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SUMMARY

The discontinuous Galerkin (DG) transport scheme is becoming increasingly popular in the atmospheric
modeling due to its distinguished features, such as high-order accuracy and high-parallel efficiency. Despite
the great advantages, DG schemes may produce unphysical oscillations in approximating transport equations
with discontinuous solution structures including strong shocks or sharp gradients. Nonlinear limiters need
to be applied to suppress the undesirable oscillations and enhance the numerical stability. It is usually very
difficult to design limiters to achieve both high-order accuracy and non-oscillatory properties, and even
more challenging for the cubed-sphere geometry. In this paper, a simple and efficient limiter based on the
Weighted Essentially Non-Oscillatory (WENO) methodology is incorporated in the DG transport framework
on the cubed sphere. The uniform high-order accuracy of the resulting scheme is maintained due to the high-
order nature of WENO procedures. Unlike the classic WENO limiter, for which the wide halo region may
significantly impede parallel efficiency, the simple limiter requires only the information from the nearest
neighboring elements without degrading the inherent high-parallel efficiency of the DG scheme. A bound-
preserving filter can be further coupled in the scheme which guarantees the highly desirable positivity-
preserving property for the numerical solution. The resulting scheme is high-order accurate, non-oscillatory,
and positivity-preserving for solving transport equations based on the cubed-sphere geometry. Extensive
numerical results for several benchmark spherical transport problems are provided to demonstrate good
results, both in accuracy and in non-oscillatory performance. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Discontinuous Galerkin (DG) methods, first introduced in [28], is a class of finite element method
with completely discontinuous piecewise polynomials as basis functions. A major development
of DG methods was carried out by Cockburn and Shu [4, 5]. They combined the DG spatial
discretization method with Runge-Kutta time discretization, known as Runge-Kutta discontinuous
Galerkin (RKDG) methods for conservation laws. This methods has several advantages such as
geometric flexibility, local conservation, the capability of h-p adaptivity and excellent parallel
efficiency. Due to these desirable properties, DG methods are becoming more and more popular
in atmosphere modeling [21, 22, 2, 11] on a variety of spherical meshes [8, 12]. We refer the readers
to the review paper [23] for details of the various DG applications in atmospheric science with an
extensive list of references.
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Despite the great advantages, DG schemes may fail in approximating transport equations with
discontinuous solution structures including strong shocks or sharp gradients. A nonlinear limiter
need to be applied to control oscillations near shocks and other discontinuities. It is usually very
difficult to design limiters to achieve both high-order accuracy and non-oscillatory properties.
Such an attempt has been made in [26, 27, 19], where the WENO methodology and Hermite
WENO (HWENO) methodology reconstruction serves as a limiter for RKDG methods. A major
drawback of these limiters is that they need wide stencils, which made them hard to implement for
multi-dimensional problems and potentially impede the parallel efficiency [18]. More recently, a
particularly simple and compact WENO limiter, which utilizes fully the advantage of DG solutions,
is designed for RKDG methods in [36, 37]. The idea of this simple limiter is to reconstruct a
new polynomial on the target cell which is a convex combination of polynomials on this cell and
its immediate neighboring cells, with necessary adjustments to keep the original cell average on
the target cell. The nonlinear weights in the convex combination coefficients follows the classical
WENO procedure. The main advantage of this limiter is its simplicity in implementation, especially
for multi-dimensional meshes.

Efficient tracer transport schemes with monotonic or positivity-preserving properties are
extremely important for climate models. For a practical climate model, hundreds of tracers
(chemical species) need to be transported for a very long duration of time to study the evolution
of these tracers in the atmosphere. In order to remove spurious oscillations in the numerical
solution and make the solution physically recognizable, a limiter is usually combined with the
transport algorithm. For atmospheric models based on high-order methods such as DG [22] or
spectral-element methods [6], the tracer transport is very challenging because of unavailability
of efficient limiters. In this paper, an efficient WENO limiter is developed for the DG transport
scheme on the cubed sphere, based on the idea of a simple WENO limiter for Cartesian meshes
[36]. Similar to Cartesian cases, the DG schemes on the cubed sphere may exhibit unphysical
oscillations when the smoothness of tracers is lacking, which could impair the performance of DG
schemes to some extent. In order to address the issue, the simple WENO limiter is coupled with
the DG transport schemes on the cubed sphere. A special treatment at the cube edges is proposed
in order to retain the high-order accuracy of the WENO limiter. On the other hand, preserving the
positivity (monotonicity) of the solution is highly desirable for atmospheric transport modeling.
While WENO-type limiters can effectively remove spurious oscillations, there is no guarantee
that they will always keep the numerical solution within the physical bounds. Further coupling
a genuinely high-order bound-preserving (BP) filter developed in [34] can ensure the positivity-
preservation properties for DG transport schemes.

The paper is organized as follows. In Section 2, we review the DG transport schemes and the
simple WENO limiter on the two-dimensional Cartesian meshes. In Section 3, we extend the simple
WENO limiter to the cubed-sphere geometry. Details of the special treatment on the edges are also
provided. Numerical examples for a class of benchmark tests are presented in Section 4. Conclusions
and future work are given in Section 5.

2. A SIMPLE WENO LIMITER FOR DG METHODS

2.1. DG scheme

Consider the two-dimensional conservative transport equation

∂U

∂t
+∇ · F (u) = 0, in D × [0, T ]

U(x, y, 0) = U0(x, y),
(2.1)

where U = U(x, y, t) is a conservative quantity, F is the flux function and ∇· is the divergence
operator defined on the domain D.

