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In this paper we generalize a new type of limiters based on the weighted essentially
non-oscillatory (WENO) finite volume methodology for the Runge–Kutta discontinuous
Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were
recently developed in [32] for structured meshes, to two-dimensional unstructured trian-
gular meshes. The key idea of such limiters is to use the entire polynomials of the DG solu-
tions from the troubled cell and its immediate neighboring cells, and then apply the
classical WENO procedure to form a convex combination of these polynomials based on
smoothness indicators and nonlinear weights, with suitable adjustments to guarantee con-
servation. The main advantage of this new limiter is its simplicity in implementation, espe-
cially for the unstructured meshes considered in this paper, as only information from
immediate neighbors is needed and the usage of complicated geometric information of
the meshes is largely avoided. Numerical results for both scalar equations and Euler sys-
tems of compressible gas dynamics are provided to illustrate the good performance of this
procedure.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The discontinuous Galerkin (DG) method, initialized in 1973 by Reed and Hill [23], is one of the popular choices for solv-
ing conservation laws, the two-dimensional version studied in this paper being given by
ut þ f ðuÞx þ gðuÞy ¼ 0;
uðx; y;0Þ ¼ u0ðx; yÞ:

�
ð1:1Þ
For nonlinear time dependent equations such as (1.1), the so-called Runge–Kutta DG (RKDG) method developed in [6,5,4,7] is
particularly convenient to implement. The RKDG methods use explicit, nonlinearly stable high order Runge–Kutta methods
[28] to discretize the temporal variable and the DG discretization to discretize the spatial variables, with exact or approxi-
mate Riemann solvers as interface fluxes. In this paper we consider only the RKDG methods for solving (1.1) on two-dimen-
sional unstructured triangular meshes. For a detailed discussion on DG methods for solving conservation laws, we refer to
the review paper [8] and the books and lecture notes [3,12,16,27].
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One of the main difficulties in using RKDG methods to solve (1.1) with possibly discontinuous solutions is that the numer-
ical solution may be oscillatory near discontinuities. These spurious oscillations are not only unpleasant in appearance, they
may also lead to nonlinear instability (for example the appearance of negative density or pressure for Euler equations) and
eventual blow up of the codes. Therefore, it is important to investigate nonlinear limiters which are easy to implement, can
remove or reduce such spurious oscillations near discontinuities, yet can still maintain the original high order accuracy of the
RKDG methods. Many limiters have been studied in the literature on RKDG methods. For example, we mention the minmod
type total variation bounded (TVB) limiter [6,5,4,7], which is a slope limiter using a technique borrowed from the finite vol-
ume methodology [25]; the moment based limiter [1] and an improved moment limiter [2], which are specifically designed
for discontinuous Galerkin methods to work on the moments of the numerical solution. One disadvantage of these limiters is
that they may degrade accuracy when mistakenly used in smooth regions of the solution.

In [19,20,22,32–34], the weighted essentially non-oscillatory (WENO) finite volume methodology [17,14,10,13] is used as
limiters for the RKDG methods. The original WENO schemes were designed based on the successful ENO schemes in
[11,28,29]. Both ENO and WENO schemes use the idea of adaptive stencils in the reconstruction procedure based on the local
smoothness of the numerical solution to automatically achieve high order accuracy and a non-oscillatory property near dis-
continuities. The general framework in using the WENO methodology as limiters for RKDG methods is as follows:

Step 1: First, identify the troubled cells, namely those cells which might need the limiting procedure.
Step 2: Then, in any troubled cell, replace the solution polynomial by another reconstructed polynomial using the WENO

procedure and information from both the target troubled cell and its neighboring cells, while maintaining the
original cell average for conservation.

Study on Step 1 has been carried out in, e.g. [21]. The emphasis of this paper is not on Step 1, hence we will simply use one
of the recommended techniques in [21], namely the KXRCF technique [15], to identify troubled cells in this paper. Other
troubled cell indicator techniques can of course also be used. We emphasize that, if the limiter in Step 2 can retain the ori-
ginal high order accuracy of the RKDG scheme, then a non-optimal performance in Step 1, as long as it does not miss real
shocked cells, would only lead to additional computational cost (to perform Step 2 in troubled cells which actually corre-
spond to smooth regions of the solution), but not a degradation of the order of accuracy.

In the previous work [20,33,34], the limited polynomial in a troubled cell is reconstructed based on the traditional WENO
methodology, namely using the cell averages in a local stencil consisting of the troubled cell and some of its neighboring cells
to reconstruct the point values at quadrature points or suitable moments of the approximation, and then to obtain the new
reconstruction polynomial. This procedure tends to use a rather wide stencil, especially for higher order of accuracy, involv-
ing both immediate neighbors and neighbors’ neighbors etc. Also, the traditional WENO procedure is complicated for
unstructured meshes [13,31], with the possibility of negative linear weights and special treatments needed to handle them
[24]. In [19,22,18], a Hermite WENO procedure is adopted, which uses not only the cell averages but also the first derivative
or first order moment information in the stencil for the WENO reconstruction, thereby reducing the width of the reconstruc-
tion stencil. However, for higher order methods information from just the immediate neighbors is still not enough, and the
appearance of negative linear weights is still a problem.

