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Means Image Denoising
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Abstract—We present an in-depth analysis of a variation of
the Non-local Means (NLM) image denoising algorithm that uses
principal component analysis (PCA) to achieve a higher accuracy
while reducing computational load. Image neighborhood vectors
are first projected onto a lower-dimensional subspace using PCA.
The dimensionality of this subspace is chosen automatically
using parallel analysis. Consequently, neighborhood similarity
weights for denoising are computed using distances in this
subspace rather than the full space. The resulting algorithm is
referred to as Principal Neighborhood Dictionary (PND) Non-
local Means. We investigate PND’s accuracy as a function of
the dimensionality of the projection subspace and demonstrate
that denoising accuracy peaks at a relatively low number of
dimensions. The accuracy of NLM and PND are also examined
with respect to the choice of image neighborhood and search
window sizes. Finally, we present a quantitative and qualitative
comparison of PND vs. NLM and another image neighborhood
PCA-based state-of-the-art image denoising algorithm.

Index Terms—Principal neighborhood, non-local means, prin-
cipal component analysis, image denoising, parallel analysis.

I. INTRODUCTION

AS computational power increases, data-driven algorithms
have begun to gain in popularity in many fields. In image

processing, data-driven descriptions of structure are becoming
increasingly important. Traditionally, many models used in
applications such as denoising and segmentation have been
based on the assumption of piecewise smoothness [1], [2],
[3]. Unfortunately, this type of model is too simple to capture
the textures present in a large percentage of real images.
This drawback has limited the performance of such models,
and motivated data-driven representations. One data-driven
strategy is to use image neighborhoods or patches as a feature
vector for representing local structure. Image neighborhoods
are rich enough to capture the local structures of real images,
but do not impose an explicit model. This representation has
been used as a basis for image denoising [4], [5], [6], [7],
[8], [9], [10], for texture synthesis [11], [12], and for texture
segmentation [13]. For both denoising and segmentation, it
has been demonstrated that the accuracy of this strategy is
comparable to state-of-the-art methods in general and exceeds
them in particular types of images such as those that have
significant texture patterns. The drawback is the relatively
high computational cost. The image neighborhood feature
vector is typically high-dimensional. For instance, it is 49
dimensional if 7 × 7 neighborhoods are used. Hence, the
computation of similarities between feature vectors incurs a
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large computational cost. One motivation of our work is to
reduce the computational complexity of methods that rely on
image neighborhood information.

The non-local means(NLM) image denoising algorithm
averages pixel intensities using a weighting scheme based on
the similarity of image neighborhoods [5]. The use of a lower-
dimensional subspace of the space of image neighborhood
vectors in conjunction with NLM was first proposed by
Azzabou et al. [8]. A very similar approach that uses co-
variance matrices instead of correlation matrices for subspace
computation is given in [9]. In these methods, which we
refer to as Principal Neighborhood Dictionary (PND) Non-
local Means, the image neighborhood vectors are projected
to a lower-dimensional subspace using principal component
analysis (PCA). Then, the neighborhood similarity weights for
denoising are computed from distances in this subspace result-
ing in significant computational savings. More importantly, it
is also shown that this approach results in increased accuracy
over using the full-dimensional ambient space [8], [9]. While it
is clear that a global sample of image neighborhoods can not
be represented in a reduced dimensionality linear subspace,
the increased accuracy can be attributed to the robustness
of the similarity criterion to noise. In other words, pairwise
distances computed in the subspace defined by the significant
eigenvectors of a principal component decomposition are more
robust to additive noise than distances computed in the full-
dimensional space. Another closely related paper uses singular
value decomposition of the image neighborhood vectors for
selecting the patches to be used in averaging [10].

One disadvantage of the approach in [9] is the introduction
of a new free parameter to the algorithm – the dimensionality
of the PCA subspace. Azzabou et al. propose to compare
eigenvalues of the data correlation matrix to the noise variance
to determine the subspace dimensionality [8]. In this paper, we
extend our previous work [9] and propose an automatic di-
mensionality selection criteria using parallel analysis [14] that
eliminates this free parameter. Compared to [8], our criteria
does not require the estimation of noise variance and is shown
to produce a more conservative estimate of dimensionality. We
present a detailed analysis of the performance of the method
with respect to subspace dimensionality and demonstrate that
the dimensionality selection by parallel analysis provides good
results. We also provide a detailed discussion of the effect
of the smoothing kernel width parameter and search window
size selection. Finally, we compare the PND approach to the
original NLM algorithm [5] as well as another PCA-based
state-of-the-art image denoising algorithm [4].
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II. RELATED WORK

A. Image Restoration and Denoising

A comprehensive review of the literature on image restora-
tion and denoising is beyond the scope of this paper. We only
give a brief summary of the closest related work. One approach
to image restoration arises from the variational formulation
and the related partial differential equations (PDEs). The
Mumford-Shah [1] and the Rudin-Osher-Fatemi total varia-
tion [3] models are the pioneering works in variational formu-
lations in image processing. The PDE based approaches [2],
[15], [16] are closely tied to the variational formulations. For
instance, Nordstrom shows that the popular Perona and Malik
anisotropic diffusion PDE [2] is the first variation of an en-
ergy [17]. Traditionally, variational formulations have modeled
images as piecewise smooth or piecewise constant functions.
While such models are reasonable for some types of images
such as certain medical images and photographs of man-made
objects, they are too restrictive for other types of images such
as textures and natural scenes. To overcome this drawback,
variational formulations related to the NLM algorithm that can
preserve texture patterns have been proposed [18], [19].

Wavelet denoising methods [20], [21], [22], [23], [24] have
also been proven to be very suitable for image restoration.
In these approaches, the wavelet transform coefficients are
modeled rather than the intensities of the image. By treating
wavelet coefficients as random variables and modeling their
probability density functions, image restoration can be set up
as a problem of estimating the true wavelet coefficients. Patch
based approaches can be seen as related to wavelet based
approaches when patches are considered as dictionaries [25].

