
SCIRun Forward/Inverse ECG
Toolkit

SCIRun 4.6 Documentation

Center for Integrative Biomedical Computing
Scientific Computing & Imaging Institute

University of Utah

SCIRun software download:

http://software.sci.utah.edu

Center for Integrative Biomedical Computing:

http://www.sci.utah.edu/cibc

This project was supported by grants from the National Center for Research Resources
(5P41RR012553-14) and the National Institute of General Medical Sciences

(8 P41 GM103545-14) from the National Institutes of Health.

Author(s):
Jaume Coll-Font, Moritz Dannhauer, Michael Steffen, Darrell Swenson, Dafang Wang,

Burak Erem, Jess Tate, Jeroen Stinstra, Dana Brooks and Rob MacLeod



Contents

1 Overview 3
1.1 Toolkit overview and capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Software requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 SCIRun Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Required Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Mathematical Background 6
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Solutions to the Forward Problem in the Forward/Inverse Toolkit . . . . . . . 7

2.2.1 FEM in the Forward/Inverse Toolkit . . . . . . . . . . . . . . . . . . . 8
2.2.2 BEM in the Forward/Inverse Toolkit . . . . . . . . . . . . . . . . . . . 9

2.3 Solutions to the Inverse Problem in the Forward/Inverse Toolkit . . . . . . . 10
2.3.1 Activation-based Inverse Solutions in the Forward/Inverse Toolkit . . 11
2.3.2 Potential-based Inverse Solutions in the Forward/Inverse Toolkit . . . 11

3 Forward Solutions 15
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Module Descriptions for Boundary Element Solutions . . . . . . . . . . . . . 16
3.3 Module Descriptions for Finite Element Solutions . . . . . . . . . . . . . . . . 17
3.4 Example Networks for Boundary Element Solutions . . . . . . . . . . . . . . 18
3.5 Example Networks for Finite Element Solutions . . . . . . . . . . . . . . . . . 20

3.5.1 Potential Based Forward FEM simulation . . . . . . . . . . . . . . . . 20
3.5.2 Activation Based Forward FEM simulation . . . . . . . . . . . . . . . 25

4 Inverse Solutions 27
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Module Descriptions for Inverse Solution Methods . . . . . . . . . . . . . . . 27

4.2.1 Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Tikhonov Singular Value Decomposition (SVD) . . . . . . . . . . . . . 30
4.2.3 Truncated SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.4 Matlab Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Example Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Gauss-Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2



Chapter 1

Overview

This guide describes and documents the SCIRun ECG Forward/Inverse Toolkit. This toolkit is a col-
lection of modules and networks within the SCIRun system, which can be used to solve forward and
inverse electrocardiography problems. The guide assumes that the reader has basic user-level famil-
iarity with SCIRun; in particular that the reader is familiar with placing modules into a SCIRun network,
connecting modules, and visualizing data. If the reader is not familiar with these operations, we sug-
gest you first consult the SCIRun Basic Tutorial, also distributed in the SCIRun documentation.

The purpose of this toolkit is to advance the state of forward and inverse solutions in this field by
offering a common platform for investigators and others to compare geometries and geometric repre-
sentations, forward and inverse algorithms and data, with the maximum degree of both flexibility and
commonality that we can achieve. Thus, we hope to increase the ”reproducibility” of developments
in this field and help move these technologies closer to useful clinical applications. As such, the
software (like all of SCIRun) is open-source, modular, and extensible. We follow modern open-source
software engineering practices to maximize portability, extensibility, and reliability of our software.
As we explain below, SCIRun has a built-in facility for connecting with Matlab so that processing can
be carried out jointly using both programs. In addition, the ECG Forward/Inverse Toolkit features ca-
pabilities which allow the user to interface with ECGSim (http://www.ecgsim.org), a popular software
package for solving certain types of forward ECG problems with a high degree of interactive control
over source models).

We welcome inquiries from users about this toolkit, and very much encourage contributions to the
toolkit from the community. For more information about the toolkit or the underlying algorithms, or to
discuss contributing to its development, please contact scirun-users@sci.utah.edu.

This toolkit is a product of the Center for Integrative Biomedical Computing (CIBC), an NIH sup-
ported Biomedical Technology Research Center, and we gratefully acknowledge the support from NIH
that has made the development of this work possible. The CIBC is housed in the Scientific Computing
and Imaging (SCI) Institute at the University of Utah and the environment and personnel in SCI have
also been integral to the development of the toolkit.

1.1 Toolkit overview and capabilities

Computational modeling of bioelectric fields often requires the solution of electrocardio-
graphic or electroencephalographic forward and inverse problems in order to non-invasively
analyze electrophysiological events that are otherwise inaccessible or unethical to explore.
All solutions to both problems require a common set of components, each of which is then
customized or optimized for the particular problem formulation. Bioelectric activity begins
from a biophysical source of voltage or current, which for computational purposes must be
modeled in an appropriate, problem-specific form. For example, when the clinical mission
is to identify focal activation in the brain, one or more current dipoles may be a suitable
source model. However, when the goal is to reconstruct the sequence of activation across the
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ventricles of the heart, the sources are better modeled in more complex form to capture the
wavefront of this activation. Each type of source then requires an approximation in mathe-
matical and then numerical form. Such a source model can then be used (in a solution to
the forward problem) to computationally generate the associated voltages on the surface of
the body (or wherever measurements might be made). If the goal is to recover sources from
measured potentials, i.e. to solve the inverse problem, such as in the activation sequence
reconstruction just mentioned, the solution strategy must include appropriate numerical
techniques that can incorporate constraints and recover useful solutions, even when the
inverse problem is poorly posed and hence the forward problem numerically ill-conditioned.

Creating complete software solutions to such problems from scratch is a daunting un-
dertaking, requiring both considerable resources and considerable breadth of expertise. It
is in order to make such tools more accessible to a broader array of researchers, and to
enable validation and comparison across solution approaches, that the Center for Integra-
tive Biomedical Computing (CIBC) has created this ECG Forward/Inverse toolkit. It is
designed to provide a generalized software environment, based on the open-source SCIRun
system, to aid researchers to construct, execute, visualize, and compare such computational
models.

SCIRun is based on a data flow-visual programming paradigm, in which distinct com-
putational (and software) modules are linked by connections (“data pipes”) to form func-
tional networks. The network editor offers the user interactive control and flexibility to
assemble the specific network needed to solve the computational task at hand. The ECG
Forward/Inverse toolkit provides a diverse array of modules, with associated data types, for
bioelectric field problems, together with sample networks and data sets with which to ex-
plore its functionality. An additional key feature of using the SCIRun system is that rather
than requiring custom code for all its functionality, the toolkit leverages SCIRun’s ability to
connect directly to Matlab through a bi-directional Matlab interface, and has capabilities
to read in data created by ECGSim, as mentioned above.