To apply DG methods for spatial discretizations, we first partition the domain D into non-
overlapping elements (cells) Iij and we assume the cell to be rectangular such that Iij =
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[xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]. Denote the center of a cell Iij by (xi, yj) where (xi = (xi+1/2 −
xi−1/2)/2 and yj = (yj+1/2 + yj−1/2)/2, and ∆xi = xi+1/2 − xi−1/2 and ∆yj = yj+1/2 − yj−1/2
as the local mesh sizes. The DG method has its solution as well as the test function space given
by V kh =

{
v(x) : v(x)|Iij ∈ P k(Iij)

}
, where P k(Iij) denotes the set of polynomials of degree at

most k defined on Iij . A semi-discrete DG method for solving (2.1) is defined as follows: seek an
approximate solution Uh ∈ V kh , such that for all the test function φh ∈ V kh , and for each element Iij ,
we have ∫

Iij

∂Uh
∂t

φhdx dy =

∫
Iij

F (Uh) · ∇φhdx dy −
∫
∂Iij

φh ̂F (Uh) · n ds, (2.2)

where ∂Iij is the boundary corresponding to the cell Iij and n is the outward normal vector. Here
̂F (Uh) · n is the numerical flux or approximate Riemann solver which resolves the discontinuity

issue at the cell boundary.
When implementing the the DG scheme (2.2), we first define two independent variables (ξ, η)

over the reference element [−1, 1]× [−1, 1] via the following affine mapping

ξ =
2(x− xi)

∆xi
, η =

2(y − yj)
∆yj

; x× y ∈ [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]. (2.3)

Spatial discretization is performed by approximating each function as a sum of polynomial basis
functions `(ξ), which are the Lagrangian interpolating (orthogonal) polynomials based on the
Gaussian-Lobatto-Legendre (GLL) points, given by

`m(ξ) =
(ξ − 1)(ξ + 1)L′k(ξ)

k(k + 1)Lk(ξm) (ξ − ξm)
, (2.4)

where ξm, m = 0, · · · , k are the GLL points over [−1, 1], and Lk(ξ) is the Legendre polynomial
of degree k. Two-dimensional basis functions are constructed from a tensor product of the one-
dimensional basis, such that the DG solution on a cell Iij can be represented by

Uh(x, y, t)|Iij = Uh(ξ, η, t)|Iij =

k∑
s=0

k∑
m=0

Us,mij (t)`s(ξ)`m(η), (2.5)

where the degree of freedom U l,mij (t) is the point value of solution Uh at a GLL point (ξl, ηm),
defined in (2.3) on the cell Iij . Substituting the discretized scalar field (2.5) and test functions into
(2.2), and replacing integrals by the Gaussian-Lobatto quadratures converts the partial differential
equation into a set of ordinary differential equations (ODEs) in time, which may be written
abstractly as

d

dt
U = L(U), (2.6)

where L is the spatial discretization operator. To discretize the temporal variable, we use the
following strong stability preserving (SSP) third order Runge-Kutta (RK) method [32]:

U (1) = Un + ∆tL(un),

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL(U (1)),

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL(U (2)).

(2.7)

Other SSP time discretizations [9] can also be used.
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2.2. The simple WENO limiter

To control the oscillations near a shock or other discontinuities in the DG solution, we employ a
simple WENO limiting strategy. Such a simple WENO limiter for DG methods was first introduced
by [36]. The major difference between this simple WENO limiter and previous WENO and
HWENO limiters [27, 24, 35], is that the former one uses a more compact stencil and much easier to
implement. Once a cell is identified as an oscillatory (troubled) cell by the Total Variation Bounded
(TVB) limiter [4, 5], then we want to replace the solution polynomial on the troubled cell with
a reconstructed polynomial. Note that there exist many troubled cell indicators in the literature
and readers are referred to [25] a detailed comparison of a variety of troubled cell indicators for
DG methods. Generally, there are several requirements for the reconstructed polynomial. First,
it should maintain the cell average for conservation. Second, high order accuracy of the original
polynomial should be maintained. At last, the new polynomial should be free from oscillations.We
briefly outline the procedure below and we refer readers to [36] for more details.

The first step is to preprocess the polynomials Un from the neighboring cells, for which a
reconstruction stencil is required. Each stencil consists of a target (or “troubled”) cell I0 and its
four nearest neighbors which share the edge with the target cell, as depicted schematically in Figure
2.1(a). This step is to modify the polynomials on the neighboring cells by an addition of a constant
to keep the original cell average of the DG solution on the target cell. The simple WENO limiter is to
reconstruct a new polynomial on the target cell which is a convex combination of polynomial on the
cell itself and preprocessed polynomials on its immediate neighboring cells. The nonlinear weights
ωn of the convex combination depends on the local smoothness of the solution polynomial, and thus
creates the non-oscillatory solution. The smoothness indicators βn are a measure of the smoothness
of the polynomial Un. The smoother the polynomial Un is, the smaller value of the smoothness
indicator βn is. The smoothness indicators are then used to convert the preselected linear weights
(γn) to nonlinear weights (ωn).

I0 I2

I3

I4

I1

(a)

U4(x,y)

U3(x,y)

U1(x,y)

U2(x,y)

(b)

Figure 2.1. (a): The stencil used for the simple WENO reconstruction on a target cell Iij are shown for
a single index I0; the shaded 5 cells comprise the reconstruction stencil. (b): Extrapolation (extension)

procedure in order to reconstruct a new polynomial

The major difference between the simple WENO limiter and previous WENO or HWENO
limiters is that the former uses most fully the information of the complete polynomials which
are already available for DG methods in the target and neighboring cells, while the latter need
to reconstruct the point values or moments individually and separately. The simple WENO limiter
approach simultaneously removes the problem of negative weights and reduces considerably the
complexity of implementation. Moreover, the richness of available information make the choice of
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AN EFFICIENT WENO LIMITER FOR DG TRANSPORT SCHEME ON THE CUBED SPHERE 5

linear weights much less restrictive and the simple WENO limiter scheme more easy to implement
and computationally attractive.