More recently, in [32], Zhong and Shu developed a new WENO limiting procedure for RKDG methods on structured
meshes. The idea is to reconstruct the entire polynomial, instead of reconstructing point values or moments in the classical
WENO reconstructions. That is, the entire reconstruction polynomial on the target cell is a convex combination of polyno-
mials on this cell and its immediate neighboring cells, with suitable adjustments for conservation and with the nonlinear
weights of the convex combination following the classical WENO procedure. The main advantage of this limiter is its sim-
plicity in implementation, as it uses only the information from immediate neighbors and the linear weights are always po-
sitive. This simplicity is more prominent for multi-dimensional unstructured meshes, which will be studied in this paper. We
generalize the technique in [32] to two-dimensional unstructured triangular meshes, and perform numerical experiments
for both scalar equations and Euler systems of compressible gas dynamics.

This paper is organized as follows. We describe the details of this new procedure on two-dimensional triangular meshes
for the second and third order DG methods in Section 2 and present extensive numerical results in Section 3 to verify the
accuracy and stability of this approach. Concluding remarks are given in Section 4.
2. The new WENO limiter to the RKDG method on unstructured meshes

In this section, we describe the details of using the new WENO reconstruction procedure as a limiter for the RKDG meth-
od. This is a generalization to unstructured meshes of the procedure in [32] for structured meshes.
2.1. Review of the RKDG method on unstructured meshes

Given a triangulation consisting of cells Mj, PkðMjÞ denotes the set of polynomials of degree at most k defined on Mj. Here k
could actually change from cell to cell, but for simplicity we assume it is a constant over the whole triangulation. In the DG
method, the solution as well as the test function space is given by Vk

h ¼ fvðx; yÞ : vðx; yÞj
Mj
2 PkðMjÞg. We emphasize that the
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procedure described below does not depend on the specific basis chosen for the polynomials. We adopt a local orthogonal
basis over a target cell, such as M0 : fv ð0Þl ðx; yÞ; l ¼ 0; . . . ;K; K ¼ ðkþ 1Þðkþ 2Þ=2� 1g:
v ð0Þ0 ðx; yÞ ¼ 1;

v ð0Þ1 ðx; yÞ ¼
x� x0ffiffiffiffiffiffiffiffiffi
jM0j

p ;

v ð0Þ2 ðx; yÞ ¼ a21
x� x0ffiffiffiffiffiffiffiffiffi
jM0j

p þ y� y0ffiffiffiffiffiffiffiffiffi
jM0j

p þ a22;

v ð0Þ3 ðx; yÞ ¼
ðx� x0Þ2

jM0j
þ a31

x� x0ffiffiffiffiffiffiffiffiffi
jM0j

p þ a32
y� y0ffiffiffiffiffiffiffiffiffi
jM0j

p þ a33;

v ð0Þ4 ðx; yÞ ¼ a41
ðx� x0Þ2

jM0j
þ ðx� x0Þðy� y0Þ

jM0j
þ a42

x� x0ffiffiffiffiffiffiffiffiffi
jM0j

p þ a43
y� y0ffiffiffiffiffiffiffiffiffi
jM0j

p þ a44;

v ð0Þ5 ðx; yÞ ¼ a51
ðx� x0Þ2

jM0j
þ a52

ðx� x0Þðy� y0Þ
jM0j

þ ðy� y0Þ
2

jM0j
þ a53

x� x0ffiffiffiffiffiffiffiffiffi
jM0j

p þ a54
y� y0ffiffiffiffiffiffi
M0
p þ a55;

. . .
where ðx0; y0Þ and jM0j are the barycenter and the area of the target cell M0, respectively. Then we would need to solve a linear
system to obtain the values of a‘m by the orthogonality property:
Z

M0

v ð0Þi ðx; yÞv
ð0Þ
j ðx; yÞdxdy ¼ widij; ð2:1Þ
with wi ¼
R
M0

v ð0Þi ðx; yÞ
� �2

dxdy.

The numerical solution uhðx; y; tÞ in the space Vk
h can be written as:
uhðx; y; tÞ ¼
XK

l¼0

uðlÞ0 ðtÞv
ð0Þ
l ðx; yÞ; for ðx; yÞ 2 M0;
and the degrees of freedom uðlÞ0 ðtÞ are the moments defined by
uðlÞ0 ðtÞ ¼
1
wl

Z
M0

uhðx; y; tÞv ð0Þl ðx; yÞdxdy; l ¼ 0; . . . ;K:
In order to determine the approximate solution, we evolve the degrees of freedom uðlÞ0 ðtÞ:
d
dt

uðlÞ0 ðtÞ ¼
1
wl

Z
M0

f ðuhðx; y; tÞÞ @
@x

v ð0Þl ðx; yÞ þ gðuhðx; y; tÞÞ @
@y

v ð0Þl ðx; yÞ
� �

dxdy
�

�
Z
@M0

ðf ðuhðx; y; tÞÞ; gðuhðx; y; tÞÞÞT � nv ð0Þl ðx; yÞds
�
; l ¼ 0; . . . ;K: ð2:2Þ
where n ¼ ðnx;nyÞT is the outward unit normal of the triangle boundary @M0.
In (2.2) the integral terms can be computed either exactly or by suitable numerical quadratures which are exact for poly-

nomials of degree up to 2k for the element integral and up to 2kþ 1 for the edge integral. In this paper, we use AG quadrature
points (AG ¼ 6 for k ¼ 1 and AG ¼ 7 for k ¼ 2) for the element integrals and EG Gaussian points (EG ¼ 2 for k ¼ 1 and EG ¼ 3 for
k ¼ 2) for the edge integrals:
1

3

2

0

Fig. 2.1. The stencil S ¼ fM0;M1;M2;M3g.
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Z
M0

f ðuhðx; y; tÞÞ @
@x

v ð0Þl ðx; yÞ þ gðuhðx; y; tÞÞ @
@y

v ð0Þl ðx; yÞ
� �

dxdy

� jM0j
X

G

rG f ðuhðxG; yG; tÞÞ
@

@x
v ð0Þl ðxG; yGÞ þ gðuhðxG; yG; tÞÞ

@

@y
v ð0Þl ðxG; yGÞ

� �
; ð2:3Þ
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Fig. 3.1. Burgers equation. The coarsest mesh. The mesh points on the boundary are uniformly distributed with cell length h ¼ 4=10.