Table 1.1 lists currently available forward and inverse approaches explicitly provided
within the toolkit. The toolkit contains full simulation example networks that illustrate po-
tential and activation-based forward models using both finite element (FEM) and boundary
element (BEM) approximation techniques as well as selected potential and activation-based
inverse methods. As indicated by the table, simulation specific tools, such as lead field and
stiffness matrix generators, as well as a variety of regularization modules, are also included,
and can easily be included in user-built networks.
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Forward tools Inverse Tools

Potential-Based FEM/BEM Activation-Based&∗

Activation-Based FEM† Potential-Based Regularization Methods
FEM Lead Field Calculation - Tikhonov
Stiffness Matrix Calculation - Tikhonov SVD

- Truncated SVD
- Isotropy method∗

- Gauss-Newton Method∗

- Wavefront based potential reconstruction∗

- Total Variation

Table 1.1. Algorithms currently included in the CIBC ECG Forward/Inverse toolkit
†Activation-based BEM forward solution is currently unavailable in the toolkit
&Based on a Gauss-Newton optimization
∗Requires Matlab

1.2 Software requirements

1.2.1 SCIRun Compatibility

The modules demonstrated in this tutorial are available in SCIRun version 4.5 and higher.
This tutorial is not compatible with earlier versions of SCIRun. If you have an existing
SCIRun installation, we strongly encourage you to update your SCIRun version to the
latest build, available from the SCI software portal (http://software.sci.utah.edu), which will
include the latest bug fixes and ensure that your version is up to date with the capabilities
demonstrated in this guide.

1.2.2 Required Datasets

This tutorial relies on several datasets that are freely distributed as part of the SCIRunData
bundle. To obtain these datasets, please go to the SCI software portal at
http://software.sci.utah.edu and click on Download SCIRun to download the SCIRun-
Data zip files. The SCIRunData dataset is provided in both zip and gzip file formats for
your convenience.
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Chapter 2

Mathematical Background

2.1 Overview

In this chapter we describe the basic mathematical formulations, and some solution ap-
proaches to the forward and inverse problems of electrocardiography. The goal of solutions
to the forward problem is to predict potentials that could be measured in any accessible
location (usually the surface of the torso) given a description of the cardiac electrical sources
as well as the geometry and conductivities of the torso involved. The goal of solutions to
the inverse problem is to predict cardiac sources given a set of measurements and the same
geometry and conductivity information. It is important to note that a solution to the inverse
problem presupposes an available solution to the forward problem. There exists a large lit-
erature on both of these problems as well as tutorial articles, and many excellent textbook
and reference chapters. Here we briefly summarize the basic background to facilitate our
description of the toolkit capabilities in subsequent chapters.

Both forward and inverse solutions require a specific model formulation of the cardiac
electrical sources. This toolkit treats two different equivalent source models. (These two
models are arguably the two dominant formulations in current forward and inverse problem
research.) One model, which we will refer to as the “activation-based” source model, assumes
that the dominant feature of cardiac electrical activity is the timing of the arrival of the
depolarization wavefront (known as “activation times”) at each location in the heart. (A
similar problem, in which the equivalent sources called ”recovery times” are the timing
of repolarization at each location, is solved in a similar fashion.) Classical results have
shown that, under assumptions of isotropy and homogeneity of the myocardium, activation-
based models can be reduced to the activation times on the surface of the heart. In this
context, this is usually taken as the epicardial (outer) and endocardial (inner) heart surfaces,
connected across the base of the heart by an imaginary connecting surface. The source in
this case can be modeled by a moving set of current dipoles aligned along the “activation
wavefront”; that is, the curve where activation is taking place on this surface at any given
time.

The second source model treated here, which we will refer to as the “potential-based”
source model, assumes that the cardiac sources can be represented by the time-varying
electrical potentials present on a surface, enclosing all the electrical sources. Gauss’ Law
implies that any such set of potentials is unique, and that the closer the surface is to the
myocardial surface the more useful the model is. So, the surface is typically taken as the

6 Chapter 2



epicardium, closed off by an imaginary “top” surface at the base of the heart or, alternatively,
the same joint epicardial/endocardial surface used for activation-based models.

In the rest of this chapter we describe solutions to the forward and inverse problem
concentrating on the specific tools currently provided in this toolkit. Again we refer the
reader to the literature for more complete background.

2.2 Solutions to the Forward Problem in the Forward/Inverse Toolkit

The temporal frequencies which are relevant to electrocardiographic biolelectricity are rela-
tively low, and the wavelengths many orders of magnitude larger than the dimensions of the
human body. So, from a biolelectricity viewpoint, the governing partial differential equation
(PDE) is Laplace’s equation:

∇ · (σ∇Φ) = 0, (2.1)

where σ contain the relevant conductivities and Φ the electrical potentials. The boundary
conditions are given by:

Φ(x, y, z)|Ωk
= Vk (2.2)

∂Φ
∂n

∣∣∣∣
Ω

= 0 (2.3)

where Ωk is the surface on which the sources are located.
As an alternative to solving this problem directly, a (weighted) integral can be taken

over the solution domain on both sides of Eq. (2.1) and the resulting integral equation solved
for Φ at locations of interest. This is usually referred to as the “weak form” of the PDE
solution, and (aside from discontinuities which theoretically could be possible in the weak
form solution but are not of practical importance here) is equivalent to solving the original,
or “strong” form.

In a tractable geometry, such as a set of concentric or even eccentric spheres, this PDE
can be solved via analytical expansions. However in complex geometries such as realistic
torso models, numerical solutions must be applied. Again there is a large literature on such
numerical methods. Two of these methods have predominated in the literature for forward
electrocardiography: the Finite Element Method (FEM) and the Boundary Element Method
(BEM). It is these two methods which have been implemented in this toolkit. Thus, in the
rest of this subsection, we give a very brief description of these two methods.

The major difference between FEM and BEM, from the practical application point of
view, is in the way in which they discretize the solution domain. FEM relies on a volume
discretization. The geometry of the solution domain is describe by a mesh of small three
dimensional volume elements, each with its own conductivity parameters. BEM, on the other
hand, is a surface discretization method, with the geometry represented as a collection of
bounding surfaces separating regions in the volume with different conductivities. Each of
these surfaces is then discretized into a mesh. In other words, in both FEM and BEM there
exists a collection of points, called nodes, which define the respective volume or surface
elements. The potential Φ (and the current, σ∇Φ), is approximated by interpolation of
potential and current across those elements, based on its value at the nodes, using known
(usually polynomial) interpolation functions. Thus, numerical integration can be applied
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to the weak form, and the node values come out of the integrals, leaving subintegrals over
known functions which result in a set of weights. The result in either case is a system of
linear equations.

The boundary conditions in Eq. (2.3) are applied differently in FEM and BEM, another
important difference between the two methods.