To better illustrate the reconstruction procedure of the simple WENO limiter, we start with the
assumption that the cell Iij is identified as a troubled cell by the TVB troubled cell indicator
[4, 5]. The reconstruction employs a stencil with five cells as shown in Figure 2.1(a), i.e., the
target cell located at the center and its four nearest neighbors. For convenience, we denote the
cells with a single index Il, l = l(i, j) and denote the DG solution polynomials on the cells Il as
Ul(x, y), l = 0, 1, · · · , 4, where U0(x, y) is located on the troubled cell I0. We want to reconstruct
a new polynomial Unew0 (x, y) on the target cell using the information of the polynomial U0(x, y)
on the troubled cell I0 and the polynomials {Ul(x, y)}4l=1 on its neighboring cells, as indicated in
Figure 2.1(a).

Since our goal is to construct a new polynomial on the target cell I0, for convenience, we now
try to represent the four polynomials {Ul(x, y)}4l=1 on the neighboring cells using the local basis
functions of the target cell I0. This step can be considered as the extension of the polynomials
from the neighboring cells to the target cell, as shown in Figure 2.1(b). It can also be considered
as extrapolating the values at the GLL points over the cell I0 through the polynomials Ul(x, y),
l = 1, · · · , 4 on the four neighboring cells, thereby constructing four new polynomials on the target
cell I0 denoted by U0,l(x, y), l = 1, · · · , 4, as shown in Figure 2.1(b). Under the choice of our basis
functions and according to (2.5), we can represent U0,l(x, y) via (ξ, η) as

U0,l(ξ, η) =

k∑
s=0

k∑
m=0

Us,ml,0 `s(ξ)`m(η), l = 1, · · · , 4, (2.8)

where Us,ml,0 is the point value of solution Ul at a GLL point (ξs, ηm), defined in (2.3) on the cell I0,
i.e.

Us,ml,0 = Ul(ξs, ηm). (2.9)

As in [36], in order to make sure that the reconstructed polynomials U0,l(x, y) maintains the
original cell average of U0(x, y) on the target cell I0, we preprocess the four polynomials U0,l(x, y),
l = 1, · · · , 4 and denote the preprocessed polynomial as Ũl:

Ũ0,l(x, y) = U0,l(x, y) + Cl, l = 1, · · · , 4. (2.10)

Here Cl is the adjusting constant to maintain the cell average and hence the conservation property,
given by

Cl =
1

∆xi∆yj

∫
I0

(U0(x, y)− U0,l(x, y)) dx dy =
1

4

k∑
s=0

k∑
m=0

wswm

(
Us,m0 − Us,m0,l

)
, (2.11)

where wm,m = 0, · · · , k are the corresponding Gauss-Lobatto quadrature weights on [−1, 1]. Since
the moments of Ũ0,l(x, y), Ũs,m0,l , is the point value of Ũ0,l(x, y) at the GLL point (ξs, ηm) on the
cell I0, by (2.10) and (2.8), we have

Ũs,m0,l = Us,ml,0 + Cl (2.12)

with Us,ml,0 given by (2.9) and Cl given by (2.11).
With the original polynomial U0(x, y) on the target cell and the preprocessed polynomials

Ũ0,l(x, y), l = 1, · · · , 4 from the four neighboring cells, we now are able to determine the convex
combination coefficients follow the classical WENO procedure. First we choose the linear weights
and denote as γl, l = 0, 1, · · · , 4. Following the practice in [7, 36], we put a larger linear weight on
the troubled cell and the neighboring cells get smaller linear weights. For example, in our numerical
results, we take

γ0 = 0.996, γ1 = γ2 = γ3 = γ4 = 0.001, for P 2 case,
γ0 = 0.9996, γ1 = γ2 = γ3 = γ4 = 0.0001, for P 3 case. (2.13)
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6 GUO, NAIR AND ZHONG

Next, we compute the smoothness indicators βl as follows:

βl =

k∑
|α|=1

|I0||α|−1
∫
I0

(
∂|α|

∂xα1∂yα2
Ũ0,l(x, y)

)2

dx dy, (2.14)

where α = (α1, α2) and |I0| = ∆xi∆yj . For more details about this smoothness indicator, we refer
to [14, 1, 31]. Following [14, 13, 1, 15], the normalized nonlinear weights are converted from the
linear weights using the smooth indicator as follows:

ωl =
ω̄l∑
s w̄s

, ω̄l =
γl

(ε+ βl)2
, l = 0, 1, · · · , 4 (2.15)

where ε is a small number to avoid a zero denominator. The final nonlinear WENO reconstruction
polynomial Unew0 (x, y) is now given by

Unew0 (x, y) = ω0U0(x, y) +

4∑
l=1

ωlŨ0,l(x, y), (2.16)

or the degrees of freedom under the nodal basis functions are given by

[Us,m0 ]
new

= ω0U
s,m
0 +

4∑
l=1

ωlŨ
s,m
l,0 , (2.17)

with s,m = 0, · · · , k.
The simple WENO limiter, like other WENO limiters, is only essentially non-oscillatory and it

may not eliminate all small oscillations near the physical bounds. Therefore, we need to further
implement a bound-preserving (BP) filter for the DG scheme combined with the simple WENO
limiter.

2.3. The BP filter

As did in [35], to preserve the initial bounds of the numerical solutions and climate negative densities
when positivity is a requirement , we further couple a high-order BP filter [34] into DG transport
schemes. The BP filter has several distinctive features. For instance, it is known to be conservative,
computationally cheap, and very easy to implement.

Let pij be the DG solution polynomial on the cell Iij with cell average p̄ij . The essential idea of
the BP filter is to replace pij(x, y) with a modified polynomial p̃ij(x, y) defined as follows

p̃ij(x, y) = θ̂pij(x, y) + (1− θ̂)p̄ij , (2.18)

θ̂ = min

{∣∣∣∣ M − p̄ijMij − p̄ij

∣∣∣∣ , ∣∣∣∣m? − p̄ij
m?
ij − p̄ij

∣∣∣∣ , 1} (2.19)

where the local extrema are Mij = max(s,m) pij(ξs, ηm) and m?
ij = min(s,m) pij(ξs, ηm) with

(ξs, ηm), s,m = 0, · · · , k being the GLL points on cell Iij . Here M and m? are the global extrema
of the initial condition, which are usually known in the context of a certain atmospheric tracer
transport.