B. Image Neighborhood Based Filtering

Buades et al. introduced the NLM image denoising al-
gorithm which averages pixel intensities weighted by the
similarity of image neighborhoods [5]. Image neighborhoods
are typically defined as 5×5, 7×7 or 9×9 square patches of
pixels which can be seen as 25, 49 or 81 dimensional feature
vectors, respectively. Then, the similarity of any two image
neighborhoods is computed using an isotropic Gaussian kernel
in this high-dimensional space. Finally, intensities of pixels in
a search-window centered around each pixel in the image are
averaged using these neighborhood similarities as the weight-
ing function. More recently, Kervrann and Boulanger [6]
have introduced an adaptive search-window approach which
attempts to minimize the L2-risk with respect to the size of
the search-window by analyzing the bias and variance of the
estimator. Kervrann and Boulanger also show that their method
is comparable in accuracy to state-of-the-art image denoising
methods based on wavelets [24] and Markov Random Field
models over neighborhoods [26]. Their method, as well as the
standard NLM algorithm, is also shown to outperform classical
methods such as total variation regularization [3], bilateral
filtering [27] and Wiener filtering. Awate and Whitaker [7]
introduced a statistical interpretation to the neighborhood-
weighted averaging methods. Their approach is based on treat-
ing image neighborhoods as a random vector, computing the

probability density function with non-parametric density esti-
mation and formulating image denoising as an iterative entropy
reduction. Dabov et al. use the block-matching technique,
traditionally used in video processing, to stack similar two-
dimensional image neighborhoods in to a three-dimensional
array [28]. A decorrelating unitary transform is applied to
the three-dimensional array to produce a sparse representation.
Then, denoising is achieved by applying a threshold to these
transform coefficients.

Mahmoudi and Sapiro have proposed a method to improve
the computational efficiency of the NLM algorithm [29]. Their
patch selection method removes unrelated neighborhoods from
the search-window using responses to a small set of pre-
determined filters such as local averages of gray value and
gradients. Unlike [29] the lower-dimensional vectors computed
in [8], [9], [10] are data-driven. Additionally, in [8], [9] the
lower-dimensional vectors are used for distance computation
rather than patch selection.

Principal component analysis of neighborhoods have previ-
ously been used for various image processing tasks. Ke and
Sukthankar [30] use principal components of image gradient
neighborhoods as a descriptor in conjunction with SIFT feature
points [31]. PCA of image neighborhoods was also used
for denoising [4]. However, in that work, PCA is computed
for local collections of image neighborhood samples and
denoising is achieved by direct modification of the projection
coefficients. In this paper and [8], [9], PCA is computed once,
globally rather than locally. This results in a computationally
more efficient algorithm. Furthermore, a non-local means
averaging scheme is used rather than direct modification of
projection coefficients. We present quantitative and qualitative
comparisons to this method in Section IV-B. Finally, Elad
and Aharon learn a sparse and redundant basis of image
neighborhoods, i.e. the sparseland image patch model, for
denoising images [25].

C. Parallel Analysis for Dimensionality Selection

There are various methods proposed in the literature for
determining the number of components to retain in data analy-
sis [32]. Parallel Analysis, originally proposed by Horn [14], is
one of the most successful methods for determining the num-
ber of true principal components [33], [34]. Improvements to
the original parallel analysis method have also been proposed.
For instance, Glorfeld uses Monte-Carlo simulations which do
not rely on the normal distribution assumption of the original
method and is shown to generate more accurate estimates
of the number of components [35]. Several researchers have
noted the shortcomings of the parallel analysis method in data
with oblique structure and proposed modifications [36], [37].
More recently, parallel analysis has been proposed as a way
to determine the number of modes in shape analysis [38].

III. METHODS

A. The non-local means algorithm

Starting from a discrete image u, a noisy observation of u at
pixel i is defined as v(i) = u(i) +n(i). Let Ni denote a r× r
square neighborhood centered around pixel i. Also, let y(i)
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denote the vector whose elements are the gray level values
of v at pixels in Ni. Finally, Si is a square search-window
centered around pixel i. Then, the NLM algorithm [5] defines
an estimator for u(i) as

ûNL(i) =
∑
j∈Si

1
Z(i)

e−
‖y(i)−y(j)‖2

h2 v(j), (1)

where Z(i) =
∑

j∈Si
e−‖y(i)−y(j)‖2/h2

is a normalizing term.
The smoothing kernel width parameter h controls the extent
of averaging. For true non-local means, the search window
Si needs to be the entire image for all i, which would give
rise to global weighted averaging. However, for computational
feasibility, Si has traditionally been limited to a square window
of modest size centered around pixel i. This is the limited-
range implementation of the NLM algorithm as proposed in
the pioneering work by [5]. For instance, a 21 × 21 window
is used in [5] whereas a 7 × 7 window is used in [8]. We
investigate the search window size’s effect in Section IV-C.

The success of the NLM algorithm is attributed to the
redundancy that is available in natural images. Constant in-
tensity regions present no problem as there are a very large
number of copies of similar neighborhoods in such areas of the
image. Edges and other one-dimensional structures also have
a relatively large number of copies of similar neighborhoods
located along the structure of interest. The hardest case is
that of intensity configurations that occur in textured regions.
Buades et al. show that even in such cases, one can find similar
neighborhoods if the search-window S is sufficiently large [5].