We note that either BEM or FEM can be applied to both activation-based and potential-
based source models, although there are important implementation details. We briefly note
these differences here, and some specifics of the applications in the context of the relevant
SCIRun modules will be presented in Ch. 3.

2.2.1 FEM in the Forward/Inverse Toolkit

The finite element method begins by subdividing the geometry into a set of volume elements
with vertices at a set of nodes, and then approximating the potential in the volume by a
basis expansion:

Φ̄(x, y, z) =
∑
i

ΦiNi(x, y, z), (2.4)

where {Ni} are a set of basis functions, one for each node in the volume element discretiza-
tion, and {Φi} are the corresponding (unknown) coefficients at those nodes. Note that if the
{Φi} can be determined, then the potential everywhere in the volume can be approximated
via the basis expansion in Eq. (2.4). Usually, the basis functions are (Cartesian product)
low-order polynomials, most commonly tri-linear functions, designed so that each function
is 1 at its “own” node and decays to 0 at the other nodes of all elements which share that
node (in which case Φi becomes a direct approximation of the potential at node i).

The Galerkin method is applied to solve this Laplace equation. In particular, the basis
expansion in Eq. (2.4) is substituted into Eq. (2.1), both sides of the equation are multiplied
by a set of “trial” or “test” functions (typically taken to be the same family of functions
as the basis functions {Ni}), and then the equation is integrated over the solution domain,
resulting in a weak form of the PDE.

Manipulation of the resulting integral equations yields, in the case where the test and
basis function sets are the same,

∑
i

Φi

∫
Ω−Ω̄−Ω̄k

σ∇Ni∇Nj dV = 0. (2.5)

This can be rewritten as the matrix vector equation:

KΦ = 0 (2.6)

where Kij =
∫

σ∇Ni∇Nj dV is the stiffness matrix, and Φ = [Φ1, . . . ,Φn]T is the vector
of unknown coefficients. The critical point is that the coefficients in K depend only on the
geometry and the choice of basis and test functions, and thus can be computed ahead of
time. We note that this equation is clearly singular, and an additional condition must be
imposed (biophysically equivalent to taking some potential value as a reference) to reduce
the number of degrees of freedom by one.

Once the equations are written, the boundary conditions must be imposed. In the case
of bioelectric field problems such as forward electrocardiography, this reduces to replacing
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the 0’s on the right hand side by known currents or fixing some values of the vector Φ to
correspond to known voltages. There are a variety of ways to accomplish this to preserve
certain numerical properties of the matrix equation, and again we refer the reader to the
vast literature on this subject for details. If the measurement electrodes are treated as
being larger than one node in size, this can lead to additional boundary conditions which
in turn leads to additional modifications of the equations, and again we refer the reader to
the literature.

The result is a matrix equation whose size is the total number of nodes in the volume,
which tends to result in a relatively large system. However, as long as the basis and test func-
tions have local support (for example, with linear basis functions, the support is restricted
to all first-order neighboring nodes of the given node), most of the integrals defining the
elements of K will involve non-overlapping functions and thus be equal to 0. Therefore, K
will be a very sparse matrix with strong structure, leading to the possibility of both efficient
storage and efficient solution by iterative solvers.

We note that every time a different set of source currents (activation-based model) or
potentials (potential-based model) is applied on the heart surface, the modifications of the
stiffness matrix are different, and thus the system of equations must be solved de novo.
However, there exist certain problems where only the values of the potential at a subset of
nodes is needed; In our applications of forward electrocardiography, we are generally only
interested in the solution on the measurement surface, e.g., on the body surface. Addition-
ally, these applications often require multiple solutions performed for the given geometry,
e.g., when a time series of body surface potentials needs to be generated from a time series
of sources. In this case, it can be useful to extract a “transfer matrix” from Eq. (2.6),
which directly relates the known sources to the unknown and desired measurement poten-
tials. Once this is done, solving the forward problem reduces to matrix-vector multiplication
rather than the solution of a linear system.

There are several approaches to this problem. In this toolkit we have provided an
example SCIRun network to implement one of them, the so-called “lead field” method,
which solves the matrix equation repeatedly for source vectors consisting of a 1 at each
source node in turn and 0 at all other source nodes. From this collection of solutions we
can obtain the desired transfer matrix, which we will denote a A. This network is described
below in Ch. 3 and once again the details are available to the interested reader in the
literature.

2.2.2 BEM in the Forward/Inverse Toolkit

Expanding on the initial description above, the boundary element method starts with the
assumption that the domain can be divided into a (relatively) small number of (relatively)
large subdomains in which the conductivities are isotropic (scalar) and constant. In addition
there are other conditions on the subdomains, principally that they be bounded by closed
surfaces. They can be simply nested or can have a more complex arrangement. Given that
assumption, the surfaces of those subdomains become a sufficient domain upon which to
solve the problem for the entire domain.

Briefly (and once again we refer the reader to the literature for the details and complica-
tions), one of the Green’s Theorems from vector calculus is applied to an integrated form of
Laplace’s equation to transform the differential problem into a Fredholm integral problem.
The surfaces are each subdivided (tessellated) into a collection of small surface (or boundary)
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elements. Then (two-dimensional) basis functions (again usually low-order polynomials) are
used to approximate the quantities of interest between the nodes of the resulting surface
meshes. Given this discretization, after manipulation of the resulting integral equation,
the integrals required can be computed through a series of numerical integrations over the
mesh elements. In the BEM method, these integrals involve as unknowns the potential and
its gradient. The integration involves the computation of the distance between each node
within the surface and to all others surfaces. In complicated geometries, and in all cases
when the node is integrated against the points on its “own” surface, there are numerical
difficulties computing these integrals. In those cases there are a number of sophisticated
solutions which have been proposed in the literature (and some of them are adopted in the
SCIRun implementation). The result of all these integrals is a transfer matrix, which again
we will denote A, relating the source potentials or currents to the unknown measurement
potentials. In the BEM case, because of the all-to-all nature of the integrations required,
this matrix will be dense, not sparse. On the other hand, the size of the equation will be
directly determined by the number of measurements and sources rather than the number of
nodes in the entire domain. (We note that there is an alternative formulation of the BEM
method which retains the potentials at all nodes on all surfaces, and which can be reduced
to the transfer matrix described here, but we omit the details as usual.)

2.3 Solutions to the Inverse Problem in the Forward/Inverse Toolkit

To describe the solution to the inverse problem in a manner useful for this toolkit, we start
with two different equations, depending on whether the activation-based or potential-based
source models were used. Both approaches assume the availability of a forward transfer
matrix A, calculated by any appropriate method, including either FEM or BEM.