3. A SIMPLE WENO LIMITER FOR DG METHODS ON THE CUBED SPHERE

In this section, we extend the DG schemes coupling the simple WENO limiter (DG + WENO) to
the cubed-sphere geometry [30, 29].
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AN EFFICIENT WENO LIMITER FOR DG TRANSPORT SCHEME ON THE CUBED SPHERE 7

3.1. Cubed-sphere geometry

The cubed-sphere geometry is constructed via a central mapping from a sphere to identical six
faces (patches) of a cube [30], as shown in Figure 3.1. Note that, unlike the standard latitude-
longitude grid, the cubed-sphere counterpart is free of polar singularities. Instead, a weaker
singularity on the internal edges of the cube is generated. There exist several types of cubed-
sphere geometry in the literature. In this work, we adopt the cubed-sphere geometry based on the
gnomonic (equiangular central) projection [29], which offers a more isotropic spherical grid In such
a grid system, the gridlines follow nonorthogonal curvilinear coordinate system (x1, x2) such that
x1, x2 ∈ [−π/4, π/4] on each face, as shown in Figure 3.1. Each face of the cubed-sphere is tiled
with Ne ×Ne cells so that 6×N2

e elements span the entire spherical domain. Below, Ne ×Ne × 6
is used to denote a cubed-sphere mesh.

(a)

face5

face4 face1 face2 face3

face6

(top)

(bottom)

x2

x1

x2 x2 x2

x2

x2

x1

x1

x1 x1 x1

(b)

face1

X

Y

Z

(c)

Figure 3.1. (a): Schematic for the cubed-sphere geometry. (b): The relative positions of six cube faces (from
face1 to face6) and their local connectivity.
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Consider the transport equation (2.1), where the computation domain D is the sphere. In the
curvilinear coordinates, the equation can be written as follows

∂U

∂t
+

1
√
g

∂

∂x1
(u1
√
g U) +

1
√
g

∂

∂x2
(u2
√
g U) = 0, (3.1)

where
√
g is the Jacobian (metric term) of the transformation and (u1, u2) is the contravariant

velocity vector. Further note that the explicit analytical form of
√
g is available, and it is time

independent. By introducing a new unknown scaler φ =
√
gU and fluxes F1(φ) = u1φ, F2(φ) =

u2φ, equation (3.1) can be rearranged in the following flux form

∂φ

∂t
+

∂

∂x1
(F1(φ)) +

∂

∂x2
(F2(φ)) = 0, (3.2)

which is identical to the two-dimensional Cartesian cases on each cube face. We refer to [21] for
details of the transformations.

3.2. A Simple WENO limiter on the cubed sphere

The cubed-sphere geometry offers a quasi-uniform rectangular grid structure and the transport
equation (3.2) on the cubed sphere features the same form as the Cartesian cases. Therefore,
the DG scheme (2.2) can be conveniently extended to the cubed-sphere case, see [21] for more
details. However, as we mentioned above, DG solutions may exhibit non-physical oscillations
when approximating non-smooth problems, and hence non-linear limiters are needed to suppress
such undesirable oscillations. The situation is similar for the cubed-sphere case, and the inherent
complexity of the geometry imposes extra challenges to design satisfactory limiting strategies. Some
numerical techniques were developed to address the issue for the DG schemes on the cubed sphere.
For example, in [35], a HWENO limiter was developed to attain the non-oscillatory property for
the DG P 2 (third-order) schemes. However, we note that there are two concerns about the HWENO
limiter. First, the limiter is only third order accurate, which is not sufficient for high order (higher
than P 2) DG schemes in order to maintain the same order accuracy. Second, the limiter requires a
3× 3 stencil (total 9 cells) for the reconstruction procedure. Note that one cell is ‘missing’ in the
stencil for a ‘corner’ element on each cube face; and in such cases, some additional tricks are needed
to recover the full 3× 3 stencil. To this end, we consider extending the simple WENO limiter for
DG on the cubed sphere, which can effectively circumvent the shortcomings: the simple WENO
limiter can be designed to be arbitrary high-order accurate with a very compact stencil (5 cells),
as shown in Figure 2.1(a). An attractive feature of the simple WENO limiter is that it avoids ghost
cells when applied to a corner cell of the cubed sphere, which makes convenient implementation.
Moreover, for atmospheric tracer transport problems, preserving the positivity (monotonicity) of the
solution is highly desirable [20].

Below, we illustrate the process of coupling the simple WENO limiter reviewed in Section 2.2
into the DG transport on the cubed sphere. Although the DG transport scheme developed for the 2-D
Cartesian geometry can be easily implemented on the interior faces, a special attention is required
at the edges and corners of the cubed sphere when applying the simple WENO limiter. Due to the
coordinate discontinuity at the edges of the cubed-sphere faces, some special treatments are required
to guarantee the high order accuracy. For illustrative purposes, we assume that the corner element on
face 2, denoted by I0 (I1,Ne,2, where the subindex ‘2’ means the cell locates on face 2), is identified
as a troubled cell and the DG solution should be replaced by a reconstructed polynomial, see Figure
3.2(a). The shaded cells constitute a reconstruction stencil, where the single index is also employed
for simplicity. In order to obtain the reconstructed polynomial, we need point values at the GLL
points over the target cell I0 from its four neighboring cells via extrapolation. The difficulty lies
in the extrapolation process from cell I3 and cell I4, where the curvilinear coordinates (x1, x2)
are discontinuous across the cube edges. However, the issue can be addressed by the following
procedure.