.1�
x
þ u2

2

� �
y
¼ 0. uðx; y; 0Þ ¼ 0:5þ sinðpðxþ yÞ=2Þ. Periodic boundary conditions in both directions. T ¼ 0:5=p. L1 and L1 errors. RKDG with the WENO

compared to RKDG without limiter.

Cell length h DG with WENO limiter DG without limiter

L1 error Order L1 error Order L1 error Order L1 error order

4/10 7.47E�2 7.33E�1 2.41E�2 2.56E�1
4/20 1.58E�2 2.24 2.94E�1 1.32 6.07E�3 1.99 7.54E�2 1.77
4/40 2.39E�3 2.73 4.04E�2 2.86 1.53E�3 1.98 2.14E�2 1.81
4/80 4.27E�4 2.48 5.68E�3 2.83 3.91E�4 1.97 5.71E�3 1.91
4/160 9.88E�5 2.11 1.55E�3 1.87 9.87E�5 1.99 1.55E�3 1.88

4/10 1.61E�3 5.32E�2 1.70E�3 5.28E�2
4/20 2.30E�4 2.81 8.12E�3 2.71 2.45E�4 2.79 8.19E�3 2.69
4/40 3.27E�5 2.81 1.55E�3 2.38 3.17E�5 2.95 1.55E�3 2.39
4/80 4.64E�6 2.82 2.91E�4 2.42 4.01E�6 2.98 2.37E�4 2.71
4/160 5.68E�7 3.03 4.28E�5 2.76 5.03E�7 3.00 3.20E�5 2.89

.2�
x
þ u2

2

� �
y
¼ 0. uðx; y;0Þ ¼ 0:5þ sinðpðxþ yÞ=2Þ. Periodic boundary conditions in both directions. T ¼ 0:5=p. The average percentage of troubled cells

to the WENO limiting for different meshes.

entage of the troubled cells

Cell length h Average percentage Cell length h Average percentage
4/10 92.4 P2 4/10 65.7

4/20 81.3 4/20 35.9
4/40 69.2 4/40 17.3
4/80 54.3 4/80 7.58
4/160 37.3 4/160 1.81
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Z
@M0

ðf ðuhðx; y; tÞÞ; gðuhðx; y; tÞÞÞT � nv ð0Þl ðx; yÞds � j@M0j
X

G

�rG f ðuhð�xG; �yG; tÞÞ; gðuhð�xG; �yG; tÞÞÞT � nv ð0Þl ð�xG; �yG

� �
; ð2:4Þ
where ðxG; yGÞ 2 M0 and ð�xG; �yGÞ 2 @M0 are the quadrature points, and rG and �rG are the quadrature weights. Since the edge
integral is on element boundaries where the numerical solution is discontinuous, the flux ðf ðuhðx; y; tÞÞ; gðuhðx; y; tÞÞÞT � n is
replaced by a monotone numerical flux for the scalar case and by an approximate Riemann solver for the system case.
0 0.5 1 1.5 2
X

0

0.5

1

1.5

2

Y

Fig. 3.2. 2D-Euler equations. Mesh. The mesh points on the boundary are uniformly distributed with cell length h ¼ 2=10.

.3
r equations: initial data qðx; y;0Þ ¼ 1þ 0:2 sinðpðxþ yÞÞ;uðx; y;0Þ ¼ 0:7, vðx; y;0Þ ¼ 0:3, and pðx; y;0Þ ¼ 1. Periodic boundary conditions in both
ns. T ¼ 2:0. L1 and L1 errors. RKDG with the WENO limiter compared to RKDG without limiter.

Cell length h DG with WENO limiter DG without limiter

L1 error Order L1 error Order L1 error Order L1 error Order

2/10 3.57E�2 8.94E�2 4.39E�3 2.23E�2
2/20 5.67E�3 2.65 2.59E�2 1.78 1.03E�3 2.08 5.42E�3 2.04
2/40 6.28E�4 3.17 4.54E�3 2.51 2.54E�4 2.02 1.29E�3 2.06
2/80 6.40E�5 3.29 3.80E�4 3.58 6.38E�5 1.99 3.27E�4 1.98
2/160 1.62E�5 1.98 8.48E�5 2.16 1.62E�5 1.97 8.48E�5 1.95

2/10 6.04E�4 5.79E�3 4.48E�4 5.94E�3
2/20 9.00E�5 2.75 1.14E�3 2.34 6.17E�5 2.86 1.14E�3 2.38
2/40 1.01E�5 3.14 1.59E�4 2.84 7.05E�6 3.12 1.94E�4 2.56
2/80 7.99E�7 3.67 2.77E�5 2.53 7.76E�7 3.18 2.87E�5 2.76
2/160 1.10E�7 2.86 3.62E�6 2.93 1.10E�7 2.81 3.62E�6 2.99

.4
r equations: initial data qðx; y;0Þ ¼ 1þ 0:2 sinðpðxþ yÞÞ;uðx; y;0Þ ¼ 0:7, vðx; y;0Þ ¼ 0:3, and pðx; y;0Þ ¼ 1. Periodic boundary conditions in both
ns. T ¼ 2:0. The average percentage of troubled cells subject to the WENO limiting for different meshes.