In the activation-based case, the source model is that the unknowns are an activation
surface. (That is, activation times as a function of position on the heart surface, which we
denote as τ(x), where x indicates position on the heart surface.) The assumptions required
for the activation-based model imply that the temporal waveform of the potential (and
current) at each source node has a fixed form, the same at all locations on the surface.
This is assumed to be either a step function or a smoothed version of a step function (using
piecewise polynomials or inverse trigonometric functions). We denote this function as u(t).
Thus the relevant forward equation can be written as

y(p, t) =
∫
x

Ap,xu(t− τ(x)) dx (2.7)

where the integral is over the heart surface, Ap,x is the element of A relating source node x
to measurement node p, and y(p, t) is the measurement surface potential at any time t and
at a position p on the body surface. One advantage of the activation-based formulation is
that the number of unknowns over an entire cardiac cycle is the number of solution nodes
taken on the heart surface. On the other hand, as can be seen in Eq. (2.7), the forward
equation is non-linear in the unknown activation times.

In the potential-based case, the forward matrix can be applied in a more straightforward
manner. If we collect all measurements at a given time t into a vector y(t) and the potential
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at all desired heart surface locations into a vector x(t), then we have

y(t) = Ax(t). (2.8)

The resulting equations over a time series can be collected into a matrix-matrix equa-
tion (with columns indexing time samples) or a single block matrix equation with a block
diagonal matrix which has A repeated along the diagonals. The number of unknowns for
the potential-based inverse problem is then the product of the number of surface nodes and
the number of time samples. The time waveforms are left unconstrained, but the equations
remain linear in the unknowns.

Both approaches result in ill-conditioned systems of equations, a direct result of the fact
that the inverse problem itself is intrinsically ill-posed. Thus effective numerical solutions
need to impose additional a priori constraints to achieve useful solutions, usually through
a technique known as “regularization.” Much of the research on the inverse problem over
the last 30+ years has concerned methods of regularizing this problem.

2.3.1 Activation-based Inverse Solutions in the Forward/Inverse Toolkit

Since this problem is non-linear, iterative solutions are employed. An “initial guess”, or
starting point, is required. Then solutions are iteratively re-computed until a desired con-
vergence criterion is met. Currently in the toolkit, we have a Matlab version of a Gauss-
Newton iterative solver which can be called from within SCIRun. The starting solution
must be supplied by the user. (We refer the reader to Ch. 4 for details.) Regularization
is done using a constraint on the `2 norm of the Laplacian of the solution. See the next
subsection for an explanation of Tihkhonov regularization.

2.3.2 Potential-based Inverse Solutions in the Forward/Inverse Toolkit

To combat the ill-posedness of the (linear) potential-based inverse problem, some form of
what is known as “regularization” is typically applied. A number of such solution methods
are available through the toolkit, either native in SCIRun or through the Matlab interface.
Here we describe the basic formulation behind these approaches, while usage details are in
Ch. 4.

Standard Tikhonov regularization

The Tikhonov regularization minimizes ‖Ax − y‖ in order to solve Ax = y, where x is the
unknown solution and y the given measurement. The forward solution matrix A is of size
m × n, where m is the number of measurement channels and n is the number of source
reconstruction points). The system Ax can be overdetermined (m > n), underdetermined
(m < n) or m = n. A is often ill-conditioned or singular, so it needs to be regularized.
The Tikhonov regularization is often used to overcome those problems by introducing a
minimum solution norm constraint, such as λ‖Lx‖22. The solution of the problem can be
found by minimizing the following function:

f(x) = ‖P (y −Ax)‖22 + λ2‖Lx‖22, (2.9)
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where λ is the regularization parameter, which is a user defined scalar value. The matrix P
represents the a priori knowledge of the measurements. The matrix L describes the property
of the solution x to be constrained. Conceptually, λ trades off between the misfit between
predicted and measured data (the first term in the equation) and the a priori constraint.
An approximate solution x̂ of 2.9 is given for the overdetermined case (n > m) as follows:

‖P−1(y −Ax)‖22 + λ2‖Lx‖22 = f(x)
(ATP TPA+ λ2(LTL)−1)x̂ = ATP TPy (2.10)

(2.11)

and for the underdetermined case (n < m) as:

‖C−1(y −Ax)‖22 + λ2‖Wx‖22 = f(x)

WW TAT (AWW TAT + λ2(CCT )
−1)−1y = x̂ (2.12)

(2.13)

with source space weighting W,L ∈ n× n and sensor space weighting C,P ∈ m×m.
When n = m, either of the above formulations can be used. Both solutions are equal

but the computational effort may differ. Furthermore, both representations can be solved
numerically by a direct method (e.g. Gaussian elimination) or an iterative method (e.g.
conjugate gradients). Both methods are implemented in SCIRun.

An alternative approach to solve the Tikhonov minimization involves a singular value
decomposition (SVD) of the matrix A. The SVD results in several factor matrices, from
which one then obtains the inverse solution. The SVD approach is also implemented in
SCIRun and will be described below.

Choosing the regularization parameter:

Choosing an appropriate value as a regularization parameter is critical for achieving useful
solutions. The solution typically depends on it in a sensitive fashion, and good choices vary
with the size, smoothness, etc. of the problem/solution as well as on the choice of regu-
larization constraint. One commonly-used method to choose the regularization parameter
automatically is to run the inverse solution for a large variety of parameters. For all regular-
ization parameters, the residual norm (fit of the data, ‖y−Ax̂‖22) and the weighted solution
norm (solution properties, ‖Lx̂‖22) is plotted in a log-log plot. Often, the resulting curve
shape looks similar to the letter ”L”. The corner of the ”L” represents a good trade off
between both constraints. The automatic parameter selection used in this L-curve approach
can be used for underdetermined and the overdetermined case as in option in the module
SolveInverseProblemWithTikhonov.

Truncated SVD Tikhonov regularization

Another approach to regularization is to approximate A with a low-rank substitute by
truncating the low-order modes of its SVD. The choice of rank is equivalent to the choice
of regularization parameter.
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Isotropy Method

This inverse method was introduced in the literature by Huiskamp and Greensite. It at-
tempts to decorrelate the time series of the source waveforms prior to applying spatial
regularization. However, since the temporal correlation of the source potentials is unknown,
the isotropy method approximates this by the temporal correlation of the measurements.
Under certain conditions (termed “isotropy” by the authors of this method, but also known
as “separability” in the random field literature) this produces an equivalent decorrelating
basis. Once this decorrelation is achieved, the resulting set of equations is truncated and
then standard Tikhonov regularization is applied to each remaining system. After solving
these systems, the decorrelation is reversed to restore the temporal correlation which had
been estimated and removed previously.