For convenience, we denote the GLL points in terms of the local coordinates (x1µ,p, x
2
µ,p), where

p = 1, · · · , 6 indicating the panel index. Here µ = (s,m) is a single index, s,m = 0, · · · , k, denoting

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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AN EFFICIENT WENO LIMITER FOR DG TRANSPORT SCHEME ON THE CUBED SPHERE 9

the GLL points on each cell. Now, for example, we want to perform the extrapolation procedure
from cell I4 in a high order manner. For each GLL point over the target cell I0 with the coordinate
(x1µ,2, x

2
µ,2) and the Jacobian (

√
g)µ,2, there is another set of coordinates (x1µ,1, x

2
µ,1) and the

corresponding Jacobian (
√
g)µ,1 given by the central projection transformation on face-1, which

is beyond the usual range [−π/4, π/4]. Then we can extrapolate the point value at each GLL point
on cell I0, denoted by φµ,10,4 with the coordinates (x1µ,1, x

2
µ,1) from the polynomial φ4(x1, x2) on cell

I4, see Figure 3.2(b). By exploiting the following identity

U(λ, θ) =
φ(x11, x

2
1)

√
g(x11, x

2
1)

=
φ(x12, x

2
2)

√
g(x12, x

2
2)
, (3.3)

where (x11, x
2
1) and (x12, x

2
2) are the local coordinates associated with the same physical point with

a spherical coordinate (λ, θ), but from the local transformations on face-1 and face-2, respectively,
we are able to compute the point value at each GLL point (x1µ,2, x

2
µ,2) on face-2, denoted by φµ,20,4 ,

as follows

φµ,20,4 =
(
√
g)µ,2

(
√
g)µ,1

φµ,10,4 . (3.4)
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Figure 3.2. (a): The stencil used for the simple WENO reconstruction on a corner cell I0 is shown for a
single index. (b): Extrapolation (extension) procedure from the polynomial φ4(x1, x2) on the neighboring

cell I4.

Following the similar way, the extrapolating point values at GLL points from cell I3, denoted by
φµ,20,3 , can also be obtained. Consequently, we can construct four candidate polynomials φ0,l(x1, x2),
l = 1, · · · , 4 from four neighbors. After adjusting the cell average of each polynomial as done
in (2.10) and (2.11), the classic WENO procedure is applied to reconstruct a new polynomial
φnew0 (x1, x2) as the two-dimensional Cartesian case discussed in Section 2. We remark that the
proposed strategy is high-order accurate, since the transformation on each individual face is smooth
and the extrapolation process is done in a high-order way.

4. NUMERICAL RESULTS

In this section, we apply the proposed scheme to several benchmark transport problems on the
sphere, including the solid-body rotation [33] and the deformational flow [20]. Through these
tests, we numerically demonstrate the high-order accuracy, and the non-oscillatory and positivity-
preserving properties of the cubed-sphere-based DG transport schemes when coupling the simple
WENO limiter and the BP filter. In the simulations, we adopt P 2 (3× 3 GLL points per element)
and P 3 (4× 4 GLL points per element) for the DG discretization, while pointing out that the simple
WENO limiter can be combined with any configuration of DG. Note that the P 3 stencil is used the
standard configuration for practical model such as [6], with explicit time stepping.
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10 GUO, NAIR AND ZHONG

4.1. Solid-Body Rotation Test Cases

The solid-body rotation is a widely used 2-D spherical advection problem for assessing the quality
of a transport scheme. Denote R = 6.37122× 106 m as the earth’s radius. The wind components in
the longitudinal (λ) and latitudinal (θ) directions are defined as follows:

u = u0(cosα0 cos θ + sinα0 cosλ sin θ),

v = −u0 sinα0 sinλ,
(4.1)

where u0 = 2πR/(12 days) meaning that a scaler field U takes 12 simulated days (288 hours(h)) to
complete one revolution without any deformation of the shape; α is the rotation angle between the
axis of the solid-body rotation and the polar axis of the spherical coordinate. The flow is oriented
along the equatorial (east-west) direction when α = 0 and the diagonal (north-east) direction when
α = π/4. It is easy to check that the wind field is non-divergent, and hence the maximum principle
of solutions holds.

We consider three initial distributions, including a cosine-bell, a Gaussian hill, and a step-cylinder.
The cosine-bell initial field is defined by

U(λ, θ, t = 0) =

{
(h0/2)[1 + cos(πrd/r0)] if rd < r0

0 if rd ≥ r0,
(4.2)

where rd is the great-circle distance between (λ, θ) and the center of the bell which locates at
(3π/2, 0), h0 = 1000m is the maximum height of the cosine bell, and r0 = R/3 represents its radius.
Note that since the exact solution is known at all times, error measures can be computed for checking
the accuracy of a spherical transport scheme.

Even though the standard cosine-bell advection test (4.2) provides a good criterion to assess
performance of a transport scheme, it can not be used for the convergence study due to the quasi-
smoothness (C1) of the cosine-bell. In order to demonstrate the high-order accuracy of the proposed
scheme, we consider using the following smooth (C∞) Gaussian hill defined by [18],

U(λ, θ, t = 0) = hmax exp
(
−b0

(
(X −Xc)

2 + (Y − Yc)2 + (Z − Zc)2
))

(4.3)

with
(X,Y, Z) = (R cos θ cosλ,R cos θ sinλ,R sin θ), (4.4)

where hmax = 100 represents the height of the Gaussian hill and we choose b0 = 5 in the simulation.
The center of the Gaussian hill is located at (λc, θc) = (3π/2, 0). The corresponding Cartesian
coordinates (Xc, Yc, Zc) can be obtained through the relation (4.4).