entage of the troubled cells

Cell length h Average percentage Cell length h Average percentage
2/10 65.7 P2 2/10 81.1
2/20 32.3 2/20 53.5
2/40 11.6 2/40 25.9
2/80 1.42E�2 2/80 6.91E�2
2/160 2.11E�4 2/160 5.31E�4
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The simple Lax–Friedrichs flux is used in all of our numerical tests. The semi-discrete scheme (2.2) is discretized in time by a
non-linearly stable Runge–Kutta time discretization [28], e.g. the third-order version:
Fig. 3.3
same a
uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ 3
4

un þ 1
4

uð1Þ þ 1
4

DtLðuð1ÞÞ;

unþ1 ¼ 1
3

un þ 2
3

uð2Þ þ 2
3

DtLðuð2ÞÞ:

ð2:5Þ
2.2. The troubled cell indicator

The method described above can compute solutions to (1.1), which are either smooth or have weak shocks and other dis-
continuities, without further modification. If the discontinuities are strong, however, the scheme will generate significant
oscillations and even nonlinear instability. To avoid such difficulties, we apply a nonlinear WENO limiter after each
Runge–Kutta inner stage to control the numerical solution. The main focus of this paper is the development of a new, simple
WENO limiter for unstructured meshes.
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. Subsonic cylinder test case. Sample meshes. From left to right and top to bottom: the numbers of points in the inner and outer boundaries are the
s 16, 32, 64 and 128.
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In the following, we relabel the target cell and its neighboring cells as shown in Fig. 2.1. This forms the stencil of the
WENO reconstruction. We then use the KXRCF shock detection technique developed in [15] to detect troubled cells. We di-
vide the boundary of the target cell M0 into two parts: @Mþ0 and @M�0 , where the flow is into (v � n < 0) and out of (v � n > 0) M0

respectively. Here we define v, taking its value from inside the cell M0, as the vector ðf 0ðuÞ; g0ðuÞÞT and take u as the indicator
variable for the scalar case. For the Euler systems (2.11), v, again taking its value from inside the cell M0, is ðl; mÞT where l is
the velocity in the x-direction and m is the velocity in the y-direction, and we take both the density q and the total energy E as
the indicator variables. The target cell M0 is identified as a troubled cell when
Fig. 3.4
to 0.94
16 and
j
R
@M�0
ðuhðx; y; tÞj

M0
� uhðx; y; tÞj

Ml
Þdsj

h
kþ1

2 j@M�0 j � jjuhðx; y; tÞj
M0
jj

> Ck; ð2:6Þ
where Ck is a constant, usually, we take Ck ¼ 1 as in [15]. Here we choose h as the radius of the circumscribed circle in M0, and
Ml; l ¼ 1;2;3, denote the neighboring cells sharing the edge(s) in @M�0 . uh is the numerical solution corresponding to the indi-
cator variable(s) and jjuhðx; y; tÞj

M0
jj is the standard L2 norm in the cell M0.
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. Subsonic cylinder test case. RKDG with WENO limiter. Zoom-in pictures around the cylinder. 30 equally spaced Mach number contours from 0.04
. Left: second order (k ¼ 1); right: third order (k ¼ 2). From top to bottom: the numbers of points in the inner and outer boundaries are the same as
32.
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2.3. The WENO limiting procedure for the scalar case on unstructured meshes

In this subsection, we present the details of the WENO limiting procedure for the scalar case.
Consider Eq. (1.1). In order to achieve better non-oscillatory qualities, the WENO reconstruction limiter is used. For a trou-

bled cell M0, we reconstruct the polynomial p0ðx; yÞ while retaining its cell average uð0Þ0 ðtÞ. We summarize the procedure to
reconstruct the polynomial in the troubled cell M0 using the WENO reconstruction procedure.

Step 1.1.We select the WENO reconstruction stencil as S ¼ fM0;M1;M2;M3g. Then we use the solutions of the DG method
on such four cells and denote them as polynomials p0ðx; yÞ; p1ðx; yÞ; p2ðx; yÞ, p3ðx; yÞ, respectively. In order to maintain the
original cell average of p0ðx; yÞ in the target cell M0, we modify the remaining three polynomials by
Fig. 3.5
to 0.94.
64 and
~piðx; yÞ ¼ piðx; yÞ �
1
jM0j

Z
M0

piðx; yÞdxdyþ 1
jM0j

Z
M0

p0ðx; yÞdxdy; i ¼ 1;2;3:
For notational consistency we also denote ~p0ðx; yÞ ¼ p0ðx; yÞ. The WENO reconstructed polynomial will be a convex
combination of the four polynomials ~piðx; yÞ with i ¼ 0;1;2;3.
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. Subsonic cylinder test case. RKDG with WENO limiter. Zoom-in pictures around the cylinder. 30 equally spaced Mach number contours from 0.04
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Step 1.2.We choose the linear weights denoted by c0; . . . ; c3. Notice that, since ~piðx; yÞ, for i ¼ 0;1;2;3, are all (kþ 1)th
order approximations to the exact solution in smooth regions, there is no requirement on the values of these linear
weights for accuracy besides c0 þ c1 þ c2 þ c3 ¼ 1. The choice of these linear weights is then solely based on the consid-
eration of a balance between accuracy and ability to achieve essentially nonoscillatory shock transition. In all of our
numerical tests, following the practice in [32,9], we take c0 ¼ 0:997 and c1 ¼ c2 ¼ c3 ¼ 0:001.
le 3.5
sonic cylinder test case. L2 entropy errors and orders of convergence. RKDG with the WENO limiter compared to RKDG without limiter.