Total Variation Method

The effect of the `2-norm regularization in Eq. (2.9) is typically to produce smooth solutions,
where the smoothness is taken as a worthwhile cost to increase reliability in the face of
ill-conditioning. However, cardiac wavefronts are relatively sharp (non-smooth) in space,
and thus Tikhonov methods typically produce overly smooth wavefronts. One approach
to address this problem is to replace the typical regularization constraints with a “total
variation” (TV) constraint, which is to constrain the `1 norm of the gradient of the solution.
Minimization of `1 norms favors a small number of relatively large values in the solution
compared to `2 norm minimization, so using TV constraints will favor a sparse set of rapid
spatial changes, which may allow reconstruction of wavefronts more accurately.

Specifically, total variation regularization can be formulated as follows:

x̂ = argmin ‖Ax− y‖22 + λTV (x) (2.14)

TV (u) = ‖Lu‖ =
∑
i

|Lu|i (2.15)

where L is a matrix approximation of the spatial gradient and the last sum is over the
elements of the matrix-vector product.

To solve this minimization problem, Eq. (2.14) is differentiated with respect to x and
the gradient is set to zero. Because the total variation term, TV (u), is not differentiable at
zero, a positive constant β is added:

TV (u) =
∑
i

√
(|Lu|i)2 + β2 (2.16)

This results in the need to solve

(ATA + λLTWβ(x)L)x = ATy (2.17)

where the diagonal weight matrix Wβ is defined as:

Wβ(u) =
1
2

diag
[
1/
√
|[Lx]i|2 + β2

]
(2.18)

It can be seen that the weight matrix W depends on the local derivative. When the
local derivative is small, the weight becomes a large value, imposing greater smoothness on
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the solution. When the local derive is large, the weight becomes a small value, making the
solution less constrained.

The total variation method is non-linear because the weight matrix W relies on the
solution. We solve this iteratively, with an all-zero initial guess.

The total variation regularization contains two parameters to be tuned: β and λ. β
controls the smoothness of the computed solution. A small β allows sharp gradients in the
solution. λ controls the amount of regularization.

Wavefront-based potential reconstruction (WBPR) method

The WBPR method, like TV, also attempts to impose a constraint which encourages the
presence of wavefronts in the solution. Simply put, the idea is to locate the wavefront
by an appropriate “jump-detection” algorithm at each time instant. Then the solution is
approximated with one that has three regions: a non-activated region (which is flat), an
activated region (which is also flat but at a different potential), and a “wavefront” region,
which is described in two dimensions by a smooth but sharp (across the wavefront) spatial
function such as those used (in one dimension) for the time waveforms in activation-based
methods. This three-region surface is then used as a constraint in an otherwise typical
Tikhonov solution. The solution can be iterated forward or backward in time. The size of
the potential jump across the wavefront must be known. Also any drift in the potential
of the regions far from the activation wavefront, typically caused by drift in the reference
potential used in the measurements, must be identified and eliminated. This method has
shown considerable early promise but is included here as a “research” approach and should
be treated as such.
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Chapter 3

Forward Solutions

3.1 Overview

As described previously, the solution to the forward problem deals with the calculation of
the projection of properties from a source, through some medium, to a set of collection
locations. In this application, we will demonstrate that the forward problem specifically
means the calculation of torso surface potentials from known cardiac source parameters.
There are two aspects of the forward problem that one must consider in order to solve it:
how to model the source and how that source maps to the torso surface. If presented as the
classic y = A(x), with y as the torso surface and x as the cardiac source, choosing a model
that is represented by x is the source formulation. A is then dependent on the source model
used, which must represent all relevant information about the torso geometry.

In regard to the source formulation, the two most common models are cardiac potentials
and activation times. The use of cardiac potentials is a more intuitive formulation in that
the cardiac cells interact to change the extracellular potentials of the myocardium. These
potentials then project to the torso surface. The activation-time-based source formulation
deals with the fact that when there is inactive and active tissue next to each other, a source
much like a dipole or layer of dipoles is generated, which then projects to the surface. Both
of these source models contain several assumptions, but each provides a generally accurate
model that can be computationally reasonable.

With the source formulation considered, one must now determine the pattern with which
the source projects to the torso surface. As mentioned, this relationship is dependent on
the source model as well as the various properties of the torso. But in both source models
presented, the function A can be represented by an N×M matrix. N is the number of points
on the cardiac surface and M the number of points on the torso surface, which is called
the lead field matrix. Calculating this matrix can be a very computationally intensive task,
and there are varying ways to do this. The two examples given here find the lead field, or
transfer matrix, are based on finite element method (FEM) and boundary element method
(BEM). The theory and mathematics behind these two methods are presented in Ch. 2.

We provide in this toolkit three methods to calculate the forward problem. Potential
based models using both FEM and BEM are demonstrated, as well as an activation-time
based model using FEM. The BEM activation-time forward problem is not yet supported
in SCIRun, but it is performed in ECGSim, the interactive simulation software developed
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by Peacs in the Netherlands.1.

An equivalent dipole layer is approximated as the source in the activation based forward
problem.

3.2 Module Descriptions for Boundary Element Solutions

The boundary element solution utilizes many common modules within the SCIRun frame-
work to read in files, visualize data, and manipulate geometry. Descriptions of these modules
can be found in the SCIRun documentation, whereas the modules that are relatively unique
to the boundary element solution are outlined below.

The first module to be introduced is SetFieldProperties. This module is thought to
generate and modify properties of an input field, such as the potentials and conductivities
of the epicardial surface. Figure 3.2 shows an example of how epicardial and torso surfaces
should be defined. Since the heart surface is associated with epicardial potentials, it must
have conductivity set to 0. On the other hand, the torso and the lungs are measurement
surfaces and should have their respective conductivity value.
With the SetFieldProperties GUI, the user can define a set of desired properties of the
input field and the corresponding values.

Figure 3.1. Module to set properties such as conductivity and if it is a source or boundary
surface for the boundary element method.

1To obtain this free software, visit http://www.ecgsim.org/. Any references to ECGSIM herein are
referring to version 1.3 beta
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Figure 3.2. Shows the properties and values needed to create a source surface, left, or a
measurement surface, right.

The forward matrix can then be generated by joining all the different surfaces in BuildBEMatrix
module. This module will take all the surfaces inputed in the in fields and generate a trans-
fer matrix from the surfaces with the In/Out field set to the last of the inputed surfaces.
Note that the module dynamically adds as many inputs as necessary.

Figure 3.3. Shows the module that computes the transfer matrix between the source surface
and the outermost measurement surface.

BuildBEMatrix assumes that, for any closed surface, the surface normals will be pointing
outward. The surface normal for each element is determined using the node order from the
connectivity definition of the mesh. The normals are defined using the right hand rule
(counterclockwise) of the node order in each element. The module FlipSurfaceNormals
can be used to flip all the element normals in the surface. It is important to check the normals
of the surfaces being used because incorrect normals will produce erroneous answers.