B. Principal Neighborhood Dictionary Non-local Means

In [8], [9], the distances ‖ y(i) − y(j) ‖2 in (1) are
replaced by distances computed from projections of y onto
a lower-dimensional subspace determined by PCA. In the rest
of this paper we will refer to this method as the PND Non-
local Means algorithm. Let Ω denote the entire set of pixels
in the image. Also, let Ψ be a randomly chosen subset of
Ω. Treating y(i) as observations drawn from a multivariate
random process, we can estimate their covariance matrix as

Cy =
1
|Ψ|

∑
i∈Ψ

(y (i)− ȳ) (y (i)− ȳ)T
, (2)

where ȳ = 1
|Ψ|
∑

i∈Ψ y (i) is the sample mean and |Ψ|
is the number of elements in the set Ψ. A small subset
Ψ ⊆ Ω is typically sufficient to accurately estimate the
covariance matrix and results in computational savings. The
dimensionality of a r × r neighborhood vector is r2. For
simplicity of notation, let M = r2. Then Cy is a M ×M
matrix. Let {bp : p = 1 : M} be the eigenvectors of Cy,
i.e. the principal neighborhoods, sorted in order of descending
eigenvalues. Let the d-dimensional PCA subspace be the space
spanned by {bp : p = 1 : d}. Then the projections of the
image neighborhood vectors onto this subspace is given by

yd (i) =
d∑

p=1

〈y (i) ,bp〉bp, (3)

where 〈y (i) ,bp〉 denotes the inner product of the two vectors.

Let fd (i) = [〈y (i) ,b1〉 . . . 〈y (i) ,bd〉]T be the d-
dimensional vector of projection coefficients. Then, due to the
orthonormality of the basis functions

‖yd (i)− yd(j)‖2 = ‖fd (i)− fd(j)‖2 . (4)

Finally, define a new family of estimators for d ∈ [1,M ]

ûd(i) =
∑
j∈Si

1
Zd(i)

e−
‖fd(i)−fd(j)‖2

h2 v(j), (5)

where Zd(i) =
∑

j∈Si
e−‖fd(i)−fd(j)‖2/h2

is the new normal-
izing term. Note that yM (i) = y (i); therefore, the proposed
approach with d = M is equivalent to the standard NLM, i.e.
ûM (i) = ûNL(i).
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Fig. 1. Top six principal components for 7× 7 image neighborhoods. Top
to bottom rows: Barbara, House, Lena and Peppers principal components.

Figure 1 shows the top six principal neighborhoods, i.e.
principal components, computed from 7×7 neighborhoods for
the Barbara, House, Lena and Peppers images (see Figure 6).
The first eigenvector (left column) corresponding to the largest
eigenvalue of Cy is always approximately flat. This flat
eigenvector represents the average intensity in the 7×7 neigh-
borhood. The next two eigenvectors almost always represent
two orthogonal gradient directions which are necessary for
representing edges. The eigenvectors following these are more
dependent on the specific image. Generally, the next few
eigenvectors represent ridge patterns (rows 2-4 in Figure 1);
however, in the case of strongly texture images, they can also
represent the dominant texture patterns (Barbara - columns
4&5, row 1 in Figure 1). The Barbara image (Figure 6)
is an example of the latter case due to the abundant stripe
patterns. In [8], the correlation matrix is used in place of the
covariance matrix. Differences in the principal neighborhoods
of the covariance and correlation matrices are minor.

Significant principal neighborhoods are extremely robust to
additive, independent and identically distributed noise. It is
known that principal directions of a multivariate probability
distribution function are not altered by addition of spherically
symmetric noise. Therefore, for infinite sample sizes, the
eigenvectors of the covariance matrix of image neighborhoods
will not be altered by addition of independent and identically
distributed noise to the image. Eigenvalues will be increased
by the noise variance amount. The effects of noise on the
eigenvalues of finite sample covariance matrices have also
been previously investigated [39]. Experimental evidence sug-
gests that principal neighborhoods (Figure 1) that correspond
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to the larger eigenvalues of the covariance matrix do not
change in any noticeable way in the presence of noise.

C. Smoothing kernel width selection
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Fig. 2. PSNR (dB) as a function of the parameter h for the peppers image.

Given a noisy image and a combination of N and d, there
exists an optimal choice of the parameter h in Equation (5)
that yields the best output in terms of signal-to-noise ratio.
To illustrate this point, Figure 2 shows the peak signal-to-
noise ratio (PSNR) of the estimator output û as a function
of h for an image that was corrupted with Gaussian noise
(σ = 25). A rule-of-thumb for choosing h was given in [5]
for the NLM algorithm with 7×7 image neighborhoods. More
specifically, Buades et al. suggest using h = 10σ. However,
this choice of h may not be optimal. Furthermore, the optimal
choice for h varies significantly with the image neighborhood
size (applies to PND and the NLM algorithm) and choice of
subspace dimensionality (applies to PND). For instance, it can
be seen from Figure 2 that the peak PSNR is obtained at a
lower h value for the proposed approach with d = 6 than for
the standard NLM algorithm. This observation conforms to
our expectations because distances computed in the subspace
are necessarily smaller than distances computed in the full-
dimensional ambient space.

We will now show how rules for choosing near optimal h
parameters can be learned. We start by empirically finding
the optimal h for each combination of d and N for the set
of test images used in this paper. This is repeated at various
noise standard deviations σ added to the images. To be more
specific, given a noisy image and a combination of d and N ,
golden section search [40] is used to find the h parameter
value that maximizes the output PSNR. The optimal value of
h behaves in a very predictable manner as a function of the
noise level σ and PCA subspace dimensionality d. In Figure 3,
optimal h values are shown as a function of σ for d = 10 and
d = 49 of 7 × 7 image neighborhoods. For a fixed d, the
relationship between optimal h and σ is linear. Therefore, for
the d-dimensional subspace of r × r image neighborhoods, h
can be chosen with the rule

h = m(r, d)σ + c(r, d). (6)