ell number DG with WENO limiter on every cell DG with WENO limiter, Ck ¼ 0:001

P1 P2 P1 P2

L2 error Order L2 error Order L2 error Order L2 error Order

20 1.09E�2 5.11E�3 4.61E�3 1.87E�3
280 1.55E�3 2.80 4.22E�4 3.59 7.76E�4 2.57 2.01E�4 3.22
120 3.14E�4 2.30 4.57E�5 3.20 1.24E�4 2.64 2.12E�5 3.25
0480 6.42E�5 2.29 5.20E�6 3.13 2.16E�5 2.52 2.34E�6 3.18

DG without limiter

P1 P2

L2 error Order L2 error Order

20 4.59E�3 1.81E�3
280 7.70E�4 2.56 1.99E�4 3.18
120 1.10E�4 2.80 2.08E�5 3.25
0480 2.11E�5 2.38 2.22E�6 3.22
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X

. 3.6. Burgers equation. T ¼ 1:5=p. The surface of the solution. The mesh points on the boundary are uniformly distributed with cell length h ¼ 4=40.
G with the WENO limiter. Left: second order (k ¼ 1); right: third order (k ¼ 2).
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Fig. 3.7. Double Mach refection problem. Sample mesh. The mesh points on the boundary are uniformly distributed with cell length h ¼ 1=20.
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Step 1.3.We compute the smoothness indicators, denoted by bi; i ¼ 0; . . . ;3, which measure how smooth the functions
~piðx; yÞ, for i ¼ 0; . . . ;3, are on the target cell M0. The smaller these smoothness indicators, the smoother the functions
are on the target cell. We use the same recipe for the smoothness indicators as in [14]:

bi ¼
Xk

j‘j¼1

jM0jj‘j�1
Z
M0

@j‘j

@x‘1@y‘2
~piðx; yÞ

 !2

dxdy; ð2:7Þ

where ‘ ¼ ð‘1; ‘2Þ.
Step 1.4.We compute the non-linear weights based on the smoothness indicators:
Table 3
Double

Perc

P1

Fig. 3.8
mesh p
xi ¼
�xiP3

‘¼0

�x‘

; �x‘ ¼
c‘

ðeþ b‘Þ
2 : ð2:8Þ
Here e is a small positive number to avoid the denominator to become zero. We take e ¼ 10�6 in our computation.
Step 1.5.The final nonlinear WENO reconstruction polynomial pnew

0 ðx; yÞ is defined by a convex combination of the four
(modified) polynomials in the stencil:
.6
Mach refection problem. The maximum and average percentages of troubled cells subject to the WENO limiting.

entage of the troubled cells

Cell length h 1/100 1/200 P2 Cell length h 1/100 1/200

Maximum percentage 3.61 2.34 Maximum percentage 4.83 4.30
Average percentage 2.18 1.41 Average percentage 3.00 2.59

0 1 2 3
X

0

0.5

1

Y

0 1 2 3
X

0

0.5

1

Y

. Double Mach refection problem. Second order (k ¼ 1) RKDG with the WENO limiter. 30 equally spaced density contours from 1.1 to 22. Top: the
oints on the boundary are uniformly distributed with cell length h ¼ 1=100; bottom: h ¼ 1=200.
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pnew
0 ðx; yÞ ¼ x0~p0ðx; yÞ þx1~p1ðx; yÞ þx2~p2ðx; yÞ þx3~p3ðx; yÞ: ð2:9Þ
It is easy to verify that pnew
0 ðx; yÞ has the same cell average and order of accuracy as the original one p0ðx; yÞ for the condition

that
P3

i¼0xi ¼ 1.
Step 1.6.The moments of the reconstructed polynomial are then given by:
uðlÞ0 ðtÞ ¼
1R

M0
ðv ð0Þl ðx; yÞÞ

2 dxdy

Z
M0

pnew
0 ðx; yÞv

ð0Þ
l ðx; yÞdxdy; l ¼ 1; . . . ;K: ð2:10Þ
We remark that, in Step 1.2 above, the choice of the linear weights is not unique. For accuracy, a larger value of c0 is bet-
ter, since c0 ¼ 1 corresponds to the unlimited case. However, a smaller value of c0 (hence a larger value of the other linear
weights) would have a better chance for non-oscillatory performance of the algorithm. Our numerical experiments seem to
indicate that the choice of values in Step 1.2 above is a good balance, but a variation around these values do not change the
performance significantly.

For problems with non-periodic boundary conditions, we construct ghost cells according to the physical boundary con-
ditions (e.g. reflective) to perform the limiter for the boundary cells. Since our limiter uses only the immediate neighbors,
this is not a significant burden to the algorithm near the boundary.

2.4. The WENO limiting procedure for the system case on unstructured meshes

In this subsection, we present the details of the WENO limiting procedure for systems.
Consider Eq. (1.1) where u; f ðuÞ and gðuÞ are vectors with m components. In order to achieve better non-oscillatory qual-

ities, the WENO reconstruction limiter is used with a local characteristic decomposition, see [26] for a discussion on the
rationale in adopting such a decomposition. In this paper, we only consider the following Euler systems and set m ¼ 4.
0 1 2 3
X

0

0.5

1

Y

0 1 2 3
X

0

0.5

1

Y

. Double Mach refection problem. Third order (k ¼ 2) RKDG with the WENO limiter. 30 equally spaced density contours from 1.1 to 22. Top: the
oints on the boundary are uniformly distributed with cell length h ¼ 1=100; bottom: h ¼ 1=200.
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ut þ f ðuÞx þ gðuÞy ¼
@