3.3 Module Descriptions for Finite Element Solutions

The two most important modules for the forward finite element solution are the BuildFEMatrix
and the AddKnownsToLinearSystem modules. These allow you to compute a stiffness ma-
trix and add boundary conditions. The module BuildFEMatrix inputs a finite element
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mesh with the conductivities set on each element, or a lookup table may be used for the
conductivities. The result is a stiffness matrix based on the Galerkin method.

Figure 3.4. Shows the module that computes the stiffness matrix for a FE solution.

AddKnownsToLinearSystem makes it possible to add known values as boundary condi-
tions to the linear system Ax = b, where A is the stiffness matrix, b is the right hand side
vector, and x is known in the forward problem and unknown in the inverse problem. The
module must have stiffness matrix along with an x matrix. If no right-hand-side matrix
is provided, then it is assumed to be all zeros. Know parameters are input along with the
unknown values, while the unknown values are set to ’nan’.

Figure 3.5. Shows the module that computes the stiffness matrix for a FE solution.

3.4 Example Networks for Boundary Element Solutions

The following network shows the most basic implementation of the boundary element
method along with visualizing the results. This network reads in an epicardial surface mesh
that has an associated matrix of epicardial potentials at each node. The conductivities of
the torso and heart are set, along with the differentiation between source and measurement
surfaces in the SetFieldProperties module. Next, a boundary element transfer matrix is
computed and multiplied with the epicardial potentials. This results in a torso potential
field that can be visualized with SCIRun’s ShowField module.
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Figure 3.6. Shows the implementation of the boundary element method.

A similar SCIRun network for this example can be found at:
src/nets/FwdInvToolbox/potential-based-bem/torso-tank-bem.srn
in the SCIRun source code directory.
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3.5 Example Networks for Finite Element Solutions

3.5.1 Potential Based Forward FEM simulation

Figure 3.7. Simple potential based forward problem using FEM.
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There are two examples given to calculate the potential-based forward problem using
finite element method. One example involves the generation of the lead field matrix, or
transfer matrix, then performing the forward calculation. The other example is a direct
calculation of the projection of the cardiac potentials onto the torso surface, satisfying
Laplace’s equation.

The inputs to the example networks in this section are all the same: a torso segmenta-
tion including segmentation of the heart volume with a closed epicardium, a cardiac sock
geometry registered to the heart volume from the segmentation, and a matrix of epicardial
recordings that were obtained with an epicardial sock. To calculate the lead field matrix,
an identity matrix is also used for input vectors.

The example network
src/nets/FwdInvToolbox/potential-based-fem/forward problem.srn provides an ex-
ample of an easy implementation of the projection of the cardiac potentials onto the torso
surface (Figure 3.7). Though this problem is not formulated in the classic sense of the
forward problem, it is useful because it does not require calculating the lead field matrix,
which can take longer to compute in most cases. The example presented is useful if a for-
ward calculation requires a few time-instances for a given geometry. Different time points
may be selected in the GetColumnOrRowFromMatrix module.

As mentioned above, the method implemented in this network uses Laplace’s equation
to find the torso potentials. That is, all the potentials in the torso satisfy the expression:

∇σ∇φ = 0

where φ are the potentials and σ are the conductivity values. Using SCIRun, one is able to
use the cardiac surface potentials as known values and solve the rest of the torso potentials
to satisfy Laplace’s equation as a linear system.

The example network
potential-based-fem/forward problem with lead field matrix.srn is a network that
computes the forward problem in a more traditionally understood method (Figure 3.8),
in that it is a simple matrix multiplication to calculate the torso potentials. This net-
work simply uses a pre-computed lead field matrix and multiplies it by the cardiac po-
tentials to yield the surface torso potentials. Different time points may be selected in the
GetColumnOrRowFromMatrix module.
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Figure 3.8. Simple potential based forward problem using a pre-computed lead field matrix.

The lead field matrix provided was generated by the network
src/nets/FwdInvToolbox/potential-based-fem/Make Lead field matrix.srn (Figure 3.9).
This network solves and collects the solution vectors relating isolated points on the heart
to the torso. The solution vector is calculated in the same manner as in the network
src/nets/FwdInvToolbox/potential-based-fem/forward problem.srn described above,
using orthogonal unit vectors as the cardiac potential (value of 1 at the point of interest
and 0 elsewhere). Computing the lead field matrix this way is very useful if several forward
calculations are needed on the same geometry.
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Figure 3.9. Computing the FEM based lead field matrix.

To calculate the lead field matrix with
src/nets/FwdInvToolbox/potential-based-fem/Make Lead field matrix.srn:

1. Make sure the CollectMatrices module has not been executed.

2. Set step delay in the GetColumnOrRowFromMatrix module to a sufficient interval so
that all the modules can fully execute before the next iteration.

3. Set the current column to 0 and press “plays” in the GetColumnOrRowFromMatrix.

4. After the network finishes iterating, enable the WriteMatrix module (by right clicking
on the module), choose the place and name of the matrix you would like, and press
save.
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Figure 3.10. Solution of the potential based forward problem using FEM.
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3.5.2 Activation Based Forward FEM simulation

The technique used by the activation-based model is rather different than the potential-
based one. These methods, instead of searching solely for the potentials, consider whether
a region of the heart is “active” or not and which is the profile of its potential. This is very
different than the activation profile on a cellular level, as each surface node represents a
large region of the heart. The activation profile is used to specify the strength, in time, of
dipoles located on the surface.

Since FEM is a volume method, SCIRun approximates the volume potentials by first
clipping it with the surface mesh of the inner and outer boundaries. With this, it obtains
a volume mesh that roughly follows the surface. Then, the potentials of this volume mesh
are set so that they approximate the dipoles on the heart surface. This representation is
known as the equivalent dipole layer.

There are three networks located in src/nets/FwdInvToolbox/activation-based-fem
which provide an example of activation-based forward calculation using FEM. The three
networks are similar in nature to the potential-based FEM forward problem networks ex-
plained in Sec. 3.5.1. The activation-based forward problem networks use data derived from
ECGSIM. The surface mesh and source parameters are also obtained from the ECGSIM
project.

The primary inputs to this network are the surface mesh representing the heart, a torso
surface mesh which is made a volume mesh (refined near the surface of the heart) in the
network, and a matrix specifying the activation profile for each point in the heart surface
mesh at each time to be simulated. This matrix is then of size N×M where N is the number
of surface points and M is the number of time-steps represented. A very good example of
the input expected can be obtained from the ECGSIM software by choosing Save → Source
parameters from the File menu.

Though the activation-based-fem.srn networks seem quite complicated, they per-
form some simple tasks. The loaded torso surface is made into a volume and refined in
nearer to the heart. Then, two cardiac surfaces are made from the first, one slightly inside
the heart, and one slightly outside. The corresponding points on the two surfaces are set
to either active or inactive. If the point is inactive, then it is set as an unknown and will
be solved for later. If the point is active, the two surfaces are set to opposing values to ap-
proximate a dipole layer. The remaining torso potentials are solved using a linear-systems
solver similar to Sec. 3.5.1.

