characterization 
•  Uncertainty propagation 
•  Post processing 