@t

q
ql
qm
E

0
BBB@

1
CCCAþ @

@x

ql
ql2 þ p

qlm
lðEþ pÞ

0
BBB@

1
CCCAþ @

@y

qm
qlm

qm2 þ p

mðEþ pÞ

0
BBB@

1
CCCA ¼ 0;

uðx; y;0Þ ¼ u0ðx; yÞ:

8>>>>><
>>>>>:

ð2:11Þ
where q is the density, l is the x-direction velocity, m is the y-direction velocity, E is the total energy, p ¼ E
c�1� 1

2 qðl2 þ m2Þ is
the pressure and c ¼ 1:4 in our test cases. We denote the Jacobian matrices as ðf 0ðuÞ; g0ðuÞÞ � ni and ni ¼ ðnix;niyÞT ; i ¼ 1;2;3,
are the outward unit normals to different edges of the target cell. We then give the left and right eigenvectors of such
Jacobian matrices as:
Li ¼

B2 þ ðlnix þ mniyÞ=c
2

�B1lþ nix=c
2

�B1mþ niy=c
2

B1

2
niyl� nixm �niy nix 0

1� B2 B1l B1m �B1

B2 � ðlnix þ mniyÞ=c
2

�B1l� nix=c
2

�B1m� niy=c
2

B1

2

0
BBBBBBB@

1
CCCCCCCA
; ð2:12Þ
and 0 1

Ri ¼

1 0 1 1
l� cnix �niy l lþ cnix

m� cniy nix m mþ cniy

H � cðlnix þ mniyÞ �niylþ nixm
l2 þ m2

2
H þ cðlnix þ mniyÞ

BBBBB@
CCCCCA; i ¼ 1;2;3; ð2:13Þ
where c ¼
ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
;B1 ¼ ðc� 1Þ=c2, B2 ¼ B1ðl2 þ m2Þ=2 and H ¼ ðEþ pÞ=q. If the troubled cell M0 is detected by the KXRCF

technique [15] using (2.6), we denote as before the four modified polynomial vectors ~p0; ~p1; ~p2, ~p3, corresponding to the cell
M0 and its three immediate neighbors and having the same cell average as p0 on M0. We then perform the WENO limiting
procedure as follows:
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0. Double Mach refection problem. RKDG with the WENO limiter. Zoom-in pictures around the Mach stem. 30 equally spaced density contours from
2. Left: second order (k ¼ 1); right: third order (k ¼ 2). Top: the mesh points on the boundary are uniformly distributed with cell length h ¼ 1=100;
: h ¼ 1=200.
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Step 2.1. In each ni-direction among the three normal directions of the three edges of the cell M0, we reconstruct a new
polynomial vector ðp0Þ

new
i by using the characteristic-wise WENO limiting procedure with the associated Jacobian

f 0ðuÞnix þ g0ðuÞniy:

Step 2.1.1. Project the polynomial vectors ~p0; ~p1; ~p2 and ~p3 into the characteristic fields �pl ¼ Li � ~pl, l ¼ 0;1;2;3,
each of them being a 4-component vector and each component of the vector is a kth degree
polynomial.

Step 2.1.2. Perform Step 1.1 to Step 1.5 of the WENO limiting procedure that has been specified for the scalar
case, to obtain a new 4-component vector on the troubled cell M0 as �pnew

0 .
Step 2.1.3. Project �pnew

0 into the physical space ðp0Þ
new
i ¼ Ri � �pnew

0 . P3 new
Step 2.2. The final new 4-component vector on the troubled cell M0 is defined as pnew
0 ¼ i¼1

ðp0Þi jMi jP3

i¼1
jMi j

.

Step 2.3. The moments of the reconstructed polynomials which are components of the vector on M0 are then computed
similarly as in Step 1.6.

3. Numerical results

In this section, we provide numerical results to demonstrate the performance of the WENO reconstruction limiters for the
RKDG methods on unstructured meshes described in Section 2.

We first test the accuracy of the schemes in two dimensional problems. In all of our accuracy test cases, the refinement is
performed by a structured refinement (we simply break each triangle into four similar smaller triangles for each level of the
refinement). We adjust the constant Ck in (2.6) from 1 to 0.01 in Example 3.1, to 0.01 (for the second order RKDG method)
and 0.001 (for the third order RKDG method) in Example 3.2, and to 0.001 for Example 3.3, for the purpose of artificially gen-
erating a larger percentage of troubled cells in order to test accuracy when the WENO reconstruction procedure is enacted in
more cells. We also consider the case of artificially declare all cells to be troubled cells for Example 3.3 in order to assess the
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Fig. 3.11. Double Mach refection problem. Second order (k ¼ 1) RKDG with the WENO limiter. Troubled cells. Circles denote triangles which are identified
as troubled cells subject to the WENO limiting. Top: the mesh points on the boundary are uniformly distributed with cell length h ¼ 1=100; bottom:
h ¼ 1=200.
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effect of the WENO limiter on accuracy in such situation. The CFL number is set to be 0.3 for the second order (k ¼ 1) and 0.18
for the third order (k ¼ 2) RKDG methods.