The last initial field we consider is the step-cylinder defined as follows:

U(λ, θ, t = 0) =


h1 if rd < r1,

h2 if r1 ≤ rd < r2,

0 if rd ≥ r2,

(4.5)

where the heights and radii of the cylinders are set as h1 = 1000m and h2 = 500m, and r1 = 2/3R
and r2 = 1/3R, respectively. At time t = 0, the center of the step-cylinder is also located at
(λc, θc) = (3π/2, 0). Note that, unlike previous two initial conditions, the distribution of the step-
cylinder (4.5) is discontinuous, for which a standard DG scheme may generate oscillatory numerical
solutions in the vicinities of discontinuities, as shown in Figures 4.3(a) and 4.3(c). Further note
that there is an internal discontinuity at level U = 500. Below, by solving this example, we will
demonstrate the capacity of the proposed schemes in controlling the internal oscillations.

We first solve the solid-body rotation of the cosine-bell (4.2) with the rotation angle α = π/4.
Note that this configuration is the most challenging case, since the bell passes through four vertices,
two edges, and all six cubed faces to complete one full rotation. Set the cubed-sphere mesh as
30× 30× 6 which corresponds to 1.5◦ equatorial resolution for P 2 and 1◦ resolution for P 3. The
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time step is chosen as ∆t = 720s and we compute the solution after one revolution (T = 288h). The
evolution histories of the normalized l1, l2 and l∞ errors defined in [20] are reported in Figure 4.1
for DG P 2 and P 3 with and without using the WENO limiter and the BP filter. It is observed that the
magnitude of errors becomes larger after the limiter and filter are applied, especially for the l∞ error.
We notice that such phenomena are also observed for many other limiters in the literature, such as
the classic WENO limiter [27], the H-WENO limiter [24, 35], the optimization-based limiter [10].
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Figure 4.1. The histories of error norms evolution for the solid-body rotation of a cosine-bell. The DG P 2

and P 3 schemes are applied on a cubed-sphere mesh 30 × 30 × 6. The time step is set as ∆t = 720 sec and
flowangle α = π/4. (a) Evolution of error norms for the DG P 2 scheme; (b) evolution of error norms for
the DG P 2 scheme with the WENO limiter and the BP filter; (c) evolution of error norms for the DG P 3

scheme; (d) evolution of error norms for the DG P 3 scheme with the WENO limiter and the BP filter.

We validate the high-order accuracy of the proposed scheme via the solid-body rotation test
with a Gaussian hill initial condition. For this test, the flow is oriented with a rotation angle
α = π/4. Note that, for this smooth problem, the standard DG methods can perfectly resolve the
solution structures without producing non-physical oscillations, and hence limiting strategies are
not desirable. However, in order to investigate the effect of the WENO limiter on the convergence
of DG methods, we choose a very small TVB constant M = 1E − 5, which results in many ‘good’
elements are being identified as troubled elements. In Figure 4.2, we report the convergence of the
normalized l1 and l∞ errors for the DG P 2 (top) and P 3 (bottom) with and without the WENO
limiter and the BP filter. It is observed that, even though the WENO limiter is ‘artificially’ used
in many ‘good’ elements with smooth solutions, the high-order accuracy of DG schemes is still
maintained.
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Figure 4.2. Convergence plots of the solid-body rotation of a Gaussian hill. (a) DG P 2; (b) DG P 2 + WENO
+ BP; (c) DG P 3; (d) DG P 3 + WENO + BP.

Then, we would like to demonstrate the non-oscillatory property of the proposed scheme by using
a step-cylinder (4.5) as an initial field. This discontinuous function has three steps with values 0,
500, and 1000 on the sphere. Again, the rotation angle is set as the most challenging one, α = π/4.
We use a 60× 60× 6 cubed-sphere mesh and the time step is chosen as ∆t = 360s. The numerical
solution is computed up to T = 288h. In order to better compare the performance of the schemes, we
report the 3-D perspective of the numerical solutions by DG P 2 and DG P 3 projected on the cubed-
sphere face-4 in Figure 4.3. As we mentioned, a standard DG scheme may produce oscillatory
solutions around discontinuities, as shown in Figures 4.3(a) and 4.3(c). When the simple WENO
limiter is applied, such non-physical oscillations are completely removed, as shown in Figures 4.3(b)
and 4.3(d). Moreover, the numerical solution is exactly positivity-preserving when further coupling
the BP filter. Note that, as pointed out in [35], the BP filter can remove the oscillations near the
bound of a DG solution, while it has no control of the internal oscillations. On the other hand, the
simple WENO limiter can effectively suppress such internal oscillations, see, e.g., solutions at level
500 in Figure 4.3; and hence the non-oscillatory property is attained when the WENO limiter is
coupled into the DG framework.

At last, we study the additional computational overhead required for the simple WENO limiter
and the BP filter. For the solid-body rotation test, it is found that the DG scheme coupled with the
simple WENO limiter and the BP filter consumes approximately 27% more computational time
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AN EFFICIENT WENO LIMITER FOR DG TRANSPORT SCHEME ON THE CUBED SPHERE 13

than the standard DG scheme for both P 2 and P 3 cases. Note that such a combination is more
computationally efficient than the DG scheme combined with the H-WENO limiter and the BP
filter in [35], which takes about 40% more time.
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Figure 4.3. 3-D perspective of the numerical solutions projected on the cubed-sphere face-4 for the solid-
body rotation of a step-cylinder. The DG P 2 and P 3 schemes are applied on the cubed-sphere meshes
60 × 60 × 6. The flowangle α = π/4. (a) Numerical solutions by DG P 2; (b) numerical solutions by DG
P 2 + WENO + BP; (c) numerical solutions by DG P 3; (d) numerical solutions by DG P 2 + WENO + BP.
Numerical oscillations around the discontinuities are clearly observed for the standard DG schemes, see (a)
and (c), while such undesirable oscillations are removed by the simple WENO limiter and the BP filter, see

(b) and (d).