Figure 3 also shows the best linear fit to optimal h as a function
of σ. We use these linear fits as an automatic way of choosing
h given an image neighborhood size and d. Table I shows the
linear fit parameters for several choices of d of 7 × 7 image
neighborhoods. Also shown are the error in the linear fit to
the optimal h values and the resulting loss of PSNR in the
denoised images. We note that as expected, the PSNR loss
resulting from using the automated h selection instead of the
optimal h is small. Parameters such as those shown in Table I
can be pre-computed for all N and d of interest. Furthermore,
as can be seen in Figure 2, the output PSNR curves have
smooth, broad maxima. In other words, the peak PSNR is
somewhat robust to small sub-optimalities in the selection of
h. Therefore, we expect that h produced by these linear fit
parameters will produce results for a much larger set of images
than those from which they were learned. It is important to
note that the parameters in (6) also depend on patch size.
Figure 3 demonstrates the analysis for 7 × 7 patches. The
same analysis could be repeated for other patch sizes as well.
An alternative method for selecting h could be to analyze the
bias and variance of the estimator. This type of analysis is
used for selecting a search-window size in [6].
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Fig. 3. Optimal h value as a function of Gaussian noise standard deviation
σ. The data points correspond to the mean of the optimal h value for 8 test
images while the bars demonstrate the minimum and maximum optimal h.

d = 6 d = 10 d = 20 d = 49
Intercept (c) 13.81 22.55 29.31 29.17
Slope (m) 2.84 3.15 3.90 5.43

L2 error for h fit 8.23 7.96 6.90 6.14
PSNR loss (dB) 0.14 0.12 0.08 0.06

TABLE I
ROWS 1 & 2: SLOPE AND INTERCEPTS USED IN DETERMINING h FOR

VARIOUS SUBSPACE DIMENSIONALITY OF 7× 7 NEIGHBORHOODS. ROW
3& 4: ERROR IN FIT TO OPTIMAL h AND LOSS IN OUTPUT PSNR.

D. Automatic subspace dimensionality selection

The original parallel analysis method [14] compares the
eigenvalues of the data covariance matrix to eigenvalues of
the covariance matrix of an artificial data set. This artificial



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, JANUARY 2009 5

data set is generated by drawing samples from a multivariate
normal distribution with the same dimensionality M , the same
number of observations |Ψ|, and the same marginal standard
deviations as the actual data. Let λp for 1 ≤ p ≤M denote the
eigenvalues of Cy sorted in descending order. Similarly, let αp

denote the sorted eigenvalues of the artificial data covariance
matrix. Parallel analysis estimates data dimensionality as

d = max ({1 ≤ p ≤M |λp ≥ αp}) . (7)

The intuition is that the αp is a threshold for λp below which
the p’th component is judged to have occurred due to chance.
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Fig. 4. Sorted eigenvalues of the Lena image (λ), eigenvalues from parallel
analysis (α) and eigenvalues from modified parallel analysis (β).

An improvement to parallel analysis is to use Monte Carlo
simulations to generate the artificial data [35] which removes
the assumption of normal distribution. In our algorithm, we
generate the artificial data by randomly permuting each ele-
ment of the neighborhood vector across the sample Ψ. Let yi,k

denote the k’th element of the neighborhood vector y(i). For
each k generate a random permutation j(i) of the sequence
i = 1 : |Ψ| and let wi,k = yj(i),k. Then, the random vectors
w(i) are composed from the elements wi,k. The artificial
eigenvalues α are computed from the covariance matrix of
w. This method for computing the artificial covariance matrix
keeps the marginal distributions intact while breaking any
interdependencies between them. Figure 4 shows the λ and
α computed in this manner from the Lena image. The number
of significant components is under-estimated as two.

Several researchers have previously discussed that par-
allel analysis has a strong tendency to underestimate the
number of components in data where the first component
is much more significant than the rest of the components
(oblique structure) [36], [37]. This is the case with image
neighborhoods where the first component, which is always
approximately the average intensity in the neighborhood (see
Figure 1), has a much larger eigenvalue than the rest of
the components. Therefore, we propose a modification to the
parallel analysis algorithm in which we remove the effect of
the first component. We compute the average intensity of the
neighborhood µi = 1

M

∑
k∈Ni

yi,k and generate a new set of
neighborhood vectors whose elements are y′i,k = yi,k − µi.
Finally, the artificial data are generated from the permutations

wi,k = y′j(i),k. Figure 4 also shows artificial eigenvalues β
computed in this modified manner. The number of significant
components is found to be 6.
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Fig. 5. Parallel Analysis: (a) Lena and (b) Barbara with noise σ = 25.

Figure 5(a) shows the parallel analysis applied to the noisy
version (σ = 25) of the Lena image. The number of significant
components is still computed as 6 which shows the robustness
of the method. Figure 5(b) shows the parallel analysis results
for the noisy Barbara image. In this case, the number of
significant components is 14. This larger number can be
attributed to the textured nature of the image which generates
additional salient neighborhood components.

Notice that the moving from left to right in Figure 4,
the β values decrease. Hence, the parallel analysis method
is not equivalent to a fixed threshold applied to the data
eigenvalues. This is different from [8] where data eigenvalues
are directly compared to an estimate of noise variance. Another
difference of the proposed dimensionality selection from the
method used in [8] is that parallel analysis does not require
a previous estimate of the noise variance. Finally, it can
be seen from Figure 5 that a direct comparison to noise
variance (σ2 = 252 = 625 in this case) would result in a
significantly larger dimensionality estimate than the parallel
analysis method. This can be problematic because as will
be discussed in Section IV-A, the dimensionality selected by
parallel analysis correlates very well with the dimensionality
that yields the best denoising results in experiments.

Typically, the artificial eigenvalues are simulated multiple
times. However, we have found that if |Ψ| is sufficiently large,
i.e. 10% of the entire set of pixels Ω, a single simulation almost
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always gives the same result as multiple simulations. This is
desirable from a computational complexity point of view.

It is well known that the least significant eigenvalue of a
sample covariance matrix can be used as an estimator for
the noise variance. More specifically, Muresan and Parks [4]
have suggested using the smallest eigenvalue of the covariance
of sample image neighborhoods as an estimator for noise
variance; in other words, σ̂ =

√
λM . This estimator is biased

to slightly underestimate the noise standard deviation due to
the finite sample size; however, we find this bias to be quite
small. Finally, this noise estimate can be used together with
Equation (6) to select a h parameter. The pseudo-code for the
PND algorithm is given below along with the subroutines for
the modified parallel analysis and PCA.