The network activation-based-fem lead field.srn produces similar results as the
previous network, but it utilizes a pre-computed lead field matrix. This network allows
for the activation times to be directly related to the torso surface and the computation is
relatively quick. This method is also more like the traditionally formulated forward problem
with a simple matrix multiply.

The lead field matrix is calculated using the make lead field.srn network. Similar
to the potential-based approach (Sec. 3.5.1), the solution vectors for each point on the
cardiac surface are calculated and collected as the lead field matrix. This is essentially a
pre-computation of the contribution of each point. This calculation is very useful if the
geometry is going to be used many times.

To calculate the lead field matrix with make lead field.srn:

1. Make sure the CollectMatrices module has not been executed.
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2. Set step delay in the GetColumnOrRowFromMatrix module is set to a sufficient interval
so that all the modules can fully execute before the next iteration.

3. Set the current column to 0 and press “play” in the GetColumnOrRowFromMatrix.

4. After the network finishes iterating, enable the WriteMatrix module (by right clicking
on the module), choose the place and name of the matrix you would like, and press
save.

Figure 3.11. Solution of the activation based forward problem using FEM.
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Chapter 4

Inverse Solutions

4.1 Overview

The inverse problem of electrocardiography is to find suitable electrical source parameters on
the heart that adequately describe the observed body surface potentials. Regularization is
typically employed in solution methods to reduce the sensitivity of the problem to relatively
small errors in the observed body surface potentials, thereby stabilizing it. As a result,
solution methods may be supplied body surface potentials, a forward model, and method-
specific regularization parameters as input. Specific use of each method is described below.
As output, modules primarily produce the resulting solution with extra outputs, depending
on the specific method.

4.2 Module Descriptions for Inverse Solution Methods

4.2.1 Tikhonov Regularization

Figure 4.1. Revised Tikhonov module: SolveInverseProblemWithTikhonov.
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In order to perform inverse ECG, the Tikhonov regularization can be used, which is im-
plemented in SCIRun as the module SolveInverseProblemWithTikhonov. The module
requires a forward matrix and a vector of observed/measured body surface potentials as in-
puts (see figure 4.1, module input ports 1 and 3). Weighting schemes for the measurements
and source space (see figure 4.1, module input ports 2 and 4) can be fed in optionally. These
a priori weighting matrices are NOT inverted in the module - if needed they must be pro-
vided already inverted as input. The outputs of the module are the computed solution, the
used regularization parameter and the used inverse operator matrix (see figure 4.1, module
output ports 5, 6 and 7). The inverse operator G is defined for the overdetermined case as:

G = (ATP TPA+ λ2LLT )−1ATP TP (4.1)

and for the underdetermined case:

G = WW TAT (AWW TAT + λ2CCT )−1. (4.2)

Figure 4.2. GUI from revised Tikhonov module: SolveInverseProblemWithTikhonov.
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Manual selection of the regularization parameter “λ”

The user is able to enter a specific regularization parameter to be used in the inverse cal-
culation. Further, the user can also specify a range of equally distributed regularization
parameters and select a particular one using the slider, as shown in figure 4.3.

Figure 4.3. Select regularization parameter using the slider in
SolveInverseProblemWithTikhonov.

Automatic selection of the regularization parameter “λ” - the L-curve

In figure 4.2, an example of a L-Curve is shown. Initially, the automatic procedure to find
the L-Curve corner evaluates the curvature at each of the discrete points of the L-curve
and estimates the maximal absolute curvature. In some cases, the automatically chosen
regularization parameter is not optimal. Because of this, a slider under the L-Curve is
available; it allows the user to choose a better regularization parameter. While moving
the slider, the chosen L-Curve-Corner depicted in green, is updated. If a more reasonable
regularization parameter is found by the user, it can be used later on for a single inverse
computation by pressing the button, Update Lambda Value. This will load the lambda
value in the uppermost input field, which can later be activated with the radio button next
to it.

Computational efficiency

The module can automatically (by default) decide which case (overdetermined or underde-
termined) should be used to benefit from the most computationally efficient approach. The
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user can manually decide which case should be used as well (clicking to one of the radio
buttons under Tikhonov regularization case selection).

To start any computation, the Execute button must be clicked.

4.2.2 Tikhonov Singular Value Decomposition (SVD)

Figure 4.4. Tikhonov SVD Module.

This is a method of solving the potential-based inverse problem.

This module implements Tikhonov regularization (closed-form solution) using the sin-
gular value decomposition (SVD) in SCIRun, and is called
SolveInverseProblemWithTikhonovSVD. The module requires that the SVD of a forward
solution matrix (left/right singular vector matrices and singular value matrix), regular-
ization matrix (such as a surface Laplacian approximation), and a vector (single-column
matrix) of observed/measured body surface potentials are supplied as input.

In the user interface (UI), one can explicitly specify a scalar regularization parameter
that weights the influence of the regularization matrix on the solution. The module can also
automatically select a regularization parameter using the L-curve method.

Upon completion, the module will output the inverse solution. In addition, it will
either output the specified or automatically-chosen regularization parameter, as well as the
regularized inverse matrix (a closed-form Tikhonov inverse operator, computed using the
provided SVD).
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4.2.3 Truncated SVD

Figure 4.5. Truncated SVD Module

This is a method of solving the potential-based inverse problem.

This module, called SolveInverseProblemWithTSVD, computes an inverse solution by
creating a pseudo-inverse operator and multiplying that with the measured body surface
potentials. The module requires that the SVD of a forward solution matrix (left/right
singular vector matrices and singular value matrix) and a vector of observed/measured
body surface potentials are supplied as input.

In the user interface (UI), one can explicitly specify a scalar-integer regularization pa-
rameter to control the amount of regularization imposed on the problem. Assuming the
singular values are sorted from largest to smallest (and therefore most significant to least
significant), the regularization parameter controls how many significant singular values to
consider (truncation degree) when calculating the pseudo-inverse. Alternatively, the module
will use the L-curve method to automatically obtain a suitable truncation degree.

The primary output of this module is a vector containing the inverse solution. In ad-
dition, it will output the regularization parameter and regularized inverse operator used to
obtain the inverse solution from the measured body surface potentials.

4.2.4 Matlab Interface

The InterfaceWithMatlab module allows a SCIRun network to make use of Matlab for some
of its calculations. In Figure 4.6, the user interface for this module shows how SCIRun
data types from the module’s input pipes are converted to Matlab variables for use in a
Matlab script. Upon completion of the Matlab script, Matlab variables are converted back
to SCIRun data types to be sent to the module’s output pipes.
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Figure 4.6. The InterfaceWithMatlab Module and its corresponding user interface

In the rest of this section, we will describe some of the inverse solution methods dis-
tributed with SCIRun that have been implemented in Matlab.