4.2. Deformational Flow Test Cases

To further validate the proposed transport scheme on the sphere, we consider a challenging test from
a class of deformational flow tests proposed by [20]. The wind field is defined by

u(λ, θ, t) = κ sin2(λ′) sin(2θ) cos(πt/T ) + 2π cos(θ)/T,

v(λ, θ, t) = κ sin(λ′) cos(θ) cos(πt/T ),

where λ′ = λ− 2πt/T , κ = 2 and T = 5 units. Note that the wind field is non-divergent and
designed to be a combination of a deformational field and a zonal background flow in order to
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14 GUO, NAIR AND ZHONG

avoid the possible cancellations of errors due to the reversal of the flow along the same flow path
after the half time T/2.

We also consider three initial conditions to assess the quality of the proposed schemes. The first
one is the non-smooth twin slotted-cylinder as an initial condition

U (sc)(λ, θ, t = 0) =


c if ri ≤ r and |λ− λi| ≥ r/6 for i = 1, 2,
c if r1 ≤ r and |λ− λ1| < r/6 and θ − θ1 < − 5

12r,
c if r2 ≤ r and |λ− λ2| < r/6 and θ − θ2 > 5

12r,
b otherwise

(4.6)

where c = 1, the background value is b = 0.1, r = 1/2 is the radius of the cylinders, and ri =
ri(λ, θ), i = 1, 2, is the great-circle distance between (λ, θ) and a specified center (λi, θi) of one
cylinder, which is given by

ri(λ, θ) = arccos (sin θi sin θ + cos θi cos θ cos(λ− λi)) , i = 1, 2.

The centers of the twin slotted-cylinder are located at (λ1, θ1) = (5π/6, 0) and (λ2, θ2) = (7π/6, 0),
respectively. Figure 4.4(a), shows the initial distribution and note that the slots are oriented in
opposite directions for the two cylinders such that they are symmetric with respect to the flow.
The second initial condition we considered is a quasi-smooth twin cosine-bell given by

U (cb)(λ, θ, t = 0) =

 b+ ch1(λ, θ) if r1 < r,
b+ ch2(λ, θ) if r2 < r,
b otherwise,

(4.7)

where c = 0.9, b = 0.1 again is the background value, and

hi(λ, θ) =
1

2
[1 + cos(πri/r)] if ri < r, for i = 1, 2.

The initial distribution is plotted in Figure 4.4(b). Note that this test is a variant of the slotted-
cylinder case and we set all other parameters the same. The last one is a ‘correlated’ cosine-bell
defined as

U (ccb)(λ, θ, t = 0) = ψ(U (cb)), (4.8)

where ψ is non-linear quadratic function given by

ψ(χ) = aψχ
2 + bψ, (4.9)

with aψ = −0.8 and bψ = 0.9. This test is suggested by Lauritzen et al. in [17, 16] to assess the
ability of a transport scheme to maintain pre-existing relations between species/tracers. The contour
plot of the correlated cosine-bell is shown in Figure 4.4(c). Following [3], such pre-existing relations
can be proved for the DG transport scheme.

First, we summarize the numerical results, including the normalized l1, l2, and l∞ errors, for the
discontinuous slotted-cylinder (4.6) and quasi-smooth twin cosine-bell (4.7) test cases in Table 4.1.
The DG P 2 and P 3 schemes coupled with the simple WENO limiter and the BP filter are used
for the simulations. Two sets of cubed-sphere meshes is adopted in order to compare the schemes
with others reported in the literature. One is set as 30× 30× 6 and 20× 20× 6 for P 2 and P 3,
respectively, corresponding to a 1.5◦ mesh resolution at the equator; the other is set as 60× 60× 6
and 40× 40× 6 for P 2 and P 3, respectively, corresponding to a 0.75◦ equatorial mesh resolution.
We choose the time step to be ∆t = T/2000 for the mesh with a 1.5◦ resolution and ∆t = T/4000
for the mesh with a 0.75◦ resolution.

We first compare with the result obtained by the SEM with an optimization-based limiter reported
in [10]. The motivation of the optimization limiter is similar to the BP filter in the sense that the
maximum principle of schemes is enforced by locally adjusting the solution polynomial. However,
it requires solving a quadratic program subject to linear constraints, and hence introduces more
computational cost than the BP filter. In [10] Table 1 and Table 2, l1, l2, and l∞ errors by SEMs P 3
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(a) (b)

(c)

Figure 4.4. Three initial conditions for the deformational flow test. (a): Non-smooth twin slotted-cylinder.
(b): Quasi-smooth twin cosine-bell. (c): ‘Correlated’ cosine-bell.

solving the same problem with a 1.5◦ resolution cubed-sphere mesh and a 0.75◦ one are reported,
respectively. The errors by the DG P 3 with the WENO limiter and the BP filter are presented in
Table 4.1. Those errors are slightly smaller than those by the SEMs with the optimization-based
limiter (OP1). Moreover, for the twin cosine-bell case (4.7), the order of convergence in l∞ errors
degrades to first order accuracy from the SEM P 3 + OP1, while the second order accuracy is still
maintained by the DG P 3 + WENO + BP. Note that the twin cosine-bell is C1 smooth, thus the
second order convergence is optimal we can expect.

We also compare the results with the DG schemes coupled with a H-WENO limiter and the BP
filter presented in [35]. For a fair comparison, we set the configuration the same for the two schemes:
a DG P 2 scheme is used on a cubed-sphere mesh 45× 45× 6. The l1, l2, and l∞ errors by from the
DG P 2 + WENO + BP are 2.51E-2, 5.77E-2, and 1.38E-1, which are about 5% larger than those
from the DG P 2 + H-WENO + BP in magnitude. However, we would like to remark again that
the H-WENO limiter used in [35] only works for DG P 2, while the simple WENO limiter can be
designed for DG schemes with arbitrarily high-order polynomial spaces.