Example 3.1. We solve the following nonlinear scalar Burgers equation in two dimensions:
Fig. 3.1
trouble
h ¼ 1=2
ut þ
u2

2

� �
x
þ u2

2

� �
y
¼ 0 ð3:1Þ
0 1 2 3
X

0

0.5

1

Y

0 1 2 3
X

0

0.5

1

Y

2. Double Mach refection problem. Third order (k ¼ 2) RKDG with the WENO limiter. Troubled cells. Circles denote triangles which are identified as
d cells subject to the WENO limiting. Top: the mesh points on the boundary are uniformly distributed with cell length h ¼ 1=100; bottom:
00.
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Fig. 3.13. Forward step problem. Sample mesh. The mesh points on the boundary are uniformly distributed with cell length h ¼ 1=20.
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with the initial condition uðx; y;0Þ ¼ 0:5þ sinðpðxþ yÞ=2Þ and periodic boundary conditions in both directions. We compute
the solution up to t ¼ 0:5=p, when the solution is still smooth. For this test case the coarsest mesh we have used is shown in
Fig. 3.1. The errors and numerical orders of accuracy for the RKDG method with the WENO limiter comparing with the ori-
ginal RKDG method without limiter are shown in Table 3.1. In Table 3.2, we document the percentage of cells declared to be
troubled cells for different mesh levels and orders of accuracy. We can see that the WENO limiter keeps the designed order of
accuracy, even when a large percentage of good cells are artificially identified as troubled cells.
Example 3.2. We solve the Euler equations (2.11). The initial conditions are: qðx; y;0Þ ¼ 1þ 0:2 sinðpðxþ yÞÞ;lðx; y;0Þ ¼ 0:7,
mðx; y;0Þ ¼ 0:3; pðx; y;0Þ ¼ 1. Periodic boundary conditions are applied in both directions. The exact solution is
qðx; y; tÞ ¼ 1þ 0:2 sinðpðxþ y� tÞÞ. We compute the solution up to t ¼ 2. For this test case the coarsest mesh we have used
is shown in Fig. 3.2. The errors and numerical orders of accuracy of the density for the RKDG method with the WENO limiter
comparing with the original RKDG method without a limiter are shown in Table 3.3. In Table 3.4, we document the percent-
age of cells declared to be troubled cells for different mesh levels and orders of accuracy. Similar to the previous example, we
can see that the WENO limiter again keeps the designed order of accuracy when the mesh size is small enough, even when a
large percentage of good cells are artificially identified as troubled cells.
Table 3.7
Forward step problem. The maximum and average percentages of troubled cells subject to the WENO limiting.

Percentage of the troubled cells

P1 Cell length h 1/60 1/100 P2 Cell length h 1/60 1/100

Maximum percentage 7.08 5.49 Maximum percentage 8.44 8.11
Average percentage 5.33 3.70 Average percentage 5.80 5.44
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Fig. 3.14. Forward step problem. Top: second order (k ¼ 1); bottom: third order (k ¼ 2) RKDG with the WENO limiter. 30 equally spaced density contours
from 0.32 to 6.15. The mesh points on the boundary are uniformly distributed with cell length h ¼ 1=100.
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Fig. 3.15. Forward step problem. Top: second order (k ¼ 1); bottom: third order (k ¼ 2) RKDG with the WENO limiter. Troubled cells. Circles denote
triangles which are identified as troubled cell subject to the WENO limiting. The mesh points on the boundary are uniformly distributed with cell length
h ¼ 1=100.
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Fig. 3.16. NACA0012 airfoil mesh zoom in.
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Table 3.8
NACA0012 airfoil problem. The maximum and average percentages of troubled cells subject to the WENO limiting.

M1 ¼ 0:8, angle of attack a ¼ 1:25� M1 ¼ 0:85, angle of attack a ¼ 1�

P1 Maximum percentage 11.3 Maximum percentage 11.6
Average percentage 6.49 Average percentage 6.72

P2 Maximum percentage 18.1 Maximum percentage 18.7
Average percentage 10.4 Average percentage 12.8
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Fig. 3.17. NACA0012 airfoil. Mach number. Top: M1 ¼ 0:8, angle of attack a ¼ 1:25� , 30 equally spaced Mach number contours from 0.172 to 1.325;
bottom: M1 ¼ 0:85, angle of attack a ¼ 1� , 30 equally spaced Mach number contours from 0.158 to 1.357. Left: second order (k ¼ 1); right: third order
(k ¼ 2) RKDG with the WENO limiter.
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Example 3.3. In order to check accuracy and convergence properties of the RKDG method with the WENO limiters for prob-
lems with curved boundary, we solve the subsonic flow past a circular cylinder at a Mach number of M1 ¼ 0:38 [18]. The
four refined triangular meshes (again with structured refinement) are used here and the associated meshes are shown in
Fig. 3.3. The radius of the cylinder is 0.5, and the computational domain is fðx; yÞ : 0:5 6 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 20g. The numbers of
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points in the inner and outer boundaries are the same as 16, 32, 64 and 128, respectively. RKDG method with and without
WENO limiters, with curved boundary conditions, and with k = 1 and k = 2 (second and third order), are used in the numer-
ical experiments. Mach number contours are shown in Fig. 3.4 and Fig. 3.5. Following [18], we measure the entropy error by
the formula
S0 � S1
S1

¼
p0
qc

0
p1
qc
1

� 1
where S0 is the local entropy and S1 is the far field entropy. The L2 errors and numerical orders of accuracy for the entropy for
the RKDG method with WENO limiters on every cell, with WENO limiters only on the troubled cells and without the WENO
limiters are shown in Table 3.5. We can see that the new WENO limiter can maintain the designed high order accuracy of the
DG method, even in the extreme situation that WENO limiter is applied on every cell.

We now test the performance of the RKDG method with the WENO limiters for problems containing shocks. From now
on, we reset the constant Ck ¼ 1 in the trouble cell indicator (2.6). For comparison with the RKDG method using the minmod
TVB limiter, we refer to the results in [4,7]. For comparison with the RKDG method using the previous versions of WENO type
limiters, we refer to the results in [18,34].



