
SCIRun: Module
Development Basics

CIBC/NEU Workshop 2012

http://bit.ly/SCIRunDevWorkshop

Goals

● Take you from "Hello World" in SCIRun to
being able to develop an interesting module.

● Learn some software engineering best
practices along the way.

● Build some excitement for the next version
coming in 2013.

Prerequisites

● Understand basics of object-oriented
development in C++ (class, method,
inheritance)

● C++ development tools: compiler, linker
● Downloaded SCIRun source code

○ http://bit.ly/SCIRunSource4_6
● CMake (can create XCode projects, GNU

make, NMake, Visual Studio)
● GNU make on Linux/Unix platforms

Build Instructions
http://www.sci.utah.edu/devbuilds/scirun_docs/DeveloperGuide.pdf

http://www.sci.utah.edu/devbuilds/scirun_docs/DeveloperGuide.pdf

Module specification: Packages

● Packages are the SCIRun plugin
mechanism, and each Package
gets its own menu item on the
Network Editor. Core modules in
SCIRun live in the SCIRun
Package.
○ In your working tree, the SCIRun

Package corresponds to everything
under the
SCIRun/src/Dataflow/Modules
directory.

○ All other Packages live in
SCIRun/src/Packages.

Module specification: Categories

Categories are the
directories under
Modules. These are
also reflected in the
menu item, and
should contain
modules that share
some common
ground defined by
the category.

Module Specification: Modules

Finally under each
Category directory are the
Modules contained within
them. Each module has a .
cc file with the same name
as the module.

Creating your first module

"Hello World!" -- SCIRun style.

You'll need three files:
● SCIRun/src/Dataflow/Modules/String/PrintHelloWorldToScreen.cc
● SCIRun/src/Dataflow/XML/PrintHelloWorldToScreen.xml
● SCIRun/src/Dataflow/Modules/String/CMakeLists.txt

https://code.sci.utah.edu/svn/SCIRun/cibc/branches/3.0.x/SCIRun/src/Dataflow/Modules/Examples/PrintHelloWorldToScreen.cc
https://code.sci.utah.edu/svn/SCIRun/cibc/branches/3.0.x/SCIRun/src/Dataflow/Modules/Examples/PrintHelloWorldToScreen.cc
https://code.sci.utah.edu/svn/SCIRun/cibc/branches/3.0.x/SCIRun/src/Dataflow/XML/PrintHelloWorldToScreen.xml
https://code.sci.utah.edu/svn/SCIRun/cibc/branches/3.0.x/SCIRun/src/Dataflow/Modules/Examples/CMakeLists.txt
https://code.sci.utah.edu/svn/SCIRun/cibc/branches/3.0.x/SCIRun/src/Dataflow/Modules/Examples/CMakeLists.txt

"Hello World" Example: C++ Source
SCIRun/src/Dataflow/Modules/String/PrintHelloWorldToScreen.cc

"Hello World" Example: XML Description

SCIRun/src/Dataflow/XML/PrintHelloWorldToScreen.xml

"Hello World" Example: Adding files
to project

SCIRun/src/Dataflow/Modules/String/CMakeLists.
txt

Getting Input: Overview

Note: if you are writing a module as we go, you
could simply add the new bits as you go to your
module.

Now that we know how to execute, we would
like to get some data passed into this module
through its input port. First we need to let
SCIRun know that we expect input and what
type of input we expect. This happens in the
XML file.

Getting Input: XML description
<io>
 <inputs lastportdynamic="no">
 <port>

<name>StringToPrint</name>
<datatype>SCIRun::String</datatype>

 </port>
 </inputs>
 </io>

The io section of our
component contains port
information. We give it a
name (important to
remember as we ask for
this port by name from our
C++ code) and we also
give it a datatype. In this
case we want to and only
will accept SCIRun::String
as an input. Now when we
instantiate this module, it
will be created with a String
input port.