Figure 4.5 shows the results for the case with the twin slotted-cylinder as the initial conditions.
Note that the tracer is stretched into thin filaments following the highly deformational flow at time

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
Prepared using fldauth.cls DOI: 10.1002/fld



16 GUO, NAIR AND ZHONG

Table 4.1. Summary for results by the DG P 2 and P 3 schemes for the deformational flow test. The simple
WENO limiter and the BP filter are coupled into the DG transport. Two sets of cubed-sphere meshes are
used, which correspond to a equatorial 1.5◦ resolution and a equatorial 0.75◦ resolution, respectively. The

normalized l1, l2, and l∞ errors are reported at T = 5 for comparison.

Scheme Tracer Resolution Time step l1 l2 l∞
P 2 + WENO + BP Cos. 1.5◦ T/2000 6.63E-2 1.44E-2 2.78E-1
P 2 + WENO + BP Cyl. 1.5◦ T/2000 2.60E-1 3.28E-1 7.01E-1
P 3 + WENO + BP Cos. 1.5◦ T/2000 3.15E-2 5.83E-2 1.20E-1
P 3 + WENO + BP Cyl. 1.5◦ T/2000 2.34E-1 2.94E-1 6.39E-1
P 2 + WENO + BP Cos. 0.75◦ T/4000 1.07E-2 2.55E-2 6.85E-2
P 2 + WENO + BP Cyl. 0.75◦ T/4000 1.62E-1 2.41E-1 6.52E-1
P 3 + WENO + BP Cos. 0.75◦ T/4000 8.43E-3 2.22E-2 8.32E-2
P 3 + WENO + BP Cyl. 0.75◦ T/4000 1.45E-1 2.20E-1 6.18E-1

t = T/2 and comes back to its initial state at t = T as the flow reverses. The numerical results
are comparable to those by other transport schemes reported in the literature, such as the non-
oscillatory DG P 2 scheme with a H-WENO limiter and the BP filter in [35] and the SEMs with the
optimization-based limiter [10].

At last, we investigate the ability of correlation preservation for the proposed schemes. Such
a diagnostic is suggested by Lauritzen et al. in [17] and [16] to assess the ability of a transport
scheme in preserving a pre-existing nonlinear relations between two tracers. In the test, the twin
cosine-bell (4.7) and the correlated cosine-bell (4.8) are advected by the proposed schemes along the
deformational flow. In the simulation, we use cubed-sphere meshes with 0.75◦ equatorial resolutions
for both DG P 2 and P 3 schemes. In Figure 4.6, we report the scatter plots of the two non-linear
correlated tracers at t = T/2, in which three numerical mixing diagnostics: ‘real’ mixing lr, ‘range-
preserving’ unmixing lu, and overshooting lo based on the scatter plots are also included. The
definitions of lr, lu, and lo are given in [16]. It is observed that the standard DG schemes can preserve
the pre-existing quadratic relation between the two tracers very well. However, the overshooting
error lo is non-zero, which means the numerical unmixing is out of the range of the initial data. It
is unacceptable when positivity preservation is required. On the other hand, the proposed schemes
can effectively keep the solutions within the initial bound, and hence lo equals to zero. But lr, lu are
observed to be slighter larger than those by the standard DG schemes.

5. CONCLUDING REMARKS

In this paper, an efficient WENO (Weighted Essentially Non-Oscillatory) limier is proposed for
the discontinuous Galerkin (DG) transport schemes on the cubed sphere. It is well known that DG
schemes may produce unphysical oscillations when the solution is not smooth. Usually, a limiting
strategy is imperative to suppress the undesirable oscillations and enhance the numerical stability.
There are several requirements that a good limiter should fulfill. For instance, it should be robust
to control oscillations, high-order accurate, and easy to implement. The situation is similar when
the DG schemes are applied to the global transport simulations on a cubed-sphere mesh. However,
the development of efficient limiters is even more challenging due to the inherent complication of
the cubed-sphere geometry. In order to address the issue, we extended a simple WENO limiter on
the Cartesian mesh to the cubed-sphere geometry. The limiter is local, uses information only from
immediate neighbors, which results in a very compact stencil. Moreover, both uniform high-order
accuracy and non-oscillatory property are obtained. When coupling the simple WENO limiter in
the DG schemes on the cubed sphere, a special attention should be given at the cubed edges, where
the curvilinear coordinates are discontinuous. We developed a boundary treatment to circumvent
the difficulty, and high-order accuracy is retained. Another attractive of the simple WENO limiter

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
Prepared using fldauth.cls DOI: 10.1002/fld



AN EFFICIENT WENO LIMITER FOR DG TRANSPORT SCHEME ON THE CUBED SPHERE 17

(a) (b)

(c) (d)

Figure 4.5. Numerical solutions for the deformational flow test with twin slotted-cylinder as the initial
condition. The DG P 2 and P 3 schemes with the WENO limiter and the BP filter are applied on cubed-sphere
meshes with a equatorial 0.75◦ resolution. The time step is set as ∆t = T/4000. (a) The numerical solution
by DG P 2 at half time t = T/2; (b) the numerical solution by DG P 2 at time t = T ; (c) the numerical
solution by DG P 3 at half time t = T ; (d) the numerical solution by DG P 3 at half time t = T . Also note

that, the numerical solution is exactly positivity preserving.

is that, unlike previous WENO limiters, it avoids ghost cells when applied to a corner cell of the
cubed sphere, which leads to convenient implementation. Extensive numerical results for several
benchmark spherical transport problems including solid-body rotation and deformational flow are
provided to demonstrate good results, both in accuracy and in non-oscillatory performance. Future
work consists of applying the efficient WENO limiter to the shallow-water model on the sphere.
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Figure 4.6. Scatter plots at t = T/2 for two non-linearly correlated tracers based on the twin cosine-bell (4.7)
initial conditions. The mesh resolution is set as 0.75◦ in the simulations. (a) The standard DG P 2 scheme;
(b) the DG P 2 + WENO + BP scheme; (c) the standard DG P 3 scheme; (d) the DG P 3 + WENO + BP

scheme. The mixing diagnostics lr , lu, and lo for correlation preservation are presented in each plot.
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