Algorithm 1 PND (v,r)
Generate all r × r image neighborhood vectors y(i)
M ← r2

Pick a random subsample Ψ ⊂ Ω with |Ω|10 elements
{λp,b}Mp=1 ← PCA({y(i) : i ∈ Ψ})
σ̂ ←

√
λM

d← ParallelAnalysis
(
{y(i) : i ∈ Ψ}, {λp}Mp=1

)
for i = 1 to |Ω| do

fd(i)← [〈y(i),b1〉 . . . 〈y(i),bd〉]T
end for
h← m(r, d)σ̂ + c(r, d)
for i = 1 to |Ω| do
Zd(i) =

∑
j∈Si

e−‖fd(i)−fd(j)‖2/h2

ûd(i)←
∑

j∈Si

1
Zd(i)e

− ‖fd(i)−fd(j)‖2

h2 v(j)
end for
return û

Algorithm 2 ParallelAnalysis
(
{yi}Ni=1, {λp}Mp=1

)
for i = 1 to N do
µi ← 1

M

∑
k∈Ni

yi,k

for k = 1 to M do
y′i,k ← yi,k − µi

end for
end for
for k = 1 to M do

Generate j(i), a random permutation of numbers 1 to N
Let wi,k ← y′j(i),k for i = 1 : N

end for
{βp}Mp=1 ← PCA

(
{w(i)}Ni=1

)
return arg max

1≥p≥M
λp ≥ βp.

Algorithm 3 PCA
(
{x(i)}Ni=1

)
ȳ← 1

N

∑N
i=1 y(i)

C← 1
N

∑N
i=1 (y(i)− ȳ) (y(i)− ȳ)T

return Sorted eigenvalues and eigenvectors {λp,bp}Mp=1

of the M ×M covariance matrix C

Barbara Boat Fingerprint Flintstones

House Lena Peppers Brain MRI

Fig. 6. Images used in the experiments.

IV. EXPERIMENTS

In this section we present detailed experimental results
studying the behavior of the PND algorithm with respect to
subspace dimensionality (Section IV-A) and search-window
size selections (Section IV-C). We also present quantitative
and qualitative comparisons with the original NLM algo-
rithm [5] as well as the Adaptive PCA (APCA) algorithm [4]
(Section IV-B). All of the experiments were performed on
a set of eight images (shown in Figure 6) including those
used by Portilla etal [24] and several additional images. We
study the performance of the proposed approach using images
corrupted with additive, independent Gaussian noise with
standard deviation σ 10, 25 and 50.

A. Subspace Dimensionality and Image Neighborhood Size

We first present results that systematically study the be-
havior of the estimator given by Equation (5) with respect
to the PCA subspace dimensionality. In Section IV-B, we
will compare the performance of the full PND algorithm,
including automatic dimensionality selection, to the NLM [5]
and APCA [4] algorithms.

Figure 7 illustrates the best PSNR at the optimal h pa-
rameter values. The rows correspond to four of the eight
test images; the other four images behave similarly and are
omitted for brevity. From left to right, the columns correspond
to 5 × 5, 7 × 7 and 9 × 9 image neighborhoods. In each
graph, the PSNR of the denoised image is plotted against
the PCA subspace dimensionality. Recall that when the PCA
subspace dimensionality is equal to the number of pixels in N
the proposed algorithm is equivalent to the NLM algorithm.
Therefore, the original NLM algorithm corresponds to the
rightmost data point of each graph. Finally, each graph shows
three curves corresponding to the three input noise levels.

In all cases, the best results are obtained at a relatively
low PCA subspace dimensionality d. The curves shown in
Figure 7 (except for Barbara) have a very characteristic shape:
steeply increasing PSNR for d < 6, a knee around d = 6
and flat or gradually declining PSNR for d > 6. For higher
noise levels, the PSNR declines significantly beyond the knee
whereas for lower noise levels it is flatter. In other words,
the advantage of the proposed approach over the standard
NLM algorithm increases with higher input noise levels. The
increased accuracy at lower d values can be attributed to the
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Fig. 7. PSNR (dB) vs. PCA subspace dimensionality for various neighborhood sizes and noise levels. Low noise (σ = 10) green curve, medium noise
(σ = 25) blue curve, high noise (σ = 50) red curve. Top to bottom rows: Barbara, Boat, Fingerprint and Lena images.

observation that distances computed in the lower-dimensional
space are likely to be more accurate than distance computed
from the full-dimensional space because PCA discards the
most irrelevant dimensions. This explanation based on the
accuracy of distances is also supported by the observation that
the difference in PSNR between PND and NLM increases with
increasing input noise level.

For the Barbara image the best d ranges from 7 to 20
depending on the image neighborhood size and input noise
level. The higher subspace dimensions necessary for obtaining
the best PSNR with this image can be attributed to its
complex textured nature. Recall from Figure 1 that unlike
the other images, the top principal components of Barbara
image include texture components (stripe patterns which are
common in that image). This results in a larger number of
salient principal components compared to the other images.

While Figure 7 clearly illustrates the effects of PCA

subspace dimensionality on the quality of denoising results,
Table II offers an easier comparison across various image
neighborhood sizes. For each test image, Table II includes
three rows, one for each input noise level. Each row gives
the best PSNR values at the optimal choice of d for different
neighborhood sizes. In other words, the best PSNR value
corresponding to the maxima of the curves in Figure 7 is
included in Table II. Results for image neighborhoods ranging
from 3×3 to 9×9 are provided. Also, results by using only the
center pixel intensity (1×1 image neighborhood) are given for
comparison. Finally, the overall best PSNR across the various
neighborhood sizes for a particular image and noise level is
shown in boldface.