Isotropy Method

This is a method of solving the potential-based inverse problem.

function X_reg=greensite(A,Y,trunc_deg)
% Function to calculate the Greensite inverse solution
% A - forward matrix
% Y - data
% trunc_deg - truncation degree
% X_reg - inverse solution

The isotropy method (a.k.a. Greensite method) takes as input a forward solution matrix,
measured body surface potential data, and an optional integer regularization parameter
(truncation degree). In this method, the truncation degree controls the number of significant
singular values of the measured body surface potential data to be used when computing the
inverse solution. Consequently, the truncation degree partitions the measured body surface
potential data into independent “signal” and “noise” components, ignoring the “noise”
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component in its calculation of the inverse solution. The only output of the method is the
inverse solution.

Gauss-Newton Method

This is a method of solving the activation-based inverse problem.

function tau = ActGaussNewton(A,Y,L,tauinit,lambda,w,minstep)
% Implements the Gauss-Newton algorithm for solving the activation-based
% inverse problem of electrocardiography.
% => minimizes the objective function ||Y-A*X||^2+lambda*||L*X||^2 where
% X is parameterized by the C^1 polynomial approximation to a step function
% as explained in "The Depolarization Sequence of the Human Heart Surface
% Computed from Measured Body Surface Potentials" by Geertjan Huiskamp and
% Adriaan van Oosterom.
%
% Input Variables:
% A: Forward matrix
% Y: Observations (columns index time from 1 to T=size(Y,2))
% L: Regularization matrix (typically a surface Laplacian approximation)
% lambda: Regularization parameter
% w: Width parameter in step function approximation
% tauinit: Initial phase shifts for starting the algorithm
%
% Output Variables:
% tau: Solution phase shifts of the step functions

The activation-based inverse problem of electrocardiography is to solve for electrical ac-
tivation times (i.e. depolarization times) on the heart, given body surface potentials during
the QRS complex. This results in a nonlinear least-squares optimization problem that this
method solves using the Gauss-Newton algorithm. Solutions are typically highly dependent
on the choice of the initial guess. This method requires a forward solution matrix, body
surface potentials, regularization matrix, initial guess, regularization parameter, activation
waveform transition width, and convergence parameter to be specified as input. The body
surface potentials should be provided as a M × T matrix, where M is the number of leads
from which potentials are recorded and T is the number of time samples recorded during
the QRS complex of the heart, whose activation times are to be estimated. The regular-
ization matrix and corresponding parameter influence the inverse solution as in Tikhonov
regularization (see above). The initial guess is the set of activation times from which the
Gauss-Newton algorithm starts pursuing a more suitable inverse solution. The transition
width controls the number of time samples (not necessarily integer) taken by each source
to transition from inactivated to activated in this method. The convergence parameter is
the minimum norm of the step taken by the iterations within the Gauss-Newton algorithm
before the method is deemed to have converged to a suitable solution. The only output of
the method is the inverse solution (in this case: an array/vector of activation times).
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Wavefront-Based Potential Reconstruction

This is a method of solving the potential-based inverse problem.

function [x_WBPR_forward,x_WBPR_backward] = WBPR(A,y,heart,first_act,last_act)
% Function to calculate the WBPR solutions
% Inputs:
% A: forward matrix
% y: torso data
% heart: heart geometry
% first_act: first activated node
% last_act: last activated node
%
% Outputs:
% x_WBPR_forward: inverse solution using forward WBPR
% x_WBPR_backward: inverse solution using backward WBPR

The Wavefront-Based Potential Reconstruction (WBPR) method imposes prior knowl-
edge about the spatial patterns of electric potentials on the heart during the QRS complex
to reconstruct an inverse solution. This method requires a forward solution matrix, mea-
sured body surface potentials, a structure containing the triangles and nodes of the heart
geometry mesh, and the first/last nodes to activate during the QRS complex of the heart
beat. The body surface potentials should be provided as a M × T matrix, where M is the
number of leads from which potentials are recorded, and T is the number of time samples
recorded during the QRS complex of the heart beat, whose electric potentials are to be
estimated. The heart geometry is a Matlab “struct” that must contain a matrix of node
coordinates and a matrix of indices for triangles that connect the nodes on the surface of
the heart. The first/last nodes to activate are specified as the indices of the nodes.

As output, WBPR produces two inverse solutions. The procedure by which the inverse
solutions are obtained may be run both forward and backward in time. Therefore, the
“forward WBPR” solution is that obtained by applying the method starting from the earliest
sample time and ending at the latest. On the other hand, the “backward WBPR” solution
is obtained by starting from the latest sample time and traversing the samples in reverse
until ending at the earliest.

4.3 Example Simulations

4.3.1 Tikhonov Regularization

The SCIRun network for this example can be found at:
src/nets/FwdInvToolbox/potential-based-inverse/tikhonov-inversion.srn
in the SCIRun source code directory.
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Figure 4.7. The SCIRun network for the Tikhonov inverse solution example.

This example shows how to use the SolveInverseProblemWithTikhonov module in a
SCIRun network to solve a potential-based ECG inverse problem using Tikhonov regulariza-
tion. Specifically, this example simulates “measured” body surface potentials by applying
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a forward solution and adding pseudorandom noise with a specified signal-to-noise ratio
(SNR). The forward solution is obtained by multiplying a known vector of epicardial po-
tential data by a pre-computed forward solution matrix. The simulated measurements and
forward solution matrix are the inputs to the SolveInverseProblemWithTikhonov module.
The regularization parameter of this method is controlled via the user interface (UI) in
this example. The output from the module is the inverse solution. This example compares
the inverse solution to the known epicardial potentials from which the measurements were
simulated. A visualization of both can be seen in the UI of the ViewScene module.

4.3.2 Gauss-Newton Method

The SCIRun network for this example can be found at:
src/nets/FwdInvToolbox/activation-based-inverse/actgaussnewton-inversion.srn
in the SCIRun source code directory.

This example shows how to use the InterfaceWithMatlab module in a SCIRun network
to solve an activation-based ECG inverse problem using the Gauss-Newton method. This
example uses the “normal male” dataset and geometries from ECGSIM. Specifically, this
method compares measured body surface potentials with body surface potentials simulated
from activation times. We search the set of possible activation times for ones that minimize
the squared error residual between the measured and simulated body surface potentials.
The Gauss-Newton method in this example is implemented as a Matlab function and is used
in SCIRun via the InterfaceWithMatlab module. As a numerical optimization method,
Gauss-Newton will look for a local minimizer of the squared error residual starting from a
suitable initialization point. In this example, we initialize the method with the activation
times reported for the dataset in ECGSIM, but perturbed by noise.
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Figure 4.8. The SCIRun network for the activation-based Gauss-Newton inverse solution
example.
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