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Y/
C

-1 -0.5 0 0.5 1 1.5 2
X/C

-1 -0.5 0 0.5 1 1.5 2
X/C

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y/
C

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y/
C

-1 -0.5 0 0.5 1 1.5 2
X/C

-1 -0.5 0 0.5 1 1.5 2
X/C

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Y/
C

Fig. 3.19. NACA0012 airfoil. Troubled cells. Circles denote triangles which are identified as troubled cells subject to the WENO limiting. Top: M1 ¼ 0:8,
angle of attack a ¼ 1:25�; bottom: M1 ¼ 0:85, angle of attack a ¼ 1� . Left: second order (k ¼ 1); right: third order (k ¼ 2) RKDG with the WENO limiter.
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Example 3.4. We solve the same nonlinear Burgers equations (3.1) with the same initial condition
uðx; y;0Þ ¼ 0:5þ sinðpðxþ yÞ=2Þ, except that we plot the results at t ¼ 1:5=p when a shock has already appeared in the solu-
tion. The solutions are shown in Fig. 3.6. We can see that the schemes give non-oscillatory shock transitions for this problem.
Example 3.5. Double Mach reflection problem. This model problem is originally from [30]. We solve the Euler Eqs. (2.11) in a
computational domain of ½0;4� � ½0;1�. The reflection boundary condition is used at the wall, which for the rest of the bottom
boundary (the part from x ¼ 0 to x ¼ 1

6), the exact post-shock condition is imposed. At the top boundary is the exact motion of
the Mach 10 shock. The results shown are at t ¼ 0:2. Two different orders of accuracy for the RKDG with WENO limiters, k = 1
and k = 2 (second and third order), are used in the numerical experiments. A sample mesh coarser than what is used is shown
in Fig. 3.7. In Table 3.6 we document the percentage of cells declared to be troubled cells for different orders of accuracy. We
can see that only a small percentage of cells are declared as troubled cells. The simulation results are shown in Figs. 3.8 and
3.9. The ‘‘zoomed-in’’ pictures around the double Mach stem to show more details are given in Fig. 3.10. The troubled cells
identified at the last time step are shown in Figs. 3.11 and 3.12. Clearly, the resolution improves with an increasing k on the
same mesh.
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Example 3.6. A Mach 3 wind tunnel with a step. This model problem is also originally from [30]. The setup of the problem is
as follows. The wind tunnel is 1 length unit wide and 3 length units long. The step is 0:2 length units high and is located 0:6
length units from the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow. Reflective bound-
ary conditions are applied along the wall of the tunnel and inflow/outflow boundary conditions are applied at the entrance/
exit. At the corner of the step, there is a singularity. However we do not modify our schemes or refine the mesh near the
corner, in order to test the performance of our schemes for such singularity. The results are shown at t ¼ 4. We present a
sample triangulation of the whole region ½0;3� � ½0;1� in Fig. 3.13. In Table 3.7 we document the percentage of cells declared
to be troubled cells for different orders of accuracy. In Fig. 3.14, we show 30 equally spaced density contours from 0.32 to
6.15 computed by the second and third order RKDG schemes with the WENO limiters, respectively. The troubled cells iden-
tified at the last time step are shown in Fig. 3.15. We can clearly observe that the third order scheme gives better resolution
than the second order scheme, especially for the resolution of the physical instability and roll-up of the contact line.
Example 3.7. We consider inviscid Euler transonic flow past a single NACA0012 airfoil configuration with Mach number
M1 ¼ 0:8, angle of attack a ¼ 1:25� and with M1 ¼ 0:85, angle of attack a ¼ 1�. The computational domain is
½�15;15� � ½�15;15�. The mesh used in the computation is shown in Fig. 3.16, consisting of 9340 elements with the maxi-
mum diameter of the circumcircle being 1.4188 and the minimum diameter being 0.0031 near the airfoil. The mesh uses
curved cells near the airfoil. The second order RKDG scheme with the WENO limiter and the third order scheme with the
WENO limiter are used in the numerical experiments. In Table 3.8, we document the percentage of cells declared to be trou-
bled cells for different orders of accuracy. Mach number and pressure distributions are shown in Figs. 3.17 and 3.18. We can
see that the third order scheme has better resolution than the second order one. The troubled cells identified at the last time
step are shown in Fig. 3.19. Clearly, very few cells are identified as troubled cells.
4. Concluding remarks

We have generalized the simple weighted essentially non-oscillatory (WENO) limiter, originally developed in [32] for
structured meshes, to two-dimensional unstructured triangular meshes for the Runge–Kutta discontinuous Galerkin (RKDG)
methods solving hyperbolic conservation laws. The general framework of WENO limiters for RKDG methods, namely first
identifying troubled cells subject to the WENO limiting (in this paper we use the KXRCF technique [15] for this purpose),
then reconstructing the polynomial solution inside the troubled cell by the solutions of the DG method on the target cell
and its neighboring cells by a WENO procedure, is followed in this paper. The main novelty of this paper is the apparent sim-
plicity of the WENO reconstruction procedure, which uses only the information from the troubled cell and its three imme-
diate neighbors, without extensive usage of any geometric information of the meshes, and with simple positive linear
weights in the reconstruction procedure. Extensive numerical results, both for scalar equations and for Euler systems of com-
pressible gas dynamics, are provided to demonstrate good results, both in accuracy and in non-oscillatory performance, com-
parable with those in earlier literature with much more complicated WENO limiters. In future work, we will extend the
methodology to three-dimensional unstructured meshes.
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