As other researchers have previously shown, the NLM
algorithm outperforms algorithms which only use the center
pixel intensity such as bilateral filtering. Also notice that
the best image neighborhood size increases with input noise
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Input 1× 1 3× 3 5× 5 7× 7 9× 9
Barbara 28.13 30.39 33.41 33.54 33.32 33.14

20.17 24.49 28.14 28.96 29.17 29.09
14.15 21.53 24.08 25.17 25.72 25.95

Boat 28.13 30.64 33.07 32.87 32.57 32.37
20.17 25.11 28.59 29.00 28.91 28.79
14.15 22.19 25.26 25.92 26.18 26.25

Fingerprint 28.13 28.75 31.92 31.13 30.75 30.65
20.17 22.00 27.24 27.08 26.66 26.40
14.15 18.23 23.18 23.72 23.86 23.81

Flinstones 28.13 30.42 31.92 31.54 31.22 30.92
20.17 23.40 27.49 27.89 27.51 27.03
14.15 18.63 23.61 24.29 24.40 24.08

House 28.13 32.41 35.44 35.45 35.09 34.89
20.17 25.84 30.60 31.61 31.73 31.75
14.15 22.38 27.00 27.88 28.45 28.69

Lena 28.13 31.57 34.77 34.86 34.74 34.66
20.17 26.27 30.40 31.11 31.27 31.40
14.15 23.39 27.12 27.88 28.30 28.42

Peppers 28.13 30.66 33.73 33.81 33.53 33.30
20.17 24.42 28.48 29.38 29.30 29.06
14.15 20.40 24.70 25.70 26.11 26.07

Brain MRI 28.13 31.08 33.39 33.26 33.12 33.08
20.17 24.98 28.75 29.31 29.24 29.27
14.15 22.10 25.29 26.04 26.40 26.41

TABLE II
PSNR VALUES AT THE OPTIMAL SUBSPACE DIMENSIONALITY. INPUT

PSNR FOR THREE NOISE LEVELS (σ = 10, 25, 50) SHOWN IN COLUMN 2.
COLUMNS 3-7 SHOW THE RESULTS AT THE BEST DIMENSIONALITY FOR

NEIGHBORHOOD SIZES FROM 1× 1 TO 9× 9. THE OVERALL BEST PSNR
ACROSS THE NEIGHBORHOOD SIZES FOR A PARTICULAR IMAGE AND

NOISE LEVEL IS SHOWN IN BOLDFACE.

level. It can be argued that this is a trade-off between the
reliability of weights vs. curse of dimensionality. Larger image
neighborhoods result in a higher-dimensional feature space.
This results in a sparser samples (curse of dimensionality) and
less reliable weighted averages in equations (1) and (5) due to
a lack of nearby sample points. On the other hand, larger image
neighborhoods also provide a more pronounced averaging
effect in equations (1) and (5) due to the larger spatial extent
of the principal neighborhoods. This can result in weights
less susceptible to noise. As the noise level increases, weight
reliability becomes increasingly important; hence, larger image
neighborhoods are preferred.

B. Comparison with NLM and APCA algorithms

Table III shows the d values selected by parallel analysis as
described in Section III-D for various neighborhood sizes and
noise levels. Table IV compares the results of the proposed
algorithm with these automatically chosen d and h values to
the results of the NLM algorithm. The h parameter for the
NLM algorithm is also selected with the same rules for a fair
comparison. Note that this results in better PSNR outcomes
for the NLM algorithm compared to choosing h = 10σ as
suggested in [5]. When the noise is moderate or high, PND
significantly (greater than 1 dB difference) outperforms NLM
denoising. The advantages of the proposed approach increase
with increasing noise level. For low noise (σ = 10), PND
performs slightly better for five of the eight images while
NLM performs slightly better for three of the eight. As the
noise level decreases, the length of the projection of image
neighborhoods in the complementary space that is orthogonal

Noise σ 5× 5 7× 7 9× 9
25D 49D 81D

Barbara 10 9 13 18
25 9 13 18
50 10 17 19

Boat 10 6 9 13
25 7 9 13
50 9 9 13

Fingerprint 10 5 7 9
25 5 7 9
50 5 7 9

Flinstones 10 6 9 13
25 6 9 13
50 6 9 14

House 10 5 7 9
25 6 7 9
50 7 7 11

Lena 10 5 6 10
25 5 6 10
50 18 7 10

Peppers 10 5 6 9
25 6 6 9
50 6 6 10

Brain MRI 10 6 10 13
25 7 10 13
50 7 11 13

TABLE III
PCA SUBSPACE DIMENSIONALITY SELECTED BY PARALLEL ANALYSIS.

5× 5 5× 5 7× 7 7× 7 9× 9 9× 9
PND NL PND NL PND NL

Barbara 33.15 33.29 32.41 33.05 31.73 32.81
28.83 28.36 28.67 28.41 28.50 28.27
25.16 24.39 25.68 24.62 25.72 24.64

Boat 32.43 32.13 32.38 31.55 32.03 31.22
28.95 28.01 28.90 27.66 28.66 27.34
25.74 24.74 26.16 24.66 26.14 24.48

Fingerprint 30.48 30.69 30.06 30.24 29.85 30.00
26.95 26.02 26.45 25.37 25.98 24.94
23.68 21.90 23.82 21.59 23.74 21.38

Flinstones 31.36 31.62 31.01 31.22 30.79 30.90
27.74 26.88 26.96 26.08 26.42 25.44
24.29 22.74 24.08 22.24 23.66 21.71

House 35.26 34.94 34.81 34.61 34.56 34.41
31.59 30.52 31.59 30.40 31.48 30.18
27.83 26.27 28.40 26.33 28.63 26.18

Lena 34.77 34.32 34.43 33.98 34.50 33.79
31.11 30.20 31.14 30.09 31.31 29.91
26.71 26.56 28.27 26.72 28.42 26.65