Getting Input: C++ Implementation
void PrintHelloWorldToScreen::execute()
{
 StringHandle input;
 get_input_handle("StringToPrint", input, false);
 const std::string greeting = "Hello World! " +

(input.get_rep() ? input->get() : "");
 std::cerr << greeting << std::endl;
}

All data that pass through ports in SCIRun are
passed using Handles. Our handles are reference
counted locking handles. They are essentially
smart pointers that delete the object they point to
when no one has a reference to it anymore.

Getting Input: Dataflow Details
StringHandle input;
get_input_handle("StringToPrint", input, false);

First we declare an empty FieldHandle, then we ask for it to
be filled with data from the input port named "InField". As
you recall this is the exact string used in the xml file to
declare the port name.

get_input_handle does a number of things for you. If the
last argument is true, then we require input data on this port
(some ports are optional). get_input_handle then blocks
waiting for data to arrive on the port, makes sure it is non
NULL, and sets the handle appropriately.

Sending Output: Overview

Essentially the dual of getting input, as you'd
expect.

Sending Output: XML description
 <io>
 <inputs lastportdynamic="no">
 <port>

<name>StringToPrint</name>
<datatype>SCIRun::String</datatype>

 </port>
 </inputs>
 <outputs>
 <port>

<name>Greeting</name>
<datatype>SCIRun::String</datatype>

 </port>
 </outputs>
 </io>

Sending Output: C++ implementation
void PrintHelloWorldToScreen::execute()
{
 StringHandle input;
 get_input_handle("StringToPrint", input, false);
 const std::string greeting = "Hello World! " + (input.
get_rep() ? input->get() : "");
 std::cerr << greeting << std::endl;
 StringHandle output(new String(greeting));
 send_output_handle("Greeting", output);
}

send_output_handle takes the exact string with which we
declared the output port in our xml file, and we send the
handle to our field along through the output port.

Module I/O: Improvements for next version

● Less reliance on hard-coded strings in
multiple places--easy for them to get out of
sync, cause subtle bugs.

● Encode I/O signature in module class itself
○ Think C/C++ function prototype and its

accompanying type safety and discovery
The signature gives you an exact description, and a

module has the same exact property: fixed
input/output number and types

○ C++ language limits the implementation options
● More functional/natural style of

sending/receiving data values
○ Think of piping values on the unix command line

Changing Data Values:
Algorithm Classes

● SCIRun contains Algorithm libraries
corresponding to its many Module libraries
○ The idea is to separate the GUI-dependent code

from the algorithm behind each module's execution
● A basic layering of SCIRun program logic

becomes apparent:
○ GUI interaction: receive input from user
○ Module execution: manage ports, connections, input

validation and passing choices to algorithms
○ Algorithmic code: math, geometry
○ Datatypes: basic building blocks

Low-level libraries: threading, persistence, etc

Test-driving your algorithm independently
from the GUI: Good Time for a Unit Test

● Main idea: write test code that can be run
automatically to verify your algorithm,
without needing to call up a GUI or read a
local file
○ Most essential for brand new code--more difficult for

older code or code written by others
○ Also serves as up-to-date documentation: wiki pages

can grow stale, but test code, included in the project,
will always need to compile and run

● For those interested in this software engineering idea
(write bug-free code!), examples are available using
Google's Testing framework (start in directory
SCIRun\src\Core\Datatypes\Tests)

User Input: Writing Basic Dialogs

NOTE: this process will completely change in
SCIRun v5.0. If you're interested in these
ongoing developments, let us know and we can
have a separate meeting about.

Thus, we will not show the current Tcl/Tk
methodology for writing GUIs at this session.
Please consult Ayla or your local SCIRun
expert.

Conclusion

● You have the basic structure of a module
now:
○ Port description via XML file
○ Override Module::execute
○ get_input_handle/send_output_handle

● What goes in between is up to your
imagination
○ SCIRun contains over 400 modules at the moment,

so there's plenty to work with and learn from
○ Even with 15+ years of existence, this code is open

to fresh ideas

Thank you
dwhite@sci.utah.edu