Peppers 33.76 33.24 33.46 32.81 33.14 32.49
29.37 28.39 29.26 28.01 28.95 27.61
25.68 24.49 26.10 24.31 25.93 23.91

Brain MRI 33.07 32.61 32.57 32.15 32.49 31.88
29.24 28.37 29.03 28.08 29.09 27.76
26.04 24.81 26.33 24.87 26.38 24.72

TABLE IV
PSNR FOR IMAGES DENOISED WITH PND AND NLM [5]. FOR EACH

IMAGE, THE 3 ROWS CORRESPOND TO NOISE LEVELS σ = 10, 25 AND 50.

to the PCA subspace also decreases. Consequently, the dis-
tances in the PCA subspace become better approximations to
the distances in the full-dimensional space. In other words,
the difference between the two distance computations become
minimal, which in turn results in very similar performance of
the two approaches. However, note that image neighborhoods
can not be perfectly represented in reduced dimensionality
linear subspaces; hence, in the absence of noise, distances
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computed in lower-dimensional subspaces are sub-optimal.

5× 5 5× 5 7× 7 7× 7 9× 9 9× 9
PND APCA PND APCA PND APCA

Barbara 33.15 34.53 32.41 34.78 31.73 34.82
28.83 29.67 28.67 30.05 28.50 30.03
25.16 25.90 25.68 26.40 25.72 26.28

Boat 32.43 33.40 32.38 33.46 32.03 33.43
28.95 29.04 28.90 29.12 28.66 29.01
25.74 25.76 26.16 25.89 26.14 25.66

Fingerprint 30.48 32.47 30.06 32.42 29.85 32.34
26.95 27.48 26.45 27.42 25.98 27.30
23.68 24.04 23.82 24.02 23.74 23.84

Flinstones 31.36 31.25 31.01 31.23 30.79 31.22
27.74 26.99 26.96 27.09 26.42 27.06
24.29 23.40 24.08 23.51 23.66 23.39

House 35.26 35.55 34.81 35.80 34.56 35.82
31.59 30.78 31.59 30.99 31.48 30.80
27.83 27.12 28.40 27.34 28.63 26.92

Lena 34.77 35.53 34.43 35.62 34.50 35.57
31.11 31.22 31.14 31.40 31.31 31.23
26.71 27.51 28.27 27.76 28.42 27.39

Peppers 33.76 33.40 33.46 33.45 33.14 33.41
29.37 28.76 29.26 28.83 28.95 28.68
25.68 25.32 26.10 25.38 25.93 25.02

Brain MRI 33.07 33.32 32.57 33.37 32.49 33.34
29.24 29.19 29.03 29.19 29.09 29.00
26.04 26.23 26.33 26.19 26.38 25.77

TABLE V
PSNR FOR IMAGES DENOISED WITH PND AND APCA [4]. FOR EACH

IMAGE, THE 3 ROWS CORRESPOND TO NOISE LEVELS σ = 10, 25 AND 50.

We also compare the PND method to the Adaptive PCA
(APCA) method of Muresan and Parks [4]. In APCA local
PCAs are used to project the image neighborhoods on to a
local basis. The maximum likelihood estimator for a given
projection coefficient is computed using estimates of noise
variance and that coefficient’s variance. Similar to PND and
NLM, the APCA algorithm entails a choice of image neigh-
borhood size. We tested the APCA algorithm with 5×5, 7×7
and 9× 9 neighborhood sizes. For the rest of the parameters
in our implementation of APCA, we use the suggestions
given in [4]: The size of the window used for local PCA
is referred to as the training region in [4] and is fixed as a
21 × 21 square window. The maximum likelihood estimators
apply to the 7 × 7 central denoising region of each training
region. Finally, adjacent denoising regions overlap by three
pixels as suggested in [4] to avoid blocking artifacts. Table V
compares the PND and APCA methods for the various image
neighborhood sizes and noise variances. In general, APCA
outperforms PND; however, for the House and Peppers images
PND performs better. The performances are roughly even for
the Flinstones and Brain MRI images. However, despite the
overall better quantitative performance of the APCA algorithm
over PND, there are visual artifacts that are associated with
APCA denoising which do not occur with the PND or NLM
algorithms. Figure 8 illustrates detailed denoising results for
the APCA, PND and NLM algorithms for portions of some
test images. Local, directional oscillatory artifacts associated
with the APCA algorithm can be seen in the Barbara and
House images. These artifacts are most noticeable in the
tablecloth region of the Barbara and the background in the
House image. Furthermore, the artifacts are more significant

Barbara Boat Finger-
print

Flints-
tones

5× 5 PND 64 58 44 55
5× 5 NLM 107 106 105 104
5× 5 APCA 64 64 63 64
7× 7 PND 78 64 56 64
7× 7 NLM 171 171 171 171
7× 7 APCA 117 117 118 116
9× 9 PND 85 76 65 78
9× 9 NLM 249 250 250 251
9× 9 APCA 239 239 231 230

House Lena Peppers Brain
MRI

5× 5 PND 14 67 13 15
5× 5 NLM 26 105 26 26
5× 5 APCA 16 64 16 16
7× 7 PND 15 55 14 17
7× 7 NLM 42 172 42 42
7× 7 APCA 29 118 30 31
9× 9 PND 16 67 16 19
9× 9 NLM 61 250 62 62
9× 9 APCA 58 234 58 58

TABLE VI
COMPUTATION TIMES (IN SECONDS) FOR THE PND, NLM APCA

ALGORITHMS. ALL ALGORITHMS WERE CODED IN MATLAB. THE House,
Peppers AND Brain MRI ARE 256× 256, ALL OTHERS ARE 512× 512.

in the cases with higher noise. Artifacts are not observed in
the Fingerprint image, possibly because the local PCA model
is a very good fit for the homogeneous texture pattern found in
this image. Finally, notice that the PND algorithm outperforms
NLM visually as well as quantitatively. This can be seen in
the tablecloth, pants and other striped patterned regions of the
Barbara image, especially for the case with higher noise.

We have implemented the PND, NLM and APCA algo-
rithms in MATLAB (Copyright The Mathworks, Inc.). Ta-
ble VI provides the run times of the two algorithms for the
eight test images. The run times for the NLM and APCA
algorithms are approximately the same for images of the
same size, whereas the run times for the PND algorithm
depend on the subspace dimension d selected by the parallel
analysis subroutine (See Table III). PND is always faster than
NLM and APCA. The computational complexity of NLM
is O(|Ω| · |S| · M) where |Ω|, |S| and M are the number
of pixels in the image, in the search window S and in the
neighborhood vector N , respectively. In comparison, the com-
plexity when using a d-dimensional subspace is O(|Ω|·|S|·d).
The additional costs in building the covariance matrices for
PCA and parallel analysis is O(|Ψ| · M2). The cost for
computing the projection coefficients {fp : p = 1 : d} are
and O(|Ω| ·M · d). Eigenvectors are computed once globally
for a small matrix (M×M ); this cost is negligible. As pointed
out in Algorithm 1, we choose Ψ as a random subset of Ω with
one tenth the size; hence, |Ψ| = 0.1|Ω|. Therefore, the total
complexity for PND is O

(
|Ω| ·

(
|S|d+M2 + 0.1Md

))
. This

is significantly smaller than the NLM cost because typically
|S| >> M . For typical window sizes used in the literature
|S| = 441 and M = 49. If larger search windows S are
used, which can be desirable from a PSNR point of view, the
computational savings over NLM and APCA increase.
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Fig. 8. Visual comparison of APCA [4], PND and NLM denoising [5] using 7× 7 image neighborhoods.
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C. Effect of search window size

As explained in Section III-A, this paper and other non-
local means image filtering approaches in the literature use the
limited-range implementation for computational feasibility. In
the limited-range implementation, the search window Si in (1)
is defined to be a square window of limited size centered at
pixel i rather than the entire set of pixels in the image. This
brings into question whether the limited-range implementation
effects the performance of NLM. In other words, how does
denoising performance change with the size of Si? Most non-
local means based papers in the literature such as [5], [29],
[8], [9], [10] have chosen a fixed search window size. In
contrast, Kervrann and Boulanger [6] propose an adaptive
search-window approach based on an analysis of estimator’s
the bias and variance. In this section, we investigate the effects
of search-window size in fixed size approaches.
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Fig. 9. PSNR vs. length of search window side. Top: NLM. Bottom: PND.

Figure 9 plots the PSNR performance of the NLM and PND
algorithms vs search window size. More specifically, the x-
axis is the length of the sides of the square window S. From
Figure 9, we can see that denoising performance for both
algorithms first increases with search window size and then
saturates beyond a size of approximately 17 × 17. In fact,
for certain images such as Lena, Brain MRI and Boat there
is a slight degradation in performance beyond this size. This
performance degradation is more noticeable with NLM than
PND. The only exception appears to be the Fingerprint image
for which denoising accuracy monotonically increases for all
search window sizes we tested. These observations suggest
that, for most images. the success of the NLM algorithm

could be attributed more to its use of image neighborhoods
than its non-local nature. In general, it is likely that using
larger search-windows do not provide additional neighborhood
examples that are close to the one being denoised. In the
case of the Fingerprint image there is a single dominant
texture, modulo rotation, that is present everywhere. Hence,
larger search-windows can provide additional useful examples;
however, due to the presence of rotation, we still expect that
PSNR accuracy would saturate beyond a certain point. The
decreasing performance phenomenon needs to be investigated
further. One possible cause is related to the choice of the
smoothing kernel width parameter. It also suggests that both
NLM and PND can benefit from an adaptive search-window
size such as the one proposed in [6].

V. CONCLUSION

The accuracy and computational cost of the NLM image de-
noising algorithm [5] is improved by computing neighborhood
similarities, i.e. averaging weights, after a PCA projection
to a lower-dimensional subspace. Unlike the predetermined
filters introduced in [29] for reducing the NLM computational
cost, PND and the methods described in [8], [10] are data-
driven and can adapt to the statistics of a given image. Also,
in [29], the weights are still computed from the original high-
dimensional vectors after the selection of neighborhoods to
include in the weighted average. In this work, the lower-
dimensional projections are not only used as a search criteria
but also for computing similarity weights resulting in better
accuracy in addition to reduced computational cost. It is clear
that image neighborhoods can not be modeled in a global,
linear subspace. Nevertheless, better accuracy is explained in
terms of the increased reliability in the similarity weights when
they are computed in a subspace that captures most of the true
variability in neighborhoods and limits the effects of noise.
For images with very regular textures such as a fingerprint
image, it was observed that APCA performs better than PND
both visually and quantitatively. This results suggests that i) a
semi-local PCA instead of global PCA could also benefit the
proposed method, and ii) it might be necessary to adaptively
select a different subspace dimensionality in different image
parts to better capture texture patterns. Finally, we showed
that parallel analysis can be used to automatically determine
a subspace dimensionality that yields good results.

The NLM algorithm has been previously applied to color
images by measuring L2 distance in the RGB image neigh-
borhood space [29]. Similarly, the proposed approach can be
extended to color images by performing in the RGB image
neighborhood space which is formed by concatenating image
neighborhoods in the three channels into a single vector.
Another interesting direction for future research is to use a
separate bandwidth for each element of the projected vector
fd in equation (5). While the elements of y have equal
marginal distributions, the same is not true for fd, and a
possible room for improvement is to use the PCA eigenvalues
to determine different bandwidth parameters for the different
projection coefficients. Finally, the Principal Neighborhoods
approach can also be easily applied to other denoising and
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segmentation algorithms that use similarity measures based
on image neighborhood vectors [7], [6], [13].
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